WO1998057111A1 - Temperature control device comprising heat pipe - Google Patents

Temperature control device comprising heat pipe Download PDF

Info

Publication number
WO1998057111A1
WO1998057111A1 PCT/JP1998/002423 JP9802423W WO9857111A1 WO 1998057111 A1 WO1998057111 A1 WO 1998057111A1 JP 9802423 W JP9802423 W JP 9802423W WO 9857111 A1 WO9857111 A1 WO 9857111A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
heat pipe
fluid
temperature control
control device
Prior art date
Application number
PCT/JP1998/002423
Other languages
French (fr)
Japanese (ja)
Inventor
Kanichi Kadotani
Original Assignee
Komatsu, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP9152705A external-priority patent/JPH10339591A/en
Priority claimed from JP35225197A external-priority patent/JPH11173774A/en
Application filed by Komatsu, Ltd. filed Critical Komatsu, Ltd.
Publication of WO1998057111A1 publication Critical patent/WO1998057111A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a ⁇ l willow device for harboring a flat book such as a semiconductor wafer or a flat surface such as a wall using a heat pipe.
  • the apparatus includes a substrate mounting plate on which a processing substrate is mounted, and a bent cooling pipe arranged in contact with a lower surface of the substrate mounting plate.
  • a number of independent heat pipes penetrating the plate up and down are laid all over the plate.
  • both heating and cooling of the substrate can be performed efficiently and at high speed.
  • the above prior art is aimed at cooling, and it is difficult to perform both heating and cooling efficiently.
  • an object of the present invention is to provide a temperature control device using a heat pipe that can achieve high heat uniformity.
  • Another object of the present invention is to provide a temperature control device using a heat pipe capable of performing heating and cooling at high speed. Disclosure of the invention
  • a temperature control device includes a plate-shaped heat pipe having a front surface and a back surface, and a heat control device that is disposed away from the back surface of the heat pipe and injects a heat medium to the back surface of the heat pipe. And at least one type of non-contact type heat source device.
  • the non-contact type heat source device includes, for example, a fluid ejection mechanism for ejecting a cooling or heating fluid (for example, a liquid, a gas, or a mixture of a liquid and a gas) to the back of a heat pipe, and a heating electromagnetic wave.
  • a cooling or heating fluid for example, a liquid, a gas, or a mixture of a liquid and a gas
  • a lamp that irradiates for example, infrared light
  • the plate-type heat pipe has higher uniformity.
  • the non-contact type heat source device can uniformly heat or cool the back surface of the heat pipe, so that both advantages are exhibited and an excellent soaking effect can be exhibited.
  • one of the cooling and the heating may be a non-contact type heat source device and the other may be a contact type heat source device (for example, a heating wire or a cooling pipe joined to the back of a heat pipe), Both cooling and heating can be a non-contact heat source device.
  • the heat source for cooling and the heat source for heating both of which are non-contact types, can be provided without interfering with each other, which is coupled with the high heat transfer speed of the plate-type heat pipe. Thus, both cooling and heating can be performed at high speed.
  • the plate-type heat pipe has a large number of pipes filled with a working fluid, and the large number of pipes communicate with each other to form a pipe network. It is desirable that they are arranged at a substantially uniform density over almost the entire surface of the substrate. In that case, it is also preferable that each of the multiple pipes is a regular polygon or a circle. It is also preferred that the mesh of the pipe network is arranged at a substantially uniform density over substantially the entire area of the pipe network.
  • the back surface of the plate-type heat pipe has moderate irregularities.
  • the front surface of the plate heat pipe on which the object is placed is flat.
  • a temperature control device in which a turbulent flow of a thermal fluid is applied to a back surface or a side surface of a plate-shaped heat pipe. Due to the turbulence effect, heat exchange between the heat fluid and the plate-type heat pipe is efficiently performed, and high-speed heating or cooling can be performed. In addition, compared with the case of using a laminar flow, the use of turbulent flow reduces the temperature unevenness and achieves higher uniformity. From the viewpoint of heat uniformity, it is desirable to apply the turbulent flow of the thermal fluid over almost the entire back or side surface of the plate-type heat pipe.
  • One method for directing the turbulent flow of a thermal fluid onto a plate-type heat pipe is to inject a thermal fluid (or a mixture of thermal fluid and gas) from a fluid ejection mechanism such as a nozzle into the plate-type heat pipe. It is.
  • Another method is to form a flow path for flowing the thermal fluid on the back or side of the plate-type heat pipe, and to make the thermal fluid flow as a turbulent flow in this flow path.
  • a method of forming a turbulent flow in a flow path there is a method of bending the flow path in a meandering or spiral shape, but another effective method is to use a large number of heat exchange fins (for example, pins) in the flow path.
  • heat exchange fins for example, pins
  • Type or needle type Many fins disturb the flow of the fluid to form turbulence and efficiently exchange heat with the fluid.
  • the flow path has a circular shape that spreads so as to cover almost the entire back surface of the plate-shaped heat pipe, and a thermal fluid inlet is provided at a peripheral portion of the circular flow path. (Or outlet), and has a discharge (or inlet) for hot fluid at the center of the flow path.
  • the hot fluid ie, the heating fluid or the cooling fluid, flows in the circular flow path from the periphery to the center (and in the opposite direction).
  • Such a flow of the fluid is one of the suitable flow methods for making the inside of the wide flow channel have a uniform temperature, but the other flow method, for example, having a large number of inlets in a wide flow channel at various places. It is also considered effective to provide a large number of outlets for the flow.
  • the side wall of this wide channel is the back (or side) of the plate-shaped heat pipe, where a number of heat exchange fins (for example, pin type or needle type) are set up over the whole area. I have. By the action of the fins, high heat uniformity and high heat exchange efficiency can be obtained.
  • the height of the flow path is larger near the center than in the vicinity of the periphery, thereby reducing the difference in flow velocity between the vicinity of the periphery and the vicinity of the center to increase the uniformity of heat.
  • a mechanism is provided to control the flow of the fluid that has flowed in from the fluid inlet so that it is almost parallel to the surface of the plate-type heat pipe, thereby suppressing local temperature unevenness near the fluid inlet.
  • a heat fluid for heating and a heat fluid for cooling are selectively supplied to the flow path.
  • the mechanism for supplying the hot fluid includes a pump for sending the hot fluid, and a heating device and a cooling device for heating and cooling the hot fluid, respectively.
  • a bypass passage for circulating the heating fluid through the pump and each of the heating device and the cooling device by bypassing the flow channel when the hot fluid is not supplied to the flow channel is provided. Is provided. Due to the presence of this bypass, the pump can always be operated at a constant rotation speed even when hot fluid is not supplied to the flow path, and the hot fluid is always controlled to the target temperature.
  • the thermal fluid at the target temperature can be immediately supplied at an appropriate flow rate, and thus the temperature controllability is good.
  • Either heating or cooling may be performed with a heat fluid, or only one of them, especially cooling, may be performed with a heat fluid, and heating may be performed with a heating wire or an infrared lamp.
  • a thermal fluid is ejected from a nozzle or the like to a panel-type heat pipe
  • a heat fluid is applied to the panel-type heat pipe through the channel, it is relatively easy to arrange the heating wire on the front or back of the panel-type heat pipe, or on the surface, inside, or in the gap of the channel. .
  • FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
  • FIG. 2 is a plan view showing a planar arrangement of a fluid ejection nozzle and a halogen lamp.
  • FIG. 3 is a plan view of the heat panel 2 according to the first configuration example as viewed from the lower surface side.
  • FIG. 4 is a cross-sectional view of the heat panel 2 taken along line A—A in FIG.
  • FIG. 5 is a cross-sectional plan view of the heat panel 2 according to the second configuration example.
  • FIG. 6 is a cross-sectional view of the heat panel 2 taken along line A—A and line B—B in FIG.
  • FIG. 7 is a plan view of the heat panel 2 according to the third configuration example as viewed from the lower surface side.
  • FIG. 8 is a cross-sectional view taken along line AA in FIG.
  • FIG. 9 is a plan view of a heat panel 2 according to a fourth configuration example.
  • FIG. 10 is a cross-sectional view taken along line AA of FIG.
  • FIG. 11 is a configuration diagram showing a second embodiment of the present invention.
  • FIG. 12 is a partial cross-sectional view of the third embodiment of the present invention as viewed from above.
  • FIG. 13 is a partial cross-sectional view of the same embodiment as viewed from below.
  • FIG. 14 is a perspective view showing a typical example of a fin.
  • FIG. 15 is a fluid circuit diagram showing a piping structure for flowing a fluid into the temperature control chamber 81.
  • FIG. 16 is a cross-sectional view showing a first modification of the structure of the temperature control chamber 81 for improving the temperature uniformity.
  • FIG. 17 is a cross-sectional view showing a second modification of the structure of the temperature control chamber 81 for improving the heat uniformity.
  • FIG. 18 is a cross-sectional view showing a third modification of the structure of the temperature control chamber 81 for improving the heat uniformity.
  • FIG. 19 is a cross-sectional view taken along line A-A of Fig. 18 (a plan view of the bottom wall 85 of the temperature control chamber 81).
  • FIG. 20 is a cross-sectional view showing a fourth modification of the structure of the temperature control chamber 81 for improving the thermal uniformity.
  • FIG. 21 is a cross-sectional view showing a fifth modification of the structure of the temperature control chamber 81 for improving the heat uniformity.
  • FIG. 22 is a cross-sectional view showing a sixth modification of the structure of the temperature control chamber 81 for improving the temperature uniformity.
  • Fig. 23 shows a seventh modification of the structure of the temperature control chamber 81 for improving the temperature uniformity.
  • FIG. 24 is a cross-sectional view showing an eighth modified example manufactured by another method.
  • FIG. 25 is a partial cross-sectional view showing a ninth modified example using the heating wire.
  • FIG. 26 is a partial cross-sectional view showing a tenth modification using a heating wire.
  • FIG. 27 is a partial cross-sectional view showing a first modified example using a heating wire.
  • FIG. 28 is a partial cross-sectional view showing a 12th modified example using a heating wire.
  • FIG. 29 is a partial cross-sectional view showing a thirteenth modification using a heating wire.
  • FIG. 30 is a partial cross-sectional view showing a 14th modified example using a heating wire.
  • FIG. 31 is a cross-sectional view showing a fifteenth modification example in which heating and cooling channels are separated.
  • FIG. 32 is a cross-sectional view taken along line AA of FIG.
  • FIG. 33 is a sectional view showing a sixteenth modification.
  • FIG. 34 is a cross-sectional view taken along line A—A of FIG.
  • FIG. 35 is a cross-sectional view showing a 16th modified example in which the temperature control chamber 81 is provided on the side surface of the heat panel 2.
  • a resist film is usually formed on a wafer surface through the following process.
  • the baking temperature is set to 90 to 200 degrees Celsius (depending on the process), and in the cooling subsequent to this pre-baking, the target temperature is about 20 degrees Celsius. Is set to room temperature.
  • the baking temperature is set at 100 to 250 degrees Celsius (depending on the process), and the cooling temperature following the host bake is set at 20 degrees Celsius. Room temperature is set.
  • the next step after the pre-bake + cooling step is exposure, and the next step after the bot-bake + cooling step is etching. Quite severe conditions are required for the temperature distribution of the wafer so that the process can be immediately shifted to the next step.
  • the embodiment described below is used in a pre-bake + cooling step or a post-bake + cooling step, in which a wafer is first heated to a high temperature (baking), and then the wafer is brought to room temperature.
  • the cycle of cooling (cooling) is repeated at intervals of several tens of seconds for each wafer. Therefore, heating and cooling are alternately repeated with two target temperatures, the target temperature for heating and the target for cooling.
  • FIG. 1 shows the overall configuration of this embodiment.
  • a wafer 1 is placed on the upper surface of a plate-shaped heat pipe (hereinafter referred to as a heat panel) 2.
  • a heat panel a plate-shaped heat pipe
  • a plurality of vertically movable thin pins 3 are provided so as to penetrate the heat panel 2 from the lower surface to the upper surface (the drive mechanism is not shown).
  • the wafer 1 is placed on the tips of the pins 3.
  • the pins 3 have descended to positions where the tips slightly protrude from the upper surface of the heat panel 2, so that the wafer 1 is placed on the upper surface of the heat panel 2 with a small air gap. I have.
  • the basic structure of the heat panel 2 is composed of a number of series containing a predetermined working fluid. It is a plate with a space through which it passes, and has extremely high thermal conductivity, small size, and heat capacity.
  • the role of the heat panel 2 is to perform heat exchange between the wafer 1 and a heat medium (fluid or light), which will be applied to the lower surface of the heat panel 2, uniformly and at high speed over the entire surface of the wafer 1.
  • a heat medium fluid or light
  • a temperature control room 4 is provided below the heat panel 2, and the heat panel 2 forms a ceiling wall of the temperature control room 4.
  • the wall 5 other than the heat panel 2 of the temperature control room 4 is made of a material having poor heat conductivity.
  • a number of fluid ejection nozzles 6 are provided upright. As shown in the plan view of FIG. 2, these fluid ejection nozzles 6 are arranged vertically and horizontally at a substantially uniform density over the entire two-dimensional area covering the lower surface of the heat panel 2.
  • a low-temperature (that is, wafer cooling) liquid 8 is supplied to these fluid ejection nozzles 6 through a fluid storage pipe 7.
  • the fluid ejection nozzle 6 has one or many small ejection holes at its tip, and blows a high-speed shower of liquid 8 as indicated by an arrow from the ejection holes to the heat panel 2 on the ceiling. be able to. Since the liquid shear is turbulent, heat can be effectively exchanged with the heat panel 2. To ensure that the liquid shower is applied to the entire lower surface of the heat panel 2 as uniformly as possible, the pitch of the array of fluid ejection nozzles 6, the number and shape of the ejection holes, and the distance from the ejection holes to the lower surface of the heat panel 2 are optimal. Designed for
  • the distal end of the liquid supply path 10 is connected to the fluid storage pipe 7, and the base end of the liquid supply path 10 is connected to the liquid discharge port 14 on the bottom wall of the temperature control chamber 4, in the middle of the liquid supply path 10.
  • the liquid 8 that has fallen to the bottom of the temperature control chamber 4 is sent to the chiller 12, where it is adjusted to a predetermined low temperature, and then supplied to the fluid ejection nozzle 6 with the pressure of the pump 11, and the high-speed shower and As a result, it is blown to the lower surface of the heat panel 2 and again falls to the bottom of the temperature control chamber 4 to be circulated in the same manner.
  • the liquid 8 is a liquid having a light transmitting property and an insulating property, such as Florina Toga. Ruden (both registered trademarks) can be used. Water and ethylene glycol, which are easy to handle, can also be used if they meet the required temperature conditions.
  • the temperature control chamber 4 can be a closed type or an open type having an opening 13 to the outside air.
  • the liquid jet flow is ejected from the ejection nozzle 6 in the room filled with liquid, so that the fluid ejection nozzle 6 enters the room and the forced convection flows through the ceiling heat panel 2 ⁇ discharge port 14 Is generated, and the heat panel 2 can be cooled by the forced convection. Since this forced convection is turbulent, heat can be effectively exchanged with the heat panel 2. Further, in the open type temperature control room 4, since the liquid shear collides with the ceiling heat panel 2 through the space, only the new liquid always collides with the heat panel 2 and heat exchange can be performed promptly. it can.
  • the temperature control room 4 further includes a plurality of long cylindrical infrared lamps 23 for heating arranged between the arrays 15 of the jet nozzles 6 (see FIG. 2).
  • the lamp 23 is, for example, a halogen lamp and emits much near-infrared light.
  • Each of the halogen lamps 23 is housed in a reflection mirror 20 having an opening at an upper portion, and the upper opening of the reflection mirror 20 is closed with a cover 25 made of a light transmitting material.
  • a water cooling tube 24 for cooling the lamp 23 and the reflection mirror 20 is provided below each of the halogen lamps 23. Instead of the water cooling tube 24, a liquid storage tube 7 is provided. May be used as a cooling means for the lamp 23 and the reflection mirror 20. Further, depending on the conditions, the cooling means for the lamp 23 and the reflection mirror 20 may not be provided.
