WO1998058159A1 - Structure d'etancheite pour turbines a gaz - Google Patents

Structure d'etancheite pour turbines a gaz Download PDF

Info

Publication number
WO1998058159A1
WO1998058159A1 PCT/JP1998/002722 JP9802722W WO9858159A1 WO 1998058159 A1 WO1998058159 A1 WO 1998058159A1 JP 9802722 W JP9802722 W JP 9802722W WO 9858159 A1 WO9858159 A1 WO 9858159A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal
inner shroud
arm
honeycomb
seal ring
Prior art date
Application number
PCT/JP1998/002722
Other languages
English (en)
French (fr)
Inventor
Yasuoki Tomita
Hiroki Fukuno
Katsunori Tanaka
Toshiaki Sano
Original Assignee
Mitsubishi Heavy Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries, Ltd. filed Critical Mitsubishi Heavy Industries, Ltd.
Priority to DE69828255T priority Critical patent/DE69828255T2/de
Priority to EP98928571A priority patent/EP0926314B1/en
Priority to US09/242,529 priority patent/US6152690A/en
Priority to CA002263642A priority patent/CA2263642C/en
Publication of WO1998058159A1 publication Critical patent/WO1998058159A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/001Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between stator blade and rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • F01D11/025Seal clearance control; Floating assembly; Adaptation means to differential thermal dilatations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb

Definitions

  • the present invention relates to a gas turbine sealing device, and more particularly, to a gas turbine seal having improved sealing performance in a seal structure between an inner shaft of a stationary blade and a platform of a moving blade, in which fluctuation in clearance is eliminated.
  • a gas turbine sealing device and more particularly, to a gas turbine seal having improved sealing performance in a seal structure between an inner shaft of a stationary blade and a platform of a moving blade, in which fluctuation in clearance is eliminated.
  • FIG. 5 is a cross-sectional view showing a seal structure of a conventional gas turbine.
  • 21 is a rotor blade
  • 22 is its platform
  • 23 is a seal plate
  • 24 is a blade root.
  • a plurality of rotor blades 21 are radially mounted around the rotor blade via a blade root portion 24.
  • Reference numeral 31 denotes a stationary blade, which is arranged adjacent to the rotor blade 21 and 32 is an inner shroud thereof. 33 is a cavity in the inner shroud, and 34 is a seal ring, which has a circular shape.
  • Reference numeral 35 denotes an air hole provided in the seal ring 34, which communicates the space between the stationary blade 31 and the adjacent blade root 24 of the moving blade 21 with the cavity 33.
  • Reference numeral 36 denotes a seal portion provided on the seal ring 34, which employs a labyrinth seal or the like, and seals the space between the rotating blade root portion 24.
  • Reference numeral 37 denotes a honeycomb seal provided on the upstream side of the combustion gas flow of the inner shroud
  • 38 denotes a honeycomb seal provided on the inner shroud 32 also on the downstream side.
  • the honeycomb seals 37 and 38 are , Are arranged in close proximity to the blade arms 25 a and 25 b of the platform 22 of the rotor blades 21 adjacent to each other, and form a seal by giving resistance to leaking air. .
  • FIG. 6 shows the details of the portion D in FIG. 5.
  • a honeycomb seal 38 having a large number of honeycomb-shaped cores, and a plateform 22 at the opening side of the honeycomb are shown.
  • the rotor arm 25a is disposed in close proximity to the tip of the rotor arm 25a.
  • the honeycomb seal 3 8 The clearance t between the shaft and the low arm 25 a is about 1 mm.
  • the high-pressure leak air 40 from the cavity 33 (see arrow) is supplied to the downstream side of the combustion gas flow by the seal ring 34 on the side of the stationary blade 31 and the side surface of the rotor blade 21. From the space between the seal plate 23 and the passage through the clearance t between the honeycomb seal 38 and the mouth portion 25a, it flows out to the combustion gas passage on the low pressure side. While the high-pressure leak air 40 passes through such a path, the flow resistance of the leak air 40 increases, and as a result, the honeycomb seal 38 and the rotatable arm portion 25a that are arranged close to each other increase the flow resistance. A sealing effect is generated between them, preventing hot combustion gas from entering the inside of the stator vane 31. Similarly, air leaks out between the honeycomb seal 37 and the mouth arm 25 b on the upstream side of the combustion gas flow of the stationary blade 31, and the air leaks out. Provides a seal for the gas passage.
  • FIG. 7 is a sectional view taken along line EE in FIG.
  • the inner shroud 32 of the stator vane 31 has a plurality of circular shrouds formed at appropriate intervals on the circumference at a predetermined distance from the circular mouth rim portion 25a. It is installed independently.
  • a honeycomb seal 38 is attached to the inner shroud 32, and the clearance between the honeycomb seal 38 and the mouth-arm portion 25a is a clearance t.
  • the state at the time of manufacturing the inner shroud 32 is shown by a solid line. After the gas bin operation, the inner shroud 32 and the stator vane 31 are deformed by the rotation of the rotor arm 25a as shown by the dotted line.
  • a main object of the present invention is to provide a gas-single-bottle sealing device that enables clearance control of a seal portion by adopting a structure in which the clearance does not fluctuate.
  • Another object of the present invention is to provide a sealing device having a structure that is not affected by the deformation of the inner shroud as described above and that further improves the sealing performance.
  • a seal device for a gas turbine includes: an arm portion projecting from a seal ring side for fixing an inner shroud of a stationary blade along a front end portion and a rear end portion in the axial direction of the inner shroud; A seal member attached to the inner shroud and a seal member constituting a seal mechanism between the front end and the rear end of the inner shroud, respectively, and a platform end of a rotor blade adjacent to the inner shroud. It is characterized by sealing from the passage. Note that a honeycomb seal is preferable as the seal member.
  • the seal member is attached to both the arm portions on the seal ring side, and after the operation of the gas bottle, each inner shroud is deformed, and the positions thereof are varied.
  • the arm on the seal ring side is circular and has a different structure from the inner shroud, so it has no effect on the deformation of the inner shroud. Therefore, the seal member attached to the arm on the seal ring side also Since it is not affected at all by the deformation of the inner shroud, the clearance formed between the seal member and the platform end of the blade can also maintain a predetermined dimension. Therefore, if this clearance is set to the optimal size, the size is maintained even after the operation of the gas bin and the clearance control is significantly improved compared to the conventional case.
  • the fluctuation of the clearance is eliminated, so that the clearance of the seal portion can be set to an optimum size.
  • FIG. 1 is a schematic view of a partial cross section showing a sealing device for a gas turbine according to an embodiment of the present invention.
  • Fig. 2 is an enlarged cross-sectional view of part A in Fig. 1 showing details of the seal structure between the platform blade side of the moving blade and the inner shroud side of the stationary blade on the downstream side of the combustion gas flow of the inner shroud. is there.
  • FIG. 3 is a cross-sectional view taken along the line C-C in FIG. 2, showing the relationship between the honeycomb seal on the inner shroud side and the mouth arm on the platform.
  • Fig. 4 is an enlarged cross-sectional view of a portion B in Fig. 1 showing details of a seal structure between a platform side of a moving blade and an inner shroud side of a stationary blade on an upstream side of a combustion gas flow of an inner shroud. is there.
  • - Figure 5 is a schematic diagram showing a conventional gas turbine seal structure.
  • FIG. 6 is an enlarged cross-sectional view of a portion D in FIG. 5 showing details of a seal structure between the platform blade side of the moving blade and the inner shroud side of the stationary blade downstream of the combustion gas flow of the inner shroud. .
  • FIG. 7 is a cross-sectional view taken along the line EE in FIG. 6, showing a relationship between the honeycomb seal on the inner shroud side and the mouth-evening arm on the platform. Description of the preferred embodiment
  • FIG. 1 is a schematic view of a gas bottle sealing device according to an embodiment of the present invention.
  • 21 is a rotor blade
  • 22 is its platform
  • 24 is a blade root.
  • Reference numerals 11 and 12 denote mouth-evening arms provided at the front and rear ends of the platform 22 in the axial direction, and a rotor arm 11 upstream of the combustion gas flow is provided with a conventional arm.
  • the arm portion 12 on the downstream side is arranged so as to be located inside the arm portion, and is arranged so as to be located outside the conventional arm portion.
  • Reference numerals 13 and 14 denote seal plates for covering the shank portion.
  • the seal plate 14 is provided with an arm portion 14a having fins 14b.
  • 3 1 is a stationary blade
  • 3 2 is an inner shroud
  • 3 3 is an inner shroud 3 2 a cavity inside
  • 3 4 is a seal portion.
  • a labyrinth seal or the like is adopted as the seal portion 34, and the seal portion 34 is disposed so as to be opposed to and close to the blade root portion 24 of the adjacent rotating blade 21 to form a seal portion.
  • An air hole 35 communicates the cavity 33 with the space of the adjacent rotor blade 21.
  • Reference numeral 1 denotes a circular seal ring
  • an arm 2 is provided on the upstream side of the combustion gas flow.
  • the arm 2 extends along this curved surface in close proximity to the end of the inner shroud 32, and the lower surface of the arm 2 has a honeycomb seal 4 b is installed.
  • an arm 3 is provided on the downstream side of the combustion gas flow of the seal ring 1, and the arm 3 also extends along the end of the inner shroud 32, and the arm 3 is provided.
  • a seal member 4a as a sealing member is attached.
  • FIG. 2 is a detailed view of a portion A in FIG. 1 and shows the downstream side of the inner shroud 32 of the stator vane 31.
  • a seal ring 1 is attached to the inner shroud 32.
  • the seal ring 1 has a circular shape and has a two-part structure.
  • the seal ring 1 is fixed to the inner shroud 32 with bolts 6, and has an arm 3 and a protrusion 5 on the adjacent moving blade 21 side.
  • the arm portion 3 protrudes toward the platform 22 along a curved surface inside the end portion of the inner shroud 32, and a honeycomb seal 4a is attached to a lower surface thereof.
  • a large number of honeycomb cores are opened downward on the honeycomb seal 4a, and the opening of the platform 22 on the rotor blade 21 side—the evening arm portion 11 is disposed on the opening surface thereof.
  • a large number of fins 11a are provided on the upper surface of the mouth-and-arm portion 11 while maintaining a honeycomb seal 4a and a predetermined clearance t, for example, l mm.
  • An arm 13 a protrudes from the seal plate 13 of the rotor blade 21 toward the seal ring 1, and forms a seal with the protrusion 5 on the stationary blade 31 side.
  • FIG. 3 is a cross-sectional view taken along the line C-C in FIG.
  • the honeycomb seal 4a is continuously attached to the lower surface of the circular arm portion 3 in a circular shape.
  • the honeycomb seal 4a has a large structure, and therefore is divided and attached on the circumference of the arm 3 in two parts.
  • the solid line represents the inner shroud 32 before the gas bin is operated, and the inner shroud 32 is arranged at a predetermined circumferential position. I have.
  • the inner shroud deforms for each stationary blade as shown by the dotted line.
  • the honeycomb seal 4 a is attached to the arm 3 of the seal ring 1, which is separate from the inner shroud 32. Because it is attached, it is not affected by the deformation of the inner shroud 32, and the clearance between the fins 11a attached to the mouth arm 11 of the platform 22 shown in Fig. 2 and the honeycomb seal 4a shown in Fig. 2 t can hold a predetermined interval.
  • FIG. 4 is a detailed view of a portion B in FIG. 1, and shows an upstream side of a combustion gas flow in an inner shroud 32 of the stator vane 31.
  • a worm portion 2 of a seal ring 1 that is bent in a substantially L-shape along the curved surface of the inner shroud projects, and a honeycomb seal 4b is opened on the lower surface thereof.
  • the above-mentioned seal plate 14 is attached to the platform 22 of the bucket 21, and the seal portion 14 a of the seal plate 14 faces the arm portion 2 on the inner shroud 32 side. It protrudes to the position where it does.
  • Fins 14b are provided in the seal portion 14a, and are disposed to face the honeycomb seal 4b while maintaining a predetermined clearance t.
  • This honeycomb seal 4b also has an arm portion of the seal ring 1 that is separate and independent from the inner shroud 32, as described in the relationship between the inner shroud 32 and the honeycomb seal 4a attached to the arm portion 3 in FIG. Since it is attached to the inner shroud 32, it is not affected by the deformation of the inner shroud 32, and the clearance t between the fins 14b of the seal plate 14 on the side of the platform 22 and the honeycomb seal 4b shown in FIG. A predetermined interval can be maintained.
  • the high-pressure leak air 40 from the cavity 33 passes through the seal on the stator vane 31 side.
  • the clearance t between the honeycomb seal 4 a and the fin 11 a of the low-pressure arm portion 11 passes through the clearance t, and the low-pressure side It flows out to the combustion gas passage. While the high-pressure leak air 40 passes through such a path, the flow resistance of the leak air 40 increases, whereby the close proximity between the honeycomb seal 4a and the fins 11a is increased.
  • the production / assembly is performed by setting the clearance t between the honeycomb seals 4 a and 4 b and the fins 11 a and 14 b on the rotor blade 21 side to the optimal design dimensions. Even so, the clearance can maintain a predetermined dimension regardless of the deformation of the inner shroud 32 after the operation of the gas turbine, so that the clearance can be controlled. Conventionally, since the honeycomb seal was directly attached to the inner shroud 32, the clearance also fluctuated due to the deformation of the inner shroud 32 after the gas turbine was operated, but this embodiment solves such a problem. As a result, the clearance control of the seal has been greatly improved.
  • the arm portion 2 of the seal ring 1 shown in FIG. 4 may be a divided member for convenience of assembly.
  • the entire seal ring 1 is integrally formed so as to include the arm portions 2 and 3. It is a good thing.
  • the fins on the rotor blade 21 side may be directly attached to the rotatable arm 11 integral with the platform 22, or may be provided on a seal plate 13 or 14 which is independent from the platform 22. May be attached.
  • the arms 2 and 3 on the inner shroud 32 side of the stationary blade 31 are outward, the seal portion 14 a on the rotor blade 21 side and the arm 1 1- a are arranged inside, and the honeycomb seals 4 a and 4 b on the stator vane 31 side face inward,
  • the fins 14 b and 11 a on the rotor blade 21 side face outward, and are arranged so as to face each other.
  • Arms 2 and 3 are arranged inside, rotor blade 21 side seal part 14a and rotor arm part 11a are arranged outside, and stator vane 31 1 side honeycomb seals 4a and 4b are outside.
  • the fins 14b and 11a on the rotor blade 21 side may face inward, and may be arranged so as to face each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Gasket Seals (AREA)