  • each of the halogen lamps 23 irradiates the lower surface of the heat panel 2 on the ceiling while spreading in a fan shape by the action of the reflection mirror 20, and gives radiant heat to the heat panel 2.
  • the distance to is designed optimally I have.
  • a heating means instead of the halogen lamp 23 or in combination with the halogen lamp 23, a number of fluid ejection nozzles for ejecting a high-temperature liquid are provided in the same manner as the cooling fluid ejection nozzle 6. It may be provided. When the halogen lamp, 23 and the heating fluid injection nozzle are used in combination, a larger heating capacity can be obtained.
  • the heat panel 2 may have various configurations. The following are some examples of suitable configurations.
  • FIG. 3 is a plan view of the heat panel 2 according to the first configuration example viewed from the lower surface side
  • FIG. 4 is a cross-sectional view of the heat panel 2 taken along line AA in FIG.
  • the outer shell of the heat panel 2 is roughly composed of, for example, two thin plates 31 and 32 made of a material having high thermal conductivity, such as aluminum and copper, superposed on each other, and a hydraulic fluid is provided in a predetermined region between the two plates.
  • a space (that is, a pipe) 33 in which is enclosed is formed, and the two plates 31 and 32 are joined in an area other than the pipe 33.
  • the hatched area is the joined portion
  • the unhatched area is the pipe 33.
  • the pipe 33 protrudes to one side of the heat panel as shown in FIG. 4A or to both sides as shown in FIG. 4B.
  • the ridge of the protruded pipe 33 is shown in FIG. This is indicated by a dashed line.
  • a predetermined amount of hydraulic fluid is sealed in the pipe 33 in an appropriate amount, and a wick 36 for transporting the hydraulic fluid by utilizing capillary action is provided on the inner wall of the pipe.
  • the external shape of the heat panel 2 in a plan view is circular in conformity with that of the semiconductor wafer, but it is not necessarily required to be circular, as in other configuration examples described later. It may be square.
  • the planar shape of the heat panel 2 may be any shape that is convenient for design and manufacture and suitable for equalizing the temperature of the entire wafer.
  • the pipes 33 of the heat panel 2 constitute a pipe network 35 formed by connecting a number of small regular hexagonal pipes like a honeycomb section.
  • the heat panels 2 are arranged at a constant density over almost the entire surface.
  • the eye of the Eve network 35 (the junction of the regular hexagons) 3 4 is only partially shown in FIG.
  • the eye 3 4 increases the mechanical strength of the heat panel 2, so the plates 3 1 and 3 2 are thinned to reduce the heat capacity of the heat panel 2 while maintaining the required mechanical strength. Contribute to enhance the effect.
  • a heat panel of the type in which the pipe 33 protrudes only on one side as shown in Fig. 4A or a heat panel of the type protruding on both sides as shown in Fig. B can be used.
  • This is a single-sided swelling type shown in 4A.
  • the one-sided swelling type has better mechanical strength and also has better soaking degree for the following reasons. That is, in this embodiment, the single-sided swelling type heat panel 2 has a flat surface as an upper surface (a surface on which the wafer 1 is placed) and a pipe swelling surface as a lower surface (a surface to which a liquid shower or radiation is applied). To use.
  • the distance between the upper surface of the heat panel 2 and the wafer 1 is constant, and the heat diffusion along the upper surface of the heat panel 2 is uniform regardless of the direction and location. Heat exchange between wafers 1 tends to be uniform.
  • the high strength of the heat panel 2 also contributes to suppressing the heat deformation of the heat panel 2 and keeping the distance from the wafer 1 constant.
  • the pipe 33 protrudes from the lower surface of the heat panel 2, the contact area with liquid or light is larger than the flat surface, and the same liquid is in contact with the liquid shower.
  • the shape of the mesh 34 of the pipe network 35 of the heat panel 2 does not necessarily have to be a regular hexagon as shown in the figure, but may be a square, a regular triangle, a circle, or the like. However, in order to obtain a high soaking effect, it is desirable that the density of the pipes 33 and the meshes 34 be constant over the entire area of the pipe net 35 regardless of the direction and location.
  • FIG. 5 is a cross-sectional plan view of the heat panel 2 according to the second configuration example
  • FIGS. 6A and 6B are cross-sectional views of the same heat panel 2 taken along lines A-A and B-B in FIG. .
  • the heat panel 2 is formed by laminating and joining two plates 41 and 42 made of aluminum or copper.
  • the upper plate 41 constituting the upper surface of the heat panel 2 is thicker than the lower plate 42, and the lower surface thereof is formed with a wide area concave portion 44 except for the peripheral edge thereof.
  • a large number of thin pillars 43 are erected inside the recess 44. Although only some pillars 43 are shown in FIG. 5, the pillars 43 are actually arranged at a constant pitch over the entire area of the recess 44.
  • the lower plate 42 is superimposed on the upper plate 41 so as to cover the concave portion 44, and the two plates 41, 42 are formed by the peripheral edge hatched in Fig. 5 and the tip of the pillar 43. Are joined.
  • a net of fine pipes 45 having a uniform density and having the columns 43 as eyes is formed in the recesses 44.
  • the pillars 4 3 contribute to increasing the mechanical strength of the heat panel 2.
  • a wick 46 is provided in the pipe 45, and the working fluid is sealed therein.
  • the cross-sectional area of the pillars 4 3, which are the meshes of the pipe network, can be designed to be very small as compared with the structures shown in FIGS. Can be increased. Therefore, it is possible to realize a heat panel having a high heat diffusion rate and exhibiting an excellent soaking effect.
  • the cross-sectional shape of the pillar 43 is rectangular in FIG. 5, but may be other shapes such as a circle.
  • FIG. 7 is a plan view of the heat panel 2 according to the third configuration example viewed from the lower surface side
  • FIG. 8 is a cross-sectional view taken along line AA of FIG.
  • the heat panel 2 has two plates 51 and 52 made of aluminum or copper which are superimposed on each other, the peripheral portions of the plates 51 and 52 are sealed with a sealing member 53, and a constant pitch is applied over the entire surface.
  • the two plates 51 and 52 are joined together at a number of small points (spots) 54 arranged in.
  • the upper plate 51 is a flat plate thicker than the lower plate 51, and the lower plate 52 is a spot 5 as shown in FIG. It is preformed into a shape that protrudes only in four places. Therefore, when the two plates 51 and 52 are joined, a net of fine-grained pipes 56 with a uniform density is formed over almost the entire surface, with the small spots 54 as eyes.
  • a wick 57 is provided in the pipe 56, and the working fluid is sealed therein.
  • the spots 54 serve to increase the mechanical strength of the heat panel 2. Since the area of the spot 54, which is the mesh of the pipe network, is small, the area ratio of the pipe 56 is large, so that heat diffusion is fast and an excellent
  • FIG. 9 is a plan view of the heat panel 2 according to the fourth configuration example
  • FIG. 10 is a cross-sectional view taken along line AA of FIG.
  • This heat panel 2 is a type of application called a loop-shaped meandering thin tube heat pipe (LCHP), and no wick is required.
  • LCHP loop-shaped meandering thin tube heat pipe
  • two plates 61 and 62 made of aluminum or copper are joined with a thin partition plate 63 interposed therebetween.
  • a number of extremely narrow grooves 64, 65 running parallel to each other at a constant small pitch over almost the entire surface are cut. It is rare.
  • the many grooves 64 of the plate 61 are adjacent to each other and are sequentially connected at different ends, thereby forming one meandering groove 68 as a whole.
  • a large number of grooves 65 of the plate 62 are similarly connected to form one meandering groove 69 as a whole.
  • the two plates 61 and 62 are joined in a direction in which the meandering grooves 68 and 69 are orthogonal. Since the openings of the meandering grooves 68 and 69 are covered by the partition plate 63, each forms an extremely fine meandering pipe.
  • the two meandering pipes 68 and 69 pass through the partition plate 63 at both ends 66 and 67 and are connected to each other to form a closed loop meandering pipe as a whole.
  • the meandering pipes 68 and 69 that are orthogonal and communicate with each other can also be referred to as a kind of pipe network. As can be seen from FIG. 9, pipes are arranged at a uniform density over the entire panel surface.
  • the hydraulic fluid is sealed in the meandering pipes 68 and 69.
  • the inner diameter of the meandering pipes 68, 69 (grooves 64, 65) is such that the hydraulic fluid closes the meandering pipes 68, 69 like a plug due to its surface tension. As thin as possible (about 0.1 mm to several mm Degrees).
  • the heat panel 2 of the LCHP type has a different principle from the heat panels of the types shown in Fig. 3 to Fig. 8, that is, heat is transferred at high speed by circulating hydraulic fluid and its vapor bubbles in meandering pipes or by axial vibration. I do.
  • two meandering pipes 68, 69 with a small arrangement pitch are overlapped so as to be orthogonal to each other, and the pipes are finely arranged at a uniform density over the entire panel surface.
  • the pipe network is formed and heat transport can be performed in both directions perpendicular to each other, so that an excellent soaking effect can be exhibited.
  • Baking at a temperature of the wafer 1 of, for example, 150 degrees Celsius and cooling for cooling the temperature of the wafer 1 to, for example, 20 degrees Celsius are alternately performed.
  • the wafer 1 coated with the resist is placed on the pins 3 from the upper surface of the heat panel 2 via a minute gap, and the halogen lamp 23 is turned on to start baking.
  • the radiant heat from each lamp 23 is absorbed by the lower surface of the heat panel 2, transported at high speed from the lower surface to the upper surface in the pipe 33 of the heat panel 2, and transmitted to the wafer 1 from the upper surface of the heat panel 2.
  • the temperature of the heat panel 2 is detected by a temperature sensor (not shown), and the light amount of the lamp 23 is adjusted based on the detected temperature, and the temperature of the wafer 1 is controlled to the target temperature of 150 degrees Celsius.
  • both heating and cooling of the wafer 1 can be performed at high speed with a high degree of uniformity. The reason is as follows.
  • the heat source devices for heating and cooling are the lamps 23 and the liquid jet nozzles 6.Each of them is a shower of heat medium such as infrared light or low-temperature liquid from a location far away from the lower surface of the heat panel 2. Is a non-contact type heat source. Therefore, as compared with the cooling pipe disclosed in Japanese Patent Application Laid-Open No. Hei 7-226713, the heat medium is transferred to the lower surface of the heat pipe as compared with a contact-type heat source such as a Peltier element disclosed in Japanese Patent Application Laid-Open No. 5-218308. It is easy to perform uniform heating and cooling by applying a uniform density to the whole.
  • both the heating heat source and the cooling heat source are non-contact types, one does not interfere with the other.
  • a contact-type cooling heat source such as the cooling pipe of Japanese Patent Application Laid-Open No. Hei 7-222671
  • heating needs to be performed including the cooling pipe, and the heat capacity increases. Decrease.
  • heating and cooling can be performed at high speed.
  • the pipes filled with the hydraulic fluid are arranged with a substantially uniform density and a fine grain throughout almost the entire surface of the panel, and are connected to each other to form a pipe net. . Therefore, thermal diffusivity in the surface direction is good, and a good soaking effect can be exhibited.
  • the fine mesh distribution of the pipe mesh of the heat panel 2 also contributes to reducing the thermal deformation of the heat panel 2 and increasing the soaking effect.
  • the upper surface of the heat panel 2 may be flat, and the gap between the wafer 1 and the heat panel 2 may be kept constant, and the heat diffusion on the upper surface may be improved to enhance the soaking effect.
  • FIG. 11 shows another embodiment of the present invention. Note that components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • the liquid in which the gas is mixed is formed into a mist and is sprayed on the lower surface of the heat panel 2.
  • the high-temperature liquid is supplied to a number of heating mist nozzles 71 via a high-temperature liquid supply path 70.
  • High temperature gas such as N2 or He It is supplied from the body supply source 72 and mixed with the high-temperature liquid in the middle of the high-temperature liquid supply path 70 by the pump 73.
  • the low-temperature liquid is supplied to many cooling mist nozzles 75 through the low-temperature liquid supply path 74.
  • a low-temperature gas such as air or N2 is supplied from a low-temperature gas supply source 76 and is mixed with the low-temperature liquid in the middle of the low-temperature liquid supply path 74 by a pump 77.
  • a perforated plate 79 is provided above the mist nozzles 71 and 75 in the temperature control chamber 4 to improve the turbulent flow effect.
  • the mist-like fluid jetted from the mist nozzles 71 and 75 obtains a turbulent flow effect to increase the heat transfer capability, and uniformly hits the lower surface of the heat panel 2.
  • a protector may be applied to the area excluding the ejection holes of the nozzles 71 and 79 so that the fluid flowing down from the lower surface of the heat panel 2 does not remove the heat of the nozzles 71 and 75.
  • FIG. 12 is a partial cross-sectional view of the third embodiment of the present invention as viewed from above
  • FIG. 13 is a partial cross-sectional view of the same embodiment as viewed from below. Note that components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
  • a circular temperature control room 81 is provided below the disk-shaped heat panel 2, and the heat panel 2 forms a ceiling wall of the temperature control room 81.
  • the peripheral wall 83 and the bottom wall 85 of the temperature control room 81 may be made of the same material as the heat panel 2 (typically, aluminum), or may be made of a material having a lower thermal conductivity than the heat panel 2 (for example, , Stainless steel and ceramics).
  • the temperature control chamber 81 is of a closed type, and functions as a flow path through which a high-temperature heating fluid or a low-temperature cooling fluid is filled.
  • the bottom wall 85 of the temperature control chamber 81 has a plurality of fluid inlets 87 at regular intervals along its periphery, to which a plurality of external fluid supply pipes 89 are connected. Has been done.
  • One fluid discharge port 91 is open in the center of the bottom wall 85, and one fluid discharge pipe 93 from the outside is connected to it. Flow to multiple fluid inlets 8 7 Since there is one body outlet 91, the diameter of the fluid outlet 91 is larger than the diameter of each fluid inlet 87.
  • a large number of heat exchange fins 95 are erected throughout the entire surface thereof, and the heat exchange fins 95 extend over almost the entire flow path in the temperature control chamber 81. Are distributed. Fins 95 are made of a material with good heat conductivity (aluminum or copper). These fins 95 are joined to the lower surface 2A of the heat panel 2 by brazing or the like, but do not need to be in contact with the bottom wall 85 and are separated from the bottom wall 85 by a small distance. May be.
  • the fins 95 are pin-shaped fins, but this is not necessary, and various other types of fins can be used.
  • Fig. 14 shows a typical example of such a fin, as shown in Figs. (A) to (F), of a thin plate bent type, a pin-shaped fin as shown in (G), and (H).
  • needle-shaped fins closely planted like a brush can also be used.
  • porous aluminum materials such as those used in the moisture absorbing and releasing members shown in FIGS. 6, 7, 9 and 11 of Japanese Utility Model Application No. 1-501
  • aluminum foam Materials such as materials, metal fibers and metal membranes can also be used as fins in the present invention. Further, not only one type of fin but also a combination of plural types of fins can be used.
  • FIG. 15 shows a piping structure for flowing a fluid into the temperature control chamber 81.
  • the plurality of fluid supply pipes 89 are connected to the fluid outlet of the fluid heating device 105 via the solenoid valve 101 and the pump 103, and via the solenoid valve 109 and the pump 111. It is connected to the fluid outlet of the fluid cooling device 113. Further, the fluid discharge pipe 93 is connected to the fluid inlet of the fluid heating device 105 via the solenoid valve 119, and to the fluid inlet of the fluid cooling device 113 via the solenoid valve 117. It is connected. The fluid outlet and fluid inlet of the fluid heating device 105 are connected via a bypass solenoid valve 107, and similarly, the fluid outlet and fluid inlet of the fluid cooling device 113 are connected to the bypass solenoid valve 111. Connected via 5 You.
  • the pumps 103 and 111 always send fluid at a constant speed.
  • the bypass solenoid valves 107 and 115 are open.
  • the fluid is circulated through it.
  • the solenoid valves 101 and 119 are opened and the bypass solenoid valve 107 is closed from this state, the heating fluid from the fluid heating device 105 is supplied to the temperature control chamber 81 and heating is performed. Be started.