Description

明 細 書 ガスタービンのシール装置 発明の背景
発明の技術分野
本発明は、 ガスタービンのシール装置に関し、 特に、 静翼の内側シユラ ゥドと動翼のプラットフオームとの間のシール構造において、 クリアランスの変 動をなくし、 シール性能を向上したガスタービンのシール装置に関する。
関連技術の説明
図 5は、 従来のガスタービンのシール構造部分を示す断面図である。 図 において、 2 1は動翼であり、 2 2はそのプラッ トフォーム、 2 3はシール板、 2 4は翼根部である。 動翼 2 1は、 翼根部 2 4を介してロー夕周囲に、 放射状に 複数枚取付けられている。 3 1は静翼であり、 動翼 2 1と互に隣接して配置され ており、 3 2はその内側シユラウドである。 3 3は内側シュラウド内のキヤビテ ィ、 3 4はシールリングであり、 円形状をしている。 3 5はシールリング 3 4に 設けられた空気穴であり、 静翼 3 1と隣接する動翼 2 1の翼根部 2 4との空間と キヤビティ 3 3とを連通している。 3 6はシールリング 3 4に設けられたシール 部であり、 ラビリンスシール等が採用され、 回転する翼根部 2 4との間をシール するものである。
3 7は内側シュラウドの燃焼ガス流れ上流側に設けられたハニカムシ一 ル、 3 8は同じく後流側の内側シュラウド 3 2に設けられたハニカムシールであ り、 これらハニカムシール 3 7及び 3 8は、 各々互に隣接する動翼 2 1のプラッ トフオーム 2 2のロー夕アーム部 2 5 a及び 2 5 bと近接配置され、 もれ空気に 対して抵抗を与えることにより、 シールを構成している。
このシールの構成を詳述する。 図 6は、 図 5における D部の詳細を示し たものであり、 内側シュラウド 3 2の端部には、 ハニカム状のコアを多数有する ハニカムシール 3 8が、 そのハニカムの開口側をプラヅトフオーム 2 2のロータ- アーム部 2 5 aの先端部と近接して配設されている。 なお、 ハニカムシール 3 8 とロー夕アーム部 2 5 aとのクリアランス tは、 1 mm程度である。
上記のシール構造において、 キヤビティ 3 3からの高圧のもれ空気 4 0 (矢印参照) は、 燃焼ガス流の後流側において、 静翼 3 1側のシールリング 3 4 側面と動翼 2 1のシール板 2 3との間の空間から、 ハニカムシール 3 8と口一夕 アーム部 2 5 aとの間のクリアランス tを通り、 低圧側の燃焼ガス通路へ流出す る。 このような径路を高圧のもれ空気 4 0が通過する間、 もれ空気 4 0の流れ抵 抗が増大し、 それにより近接配置されたハニカムシール 3 8とロー夕アーム部 2 5 aとの間でシール効果が生じ、 高温の燃焼ガスが静翼 3 1の内側に侵入するの を防止している。 同様に静翼 3 1の燃焼ガス流の上流側におけるハニカムシール 3 7と口一夕アーム部 2 5 bとの間へももれ空気が流出し、 もれ空気の流れ抵抗 の増加により、 燃焼ガス通路に対してシールを提供する。
しかし、 上述した従来のガス夕一ビンのシール構造においては、 静翼 3 1の内側シュラウド 3 2の端部にハニカムシール 3 7及び 3 8が直接装着されて いるため、 ガス夕一ビンの運転後における内側シュラウド 3 2の変形や、 あるい は製作時の製品のバラツキ等により、 クリアランス に、 周方向の寸法において 、 不均一なバラツキが発生するという問題点があった。 また、 この内側シュラウ ド 3 2に対向して回転するプラットフオーム 2 2の口一夕アーム部 2 5 a及び 2 5 bは、 円形状であって、 回転する際に円を描くため、 内側シュラウド 3 2に取 付けられたハニカムシール 3 8及び 3 7とプラットフオーム 2 2のロータアーム 部 2 5 a及び 2 5 bとのクリアランス tは、 全く制御することができないという 問題点もあった。
この状態を図面に基づいて説明する。 図 7は、 図 6における E— E断面 図である。 図において、 静翼 3 1の内側シュラウド 3 2は、 円形状の口一夕ァ一 ム部 2 5 aから所定間隔を隔てた円周上に、 適当な間隔を開けて円形状に複数枚 がそれそれ独立して取付けられている。 また、 内側シュラウド 3 2には、 ハニカ ムシ一ル 3 8が取り付けられており、 このハニカムシール 3 8と口一夕アーム部 2 5 aとの間隔が、 クリアランス tである。 この内側シュラウド 3 2の製作時の 状態を実線で示す。 ガス夕一ビンの運転後においては、 内側シュラウド 3 2及び- 静翼 3 1は、 ロータアーム部 2 5 aの回転により点線で示すように変形する。 こ の変形に伴い、 ハニカムシール 3 8の位置が設計時の位置よりずれてしまい、 口 一夕アーム部 2 5 aとのクリアランスも変動する。 従って、 内側シュラウド 3 2 のハニカムシール 3 8とプラットフオーム 2 2の口一夕アーム部 2 5 aとの間の クリアランス制御は、 全く不可能となってしまう。 発明の目的
そこで、 本発明は、 上記問題点を解決するために、 ハニカムシールの取 付部を変更し、 内側シュラウドがガス夕一ビンの運転後に変形しても、 ハニカム シールとブラットフオームのアーム部とのクリアランスが変動しないような構造 にすることにより、 シール部のクリアランス制御を可能とするガス夕一ビンのシ ール装置を提供することを主たる目的とする。
又、 別の目的としては、 上述したような内側シュラウドの変形に影響さ れない、 シール性能を更に向上させるような構造のシール装置を提供することで ある。 発明の概要
従って、 上記目的を達成するために、 本発明は、 次の手段を提供する。 ( 1 ) 本発明に従うガスタービンのシール装置は、 静翼の内側シュラウ ドを固定するシールリング側から前記内側シユラゥドの軸方向前端部及び後端部 に沿って各々突出するアーム部と、 該アーム部に各々取り付けられると共に前記 内側シュラウドの前記前端部及び後端部に各々隣接する動翼のプラットフオーム 端部との間でシール機構を構成するシール部材とを備える前記内側シュラウド内 部を燃焼ガス通路からシールすることを特徴としている。 なお、 シール部材とし ては、 ハニカムシールが好適である。