  • the solenoid valve 101 is closed and the bypass solenoid valve 107 is opened, and at the same time, the solenoid valve 109 is opened and the bypass solenoid valve 115 is closed.
  • the supply of the heating fluid to the temperature control chamber 81 is stopped, and the supply of the cooling fluid from the fluid cooling device 113 is started instead, and the cooling is started.
  • the solenoid valve 1 19 opens on the side of the fluid discharge pipe 93 for a short period of time during which the heating fluid remaining in the temperature control chamber 81 comes out of the fluid discharge pipe 93.
  • solenoid valve 1 1 9 is closed and solenoid valve 1 1 7 is opened, and full-scale cooling is started .
  • When switching from cooling to heating perform the opposite valve opening and closing operation. In this way, the heating fluid and the cooling fluid are selectively supplied to the temperature control chamber 81.
  • the fluid flowing from the fluid inlet 87 at the peripheral part flows toward the fluid outlet 91 at the center.
  • Heat exchange In addition, the flow of the fluid is mixed and disturbed by a large number of fins 95 everywhere and becomes a turbulent flow, so that the heat exchange can be performed with higher efficiency as compared with the case where the fluid flows as a simple laminar flow, And the temperature of the heat panel 2 becomes more uniform.
  • the fins 95 contribute to both the purpose of increasing the heat exchange efficiency to achieve high-speed heating and cooling, and the purpose of reducing unevenness in the temperature distribution to achieve uniform heating and cooling.
  • the temperature of the heat panel 2 can be made more uniform. That is, without the fins 9 5 In other words, the heat exchange efficiency is inevitably different between the vicinity of the fluid inlet 87 and the vicinity of the fluid outlet 91 because the fluid temperature and flow velocity are different. Therefore, by changing the arrangement position, density, shape, and the like of the fins 95 depending on the location so as to compensate for this difference, heat exchange can be performed more uniformly at all locations. Thus, the fins 95 play an important role in achieving high heat uniformity.
  • the fluid is supplied from the peripheral portion into the temperature control chamber 81 and flows toward the central portion.
  • the fluid is supplied from the central portion and flows to the peripheral portion. It is also possible.
  • it is considered preferable to flow from the periphery to the center as in the present embodiment. Since the flow velocity is higher in the central part than in the peripheral part, the heat exchange efficiency is higher accordingly. This is because the distribution of the heat exchange efficiency due to the difference in the temperature and the distribution of the heat exchange efficiency due to the difference in the flow velocity are reduced and uniformized.
  • FIG. 16 and FIG. 17 show two modifications of the structure of the temperature control chamber 81 for improving the temperature uniformity.
  • the bottom wall 85 is inclined so that the height 81H of the temperature control chamber 81 becomes larger as approaching the center.
  • the bottom wall 85 is stepped down at a place somewhat near the center, and again, the height 81H of the temperature control chamber 81 is larger than the periphery at the center. ing.
  • the cross-sectional area of the fluid flow path near the center is increased by the height 81 1 H of the temperature control chamber 81 near the center, so the flow velocity at the center is increased. Increase is suppressed, and as a result, the temperature uniformity is increased.
  • FIG. 18 shows a third modification of the structure of the temperature control chamber 81 for improving the temperature uniformity.
  • FIG. 19 is a cross-sectional view taken along line A_A of FIG. 1 is a plan view of the bottom wall 85 of FIG. In FIGS. 18 and 19, the fins 95 in the temperature control chamber 81 are The illustration is omitted.
  • the diameter of the temperature control chamber 81 is larger than the diameter of the heat panel 2, and the temperature control chamber 81 is located at the portion protruding to the outer peripheral side from the heat panel 2, and the upper and lower partition plates on the inner side thereof It has a ring-shaped small room 1 2 1 separated from a region inside the temperature control room 8 1 by 1 2 3 and 1 2 5.
  • a fluid inlet 87 is formed in the bottom wall of the ring-shaped small room 1 2 1, and between the upper and lower partition plates 1 2 3 and 1 2 5 inside the ring-shaped small room 1 2 1 In this case, a slit is vacant because the fluid flows from the small chamber 122 to the area inside the temperature control chamber 81.
  • the fluid flowing into the small room 1 2 1 from the fluid inlet 8 7 changes its direction of flow upon hitting the ceiling of the small room 1 2 1, and becomes a flow almost parallel to the lower surface 2 A of the heat panel 2. It flows into the area inside the temperature control chamber 81 through the slit between the partition plates 1 2 3 and 1 2 5. If the fluid flowing in from the fluid inlet 87 directly hits the lower surface 2A of the heat panel 2 at right angles, only the portion of the heat panel 2 corresponding to the fluid inlet 87 will locally increase the heat exchange efficiency. However, in this modification, such a problem is solved.
  • FIG. 20 shows a further modification of the modification shown in FIGS. Also in FIG. 20, the fins 95 in the temperature control chamber 81 are not shown.
  • FIGS. 21 and 22 show yet another two modifications of the fluid inlet 87 of the temperature control chamber 81 for improving the heat uniformity.
  • the fluid inlet 87 is formed in a direction perpendicular to the side wall 83 of the temperature control chamber 81, and the fluid flows in the temperature control chamber 81 parallel to the lower surface 2A of the heat panel 2.
  • the fluid inlet 87 is formed in the bottom wall 85 of the temperature control chamber 81 in an oblique direction, and the fluid is temperature-controlled in a direction parallel to the lower surface 2A of the heat panel 2. It flows into room 81.
  • the problem of local temperature unevenness caused by the fluid flowing from the fluid inlet 87 directly hit the lower surface 2A of the heat panel 2 at right angles is reduced.
  • FIG. 23 is a plan view of a bottom wall showing still another modified example of the fluid inlet 87 of the temperature control chamber 81 for improving the heat uniformity.
  • the fluid inlet 87 is an elongated slit, which is formed around the periphery of the bottom wall 85 over one circumference. Therefore, the fluid can be made to flow uniformly around the periphery of the bottom wall 85 over the entire circumference, and temperature unevenness depending on the location in the circumferential direction is eliminated.
  • FIG. 24 shows an example of the structure of the heat panel 2 and the temperature control chamber 81 manufactured by a method different from the above-described embodiment.
  • the structure described in FIGS. 12 to 23 is generally manufactured by joining the side wall 83 and the bottom wall 85 of the temperature control chamber 81 to the lower surface 2A of the heat panel 2 manufactured in advance.
  • the structure shown in Fig. 24 was manufactured by the following method. First, a plate material 1 3 1 to be the bottom plate of the heat panel 2 is prepared, and for example, a number of columns 43 of the heat panel 2 shown in FIG. Many fins 95 are erected.
  • a plate 1 3 3 serving as a ceiling wall and a side wall of the heat panel 2 is joined, and on the lower surface, a plate 1 serving as a ceiling wall and a side wall of the temperature control room 81 1 3 Join 5
  • this manufacturing method is easier than the manufacturing method of the structure described with reference to FIGS.
  • FIG. 25 is a partial cross-sectional view of yet another modified example of the third embodiment viewed from below.
  • a heating wire heater 141 wrapped like a maze is joined to the lower surface of the bottom wall 85 of the temperature control room 81 over the entire lower surface. Heating is performed exclusively with heating wire 14 1 or heating wire 14 1 and heating fluid, and cooling is performed exclusively with cooling fluid Do with.
  • FIG. 26, FIG. 27 and FIG. 28 show another two modifications using the heating wire.
  • the heating wire 144 is joined to the upper surface 2 B of the heat panel 2. Heating efficiency is very good because the heating wire is closest to the wafer not shown.
  • a drip-proof heating wire 144 is joined to the lower surface 2 A of the heat panel 2. The heating efficiency is much better than that of Fig. 25 because the heating wire is directly in contact with the heat panel 2.
  • the peripheral portion 151 of the heat panel 2 is formed thicker than the other portions, and the heating peripheral portion 1C extends over the wide outer peripheral surface 2C of the thick peripheral portion 151. 4 7 are joined.
  • FIG. 29 and FIG. 30 show two further modified examples.
  • a heating wire 150 is embedded in the bottom wall 153 of the heat panel over the entire surface.
  • a coil-shaped heating wire 157 is packed in the temperature control room 81 over the entire area.
  • the coiled heating wire 157 also functions as a heat exchange fin.
  • fins (which may be of various types as illustrated in FIG. 14) provided in the temperature control room 81 have a function of heating and heating. You may let it.
  • FIGS. 25 to 30 It is also possible to combine multiple types of heating wire heaters shown in FIGS. 25 to 30.
  • a heating wire is provided on the bottom of the temperature control room 81, and the heating wire is also provided on the upper surface 2B of the heat panel 2 as shown in Fig. 26. Heater 1 4 3 and so on.
  • FIG. 31 shows still another modification.
  • Fig. 32 is a sectional view taken along the line A-A in Fig. 31.
  • a flow path 16 1 for the heating fluid and a flow path 16 3 for the cooling fluid are formed in the temperature control chamber 81 independently of each other.
  • the bottom surface 2 A of the heat panel 2 forms a ceiling surface of the heating fluid channel 16 1 and the cooling fluid channel 16 3.
  • These two channels 1 Numerals 61 and 163 are arranged in a spiral shape over the entire surface of the heat panel 2 as shown in FIG. 32, for example. Then, for example, the fluids are supplied from the outer peripheral ports 16 9, 17 1 of the spiral flow paths 16 1, 16 3, respectively, from the central ports 16 5, 16 7. Its fluid is drained.
  • the material of the temperature control chamber 81 is preferably a material having high thermal conductivity.
  • the channels 16 1 and 16 3 may have a shape other than the spiral shape, for example, a meandering shape.
  • FIG. 33 shows still another modification
  • FIG. 34 is a cross-sectional view taken along line AA of FIG.
  • a heating wire heater 173 is embedded or inserted in the temperature control chamber 81 in place of the heating fluid flow path 161 shown in FIG.
  • a cooling fluid flow path 16 3 is arranged in a meandering manner in the temperature control chamber 81, and a rod-shaped heating wire heater 1-3 is inserted in the gap. Since 163 is meandering, the fluid flowing therethrough is somewhat turbulent.
  • the flow path 163 may be formed in a spiral shape as shown in FIG. 32, and a spiral heating wire 173 may be inserted into the gap.
  • FIG. 35 shows another modification.
  • the heat panel 2 has a peripheral portion 151 formed thicker than the other portions, and extends over a wide outer peripheral surface 2C of the thick peripheral portion 151.
  • a ring-shaped temperature control chamber 81 is formed.
  • An outer peripheral surface 2C of the heat panel 2 constitutes an inner peripheral surface of the temperature control chamber 81, and a number of heat exchange fins 95 are erected outward on the inner peripheral surface.
  • one fluid inlet 87 and one fluid outlet 91 are formed at positions symmetrical with respect to the central axis of the heat panel 2.
  • the present invention is not limited to the above-described embodiments, and can be implemented in other various forms.
  • cooling is performed from the bottom of the heat pipe as in the embodiment, but heating is performed on the wafer.
  • heat pipes only for heating or cooling, for example, by using an infrared lamp located on the side without using a heat pipe.
  • the present invention can be applied not only to the semiconductor wafer processing apparatus as in the above-described embodiment, but also to various other substrate processing apparatuses and wall and table surface temperature control apparatuses.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A temperature control device capable of heating or cooling flat plates, such as semiconductor wafers, highly uniformly and efficiently. A circular flow passage (81) is linked to the lower surface (2A) of a circular plate-shaped heat pipe (2), on whose upper surface is mounted a semiconductor wafer (1). The lower surface (2A) of the plate-shaped heat pipe (2) constitutes the top plate of the cicular flow passage (81), and all over it are installed a large number of upright pin-shaped fins (95). A plurality of fluid inlets (87) are arranged around the periphery of the circular flow passage (81), at whose central part is one fluid oulet (93). A heating fluid and a cooling fluid are selectively supplied into the ciruclar flow passage (81) through the fluid inlets (87). Within the ciruclar flow passage (81), the fluid flowing in contact with the fins (95) and the plate-shaped heat pipe (2) effectively exchange heat with the fins (95). The flow of the fluid is turbulent due to the fins (95), thereby enhancing the efficiency of heatexchange, reducing the temperature unevenness, and increasing the uniformity of heat distribution.

Description

明 細 書 ヒートパイプを利用した 脚装置 技 術 分 野  Description Leg device using heat pipes Technical field
本発明は、 半導体ゥェハのような平板状の 本又は壁面のような平面の をヒートパ ィプを利用して港卿するための^^ l柳装置に関する。 技 術 背 景  TECHNICAL FIELD The present invention relates to a ^^ l willow device for harboring a flat book such as a semiconductor wafer or a flat surface such as a wall using a heat pipe. Technology background
従来技術として特開平 7— 2 2 6 3 7 1号に開示された基板冷却装置がある。 こ の装置は、 半導体ウェアやガラス基板や光磁気ディスク基板などを所定温度に冷却 するためのものである。 この装置は、 処理基板が載置される基板載置プレートと、 この基板載置プレートの下面に接して配置された、 屈曲した冷却配管とを備える。 基板載置プレート内には、 同プレートをそれそれ上下に貫通した、 互いに独立した 多数本のヒートパイプが、 同プレートの全域にわたって敷き詰められている。 基板 載置プレート上に熱い処理基板が載せられると、 処理基板の熱が基板載置プレート 内の多数本のヒートパイプによって、 基板載置プレート下面へ伝えられ、 冷却配管 に吸収される。 処理基板の温度が高い箇所ほど、 その箇所に当たるヒートパイプ内 の作動液が活発に蒸発して潜熱を奪うから、処理基板全体が均一温度に冷却される。 別の従来技術として特開平 5— 2 1 3 0 8に開示されたゥヱハ支持装置がある。 この装置では、 ウェハを吸着する平板状の吸着ブロックの背面に、 ヒートパイプと ペルチヱ素子と冷却ブロックとが順に積層されている。 非常に高い熱伝導率をもつ ヒートパイプの作用により、 ヒートパイプの表面に熱を速やかに拡散させて効率良 く冷却が行える。  As a prior art, there is a substrate cooling apparatus disclosed in Japanese Patent Application Laid-Open No. Hei 7-222636. This device is for cooling semiconductor ware, glass substrates, magneto-optical disk substrates and the like to a predetermined temperature. The apparatus includes a substrate mounting plate on which a processing substrate is mounted, and a bent cooling pipe arranged in contact with a lower surface of the substrate mounting plate. In the substrate mounting plate, a number of independent heat pipes penetrating the plate up and down are laid all over the plate. When a hot processing substrate is placed on the substrate mounting plate, the heat of the processing substrate is transmitted to the lower surface of the substrate mounting plate by a number of heat pipes in the substrate mounting plate and absorbed by the cooling pipe. The higher the temperature of the processing substrate, the more the working fluid in the heat pipe that hits the position evaporates and takes latent heat, so that the entire processing substrate is cooled to a uniform temperature. As another prior art, there is a C support device disclosed in Japanese Patent Application Laid-Open No. Hei 5-2-1308. In this apparatus, a heat pipe, a Peltier element, and a cooling block are sequentially stacked on the back surface of a flat suction block for sucking a wafer. The action of the heat pipe, which has a very high thermal conductivity, allows the heat to diffuse quickly to the surface of the heat pipe, allowing efficient cooling.
上記の従来技術はいずれも、 ヒートパイプのもつ非常に高い熱伝導性を利用して、 半導体ウェハなどの基板を均一温度に冷却しょうとするものである。 ところで、 一 般に、 基板の加熱時及び冷却時に要求される温度の均一度 (以下、 均熱性という) は極めて高い。 例えば半導体ウェハの場合、 目標温度から摂氏 ± 0 . 1度以下の温 度範囲内にウェハ全体の温度を均一化しなければ、 製品としての信頼性を失う。 し かしながら、 従来技術のように単にヒートパイプの高い熱伝導性を利用するだけで は、 上記の様な高い均熱性を実現することは難しい。 All of the above prior arts take advantage of the extremely high thermal conductivity of heat pipes, It is intended to cool a substrate such as a semiconductor wafer to a uniform temperature. By the way, generally, the uniformity of temperature (hereinafter, referred to as uniform temperature) required for heating and cooling the substrate is extremely high. For example, in the case of a semiconductor wafer, if the temperature of the entire wafer is not made uniform within a temperature range of ± 0.1 degrees Celsius or less from the target temperature, the reliability as a product is lost. However, it is difficult to achieve the above-mentioned high thermal uniformity simply by utilizing the high thermal conductivity of the heat pipe as in the prior art.