上記の ( 1 ) の発明では、 シール部材は、 シールリング側の両アーム部 に取付けられており、 ガス夕一ビンの運転後に各内側シュラウドが変形して、 そ の位置に各々バラツキが生じても、 シールリング側のアーム部は、 円形状で内側 シュラウドとは別構造となっているため、 内側シュラウドの変形には全く影響さ - れない。 従って、 シールリング側のアーム部に取付けられているシール部材も、 内側シュラウドの変形には全く影響されないため、 シール部材と動翼のプラット フォーム端部とで形成されるクリアランスも所定の寸法を維持することができる 。 従って、 このクリアランスを最適な寸法に設定すれば、 ガス夕一ビンの運転後 においてもその寸法は維持され、 従来に比べてクリアランス制御が格段に向上す る。
また、 これとは逆に、 本発明の ( 1 ) によりこのクリアランスの変動が なくなることにより、 シール部のクリアランスを最適な寸法に設定することがで きるようになる。
( 2 ) 本発明に係るガス夕一ビンのシール装置は、 上記 ( 1 ) において 、 前記動翼の前記プラッ トフォーム端部の各々には、 前記シール部材に対向して 突起部が配設されていることを特徴とする。
本発明の (2 ) においては、 動翼のプラッ トフォーム端部にシール部材 と対向して突起部を設けているので、 クリアランスの設定が容易となり、 又、 突 起部を多数のフィン等を配列するようにすれば、 もれ空気の流れ抵抗が大きくな り、 もれ空気量を低減することができ、 結果としてガスタービンの性能を向上す ることができる。 図面の簡単な説明
図 1は、 本発明の一実施形態に係るガスタービンのシール装置を示す一 部断面の概要図である。
図 2は、 内側シュラウドの燃焼ガス流の後流側における、 動翼のプラッ トフオーム側と静翼の内側シュラウド側との間のシール構造の詳細を示す、 図 1 における A部の拡大断面図である。
図 3は、 内側シュラウド側のハニカムシールとプラヅトフオーム側の口 一夕アーム部との関係を示す、 図 2における C一 C断面図である。
図 4は、 内側シュラウドの燃焼ガス流の上流側における、 動翼のプラッ 卜フォーム側と静翼の内側シュラウド側との間のシール構造の詳細を示す、 図 1 における B部の拡大断面図である。 - 図 5は、 従来のガスタービンのシール構造を示す概要図である。 図 6は、 内側シュラウドの燃焼ガス流の下流側における、 動翼のプラッ トフオーム側と静翼の内側シュラウド側との間のシール構造の詳細を示す、 図 5 における D部の拡大断面図である。
図 7は、 内側シュラウド側のハニカムシールとプラヅトフオーム側の口 —夕アーム部との関係を示す、 図 6における E— E断面図である。 好適な実施形態の説明
添付の図面を参照しながら、 本発明の現在好適であると考えられる実施 形態に関して詳述する。
以下の説明において、 各図面を通じて同様の構成要素には、 同様の参照 符号を付する。 なお、 以下の説明中、 「右」、 「左」、 「上」、 「下」 等の用語は、 便 宜上使用するもので、 これらの用語を限定的に解釈すべきものでないことを記し ておく。
図 1は、 本発明の一実施形態に係るガス夕一ビンのシール装置の概要図 である。 図において、 2 1は動翼で、 2 2はそのプラットフォーム、 2 4は翼根 部である。 1 1及び 1 2は、 プラットフオーム 2 2の軸方向前後端に配設された 口—夕アーム部であり、 燃焼ガス流の上流側のロータアーム部 1 1は、 従来のァ
—ム部よりも内側へ位置するように配置され、 下流側のロー夕アーム部 1 2は、 従来のアーム部よりも外側へ位置するように配置されている。 1 3及び 1 4は、 シャンク部を覆うシール板で、 シール板 1 4には、 フィン 1 4 bを有するアーム 部 1 4 aがー体的に設けられている。
3 1は静翼であり、 3 2はその内側シユラウド、 3 3は内側シュラウド 3 2内部のキヤビティ、 3 4はシール部である。 このシール部 3 4には、 ラビリ ンスシール等が採用され、 回転する隣接した動翼 2 1の翼根部 2 4に対向して近 接配置されてシール部を構成している。 3 5は空気穴であり、 キヤビティ 3 3と 隣接する動翼 2 1の空間とを連通している。
1は円形状のシールリングであり、 燃焼ガス流の上流側には、 アーム部 2が設けられている。 このアーム部 2は、 内側シュラウド 3 2の端部と近接して この曲面に沿って伸びており、 このアーム部 2の下側面には、 ハニカムシール 4 bが取付けられている。 又、 同様に、 シールリング 1の燃焼ガス流の下流側にも 、 アーム部 3が設けられており、 このアーム部 3も内側シュラウド 3 2の端部に 沿って伸びて配置され、 そのアーム部 3の下側面には、 シール部材であるハニカ ムシ一ル 4 aが取付けられている。
図 2は、 図 1における A部の詳細図であり、 静翼 3 1の内側シュラウド 3 2の下流側を示している。 図において、 内側シュラウド 3 2には、 シールリン グ 1が取付けられている。 このシールリング 1は、 円形状をしており、 2分割構 造となっている。 シールリング 1は、 内側シュラウド 3 2にボルト 6で固定され ており、 その隣接する動翼 2 1側には、 アーム部 3と突起部 5とを有している。
アーム部 3は、 内側シュラウド 3 2の端部内側の曲面に沿ってプラヅト フォーム 2 2側に向かって突出しており、 その下面には、 ハニカムシール 4 aが 取付けられている。 このハニカムシール 4 aには、 多数のハニカムコアが下向き に開口して配置され、 その開口面には、 動翼 2 1側のプラットフォーム 2 2の口 —夕アーム部 1 1が対向して配置されている。 口一夕アーム部 1 1の上面には、 ハニカムシール 4 aと所定のクリアランス t、 例えば l mmを保持して、 フィン 1 1 aが多数配設されている。 動翼 2 1のシール板 1 3には、 シールリング 1に 向かってアーム 1 3 aが突出しており、 静翼 3 1側の突起部 5との間でシールを 構成している。
図 3は、 図 2における C一 C断面図である。 この図から分かるように、 円周状に複数個独立して配置された静翼 3 1及びその内側シユラウド 3 2の内側 には、 この内側シュラウド 3 2の内面に沿ってシールリング 1の円形状のアーム 部 3が配置されている。 ハニカムシール 4 aは、 この円形状のアーム部 3の下面 に連続して円形状に取付けられている。 なお、 ハニカムシール 4 aは、 その構造 が大きいため、 アーム部 3の円周上で 2分割されて取付けられている。