また、 基板の加熱及び冷却の双方を効率良く高速に行えることが望まれる。 しか し、 上記従来技術は冷却を目的としたものであり、 加熱及び冷却の双方を効率良く 行うことは困難である。  It is also desired that both heating and cooling of the substrate can be performed efficiently and at high speed. However, the above prior art is aimed at cooling, and it is difficult to perform both heating and cooling efficiently.
従って、 本発明の目的は、 高い均熱性が実現できるヒートパイプを利用した温度 制御装置を提供することにある。  Therefore, an object of the present invention is to provide a temperature control device using a heat pipe that can achieve high heat uniformity.
本発明の別の目的は、 加熱と冷却とが高速に行えるヒートパイプを利用した温度 制御装置を提供することにある。 発 明 の 開 示  Another object of the present invention is to provide a temperature control device using a heat pipe capable of performing heating and cooling at high speed. Disclosure of the invention
本発明の第 1の観点に従がつた温度制御装置は、 前面と背面とをもったプレート 形ヒートパイプと、 このヒートパイプの背面から離れて配置され、 熱媒体を射出し てヒートパイプの背面に当てる非接触タイプの少なくとも一種類の熱源装置とを備 える。  A temperature control device according to a first aspect of the present invention includes a plate-shaped heat pipe having a front surface and a back surface, and a heat control device that is disposed away from the back surface of the heat pipe and injects a heat medium to the back surface of the heat pipe. And at least one type of non-contact type heat source device.
非接触タイプの熱源装置とは、 例えば、 冷却用又は加熱用の流体(例えば、 液体、 気体又は液体と気体の混合体) をヒ一トパイプの背面へ噴射する流体噴射機構や、 加熱用の電磁波 (例えば赤外線) をヒートパイプの背面へ照射するランプなどであ る。 (本明細書及び請求の範囲では、 「熱媒体」 という用語を、 上記の冷却用又は加 熱用の流体や加熱用の電磁波を含む広い意味で用いる。)  The non-contact type heat source device includes, for example, a fluid ejection mechanism for ejecting a cooling or heating fluid (for example, a liquid, a gas, or a mixture of a liquid and a gas) to the back of a heat pipe, and a heating electromagnetic wave. A lamp that irradiates (for example, infrared light) to the back of the heat pipe. (In this specification and the claims, the term "heat medium" is used in a broad sense including the above-mentioned cooling or heating fluid and heating electromagnetic waves.)
本発明の温度制御装置によれば、 プレート形ヒートパイプが高い均熱性をもっと 共に、 非接触タイプの熱源装置がヒー卜パイプの背面を均一に加熱又は冷却するこ とができるので、 両利点があいまつて優れた均熱効果が発揮できる。 According to the temperature control device of the present invention, the plate-type heat pipe has higher uniformity. In both cases, the non-contact type heat source device can uniformly heat or cool the back surface of the heat pipe, so that both advantages are exhibited and an excellent soaking effect can be exhibited.
本発明では、 冷却と加熱の一方を非接触タイプの熱源装置とし他方を接触タイプ の熱源装置 (例えば、 ヒートパイプの背面に接合された電熱線や冷却管など) とす ることもできるし、 冷却と加熱の双方を非接触夕ィプの熱源装置とすることもでき る。 後者の場合、 共に非接触タイプである冷却用熱源装置と加熱用熱源装置とを互 いに干渉し合うことなく設けることが可能であるため、 プレート形ヒートパイプが のもつ高い熱運搬速度とあいまって、 冷却と加熱の双方を高速に行えるようにする ことが可能である。  In the present invention, one of the cooling and the heating may be a non-contact type heat source device and the other may be a contact type heat source device (for example, a heating wire or a cooling pipe joined to the back of a heat pipe), Both cooling and heating can be a non-contact heat source device. In the latter case, the heat source for cooling and the heat source for heating, both of which are non-contact types, can be provided without interfering with each other, which is coupled with the high heat transfer speed of the plate-type heat pipe. Thus, both cooling and heating can be performed at high speed.
均熱効果を高めるためには、 プレート形ヒートパイプは、 作動液の封入された多 数のパイプを有し、 それら多数のパイプは連通してパイプ網を形成し、 かつ前記プ レート形ヒートパイプのほぼ全面に亘つて実質的に均一な密度で配置されているこ とが望ましい。 また、 その場合、 多数のパイプの各々が正多角形又は円形であるこ とも好ましい。 さらに、 パイプ網の網目がパイプ網のほぼ全域に亘つて実質的に均 一の密度で配置されていることも好ましい。  In order to enhance the soaking effect, the plate-type heat pipe has a large number of pipes filled with a working fluid, and the large number of pipes communicate with each other to form a pipe network. It is desirable that they are arranged at a substantially uniform density over almost the entire surface of the substrate. In that case, it is also preferable that each of the multiple pipes is a regular polygon or a circle. It is also preferred that the mesh of the pipe network is arranged at a substantially uniform density over substantially the entire area of the pipe network.
熱媒体とプレ一ト形ヒートパイプとの熱交換率を高めて加熱 ·冷却速度を高める ためには、 プレート形ヒートパイプの背面に適度な凹凸があることが望ましい。 また、 半導体ウェハのような平板状の対象を加熱 ·冷却する場合には、 対象が置 かれるプレート形ヒートパイプの前面は平坦であることが望ましい。  In order to increase the heat exchange rate between the heat medium and the plate-type heat pipe to increase the heating and cooling rates, it is desirable that the back surface of the plate-type heat pipe has moderate irregularities. When heating and cooling a flat object such as a semiconductor wafer, it is desirable that the front surface of the plate heat pipe on which the object is placed is flat.
本発明の別の観点に従がう温度制御装置は、 プレート形ヒ一トパイプの背面又は 側面に熱流体の乱流を当てるようにしたものである。 乱流効果によって熱流体とプ レート形ヒートパイプとの間の熱交換が効率的に行われて高速な加熱又は冷却が行 える。 また、 層流を用いる場合に比較して、 乱流を用いた方が温度むらが小さくな り、 より高い均熱性が実現できる。 均熱性の観点から、 熱流体の乱流はプレート形 ヒートパイプの背面又は側面のほぼ全面に亘つて当てることが望ましい。 熱流体の乱流をプレート形ヒ一トパイプに当てための一つの方法は、 ノズルのよ うな流体噴射機構から熱流体 (又は熱流体と気体との混合体) をプレート形ヒート パイプに噴射する方法である。 According to another aspect of the present invention, there is provided a temperature control device in which a turbulent flow of a thermal fluid is applied to a back surface or a side surface of a plate-shaped heat pipe. Due to the turbulence effect, heat exchange between the heat fluid and the plate-type heat pipe is efficiently performed, and high-speed heating or cooling can be performed. In addition, compared with the case of using a laminar flow, the use of turbulent flow reduces the temperature unevenness and achieves higher uniformity. From the viewpoint of heat uniformity, it is desirable to apply the turbulent flow of the thermal fluid over almost the entire back or side surface of the plate-type heat pipe. One method for directing the turbulent flow of a thermal fluid onto a plate-type heat pipe is to inject a thermal fluid (or a mixture of thermal fluid and gas) from a fluid ejection mechanism such as a nozzle into the plate-type heat pipe. It is.
別の方法は、 プレート形ヒ一トパイプの背面又は側面側に熱流体を流すための流 路を形成し、 この流路内を熱流体が乱流となって流れるようにする方法である。 流 路内を乱流とする方法としては、 流路を蛇行状や渦巻き状などに折り曲げる方法も あるが、 それとは別の効果的な方法は、 流路内に多数の熱交換フィン (例えばピン 形タイプ又は針形タイプなど) を配置することである。 多数のフィンが流体の流れ を搔き乱して乱流を形成すると共に、 流体と効率的に熱交換を行う。 熱交換効率を 高める上で、 プレート形ヒートパイプの背面又は側面が流路の壁の一部を構成して いて、 そこに熱交換フィンが接合されていることが望ましい。 更に、 フィンの配置 や形状などを適切に選択すると、 流路内での熱流体の温度分布や流速分布に起因す る熱交換効率の不均一を補償して、 さらに高い均熱性の実現可能性も期待できる。 好適な一実施形態では、 流路は、 プレート形ヒートパイプの背面のほぼ全域を覆 うようにして広がった円形状のものであり、 その円形状の流路の周縁部に熱流体の 流入口 (又は排出口) を有し、 流路の中央部に熱流体の排出口 (又は流入口) を有 している。 熱流体、 すなわち加熱流体又は冷却流体は、 その円形の流路内を周縁部 から中心部へ向かうように (又逆方向に) 流れる。 このような流体の流し方は、 広 い流路内を均一温度にするのに好適な一つの流し方であるが、 他の流し方、例えば、 広い流路内に随所に多数の流入口と多数の排出口を設けて流すような方法も効果的 と考えられる。 この広い流路のー側の壁はプレート形ヒートパイプの背面 (又は側 面) あって、 そこに多数の熱交換フィン (例えばピン形タイプ又は針形タイプ) が 全域に亘つて立設されている。 このフィンの作用で高い均熱性と高い熱交換効率と が得られる。 また、 流路の高さが、 中心部付近では周縁部付近より大きくなつてい て、 これにより周縁部付近と中心部付近との流速の違いを小さくして均熱性を高め ている。 或いは、 流体流入口からの流入した流体の流れをプレート形ヒートパイプ の面にほぼ平行になるように制御する機構が設けられていて、 これにより流体流入 口付近での局所的な温度むらを抑えて均熱性を高めている。 流路には、 加熱用の熱 流体と冷却用の熱流体とが選択的に供給される。 この熱流体を供給する機構は、 熱 流体を送るポンプと、 熱流体をそれそれ加熱及び冷却する加熱装置及び冷却装置と を有する。 そして、 加熱装置及び冷却装置の各々について、 流路に熱流体を供給し ないときに、 流路をバイパスしてポンプと加熱装置及び冷却装置の各々とを通して 熱流体を循環させるためのバイパス路が設けられている。 このバイパス路の存在に より、 流路に熱流体を供給しないときでも、 ポンプは常に一定の回転数で運転でき、 熱流体は常に目標温度に制御されているので、流路に熱流体の供給を開始したとき、 直ちに目標温度の熱流体を適正な流速で供給でき、 よつて温度制御性が良好である。 加熱と冷却のうち、 その双方を熱流体で行ってもよいし、 その一方だけ、 特に冷 却だけを熱流体で行い、 加熱は電熱線ヒ一夕や赤外線ランプなどで行ってもよい。 パネル形ヒートパイプにノズル等から熱流体を噴射するものでは、 赤外線ランプと 組み合わせて、 赤外線ランプからの光をパネル形ヒートパイプに照射するように構 成することが比較的に容易である。 パネル形ヒートパイプに流路によって熱流体を 当てるものでは、 電熱線ヒ一夕をパネル形ヒートパイプ前面や背面、 或いは流路の 表面や内部や隙間などに配置する構成が比較的に容易である。 Another method is to form a flow path for flowing the thermal fluid on the back or side of the plate-type heat pipe, and to make the thermal fluid flow as a turbulent flow in this flow path. As a method of forming a turbulent flow in a flow path, there is a method of bending the flow path in a meandering or spiral shape, but another effective method is to use a large number of heat exchange fins (for example, pins) in the flow path. Type or needle type). Many fins disturb the flow of the fluid to form turbulence and efficiently exchange heat with the fluid. In order to enhance the heat exchange efficiency, it is desirable that the back or side surface of the plate-shaped heat pipe constitutes a part of the wall of the flow channel, and heat exchange fins are joined thereto. Furthermore, if the fin arrangement and shape are selected appropriately, the non-uniformity of heat exchange efficiency due to the temperature distribution and flow velocity distribution of the thermal fluid in the flow path will be compensated, and the possibility of achieving even higher uniformity Can also be expected. In a preferred embodiment, the flow path has a circular shape that spreads so as to cover almost the entire back surface of the plate-shaped heat pipe, and a thermal fluid inlet is provided at a peripheral portion of the circular flow path. (Or outlet), and has a discharge (or inlet) for hot fluid at the center of the flow path. The hot fluid, ie, the heating fluid or the cooling fluid, flows in the circular flow path from the periphery to the center (and in the opposite direction). Such a flow of the fluid is one of the suitable flow methods for making the inside of the wide flow channel have a uniform temperature, but the other flow method, for example, having a large number of inlets in a wide flow channel at various places. It is also considered effective to provide a large number of outlets for the flow. The side wall of this wide channel is the back (or side) of the plate-shaped heat pipe, where a number of heat exchange fins (for example, pin type or needle type) are set up over the whole area. I have. By the action of the fins, high heat uniformity and high heat exchange efficiency can be obtained. In addition, the height of the flow path is larger near the center than in the vicinity of the periphery, thereby reducing the difference in flow velocity between the vicinity of the periphery and the vicinity of the center to increase the uniformity of heat. ing. Alternatively, a mechanism is provided to control the flow of the fluid that has flowed in from the fluid inlet so that it is almost parallel to the surface of the plate-type heat pipe, thereby suppressing local temperature unevenness near the fluid inlet. To increase the heat uniformity. A heat fluid for heating and a heat fluid for cooling are selectively supplied to the flow path. The mechanism for supplying the hot fluid includes a pump for sending the hot fluid, and a heating device and a cooling device for heating and cooling the hot fluid, respectively. For each of the heating device and the cooling device, a bypass passage for circulating the heating fluid through the pump and each of the heating device and the cooling device by bypassing the flow channel when the hot fluid is not supplied to the flow channel is provided. Is provided. Due to the presence of this bypass, the pump can always be operated at a constant rotation speed even when hot fluid is not supplied to the flow path, and the hot fluid is always controlled to the target temperature. When the process is started, the thermal fluid at the target temperature can be immediately supplied at an appropriate flow rate, and thus the temperature controllability is good. Either heating or cooling may be performed with a heat fluid, or only one of them, especially cooling, may be performed with a heat fluid, and heating may be performed with a heating wire or an infrared lamp. In the case where a thermal fluid is ejected from a nozzle or the like to a panel-type heat pipe, it is relatively easy to combine with an infrared lamp and irradiate light from the infrared lamp to the panel-type heat pipe. When a heat fluid is applied to the panel-type heat pipe through the channel, it is relatively easy to arrange the heating wire on the front or back of the panel-type heat pipe, or on the surface, inside, or in the gap of the channel. .
本発明におけるその他の様々な改良及びその目的は、以下の説明で明らかにする。 図面の簡単な説明  Various other improvements and objects of the present invention will become apparent in the following description. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の第 1の実施形態を示す構成図。  FIG. 1 is a configuration diagram showing a first embodiment of the present invention.
図 2は流体噴射ノズルとハロゲンランプの平面配置を示す平面図。  FIG. 2 is a plan view showing a planar arrangement of a fluid ejection nozzle and a halogen lamp.
図 3は第 1の構成例にかかるヒ一トパネル 2の下面側から視た平面図。  FIG. 3 is a plan view of the heat panel 2 according to the first configuration example as viewed from the lower surface side.
図 4は図 3の A— A線での同ヒートパネル 2の断面図。 図 5は第 2の構成例にかかるヒートパネル 2の平面視断面図。 FIG. 4 is a cross-sectional view of the heat panel 2 taken along line A—A in FIG. FIG. 5 is a cross-sectional plan view of the heat panel 2 according to the second configuration example.
図 6は図 5の A— A線、 B— B線でのヒートパネル 2の断面図。  FIG. 6 is a cross-sectional view of the heat panel 2 taken along line A—A and line B—B in FIG.
図 7は第 3の構成例にかかるヒートパネル 2の下面側から視た平面図。  FIG. 7 is a plan view of the heat panel 2 according to the third configuration example as viewed from the lower surface side.