図 3において、 実線で描かれたのは、 ガス夕一ビンの運転前の状態にお ける内側シユラウド 3 2であり、 この時内側シユラウド 3 2は、 円周状の所定の 位置に配置されている。 一方、 ガス夕一ビンの運転後には、 内側シュラウドは、 点線で示すように各々静翼毎に変形する。 しかし、 上述したように、 ハニカムシール 4 aは、 内側シュラウド 3 2と別個独立したシールリング 1のアーム部 3に 取り付けられているため、 内側シュラウド 3 2の変形に影響されず、 図 2に示し たプラットフオーム 2 2の口一夕アーム部 1 1に取り付けられたフィン 1 1 aと ハニカムシール 4 aとのクリアランス tは、 所定の間隔を保持できる。
図 4は、 図 1における B部の詳細図であり、 静翼 3 1の内側シュラウド 3 2における燃焼ガス流の上流側を示している。 内側シュラウド 3 2の端部内側 には、 内側シュラウドの曲面に沿って略 L字状に曲がったシールリング 1のァ一 ム部 2が突出しており、 その下面には、 ハニカムシール 4 bが開口面を下向きに して取付けられている。 一方、 動翼 2 1のプラットフォーム 2 2には、 上述した シ一ル板 1 4が取付けられ、 シール板 1 4には、 シール部 1 4 aが内側シュラウ ド 3 2側のアーム部 2に対向する位置まで突出している。 このシール部 1 4 aに は、 フィン 1 4 bが配設され、 ハニカムシール 4 bと所定のクリアランス tを保 つて対向配置されている。
このハニカムシール 4 bも、 図 3の内側シュラウド 3 2とアーム部 3に 取り付けられたハニカムシール 4 aとの関係において説明したように、 内側シュ ラウド 3 2と別個独立したシールリング 1のアーム部 2に取り付けられているた め、 内側シュラウド 3 2の変形に影響されず、 図 4に示したプラットフォーム 2 2側のシール板 1 4のフィン 1 4 bとハニカムシール 4 bとのクリァランス tは 、 所定の間隔を保持できる。
上記のシール構造において、 静翼 3 1の内側シュラウド 3 2におけるガ ス流の下流側 (図 2参照) では、 キヤビティ 3 3からの高圧のもれ空気 4 0は、 静翼 3 1側のシールリング 1の側面と動翼 2 1のシール板 1 3との間の空間から 、 ハニカムシール 4 aとロー夕アーム部 1 1のフィン 1 1 aとの間のクリアラン ス tを通り、 低圧側の燃焼ガス通路へ流出する。 このような径路を高圧のもれ空 気 4 0が通過する間、 もれ空気 4 0の流れ抵抗が増大し、 それにより近接配置さ れたハ二カムシール 4 aとフィン 1 1 aとの間でシール効果を生じ、 高温の燃焼 ガスが静翼 3 1の内側に侵入するのを防止している。 同様に動翼 2 1の下流側の ハニカムシール 4 bとシール板 1 4のフィン 1 4 bとの間へももれ空気が流出し 、 もれ空気の流れ抵抗の増加により、 燃焼ガス通路に対してシールを提供する。 - 上記のように作動する本実施形態のシール装置において、 ガスタービン の運転後には、 図 3の点線で示すように、 静翼 3 1の内側シュラウド 3 2が各々 静翼毎に変形するが、 ハニカムシール 4 a及び 4 bは、 内側シュラウド 3 2と別 個独立した 2分割された円形状のシールリング 1のアーム部 2及び 3に取り付け られているため、 個々の内側シュラウド 3 2に変形が生じたり、 あるいは取付寸 法等にバラツキがあっても、 シ一ルリング 1のハニカムシール 4 a及び 4 bには 、 何の影響も及ぼさない。 従って、 各ハニカムシール 4 a及び 4 bとフィン 1 1 a及び 1 4 bとの間のシール用クリアランス tも、 所定の寸法を保つことができ る。
従って、 本案施形態によれば、 ハニカムシール 4 a及び 4 bと動翼 2 1 側のフィン 1 1 a及び 1 4 bとのクリァランス tを、 設計上の最適な寸法に設定 して製作 ·組立しても、 このクリアランスがガスタービンの運転後における内側 シュラウド 3 2の変形にかかわらず所定の寸法を維持できるので、 クリアランス 制御が可能となる。 従来は、 ハニカムシールが内側シュラウド 3 2に直接取付け られていたので、 ガスタービンの運転後における内側シュラウド 3 2の変形によ り上記クリアランスも変動したが、 本実施形態ではこのような問題が解消され、 シールのクリアランス制御が格段に向上するようになった。
更に、 上記クリアランスが正確に設定されるので、 ハニカムシール 4 a 及び 4 bと対向して動翼 2 1側に突起状のフィ ン 1 1 a及び 1 4 bを複数配列す ることにより、 さらに流れ抵抗を増加させることができ、 もれ空気量が減少する ので、 結果としてガスタービン性能を向上させることができる。
なお、 図 4に示すシ一ルリング 1のアーム部 2は、 組立の都合上、 分割 した部材としても良く、 もちろんシールリング 1は、 アーム部 2及び 3を含むよ うに、 全体を一体に形成しても良いものである。
また、 動翼 2 1側のフィンは、 プラットフォーム 2 2と一体であるロー 夕アーム部 1 1に直接取り付けても良く、 あるいは、 プラヅ トフオーム 2 2とは 別個独立したシール板 1 3あるいは 1 4に取り付けても良い。
さらに、 本実施形態においては、 静翼 3 1の内側シュラウド 3 2側のァ ーム部 2及び 3を外側に、 動翼 2 1側のシール部 1 4 a及び口一夕アーム部 1 1 - aを内側に各々配置し、 静翼 3 1側のハニカムシール 4 a及び 4 bを内向きに、 動翼 2 1側のフィン 1 4 b及び 1 1 aを外向きにして、 両者を対向するように配 置しているが、 これとは反対に、 静翼 3 1の内側シュラウド 3 2側のアーム部 2 及び 3を内側に、 動翼 2 1側のシール部 1 4 a及びロー夕アーム部 1 1 aを外側 に各々配置し、 静翼 3 1側のハニカムシール 4 a及び 4 bを外向きに、 動翼 2 1 側のフィン 1 4 b及び 1 1 aを内向きにして、 両者を対向するように配置しても よい。
以上、 図面を参照し、 本発明の現在好適であると考えられる実施形態及 びそれに代わる他の実施形態について詳細に説明したが、 本発明は、 これ等の実 施形態に限定されるものではなく、 ガス夕一ビンのシール装置の種々の付加的な 適用例及び変更例は、 本発明の精神及び範囲から逸脱することなく、 当該技術分 野における当業者にとって、 容易に想到し実現し得るものであることを記してお
< o

Claims

請 求 の 範 囲
1 . 静翼の内側シユラゥドを固定するシールリング側から前記内側シユラゥ ドの軸方向前端部及び後端部に沿って各々突出するアーム部と、 該アーム部に各 々取り付けられると共に前記内側シュラウドの前記前端部及び後端部に各々隣接 する動翼のプラットフォーム端部との間でシール機構を構成するシール部材とを 備える前記内側シュラウド内部を燃焼ガス通路からシールするガスタービンのシ ール装置。
2 . 前記シール部材は、 ハニカムシールである請求項 1記載のガスタービン のシール装置。
3 . 前記動翼の前記プラッ トフォーム端部の各々には、 前記シール部材に対 向して突起部が配設されている請求項 1記載のガスタービンのシール装置。
4 . 前記シールリング側の前記アーム部の各々は、 前記シールリングと一体 に形成されている請求項 1記載のガスタービンのシール装置。
5 . 前記シールリング側の前記アーム部の各々は、 前記シールリングと別個 独立に形成されている請求項 1記載のガスタービンのシール装置。
6 . 前記シールリングの前記アーム部の各々に対向するように、 前記隣接す る動翼の前記プラットフオーム端部とは別個にシール部が配設され、 該シール部 と前記アーム部に取り付けられた前記シール部材との間で前記シール機構を構成 する請求項 1記載のガス夕一ビンのシール装置。
7 . 前記動翼側の前記シール部の各々には、 前記シール部材に対向して突起 部が配設されている請求項 6記載のガスタービンのシール装置。 -
PCT/JP1998/002722 1997-06-18 1998-06-18 Structure d'etancheite pour turbines a gaz WO1998058159A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69828255T DE69828255T2 (de) 1997-06-18 1998-06-18 Dichtungsstruktur für gasturbinen
EP98928571A EP0926314B1 (en) 1997-06-18 1998-06-18 Seal structure for gas turbines
US09/242,529 US6152690A (en) 1997-06-18 1998-06-18 Sealing apparatus for gas turbine
CA002263642A CA2263642C (en) 1997-06-18 1998-06-18 Seal structure for gas turbines

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP16110097A JP3327814B2 (ja) 1997-06-18 1997-06-18 ガスタービンのシール装置
JP9/161100 1997-06-18

Publications (1)

Publication Number Publication Date
WO1998058159A1 true WO1998058159A1 (fr) 1998-12-23

Family

ID=15728613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002722 WO1998058159A1 (fr) 1997-06-18 1998-06-18 Structure d'etancheite pour turbines a gaz

Country Status (6)

Country Link
US (1) US6152690A (ja)
EP (1) EP0926314B1 (ja)
JP (1) JP3327814B2 (ja)
CA (1) CA2263642C (ja)
DE (1) DE69828255T2 (ja)
WO (1) WO1998058159A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003620A1 (en) * 1999-07-09 2001-01-18 Minas Theodore Coroneo Use of trypan blue to visualise the anterior lens capsule of the eye
DE10350626B4 (de) * 2002-10-31 2014-12-11 General Electric Co. Strompfaddichtung und Stromlinienkonfigurierung für eine Turbine
DE10019546B4 (de) * 2000-04-20 2016-04-07 Alstom Technology Ltd. Dampfturbine mit einem einem Rotor und/oder einem Stator zugeordneten Schaufelträger