図 8は図 7の A— A線での断面図。  FIG. 8 is a cross-sectional view taken along line AA in FIG.
図 9は第 4の構成例にかかるヒートパネル 2の平面図。  FIG. 9 is a plan view of a heat panel 2 according to a fourth configuration example.
図 1 0は図 9の A— A線での断面図。  FIG. 10 is a cross-sectional view taken along line AA of FIG.
図 1 1は本発明の第 2の実施形態を示す構成図。  FIG. 11 is a configuration diagram showing a second embodiment of the present invention.
図 1 2は本発明の第 3の実施形態を上側から視た部分断面図。  FIG. 12 is a partial cross-sectional view of the third embodiment of the present invention as viewed from above.
図 1 3は同実施形態を下側から視た部分断面図。  FIG. 13 is a partial cross-sectional view of the same embodiment as viewed from below.
図 1 4はフィンの代表的な例を示した斜視図。  FIG. 14 is a perspective view showing a typical example of a fin.
図 1 5は温度制御室 8 1に流体を流すための配管構造を示す流体回路図。  FIG. 15 is a fluid circuit diagram showing a piping structure for flowing a fluid into the temperature control chamber 81.
図 1 6は均熱性を高めるための温度制御室 8 1の構造に関する第 1の変形例を示 す断面図。  FIG. 16 is a cross-sectional view showing a first modification of the structure of the temperature control chamber 81 for improving the temperature uniformity.
図 1 7は均熱性を高めるための温度制御室 8 1の構造に関する第 2の変形例を示 す断面図。  FIG. 17 is a cross-sectional view showing a second modification of the structure of the temperature control chamber 81 for improving the heat uniformity.
図 1 8は均熱性を高めるための温度制御室 8 1の構造に関する第 3の変形例を示 す断面図。  FIG. 18 is a cross-sectional view showing a third modification of the structure of the temperature control chamber 81 for improving the heat uniformity.
図 1 9は図 1 8の A— A線での断面図 (温度制御室 8 1の底壁 8 5の平面図)。 図 2 0は均熱性を高めるための温度制御室 8 1の構造に関する第 4の変形例を示 す断面図。  Fig. 19 is a cross-sectional view taken along line A-A of Fig. 18 (a plan view of the bottom wall 85 of the temperature control chamber 81). FIG. 20 is a cross-sectional view showing a fourth modification of the structure of the temperature control chamber 81 for improving the thermal uniformity.
図 2 1は均熱性を高めるための温度制御室 8 1の構造に関する第 5の変形例を示 す断面図。  FIG. 21 is a cross-sectional view showing a fifth modification of the structure of the temperature control chamber 81 for improving the heat uniformity.
図 2 2は均熱性を高めるための温度制御室 8 1の構造に関する第 6の変形例を示 す断面図。  FIG. 22 is a cross-sectional view showing a sixth modification of the structure of the temperature control chamber 81 for improving the temperature uniformity.
図 2 3は均熱性を高めるための温度制御室 8 1の構造に関する第 7の変形例を示 す底壁 8 5の平面図。 Fig. 23 shows a seventh modification of the structure of the temperature control chamber 81 for improving the temperature uniformity. FIG.
図 2 4は別の方法で製造された第 8の変形例を示す断面図。  FIG. 24 is a cross-sectional view showing an eighth modified example manufactured by another method.
図 2 5は電熱線ヒ一夕を用いた第 9の変形例を示す部分断面図。  FIG. 25 is a partial cross-sectional view showing a ninth modified example using the heating wire.
図 2 6は電熱線ヒー夕を用いた第 1 0の変形例を示す部分断面図。  FIG. 26 is a partial cross-sectional view showing a tenth modification using a heating wire.
図 2 7は電熱線ヒ一夕を用いた第 1 1の変形例を示す部分断面図。  FIG. 27 is a partial cross-sectional view showing a first modified example using a heating wire.
図 2 8は電熱線ヒー夕を用いた第 1 2の変形例を示す部分断面図。  FIG. 28 is a partial cross-sectional view showing a 12th modified example using a heating wire.
図 2 9は電熱線ヒー夕を用いた第 1 3の変形例を示す部分断面図。  FIG. 29 is a partial cross-sectional view showing a thirteenth modification using a heating wire.
図 3 0は電熱線ヒー夕を用いた第 1 4の変形例を示す部分断面図。  FIG. 30 is a partial cross-sectional view showing a 14th modified example using a heating wire.
図 3 1は加熱と冷却の流路を別にした第 1 5の変形例を示す断面図。  FIG. 31 is a cross-sectional view showing a fifteenth modification example in which heating and cooling channels are separated.
図 3 2は図 3 1の A— A線での断面図。  FIG. 32 is a cross-sectional view taken along line AA of FIG.
図 3 3は第 1 6の変形例を示す断面図。  FIG. 33 is a sectional view showing a sixteenth modification.
図 3 4は図 3 3の A— A線での断面図。  FIG. 34 is a cross-sectional view taken along line A—A of FIG.
図 3 5は温度制御室 8 1をヒートパネル 2の側面に設けた第 1 6の変形例を示す 断面図。 発明を«するための 態  FIG. 35 is a cross-sectional view showing a 16th modified example in which the temperature control chamber 81 is provided on the side surface of the heat panel 2. Conditions for Invention
以下、 半導体製造工程での半導体ゥヱハの温度制御に本発明を適用した実施形態 を説明する。  Hereinafter, an embodiment in which the present invention is applied to temperature control of a semiconductor device in a semiconductor manufacturing process will be described.
半導体製造工程において、 例えばレジスト膜は、 通常次のようなプロセスを経て ウェハ表面に形成される。  In a semiconductor manufacturing process, for example, a resist film is usually formed on a wafer surface through the following process.
(1) ゥヱハ洗浄  (1) Cleaning
(Z) レジストコ一ティング  (Z) Resist coating
(3) プリべ一ク +ク一リング  (3) Pre-vac + cooling
(4) 露光  (4) Exposure
(5) 現像 (6) リンス (5) Development (6) Rinse
(7) ボストべ一ク +クーリング  (7) Bost bake + cooling
(8) エッチング  (8) Etching
ここで、 プリべ一クでは、 ベーキング温度は摂氏 9 0〜 2 0 0度に設定され (プ ロセスによって異なる)、 このプリベ一クに後続するク一リングではその目標温度 は摂氏 2 0度程度の室温に設定される。 また、 ポストべークでは、 ベ一キング温度 は摂氏 1 0 0〜2 5 0度に設定され (プロセスによって異なる)、 このホス卜べ一 クに後続するクーリングではその目標温度は摂氏 2 0度程度の室温に設定される。 プリべ一ク +クーリング工程の次工程は露光であり、 またボス卜べ一ク +クーリン グ工程の次工程はエッチングである。 これら次工程にすぐに移行できるよう、 ゥァ ハの温度分布にかなり厳しい条件が要求される。  Here, in the pre-baking, the baking temperature is set to 90 to 200 degrees Celsius (depending on the process), and in the cooling subsequent to this pre-baking, the target temperature is about 20 degrees Celsius. Is set to room temperature. In the post bake, the baking temperature is set at 100 to 250 degrees Celsius (depending on the process), and the cooling temperature following the host bake is set at 20 degrees Celsius. Room temperature is set. The next step after the pre-bake + cooling step is exposure, and the next step after the bot-bake + cooling step is etching. Quite severe conditions are required for the temperature distribution of the wafer so that the process can be immediately shifted to the next step.
以下に示す実施形態は、 プリべーク +クーリング工程またはポストべ一ク +クー リング工程に用いられるもので、 最初にウェハを高温に加熱し (ベーキング)、 そ の後このウェハを室温程度まで冷却する (クーリング) というサイクルをウェハ単 位に数 10秒間隔で繰り返す。 従って、 加熱の目標温度と冷却の目標という 2つの 目標温度をもって、 加熱と冷却を交互に繰り返す。  The embodiment described below is used in a pre-bake + cooling step or a post-bake + cooling step, in which a wafer is first heated to a high temperature (baking), and then the wafer is brought to room temperature. The cycle of cooling (cooling) is repeated at intervals of several tens of seconds for each wafer. Therefore, heating and cooling are alternately repeated with two target temperatures, the target temperature for heating and the target for cooling.
図 1にこの実施形態の全体構成を示す。  FIG. 1 shows the overall configuration of this embodiment.
図 1に示すように、 ウェハ 1がプレート形のヒートパイプ (以下、 ヒートパネル という) 2の上面に載置される。 ヒートパネル 2の複数箇所には、 複数本の上下動 可能な細いピン 3が、ヒートパネル 2を下面から上面へ貫通して設けられている(そ の駆動機構は図示省略)。 実際にはウェハ 1はそれらピン 3の先端の上に載置され る。 ベーキングやクーリングの時には、 それらピン 3は先端がヒートパネル 2の上 面から僅かに突出した位置まで降りているので、 ウェハ 1はヒートパネル 2の上面 上に微小なエアギャップを介して置かれている。  As shown in FIG. 1, a wafer 1 is placed on the upper surface of a plate-shaped heat pipe (hereinafter referred to as a heat panel) 2. At a plurality of positions of the heat panel 2, a plurality of vertically movable thin pins 3 are provided so as to penetrate the heat panel 2 from the lower surface to the upper surface (the drive mechanism is not shown). Actually, the wafer 1 is placed on the tips of the pins 3. At the time of baking or cooling, the pins 3 have descended to positions where the tips slightly protrude from the upper surface of the heat panel 2, so that the wafer 1 is placed on the upper surface of the heat panel 2 with a small air gap. I have.
ヒートパネル 2の基本構造は、 周知の通り、 所定の作動液を封じ込めた多数の連 通した空間を内部に有したプレートであり、 極めて高い熱伝導性と小さレ、熱容量を もつ。 ヒートパネル 2の役目は、 ウェハ 1とヒートパネル 2下面に当てられる後述 の熱媒体 (流体や光) との間の熱交換を、 ウェハ 1全面に亘つて均一に且つ高速に 行うことである。 この役目を効果的に果たせるよう、 本実施形態のヒートパネル 2 は後述する特別の構造をもつ。 As is well known, the basic structure of the heat panel 2 is composed of a number of series containing a predetermined working fluid. It is a plate with a space through which it passes, and has extremely high thermal conductivity, small size, and heat capacity. The role of the heat panel 2 is to perform heat exchange between the wafer 1 and a heat medium (fluid or light), which will be applied to the lower surface of the heat panel 2, uniformly and at high speed over the entire surface of the wafer 1. In order to effectively fulfill this function, the heat panel 2 of the present embodiment has a special structure described later.
ヒートパネル 2の下方には温度制御室 4が設けられており、 ヒートパネル 2はこ の温度制御室 4の天井壁を構成している。 温度制御室 4のヒ一トパネル 2以外の壁 5は、 熱伝導性の悪い材料で作られている。 温度制御室 4内には、 多数の流体噴出 ノズル 6が立設されている。 これら流体噴出ノズル 6は、 図 2の平面図に示すよう に、 ヒートパネル 2の下面をカバ一する 2次元領域の全体に亘ってほぼ均一な密度 で縦横に配列されている。 これらの流体噴出ノズル 6には、 流体貯留管 7を通じて 低温 (つまり、 ウェハ冷却用) の液体 8が供給される。 流体噴出ノズル 6は、 その 先端部には 1個乃至多数個の小さい噴出孔を有しており、 その噴出孔から矢印で示 すような液体 8の高速シャワーを天井のヒートパネル 2へ吹きつけることができる。 液体シャヮ一は乱流であるため効果的にヒートパネル 2と熱交換することができる。 液体シャワーをヒートパネル 2の下面全体に出来るだけ均一な密度で当てられるよ う、 流体噴出ノズル 6の配列のピッチ、 噴出孔の個数や形状、 噴出孔からヒートパ ネル 2下面までの距離などが最適に設計されている。  A temperature control room 4 is provided below the heat panel 2, and the heat panel 2 forms a ceiling wall of the temperature control room 4. The wall 5 other than the heat panel 2 of the temperature control room 4 is made of a material having poor heat conductivity. In the temperature control chamber 4, a number of fluid ejection nozzles 6 are provided upright. As shown in the plan view of FIG. 2, these fluid ejection nozzles 6 are arranged vertically and horizontally at a substantially uniform density over the entire two-dimensional area covering the lower surface of the heat panel 2. A low-temperature (that is, wafer cooling) liquid 8 is supplied to these fluid ejection nozzles 6 through a fluid storage pipe 7. The fluid ejection nozzle 6 has one or many small ejection holes at its tip, and blows a high-speed shower of liquid 8 as indicated by an arrow from the ejection holes to the heat panel 2 on the ceiling. be able to. Since the liquid shear is turbulent, heat can be effectively exchanged with the heat panel 2. To ensure that the liquid shower is applied to the entire lower surface of the heat panel 2 as uniformly as possible, the pitch of the array of fluid ejection nozzles 6, the number and shape of the ejection holes, and the distance from the ejection holes to the lower surface of the heat panel 2 are optimal. Designed for
流体貯留管 7には液体供給路 1 0の先端が接続され、 液体供給路 1 0の基端は温 度制御室 4底壁の液体排出口 1 4に接続され、液体供給路 1 0の途中にはバルブ 9、 ポンプ 1 1及びチラ一 1 2が設けられている。 温度制御室 4の底に落ちた液体 8は チラ一 1 2に送られ、 ここで所定の低温度に調整された後、 ポンプ 1 1の圧力で流 体噴出ノズル 6へ供給され、 高速シャワーとなってヒートパネル 2の下面へ吹きつ けられ、 再び温度制御室 4の底へ落ちて同様に循環される。  The distal end of the liquid supply path 10 is connected to the fluid storage pipe 7, and the base end of the liquid supply path 10 is connected to the liquid discharge port 14 on the bottom wall of the temperature control chamber 4, in the middle of the liquid supply path 10. Is provided with a valve 9, a pump 11 and a chiller 112. The liquid 8 that has fallen to the bottom of the temperature control chamber 4 is sent to the chiller 12, where it is adjusted to a predetermined low temperature, and then supplied to the fluid ejection nozzle 6 with the pressure of the pump 11, and the high-speed shower and As a result, it is blown to the lower surface of the heat panel 2 and again falls to the bottom of the temperature control chamber 4 to be circulated in the same manner.
液体 8としては、 光透過性および絶縁性を有する液体、 例えばフロリナ一トゃガ ルデン (共に登録商標) を用いることができる。 また、 取扱の容易な水やエチレン グリコールなども、 要求される温度条件を満たせば用いることができる。 The liquid 8 is a liquid having a light transmitting property and an insulating property, such as Florina Toga. Ruden (both registered trademarks) can be used. Water and ethylene glycol, which are easy to handle, can also be used if they meet the required temperature conditions.
温度制御室 4は、 密閉タイプとすることも、 外気への開孔 1 3を有した開放タイ プとすることもできる。 密閉タイプの温度制御室 4では、 液体が充満した室内で噴 出ノズル 6から液体ジエツト流を噴出することによって、 室内に流体噴出ノズル 6 天井のヒートパネル 2→排出口 1 4と経由する強制対流を発生させ、 この強制対 流によってヒートパネル 2を冷却することができる。 この強制対流は乱流であるた め効果的にヒートパネル 2と熱交換をすることができる。 また、 開放タイプの温度 制御室 4では、液体シャヮ一が空間を通って天井のヒートパネル 2に衝突するので、 ヒートパネル 2には常に新しい液体のみが衝突して熱交換を速やかに行うことがで きる。  The temperature control chamber 4 can be a closed type or an open type having an opening 13 to the outside air. In the closed type temperature control room 4, the liquid jet flow is ejected from the ejection nozzle 6 in the room filled with liquid, so that the fluid ejection nozzle 6 enters the room and the forced convection flows through the ceiling heat panel 2 → discharge port 14 Is generated, and the heat panel 2 can be cooled by the forced convection. Since this forced convection is turbulent, heat can be effectively exchanged with the heat panel 2. Further, in the open type temperature control room 4, since the liquid shear collides with the ceiling heat panel 2 through the space, only the new liquid always collides with the heat panel 2 and heat exchange can be performed promptly. it can.