Families Citing this family (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1167695A1 (de) * 2000-06-21 2002-01-02 Siemens Aktiengesellschaft Gasturbine und Gasturbinenleitschaufel
US6558114B1 (en) * 2000-09-29 2003-05-06 Siemens Westinghouse Power Corporation Gas turbine with baffle reducing hot gas ingress into interstage disc cavity
JP4494658B2 (ja) * 2001-02-06 2010-06-30 三菱重工業株式会社 ガスタービンの静翼シュラウド
DE10295864D2 (de) * 2001-12-14 2004-11-04 Alstom Technology Ltd Baden Gasturbinenanordnung
ITMI20021219A1 (it) * 2002-06-05 2003-12-05 Nuovo Pignone Spa Dispositivo di supporto semplificato per ugelli di uno stadio di una turbina a gas
US6887039B2 (en) * 2002-07-10 2005-05-03 Mitsubishi Heavy Industries, Ltd. Stationary blade in gas turbine and gas turbine comprising the same
DE10318852A1 (de) * 2003-04-25 2004-11-11 Rolls-Royce Deutschland Ltd & Co Kg Hauptgaskanal-Innendichtung einer Hochdruckturbine
DE102004025692B4 (de) * 2004-05-26 2006-05-11 Mitsubishi Heavy Industries, Ltd. Hartlötaufbau für ein abtragbares Dichtungsmaterial und Verfahren zum Herstellen eines solchen Hartlötaubaus
US7105219B2 (en) 2004-05-27 2006-09-12 Mitsubishi Heavy Industries, Ltd. Brazing construction and method of brazing an abradable sealing material
US20060275106A1 (en) * 2005-06-07 2006-12-07 Ioannis Alvanos Blade neck fluid seal
US20070273104A1 (en) * 2006-05-26 2007-11-29 Siemens Power Generation, Inc. Abradable labyrinth tooth seal
GB2438858B (en) 2006-06-07 2008-08-06 Rolls Royce Plc A sealing arrangement in a gas turbine engine
US7500824B2 (en) * 2006-08-22 2009-03-10 General Electric Company Angel wing abradable seal and sealing method
US20080061515A1 (en) * 2006-09-08 2008-03-13 Eric Durocher Rim seal for a gas turbine engine
US8205335B2 (en) * 2007-06-12 2012-06-26 United Technologies Corporation Method of repairing knife edge seals
US20090110548A1 (en) * 2007-10-30 2009-04-30 Pratt & Whitney Canada Corp. Abradable rim seal for low pressure turbine stage
JP2010001841A (ja) * 2008-06-20 2010-01-07 Mitsubishi Heavy Ind Ltd 動翼およびガスタービン
US8376697B2 (en) * 2008-09-25 2013-02-19 Siemens Energy, Inc. Gas turbine sealing apparatus
US8162598B2 (en) * 2008-09-25 2012-04-24 Siemens Energy, Inc. Gas turbine sealing apparatus
US8388309B2 (en) * 2008-09-25 2013-03-05 Siemens Energy, Inc. Gas turbine sealing apparatus
US8419356B2 (en) 2008-09-25 2013-04-16 Siemens Energy, Inc. Turbine seal assembly
US8075256B2 (en) * 2008-09-25 2011-12-13 Siemens Energy, Inc. Ingestion resistant seal assembly
US8277172B2 (en) * 2009-03-23 2012-10-02 General Electric Company Apparatus for turbine engine cooling air management
US8142141B2 (en) * 2009-03-23 2012-03-27 General Electric Company Apparatus for turbine engine cooling air management
US9133732B2 (en) * 2010-05-27 2015-09-15 Siemens Energy, Inc. Anti-rotation pin retention system
CN101886555A (zh) * 2010-07-09 2010-11-17 兰州长城机械工程有限公司 烟气轮机转子叶片密封装置
DE102010062087A1 (de) 2010-11-29 2012-05-31 Siemens Aktiengesellschaft Strömungsmaschine mit Dichtstruktur zwischen drehenden und ortsfesten Teilen sowie Verfahren zur Herstellung dieser Dichtstruktur
FR2977274B1 (fr) * 2011-06-30 2013-07-12 Snecma Joint d'etancheite a labyrinthe pour turbine d'un moteur a turbine a gaz
US9416673B2 (en) * 2012-01-17 2016-08-16 United Technologies Corporation Hybrid inner air seal for gas turbine engines
US9145788B2 (en) 2012-01-24 2015-09-29 General Electric Company Retrofittable interstage angled seal
US9121298B2 (en) 2012-06-27 2015-09-01 Siemens Aktiengesellschaft Finned seal assembly for gas turbine engines
US9181816B2 (en) 2013-01-23 2015-11-10 Siemens Aktiengesellschaft Seal assembly including grooves in an aft facing side of a platform in a gas turbine engine
US9068513B2 (en) 2013-01-23 2015-06-30 Siemens Aktiengesellschaft Seal assembly including grooves in an inner shroud in a gas turbine engine
US9039357B2 (en) 2013-01-23 2015-05-26 Siemens Aktiengesellschaft Seal assembly including grooves in a radially outwardly facing side of a platform in a gas turbine engine
EP2759676A1 (en) * 2013-01-28 2014-07-30 Siemens Aktiengesellschaft Turbine arrangement with improved sealing effect at a seal
EP2759675A1 (en) * 2013-01-28 2014-07-30 Siemens Aktiengesellschaft Turbine arrangement with improved sealing effect at a seal
US20150040567A1 (en) * 2013-08-08 2015-02-12 General Electric Company Systems and Methods for Reducing or Limiting One or More Flows Between a Hot Gas Path and a Wheel Space of a Turbine
JP5852190B2 (ja) * 2014-07-30 2016-02-03 三菱重工業株式会社 端壁部材及びガスタービン
JP5852191B2 (ja) * 2014-07-30 2016-02-03 三菱重工業株式会社 端壁部材及びガスタービン
US10132182B2 (en) 2014-11-12 2018-11-20 United Technologies Corporation Platforms with leading edge features
US10337345B2 (en) 2015-02-20 2019-07-02 General Electric Company Bucket mounted multi-stage turbine interstage seal and method of assembly
US10633992B2 (en) 2017-03-08 2020-04-28 Pratt & Whitney Canada Corp. Rim seal
IT202000013609A1 (it) 2020-06-08 2021-12-08 Ge Avio Srl Componente di un motore a turbina con un insieme di deflettori
KR102601739B1 (ko) * 2023-06-08 2023-11-10 터보파워텍(주) 터빈용 인터스테이지 실

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6088002U (ja) * 1983-11-24 1985-06-17 株式会社日立製作所 ガスタ−ビン
JPS60145403A (ja) * 1983-09-21 1985-07-31 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン、“エス.エヌ.ウ.セ.エム.ア−.” タービンの静翼の内側環
JPS62167802U (ja) * 1986-04-15 1987-10-24
JPH03149324A (ja) * 1989-10-04 1991-06-25 Rolls Royce Plc ラビリンスシール構造
JPH0711907A (ja) * 1993-06-29 1995-01-13 Ishikawajima Harima Heavy Ind Co Ltd タービンケーシング構造

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR597549A (fr) * 1924-06-05 1925-11-23 Dispositif pour obturer l'intervalle séparant la roue directrice de la roue mobile dans les turbines, et en particulier dans les turbines à vapeur ou à gaz
BE792286A (fr) * 1971-12-06 1973-03-30 Gen Electric Dispositif de retenue d'aubes sans boulon pour un rotor de turbomachin
US3824030A (en) * 1973-07-30 1974-07-16 Curtiss Wright Corp Diaphragm and labyrinth seal assembly for gas turbines
US3945758A (en) * 1974-02-28 1976-03-23 Westinghouse Electric Corporation Cooling system for a gas turbine
US3989410A (en) * 1974-11-27 1976-11-02 General Electric Company Labyrinth seal system
JPS6088002A (ja) * 1983-10-21 1985-05-17 Nok Corp ゴムラテツクスからの共沈体の製造法
JPH0651881B2 (ja) * 1985-11-22 1994-07-06 株式会社島津製作所 焼結炉
GB2251040B (en) * 1990-12-22 1994-06-22 Rolls Royce Plc Seal arrangement
US5215435A (en) * 1991-10-28 1993-06-01 General Electric Company Angled cooling air bypass slots in honeycomb seals
US5217348A (en) * 1992-09-24 1993-06-08 United Technologies Corporation Turbine vane assembly with integrally cast cooling fluid nozzle
JPH06159099A (ja) * 1992-11-25 1994-06-07 Toshiba Corp 軸流流体機械
US5630703A (en) * 1995-12-15 1997-05-20 General Electric Company Rotor disk post cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60145403A (ja) * 1983-09-21 1985-07-31 ソシエテ・ナシオナル・デテユ−ド・エ・ドウ・コンストリユクシオン・ドウ・モト−ル・ダヴイアシオン、“エス.エヌ.ウ.セ.エム.ア−.” タービンの静翼の内側環
JPS6088002U (ja) * 1983-11-24 1985-06-17 株式会社日立製作所 ガスタ−ビン
JPS62167802U (ja) * 1986-04-15 1987-10-24
JPH03149324A (ja) * 1989-10-04 1991-06-25 Rolls Royce Plc ラビリンスシール構造
JPH0711907A (ja) * 1993-06-29 1995-01-13 Ishikawajima Harima Heavy Ind Co Ltd タービンケーシング構造

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001003620A1 (en) * 1999-07-09 2001-01-18 Minas Theodore Coroneo Use of trypan blue to visualise the anterior lens capsule of the eye
DE10019546B4 (de) * 2000-04-20 2016-04-07 Alstom Technology Ltd. Dampfturbine mit einem einem Rotor und/oder einem Stator zugeordneten Schaufelträger
DE10350626B4 (de) * 2002-10-31 2014-12-11 General Electric Co. Strompfaddichtung und Stromlinienkonfigurierung für eine Turbine

Also Published As

Publication number Publication date
JPH116446A (ja) 1999-01-12
EP0926314A4 (en) 2001-01-24
US6152690A (en) 2000-11-28
CA2263642A1 (en) 1998-12-23
EP0926314A1 (en) 1999-06-30
EP0926314B1 (en) 2004-12-22
CA2263642C (en) 2002-08-20
JP3327814B2 (ja) 2002-09-24
DE69828255D1 (de) 2005-01-27
DE69828255T2 (de) 2005-12-22

Similar Documents

Publication Publication Date Title
WO1998058159A1 (fr) Structure d&#39;etancheite pour turbines a gaz
EP2759687B2 (en) Seal ring mounting method for turbocharger, and turbocharger
US7066468B2 (en) Shaft seal and gas turbine
US7857582B2 (en) Abradable labyrinth tooth seal
JP5227114B2 (ja) ラビリンス圧縮シール及びそれを組込んだタービン
US20080056889A1 (en) Angel wing abradable seal and sealing method
JP6888907B2 (ja) ガスタービン
KR20060090773A (ko) 가변용량형 배기 터보 과급기의 스크롤 구조 및 그제조방법
JP2004514839A (ja) 動翼付きディスク用フランジ及びそのレイアウト
CN103216277A (zh) 可翻新的级间成角密封件
US10753214B2 (en) Sealing arrangement on combustor to turbine interface in a gas turbine
JP2001342995A (ja) 遠心式コンプレッサおよび遠心式タービン
JP4678914B2 (ja) ブリッスル減衰作用を有するブラシシール・セグメント
JP5586407B2 (ja) ターボ機械用の成形ハニカムシール
JP2012518109A (ja) 低ギャップ損失および低拡散器損失を備えたガスタービンのための軸流ターボコンプレッサ
JP2000145407A (ja) 軸流タ―ビン
US11365646B2 (en) Rotary machine and seal member
EP3926141B1 (en) Gas turbine stator vane with sealing member and method for modifying a gas turbine stator vane
JP6197985B2 (ja) シール構造、これを備えたタービン装置
WO2021199718A1 (ja) 二次流れ抑制構造
WO2020116155A1 (ja) タービン動翼、タービン及びチップクリアランス計測方法
JPH11257015A (ja) ガスタービンにおけるディスクのシール構造
JP2003148106A (ja) 軸流タービン静動翼の翼列間構造およびこれを使用したガスタービン
JP2004044428A (ja) タービン及び翼一体型カバー付動翼先端部のシール構造
JP2015113709A (ja) タービンロータ組立体およびそれを備えたタービン

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

ENP Entry into the national phase

Ref document number: 2263642

Country of ref document: CA

Ref country code: CA

Ref document number: 2263642

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1998928571

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09242529

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998928571

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998928571

Country of ref document: EP