温度制御室 4には更に、 加熱用の複数個の長筒形の赤外線ランプ 2 3が噴出ノズ ル 6の各アレイ 1 5間に並べられている (図 2参照)。 ランプ 2 3は例えばハロゲ ンランプであり多くの近赤外光を放射する。 各ハロゲンランプ 2 3は、 上部に開口 をもつ反射ミラー 2 0内に納められており、 反射ミラー 2 0の上部開口は光透過性 材料のカバー 2 5で塞がれている。 更に、 各ハロゲンランプ 2 3の下方には、 ラン プ 2 3や反射ミラー 2 0を冷却するための水冷管 2 4も配設されているが、 水冷管 2 4に代えて、 液体貯留管 7をランプ 2 3や反射ミラ一 2 0の冷却手段として流用 してもよい。 また、 条件によってはランプ 2 3や反射ミラー 2 0の冷却手段は無く てもよい。  The temperature control room 4 further includes a plurality of long cylindrical infrared lamps 23 for heating arranged between the arrays 15 of the jet nozzles 6 (see FIG. 2). The lamp 23 is, for example, a halogen lamp and emits much near-infrared light. Each of the halogen lamps 23 is housed in a reflection mirror 20 having an opening at an upper portion, and the upper opening of the reflection mirror 20 is closed with a cover 25 made of a light transmitting material. Further, a water cooling tube 24 for cooling the lamp 23 and the reflection mirror 20 is provided below each of the halogen lamps 23. Instead of the water cooling tube 24, a liquid storage tube 7 is provided. May be used as a cooling means for the lamp 23 and the reflection mirror 20. Further, depending on the conditions, the cooling means for the lamp 23 and the reflection mirror 20 may not be provided.
各ハロゲンランプ 2 3からの放射光は、 反射ミラ一 2 0の作用で扇形状に広がり ながら天井のヒートパネル 2の下面に照射されて、 放射熱をヒートパネル 2に与え る。 ヒートパネル 2下面の全体にできるだけ均一な強度で光が照射されるよう、 ハ ロゲンランプ 2 3のサイズ、 ハロゲンランプ 2 3の配列ピッチ、 反射ミラ一 2 0の 形状、 ハロゲンランプ 2 3からヒートパネル 2までの距離などが最適に設計されて いる。 The radiated light from each of the halogen lamps 23 irradiates the lower surface of the heat panel 2 on the ceiling while spreading in a fan shape by the action of the reflection mirror 20, and gives radiant heat to the heat panel 2. The size of the halogen lamp 23, the arrangement pitch of the halogen lamps 23, the shape of the reflection mirror 20, the shape of the reflection mirror 20, the heat panel 2 to the heat panel 2, so that the entire lower surface of the heat panel 2 is irradiated with light as uniform as possible. The distance to is designed optimally I have.
尚、 加熱手段として、 ハロゲンランプ 2 3に代えて、 又はハロゲンランプ 2 3と 併用して、 高温の液体を噴射する多数の流体噴射ノズルを、 冷却用の流体噴射ノズ ル 6と同様な態様で設けてもよい。 ハロゲンランプと 2 3と加熱用流体噴射ノズル とを併用した場合には、 より大きい加熱能力が得られる。  As a heating means, instead of the halogen lamp 23 or in combination with the halogen lamp 23, a number of fluid ejection nozzles for ejecting a high-temperature liquid are provided in the same manner as the cooling fluid ejection nozzle 6. It may be provided. When the halogen lamp, 23 and the heating fluid injection nozzle are used in combination, a larger heating capacity can be obtained.
ヒートパネル 2には、 種々の構成のものが採用し得る。 以下に、 その好適な構成 例を幾つか紹介する。  The heat panel 2 may have various configurations. The following are some examples of suitable configurations.
図 3は第 1の構成例にかかるヒートパネル 2の下面側から視た平面図、 図 4は図 3の A— A線での同ヒートパネル 2の断面図である。  FIG. 3 is a plan view of the heat panel 2 according to the first configuration example viewed from the lower surface side, and FIG. 4 is a cross-sectional view of the heat panel 2 taken along line AA in FIG.
ヒートパネル 2の外殻体は、 概略的に、 例えば、 熱伝導性の高いアルミニウムや 銅などの材料の 2枚の薄板 3 1、 3 2を重ね合せ、 両板間の所定の領域に作動液の 封入される空間 (つまり、 パイプ) 3 3を形成し、 そのパイプ 3 3以外の領域にて 両板 3 1、 3 2を接合したものである。 図 3では、 ハヅチングを付した領域が接合 された部分であり、 ハッチングを付してない領域がパイプ 3 3の部分である。 また、 パイプ 3 3は図 4 Aに示すようにヒートパネルの片面側へ、 又は図 4 Bに示すよう に両面側へ膨出しているが、 その膨出したパイプ 3 3の尾根を図 3では一点鎖線で 示している。 パイプ 3 3内には、 所定の作動液が適当量だけ封入され、 パイプの内 壁には作動液を毛細管現象を利用して運ぶウイック 3 6が設けられている。  The outer shell of the heat panel 2 is roughly composed of, for example, two thin plates 31 and 32 made of a material having high thermal conductivity, such as aluminum and copper, superposed on each other, and a hydraulic fluid is provided in a predetermined region between the two plates. A space (that is, a pipe) 33 in which is enclosed is formed, and the two plates 31 and 32 are joined in an area other than the pipe 33. In FIG. 3, the hatched area is the joined portion, and the unhatched area is the pipe 33. The pipe 33 protrudes to one side of the heat panel as shown in FIG. 4A or to both sides as shown in FIG. 4B.The ridge of the protruded pipe 33 is shown in FIG. This is indicated by a dashed line. A predetermined amount of hydraulic fluid is sealed in the pipe 33 in an appropriate amount, and a wick 36 for transporting the hydraulic fluid by utilizing capillary action is provided on the inner wall of the pipe.
図 3に示すように、 ヒートパネル 2の平面視外形状は半導体ゥェハのそれに合せ て円形であるが、 必ずしも円形である必要はなく、 後述する他の構成例がそうであ るように、 例えば正方形でもよい。 要するに、 ヒートパネル 2の平面外形は設計 · 製造に都合が良く、 かつウェハ全体を均熱化するのに適したものであればよい。 ヒートパネル 2のパイプ 3 3は、 一点鎖線で示した尾根の形状から分る通り、 ハ 二カム断面のように小さい多数の正六角形パイプを繋いだ形のパイプ網 3 5を構成 しており、 ヒートパネル 2のほぼ全面に亘り一定の密度で配置されている。 尚、 パ イブ網 3 5の目 (正六角形の接合部分) 3 4は図 3では一部しか図示してないが、 実際には尾根に囲まれた全ての正六角形領域の中心位置に存在する。 目 3 4はヒー トパネル 2の機械的強度を高めるので、 必要な機械的強度を維持しつつ板 3 1、 3 2を薄くしてヒートパネル 2の熱容量を小さくし、 もって伝熱速度や均熱効果を高 めるのに貢献する。 As shown in FIG. 3, the external shape of the heat panel 2 in a plan view is circular in conformity with that of the semiconductor wafer, but it is not necessarily required to be circular, as in other configuration examples described later. It may be square. In short, the planar shape of the heat panel 2 may be any shape that is convenient for design and manufacture and suitable for equalizing the temperature of the entire wafer. As can be seen from the shape of the ridge indicated by the dashed line, the pipes 33 of the heat panel 2 constitute a pipe network 35 formed by connecting a number of small regular hexagonal pipes like a honeycomb section. The heat panels 2 are arranged at a constant density over almost the entire surface. In addition, The eye of the Eve network 35 (the junction of the regular hexagons) 3 4 is only partially shown in FIG. 3, but actually exists at the center of all the regular hexagonal regions surrounded by the ridge. The eye 3 4 increases the mechanical strength of the heat panel 2, so the plates 3 1 and 3 2 are thinned to reduce the heat capacity of the heat panel 2 while maintaining the required mechanical strength. Contribute to enhance the effect.
図 4 Aに示すようにパイプ 3 3が片面のみに膨出しているタイプのヒートパネル も、 同図 Bに示すように両面に膨出しているタイプのヒートパネルも採用できるが、 望ましいのは図 4 Aに示す片面膨出タイプである。 片面膨出タイプの方が機械的強 度に優れると共に、 次の理由から均熱度も優れるからである。 すなわち、 本実施形 態では、 片面膨出タイプのヒートパネル 2を、 その平坦面を上面 (ウェハ 1が載置 される面)、 パイプ膨出面を下面 (液体シャワーや放射光が当たる面) にして使用 する。 すると、 ヒートパネル 2の上面とウェハ 1との距離が一定であり、 且つ、 ヒ ートパネル 2の上面に沿った熱拡散性も方向や場所に左右されずに均一であるから、 ヒートパネル 2のとウェハ 1間の熱交換が均一になり易い。 また、 ヒートパネル 2 の高い強度も、 ヒートパネル 2の熱変形を抑制してウェハ 1との距離を一定に保つ のに貢献する。 一方、 ヒートパネル 2の下面はパイプ 3 3が膨出しているため、 平 坦面に比較して、 液体や光との接触面積が大きく、 液体シャワーが当たったとき同 じ液体が接触している時間を短くして熱境界層の生成を抑制する効果や乱流を促進 する効果も期待でき、 また、 光が当たったとき乱反射を繰り返すことによるホール 効果も期待できるため、 熱交換効率が良い。結果として、 高い均熱効果が得られる。 ところで、 ヒートパネル 2のパイプ網 3 5の目 3 4の形状は必ずしも図示のよう に正六角形である必要はなく、 正方形や正三角形や円形などでもよい。 但し、 高い 均熱効果を得るには、 パイプ 3 3及び目 3 4の密度が方向や場所に左右されずにパ イブ網 3 5の全域に亘つて一定であることが望ましい。 また、 特開平 7— 2 2 6 3 7 1号のような個々のヒートパイプが独立しているのではなく、 パイプ網 3 5内で 個々の場所のパイプ 3 3は周囲の場所のパイプに連通していることが望ましい。 図 5は第 2の構成例にかかるヒートパネル 2の平面視断面図、 図 6 A、 Bはそれ それ図 5の A— A線、 B— B線での同ヒートパネル 2の断面図である。 A heat panel of the type in which the pipe 33 protrudes only on one side as shown in Fig. 4A or a heat panel of the type protruding on both sides as shown in Fig. B can be used. This is a single-sided swelling type shown in 4A. This is because the one-sided swelling type has better mechanical strength and also has better soaking degree for the following reasons. That is, in this embodiment, the single-sided swelling type heat panel 2 has a flat surface as an upper surface (a surface on which the wafer 1 is placed) and a pipe swelling surface as a lower surface (a surface to which a liquid shower or radiation is applied). To use. Then, the distance between the upper surface of the heat panel 2 and the wafer 1 is constant, and the heat diffusion along the upper surface of the heat panel 2 is uniform regardless of the direction and location. Heat exchange between wafers 1 tends to be uniform. The high strength of the heat panel 2 also contributes to suppressing the heat deformation of the heat panel 2 and keeping the distance from the wafer 1 constant. On the other hand, since the pipe 33 protrudes from the lower surface of the heat panel 2, the contact area with liquid or light is larger than the flat surface, and the same liquid is in contact with the liquid shower. The effect of suppressing the generation of the thermal boundary layer by shortening the time and the effect of promoting turbulence can be expected, and the Hall effect by repeating irregular reflection when light is applied can be expected, resulting in good heat exchange efficiency. As a result, a high soaking effect is obtained. By the way, the shape of the mesh 34 of the pipe network 35 of the heat panel 2 does not necessarily have to be a regular hexagon as shown in the figure, but may be a square, a regular triangle, a circle, or the like. However, in order to obtain a high soaking effect, it is desirable that the density of the pipes 33 and the meshes 34 be constant over the entire area of the pipe net 35 regardless of the direction and location. Also, the individual heat pipes are not independent as disclosed in Japanese Patent Application Laid-Open No. It is desirable that the pipes at each location 33 communicate with the pipes at surrounding locations. FIG. 5 is a cross-sectional plan view of the heat panel 2 according to the second configuration example, and FIGS. 6A and 6B are cross-sectional views of the same heat panel 2 taken along lines A-A and B-B in FIG. .
このヒートパネル 2は、 アルミニウム製や銅製の 2枚の板 4 1、 4 2を重ね合わ せて接合したものである。 ヒートパネル 2の上面を構成する上板 4 1は下板 4 2よ り厚く、 そしてその下面側には、 その周縁部を除いて、 広面積の凹部 4 4が形成さ れている。 この凹部 4 4内には、 多数本の細い柱 4 3が立設されている。 図 5では 一部の柱 4 3しか図示してないが、 実際は柱 4 3は凹部 4 4の全域に亘つて一定ピ ッチで配置されている。 この上板 4 1に対しその凹部 4 4を覆うように下板 4 2が 重ね合わされ、 図 5でハッチングを付した周縁部と、 柱 4 3の先端部とで両板 4 1、 4 2が接合されている。 その結果、 柱 4 3を目とする均一密度の木目細かいパイプ 4 5の網が凹部 4 4内に形成される。 柱 4 3はヒートパネル 2の機械的強度を高め るのに貢献する。 パイプ 4 5内にはウィック 4 6が設けられ、 作動液が封入されて いる。  The heat panel 2 is formed by laminating and joining two plates 41 and 42 made of aluminum or copper. The upper plate 41 constituting the upper surface of the heat panel 2 is thicker than the lower plate 42, and the lower surface thereof is formed with a wide area concave portion 44 except for the peripheral edge thereof. A large number of thin pillars 43 are erected inside the recess 44. Although only some pillars 43 are shown in FIG. 5, the pillars 43 are actually arranged at a constant pitch over the entire area of the recess 44. The lower plate 42 is superimposed on the upper plate 41 so as to cover the concave portion 44, and the two plates 41, 42 are formed by the peripheral edge hatched in Fig. 5 and the tip of the pillar 43. Are joined. As a result, a net of fine pipes 45 having a uniform density and having the columns 43 as eyes is formed in the recesses 44. The pillars 4 3 contribute to increasing the mechanical strength of the heat panel 2. A wick 46 is provided in the pipe 45, and the working fluid is sealed therein.
この構造では、 図 3、 4に示した構造に比較して、 パイプ網の網目である柱 4 3 の断面積を非常に小さく設計することができるので、 パイプ網の全体領域に占める パイプ 4 5の面積の比率を大きくすることができる。 よって、 熱の拡散速度が速く 優れた均熱効果を発揮できるヒートパネルが実現できる。 尚、 柱 4 3の断面形状は 図 5では長方形であるが、 円形などの他の形状であってもよい。  With this structure, the cross-sectional area of the pillars 4 3, which are the meshes of the pipe network, can be designed to be very small as compared with the structures shown in FIGS. Can be increased. Therefore, it is possible to realize a heat panel having a high heat diffusion rate and exhibiting an excellent soaking effect. The cross-sectional shape of the pillar 43 is rectangular in FIG. 5, but may be other shapes such as a circle.
図 7は第 3の構成例にかかるヒートパネル 2の下面側から視た平面図、 図 8は図 7の A— A線での断面図である。  FIG. 7 is a plan view of the heat panel 2 according to the third configuration example viewed from the lower surface side, and FIG. 8 is a cross-sectional view taken along line AA of FIG.
このヒートパネル 2は、 アルミニウム製や銅製の 2枚の板 5 1、 5 2を重ね合わ せ、 板 5 1、 5 2の周縁部を封止部材 5 3で封止し、 全面に亘つて一定ピッチで配 列した多数の小さい点 (スポット) 5 4にて両板 5 1、 5 2を接合したものである。 上板 5 1は下板 5 1より厚い平板であり、 下板 5 2は図 8に示すようにスポット 5 4の箇所だけ突出した形状に予め成形されている。 従って、 両板 5 1、 5 2を接合 すると、 そのほぼ全面に亘つて、 小さいスポット 5 4を目とした均一密度の木目細 かいパイプ 5 6の網が形成される。 パイプ 5 6内にはウィック 5 7が設けられ、 作 動液が封入されている。 スポット 5 4はヒートパネル 2の機械的強度を高める役割 を持つ。 パイプ網の網目であるスポット 5 4の面積が小さいので、 パイプ 5 6の面 積比が大きく、 よって熱拡散が速く優れた均熱効果が発揮できる。 The heat panel 2 has two plates 51 and 52 made of aluminum or copper which are superimposed on each other, the peripheral portions of the plates 51 and 52 are sealed with a sealing member 53, and a constant pitch is applied over the entire surface. The two plates 51 and 52 are joined together at a number of small points (spots) 54 arranged in. The upper plate 51 is a flat plate thicker than the lower plate 51, and the lower plate 52 is a spot 5 as shown in FIG. It is preformed into a shape that protrudes only in four places. Therefore, when the two plates 51 and 52 are joined, a net of fine-grained pipes 56 with a uniform density is formed over almost the entire surface, with the small spots 54 as eyes. A wick 57 is provided in the pipe 56, and the working fluid is sealed therein. The spots 54 serve to increase the mechanical strength of the heat panel 2. Since the area of the spot 54, which is the mesh of the pipe network, is small, the area ratio of the pipe 56 is large, so that heat diffusion is fast and an excellent soaking effect can be exhibited.
図 9は第 4の構成例にかかるヒートパネル 2の平面図、 図 1 0は図 9の A— A線 での断面図である。  FIG. 9 is a plan view of the heat panel 2 according to the fourth configuration example, and FIG. 10 is a cross-sectional view taken along line AA of FIG.
このヒートパネル 2は、 ループ形蛇行細管ヒートパイプ (L C H P ) と呼ばれる タイプの応用であり、 ウィックは不要である。 図示のように、 アルミニウム製や銅 製の 2枚の板 6 1、 6 2が間に薄い隔壁板 6 3を挟んで接合されている。 2枚の板 6 1、 6 2の各々の接合面には、 同面のほぼ全面に亘つて一定の小さいピッチで互 いに平行に走る多数本の極めて細い溝 6 4、 6 5が削り込まれている。 板 6 1の多 数本の溝 6 4は、 隣接するもの同士が順次に異なる側の端部で連結されて、 全体と して一本の蛇行した溝 6 8を形成している。 板 6 2の多数本の溝 6 5も、 同様に連 結されて全体として一本の蛇行溝 6 9を形成している。 2枚の板 6 1と 6 2は、 蛇 行溝 6 8と 6 9が直交する方向で接合されている。 蛇行溝 6 8と 6 9は隔壁板 6 3 によってその開口が覆われるので、 それそれ極細の蛇行パイプを形成する。 この 2 本の蛇行パイプ 6 8、 6 9はその両端部 6 6、 6 7において隔壁板 6 3を貫通して 互いに連結され、 全体として閉ループ状の蛇行パイプを構成している。 この直交し 且つ連通した蛇行パイプ 6 8、 6 9も、 一種のパイプ網ということができ、 図 9か ら分るように、 パネル面全体に亘つて均一な密度でパイプが配置されている。 蛇行パイプ 6 8、 6 9内には作動液が封入されている。蛇行パイプ 6 8、 6 9 (溝 6 4、 6 5 ) の内径は、 作動液がその表面張力でその液層と蒸気泡とがプラグのよ うに蛇行パイプ 6 8、 6 9を塞く、ことができる程度の細さ (0 . 1 mm〜数 mm程 度) である。 This heat panel 2 is a type of application called a loop-shaped meandering thin tube heat pipe (LCHP), and no wick is required. As shown, two plates 61 and 62 made of aluminum or copper are joined with a thin partition plate 63 interposed therebetween. At the joint surface of each of the two plates 61, 62, a number of extremely narrow grooves 64, 65 running parallel to each other at a constant small pitch over almost the entire surface are cut. It is rare. The many grooves 64 of the plate 61 are adjacent to each other and are sequentially connected at different ends, thereby forming one meandering groove 68 as a whole. A large number of grooves 65 of the plate 62 are similarly connected to form one meandering groove 69 as a whole. The two plates 61 and 62 are joined in a direction in which the meandering grooves 68 and 69 are orthogonal. Since the openings of the meandering grooves 68 and 69 are covered by the partition plate 63, each forms an extremely fine meandering pipe. The two meandering pipes 68 and 69 pass through the partition plate 63 at both ends 66 and 67 and are connected to each other to form a closed loop meandering pipe as a whole. The meandering pipes 68 and 69 that are orthogonal and communicate with each other can also be referred to as a kind of pipe network. As can be seen from FIG. 9, pipes are arranged at a uniform density over the entire panel surface. The hydraulic fluid is sealed in the meandering pipes 68 and 69. The inner diameter of the meandering pipes 68, 69 (grooves 64, 65) is such that the hydraulic fluid closes the meandering pipes 68, 69 like a plug due to its surface tension. As thin as possible (about 0.1 mm to several mm Degrees).
L C H Pタイプのヒートパネル 2は、 図 3〜図 8に示したタイプのヒートパネル とは異なる原理、 つまり、 作動液とその蒸気泡の蛇行パイプ内での循環もしくは軸 方向振動によって熱を高速に輸送する。  The heat panel 2 of the LCHP type has a different principle from the heat panels of the types shown in Fig. 3 to Fig. 8, that is, heat is transferred at high speed by circulating hydraulic fluid and its vapor bubbles in meandering pipes or by axial vibration. I do.
図 9、 1 0に示したヒートパネルでは、 配列ピッチの小さい 2つの蛇行パイプ 6 8、 6 9が互いに直交するように重ね合わされて、 パイプがパネル面全体に亘つて 均一密度で木目細かく配置されたパイプ網を形成しており、 しかも、 熱輸送を直交 する両方向で行えるので、 優れた均熱効果が発揮できる。  In the heat panel shown in Figs. 9 and 10, two meandering pipes 68, 69 with a small arrangement pitch are overlapped so as to be orthogonal to each other, and the pipes are finely arranged at a uniform density over the entire panel surface. The pipe network is formed and heat transport can be performed in both directions perpendicular to each other, so that an excellent soaking effect can be exhibited.
尚、 上述した種々のヒートパネル 2において、 その下面での熱交換率を高めるた めに、 その下面に凹凸等を設ける、 突起を設ける、 ピンを立てる、 削って表面を荒 らす、 光吸収材をコ一ティングするなどの加工を加えてもよい。  In the various heat panels 2 described above, in order to increase the heat exchange rate on the lower surface, unevenness is provided on the lower surface, projections are provided, pins are formed, the surface is roughened by shaving, and light absorption is performed. Processing such as coating a material may be added.
以上の構成の下での本実施形態の動作を以下に説明する。  The operation of the present embodiment under the above configuration will be described below.
ウェハ 1の温度を例えば摂氏 1 5 0度にして行うベ一キングと、 ウェハ 1の温度 を例えば摂氏 2 0度まで冷却するクーリングとが交互に実行される。 まず、 レジス 卜が塗布されたウェハ 1がピン 3上にヒートパネル 2上面から微小ギャップを介し て載置され、 ハロゲンランプ 2 3が点灯されてべ一キングが開始される。 各ランプ 2 3からの放射熱はヒ一トパネル 2の下面に吸収され、 ヒートパネル 2のパイプ 3 3内を下面から上面へ高速に運ばれ、 ヒートパネル 2の上面からウェハ 1に伝達さ れる。 図示しない温度センサによってヒートパネル 2の が検出されており、 そ の検出温度に基づいてランプ 2 3の光量が調節されてウェハ 1の温度が目標温度の 摂氏 1 5 0度に制御される。  Baking at a temperature of the wafer 1 of, for example, 150 degrees Celsius and cooling for cooling the temperature of the wafer 1 to, for example, 20 degrees Celsius are alternately performed. First, the wafer 1 coated with the resist is placed on the pins 3 from the upper surface of the heat panel 2 via a minute gap, and the halogen lamp 23 is turned on to start baking. The radiant heat from each lamp 23 is absorbed by the lower surface of the heat panel 2, transported at high speed from the lower surface to the upper surface in the pipe 33 of the heat panel 2, and transmitted to the wafer 1 from the upper surface of the heat panel 2. The temperature of the heat panel 2 is detected by a temperature sensor (not shown), and the light amount of the lamp 23 is adjusted based on the detected temperature, and the temperature of the wafer 1 is controlled to the target temperature of 150 degrees Celsius.
ベーキングが終了すると、 ランプ 2 3を消灯し、 続いてクーリングに入る。 まず、 バルブ 9を開き、 ポンプ 1 1を始動して、 チラ一 1 2から摂氏 2 0度近傍の温度の 液体 8を液体貯留管 7に供給する。 貯留管 7に供給された液体 8はノズル 6から高 速シャワーとなって噴出し、 ヒートパネル 2の下面に衝突してヒートパネル 2下面 の熱を奪う。ヒートパネル 2のパイプ 3 3では上面から下面へ高速に熱が伝達され、 ウェハ 1の熱がヒ一トパネル 2に奪われる。 前述した温度センサの検出温度に基づ いて液体 8の噴出量が調整されて、 ウェハ 1の温度が目標温度の摂氏 2 0度に制御 される。 When baking is completed, lamps 2 and 3 are turned off, and then cooling is started. First, the valve 9 is opened, the pump 11 is started, and the liquid 8 having a temperature of about 20 degrees Celsius is supplied from the chiller 12 to the liquid storage pipe 7. The liquid 8 supplied to the storage pipe 7 is jetted out of the nozzle 6 as a high-speed shower, and collides with the lower surface of the heat panel 2 so that the lower surface of the heat panel 2 Take away the heat of. In the pipe 3 3 of the heat panel 2, heat is rapidly transmitted from the upper surface to the lower surface, and the heat of the wafer 1 is taken by the heat panel 2. The ejection amount of the liquid 8 is adjusted based on the temperature detected by the temperature sensor described above, and the temperature of the wafer 1 is controlled to the target temperature of 20 degrees Celsius.
ク一リングが終了したウェハ 1はヒートパネル 2上から取り去られ、 次のレジス 卜が塗布されたウェハ 1が同様にヒートパネル 2上に置かれて、 ベ一キングとクー リングの処理を受ける。  Wafer 1 after cleaning is removed from heat panel 2 and wafer 1 coated with the next resist is similarly placed on heat panel 2 and subjected to baking and cooling processing. .
本実施形態では、 ウェハ 1の加熱及び冷却の双方を高い均熱度をもって高速に行 い得る。 その理由は次の通りである。  In the present embodiment, both heating and cooling of the wafer 1 can be performed at high speed with a high degree of uniformity. The reason is as follows.
( 1 ) 加熱及び冷却の熱源装置はランプ 2 3と液体噴射ノズル 6であり、 いずれ もヒートパネル 2の下面に対し、 そこから離れた場所から赤外光や低温液体のよう な熱媒体のシャワーを当てる非接触タイプの熱源である。 そのため、 特開平 7— 2 2 6 3 7 1号の冷却配管ゃ特開 5— 2 1 3 0 8のベルチェ素子のような接触夕ィプ の熱源に比較して、 熱媒体をヒートパイプの下面全体に均一な密度で当てて均一な 加熱及び冷却を行うことが容易である。  (1) The heat source devices for heating and cooling are the lamps 23 and the liquid jet nozzles 6.Each of them is a shower of heat medium such as infrared light or low-temperature liquid from a location far away from the lower surface of the heat panel 2. Is a non-contact type heat source. Therefore, as compared with the cooling pipe disclosed in Japanese Patent Application Laid-Open No. Hei 7-226713, the heat medium is transferred to the lower surface of the heat pipe as compared with a contact-type heat source such as a Peltier element disclosed in Japanese Patent Application Laid-Open No. 5-218308. It is easy to perform uniform heating and cooling by applying a uniform density to the whole.
(2) 加熱用熱源と冷却用熱源とが共に非接触タイプであるため、 一方が他方の 邪魔になることがない。 例えば、 特開平 7— 2 2 6 3 7 1号の冷却配管のような接 触タイプの冷却用熱源を用いると、加熱では冷却配管も含めて加熱する必要が生じ、 熱容量が大きくなるので加熱速度が低下する。 本実施例では、 このような問題が無 いため、 加熱も冷却も高速に行える。  (2) Since both the heating heat source and the cooling heat source are non-contact types, one does not interfere with the other. For example, if a contact-type cooling heat source such as the cooling pipe of Japanese Patent Application Laid-Open No. Hei 7-222671 is used, heating needs to be performed including the cooling pipe, and the heat capacity increases. Decrease. In this embodiment, since there is no such a problem, heating and cooling can be performed at high speed.
(3) ヒートパネル 2では、 作動液を封入したパイプがパネルのほぼ全面に亘っ て実質的に均一な密度で且つ木目細かく配置されており、 しかも互いに連結してパ イブ網を形成している。 従って、 面方向の熱拡散性が良好であり、 良好な均熱効果 を発揮できる。  (3) In the heat panel 2, the pipes filled with the hydraulic fluid are arranged with a substantially uniform density and a fine grain throughout almost the entire surface of the panel, and are connected to each other to form a pipe net. . Therefore, thermal diffusivity in the surface direction is good, and a good soaking effect can be exhibited.
(4) ( 1 )で述べた熱源の良好な均熱性と、 (3)で述べたヒートパネル 2自体の良 好な均熱性とがあいまって、 全体として優れた均熱効果が得られる。 (4) Good heat uniformity of the heat source described in (1) and good heat uniformity of the heat panel 2 itself described in (3) Combined with good soaking properties, an excellent soaking effect as a whole is obtained.
(5) ( 1 )で述べた熱源の良好な均熱性と、 (3)で述べたヒートパネル 2自体の良 好な均熱性とは、 ヒートパネル 2の熱変形を減らす効果も奏する。 ヒートパネル 2 の熱変形が減れば、 ゥヱ一ハ 1とヒートパネル 2との間のギヤップの不均一が減る ので、 このことも均熱効果の向上に寄与する。  (5) The good thermal uniformity of the heat source described in (1) and the favorable thermal uniformity of the heat panel 2 itself described in (3) also have an effect of reducing thermal deformation of the heat panel 2. If the heat deformation of the heat panel 2 is reduced, the unevenness of the gap between the heat panel 1 and the heat panel 2 is reduced, which also contributes to the improvement of the soaking effect.
(6) ヒートパネル 2のパイプ網の目が細かく一定密度で分布していることも、 ヒートパネル 2の熱変形を減らして均熱効果を高めるのに寄与する。  (6) The fine mesh distribution of the pipe mesh of the heat panel 2 also contributes to reducing the thermal deformation of the heat panel 2 and increasing the soaking effect.
(7) ヒートパネル 2の上面が平坦面であることも、 ゥェ一ハ 1とヒートパネル 2との間のギャップを一定にし、 且つ、 上面での熱拡散を良好にして均熱効果を高 めるのに寄与する。  (7) The upper surface of the heat panel 2 may be flat, and the gap between the wafer 1 and the heat panel 2 may be kept constant, and the heat diffusion on the upper surface may be improved to enhance the soaking effect. Contribute to
(8) 流体が乱流となってヒートパネル 2の下面に当たるため、 高い熱交換率と 高い均熱性とが得られる。  (8) Since the fluid is turbulent and impinges on the lower surface of the heat panel 2, a high heat exchange rate and a high heat uniformity can be obtained.
(9) ヒートパネル 2の下面を凹凸形状にする、 突起を設ける、 ピンを立てる、 削って表面を荒らす、 光吸収材をコ一ティングするなどの加工を加えた場合、 流体 シャヮ一の乱流効果を促進し、 また光のホール効果が得られて下面での熱交換率が 高まり、 加熱 ·冷却の速度を高める効果が得られる。  (9) When processing such as making the lower surface of the heat panel 2 uneven, providing projections, setting up pins, shaving to roughen the surface, or coating the light absorbing material, the turbulence of the fluid The effect is promoted, and the Hall effect of light is obtained, the heat exchange rate on the lower surface is increased, and the effect of increasing the speed of heating and cooling is obtained.
( 10) ヒートパネルに熱媒体を直接当てることも、 加熱 ·冷却の速度を高めるの に寄与する。  (10) Direct application of heat medium to the heat panel also contributes to increasing the speed of heating and cooling.
( 11) ヒートパネル 2上に微小はエアギヤヅプのみを介してゥェハを載置するこ とも、 加熱 '冷却の速度を高めるのに寄与する。  (11) Placing a wafer on the heat panel 2 via only a small air gap also contributes to increasing the speed of heating and cooling.
図 1 1は、 本発明の別の実施形態を示す。 尚、 上述の実施形態と同様の機能をも つ構成要素には同一の参照番号を付して重複した説明を省略する。  FIG. 11 shows another embodiment of the present invention. Note that components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
この実施形態は、 気体が混合された液体をミスト状にしてヒ一トパネル 2の下面 に吹きつけるするようにしている。 高温液体は高温液体供給路 7 0を介して多数の 加熱用ミストノズル 7 1に供給される。 N2 あるいは H eなどの高温ガスが高温気 体供給源 7 2から供給され、 ポンプ 7 3によって高温液体供給路 7 0の途中で高温 液体に混合される。 また、 低温液体が低温液体供給路 7 4を介して多数の冷却用ミ ストノズル 7 5に供給される。 空気あるいは N2 などの低温ガスが低温気体供給源 7 6から供給され、 ポンプ 7 7によって低温液体供給路 7 4の途中で低温液体に混 合される。 In this embodiment, the liquid in which the gas is mixed is formed into a mist and is sprayed on the lower surface of the heat panel 2. The high-temperature liquid is supplied to a number of heating mist nozzles 71 via a high-temperature liquid supply path 70. High temperature gas such as N2 or He It is supplied from the body supply source 72 and mixed with the high-temperature liquid in the middle of the high-temperature liquid supply path 70 by the pump 73. Further, the low-temperature liquid is supplied to many cooling mist nozzles 75 through the low-temperature liquid supply path 74. A low-temperature gas such as air or N2 is supplied from a low-temperature gas supply source 76 and is mixed with the low-temperature liquid in the middle of the low-temperature liquid supply path 74 by a pump 77.
温度制御室 4のミストノズル 7 1、 7 5の上方には、 多孔板 7 9が設けられ乱流 効果を向上させるようにしている。 ミストノズル 7 1、 7 5から噴射されたミスト 状流体は乱流効果を得て伝熱能力を高めるとともに、 ヒートパネル 2の下面に均一 に当たることになる。 また、 ヒートパネル 2の下面から流下する流体がノズル 7 1、 7 5の熱を奪わないよう、 ノズル 7 1、 7 9の噴出孔を除いた領域にプロテク夕を かぶせるようにしてもよい。  A perforated plate 79 is provided above the mist nozzles 71 and 75 in the temperature control chamber 4 to improve the turbulent flow effect. The mist-like fluid jetted from the mist nozzles 71 and 75 obtains a turbulent flow effect to increase the heat transfer capability, and uniformly hits the lower surface of the heat panel 2. In addition, a protector may be applied to the area excluding the ejection holes of the nozzles 71 and 79 so that the fluid flowing down from the lower surface of the heat panel 2 does not remove the heat of the nozzles 71 and 75.
図 1 2は、 本発明の第 3の実施形態を上側から視た部分断面図、 図 1 3は、 同実 施形態を下側から視た部分断面図である。 尚、 上述の実施形態と同様の機能をもつ 構成要素には同一の参照番号を付して重複した説明を省略する。  FIG. 12 is a partial cross-sectional view of the third embodiment of the present invention as viewed from above, and FIG. 13 is a partial cross-sectional view of the same embodiment as viewed from below. Note that components having the same functions as those of the above-described embodiment are denoted by the same reference numerals, and redundant description will be omitted.
この実施形態では、 円板状のヒートパネル 2の下方に、 円形の温度制御室 8 1が 設けられており、 ヒートパネル 2は温度制御室 8 1の天井壁を構成している。 温度 制御室 8 1の周壁 8 3と底壁 8 5は、 ヒートパネル 2と同じ材料 (典型的にはアル ミニゥム) であってもよいし、 ヒートパネル 2よりも熱伝導性の悪い材料(例えば、 ステンレススチールやセラミックスなど) であってもよい。 温度制御室 8 1は密閉 タイプであって、 その内部に高温の加熱流体又は低温の冷却流体が満たされて流れ る流路として機能する。  In this embodiment, a circular temperature control room 81 is provided below the disk-shaped heat panel 2, and the heat panel 2 forms a ceiling wall of the temperature control room 81. The peripheral wall 83 and the bottom wall 85 of the temperature control room 81 may be made of the same material as the heat panel 2 (typically, aluminum), or may be made of a material having a lower thermal conductivity than the heat panel 2 (for example, , Stainless steel and ceramics). The temperature control chamber 81 is of a closed type, and functions as a flow path through which a high-temperature heating fluid or a low-temperature cooling fluid is filled.
温度制御室 8 1の底壁 8 5にはその周縁に沿って一定間隔で複数個の流体流入口 8 7が開いており、 それらに外部からの複数本の流体供給管 8 9がそれそれ接続さ れている。 底壁 8 5の中心部には 1つの流体排出口 9 1が開いており、 そこに外部 からの 1本の流体排出管 9 3が接続されている。 複数個の流体流入口 8 7に対し流 体排出口 9 1は 1個であるため、 流体排出口 9 1の径は各流体流入口 8 7の径より も大きい。 The bottom wall 85 of the temperature control chamber 81 has a plurality of fluid inlets 87 at regular intervals along its periphery, to which a plurality of external fluid supply pipes 89 are connected. Has been done. One fluid discharge port 91 is open in the center of the bottom wall 85, and one fluid discharge pipe 93 from the outside is connected to it. Flow to multiple fluid inlets 8 7 Since there is one body outlet 91, the diameter of the fluid outlet 91 is larger than the diameter of each fluid inlet 87.
ヒートパネル 2の下面 2 Aにはその全面に亘り随所に多数の熱交換フィン 9 5が 立設されていて、 それら熱交換フィン 9 5は温度制御室 8 1内の流路のほぼ全域に 亘つて分布している。 フィン 9 5は熱伝導の良好な材料 (アルミニウムや銅) で作 られている。 これらフィン 9 5は、 ヒートパネル 2の下面 2 Aにろう付けなどの方 法で接合されているが、 底壁 8 5には接触している必要はなく底壁 8 5から微小距 離だけ離れていてもよい。  On the lower surface 2 A of the heat panel 2, a large number of heat exchange fins 95 are erected throughout the entire surface thereof, and the heat exchange fins 95 extend over almost the entire flow path in the temperature control chamber 81. Are distributed. Fins 95 are made of a material with good heat conductivity (aluminum or copper). These fins 95 are joined to the lower surface 2A of the heat panel 2 by brazing or the like, but do not need to be in contact with the bottom wall 85 and are separated from the bottom wall 85 by a small distance. May be.
ところで、 本実施形態ではフィン 9 5はピン形夕イブであるが、 必ずしもそうで ある必要はなく、 その他の様々なタイプのフィンが使用できる。 図 1 4はその代表 的な例を示したもので、 同図 (A) 〜 (F ) に示すような薄板を折り曲げたタイプ のフィンや、 (G) のようなピン形フィンや、 (H ) のような剣山又はブラシのごと くにびっしり植えられた針状フィンなども使用できる。 或は、 実開平 1— 5 0 1 5 号の第 6図、 第 7図、 第 9図、 第 1 1図に示された吸放湿部材で用いられているよ うなアルミ多孔材、 アルミ発泡材、 金属繊維及び金属メンブレンといった素材も、 本発明におけるフィンとして用いることができる。 また、 1つのタイプのフィンだ けでなく、 複数タイプのフィンを組合せて用いることもできる。  In the present embodiment, the fins 95 are pin-shaped fins, but this is not necessary, and various other types of fins can be used. Fig. 14 shows a typical example of such a fin, as shown in Figs. (A) to (F), of a thin plate bent type, a pin-shaped fin as shown in (G), and (H). ) Or needle-shaped fins closely planted like a brush can also be used. Alternatively, porous aluminum materials such as those used in the moisture absorbing and releasing members shown in FIGS. 6, 7, 9 and 11 of Japanese Utility Model Application No. 1-501, aluminum foam Materials such as materials, metal fibers and metal membranes can also be used as fins in the present invention. Further, not only one type of fin but also a combination of plural types of fins can be used.
図 1 5は、 温度制御室 8 1に流体を流すための配管構造を示している。  FIG. 15 shows a piping structure for flowing a fluid into the temperature control chamber 81.
複数の流体供給管 8 9は、 電磁弁 1 0 1とポンプ 1 0 3を介して流体加熱装置 1 0 5の流体出口に接続され、 且つ、 電磁弁 1 0 9とポンプ 1 1 1を介して流体冷却 装置 1 1 3の流体出口に接続されている。 また、 流体排出管 9 3は、 電磁弁 1 1 9 を介して流体加熱装置 1 0 5の流体入口に接続され、 且つ、 電磁弁 1 1 7を介して 流体冷却装置 1 1 3の流体入口に接続されている。 流体加熱装置 1 0 5の流体出口 と流体入口とはバイパス電磁弁 1 0 7を介して接続されており、 同様に、 流体冷却 装置 1 1 3の流体出口と流体入口とはバイパス電磁弁 1 1 5を介して接続されてい る。 The plurality of fluid supply pipes 89 are connected to the fluid outlet of the fluid heating device 105 via the solenoid valve 101 and the pump 103, and via the solenoid valve 109 and the pump 111. It is connected to the fluid outlet of the fluid cooling device 113. Further, the fluid discharge pipe 93 is connected to the fluid inlet of the fluid heating device 105 via the solenoid valve 119, and to the fluid inlet of the fluid cooling device 113 via the solenoid valve 117. It is connected. The fluid outlet and fluid inlet of the fluid heating device 105 are connected via a bypass solenoid valve 107, and similarly, the fluid outlet and fluid inlet of the fluid cooling device 113 are connected to the bypass solenoid valve 111. Connected via 5 You.
ポンプ 1 0 3、 1 1 1は常に一定速度で流体を送っており、 流体を温度制御室 8 1に流していないときは、 バイパス電磁弁 1 0 7、 1 1 5が開いていて、 ここを通 して流体を循環させている。 この状態から電磁弁 1 0 1、 1 1 9が開かれ、 バイパ ス電磁弁 1 0 7が閉じられると、 流体加熱装置 1 0 5からの加熱流体が温度制御室 8 1へ供給され、 加熱が開始される。 加熱から冷却に切り替えるときは、 電磁弁 1 0 1が閉じられバイパス電磁弁 1 0 7が開かれ、 同時に、 電磁弁が 1 0 9が開かれ バイパス電磁弁 1 1 5が閉じられる。 これにより、 温度制御室 8 1への加熱流体の 供給は止り、 代って流体冷却装置 1 1 3からの冷却流体の供給が開始され、 冷却が 開始される。 冷却開始直後、 温度制御室 8 1内に残っていた加熱流体が流体排出管 9 3から出てくる若干の時間の間は、 流体排出管 9 3側では電磁弁 1 1 9が開き電 磁弁 1 1 7が閉じている加熱時と同じ状態が維持され、 その時間が過ぎた時点で、 電磁弁 1 1 9が閉じられ電磁弁 1 1 7を開かれて、 本格的に冷却が開始される。 冷 却から加熱へ切り替えるときは、 上記と反対の弁開閉操作を行う。 このようにして、 加熱流体と冷却流体とは選択的に温度制御室 8 1へ供給される。  The pumps 103 and 111 always send fluid at a constant speed.When the fluid is not flowing to the temperature control chamber 81, the bypass solenoid valves 107 and 115 are open. The fluid is circulated through it. When the solenoid valves 101 and 119 are opened and the bypass solenoid valve 107 is closed from this state, the heating fluid from the fluid heating device 105 is supplied to the temperature control chamber 81 and heating is performed. Be started. When switching from heating to cooling, the solenoid valve 101 is closed and the bypass solenoid valve 107 is opened, and at the same time, the solenoid valve 109 is opened and the bypass solenoid valve 115 is closed. Thus, the supply of the heating fluid to the temperature control chamber 81 is stopped, and the supply of the cooling fluid from the fluid cooling device 113 is started instead, and the cooling is started. Immediately after the start of cooling, the solenoid valve 1 19 opens on the side of the fluid discharge pipe 93 for a short period of time during which the heating fluid remaining in the temperature control chamber 81 comes out of the fluid discharge pipe 93. The same state as during heating with 1 1 7 closed is maintained, and after that time, solenoid valve 1 1 9 is closed and solenoid valve 1 1 7 is opened, and full-scale cooling is started . When switching from cooling to heating, perform the opposite valve opening and closing operation. In this way, the heating fluid and the cooling fluid are selectively supplied to the temperature control chamber 81.
温度制御室 8 1内では、 周縁部の流体流入口 8 7から流入した流体は中心部の流 体排出口 9 1へ向かって流れるが、 その過程に多数のフィン 9 5と接触して効果的 に熱交換を行う。 また、 流体の流れは随所で多数のフィン 9 5によって接き乱され て乱流となるため、 流体が単純な層流として流れる場合に比較して、 より高効率で 熱交換ができるとともに、 場所による温度むらも減ってヒートパネル 2の温度がよ り均一になる。 このように、 フィン 9 5は、 熱交換効率を高めて高速な加熱 '冷却 を実現する目的と、 温度分布のむらを減らして均一な加熱 ·冷却を実現する目的と の双方に貢献する。  In the temperature control chamber 81, the fluid flowing from the fluid inlet 87 at the peripheral part flows toward the fluid outlet 91 at the center. Heat exchange. In addition, the flow of the fluid is mixed and disturbed by a large number of fins 95 everywhere and becomes a turbulent flow, so that the heat exchange can be performed with higher efficiency as compared with the case where the fluid flows as a simple laminar flow, And the temperature of the heat panel 2 becomes more uniform. Thus, the fins 95 contribute to both the purpose of increasing the heat exchange efficiency to achieve high-speed heating and cooling, and the purpose of reducing unevenness in the temperature distribution to achieve uniform heating and cooling.
更に、 フィン 9 5の配置ゃ开狱などを適切に選択することにより、 ヒートパネル 2の温度を更に均一化することもできる。 すなわち、 フィン 9 5がない状態におい ては、 流体流入口 8 7附近と流体排出口 9 1附近とでは、 流体の温度や流速が異な るために、 必然的に熱交換効率に差が出てしまう。 そこで、 この差を補償するよう にフィン 9 5の配置位置、 密度、 形状などを場所によって違えることにより、 全て の場所でより均等に熱交換が行われるようにすることができる。 このように、 高い 均熱性を実現する上で、 フィン 9 5は重要な役割を果たす。 Further, by appropriately selecting the arrangement of the fins 95 and the like, the temperature of the heat panel 2 can be made more uniform. That is, without the fins 9 5 In other words, the heat exchange efficiency is inevitably different between the vicinity of the fluid inlet 87 and the vicinity of the fluid outlet 91 because the fluid temperature and flow velocity are different. Therefore, by changing the arrangement position, density, shape, and the like of the fins 95 depending on the location so as to compensate for this difference, heat exchange can be performed more uniformly at all locations. Thus, the fins 95 play an important role in achieving high heat uniformity.
ところで、 本実施形態では温度制御室 8 1内に周縁部から流体を供給して中心部 へ向かって流しているが、 その逆に中心部から流体を供給して周縁部へと流すよう にすることも可能である。 しかし、 良好な均熱性の観点からは、 本実施形態のよう に周縁部から中心部へと流す方が好ましいと考えられる。 周縁部より中心部の方が 流速が速いのでその分だけ熱交換効率が高いが、 周縁部から中心部へと流体を流せ ば、 流体の温度による熱交換効率は周縁部の方が高くなるので、 温度の違いよる熱 交換効率の分布と流速の違いによる熱交換効率の分布とが互いに軽減し合って均一 化するからである。  By the way, in the present embodiment, the fluid is supplied from the peripheral portion into the temperature control chamber 81 and flows toward the central portion. On the contrary, the fluid is supplied from the central portion and flows to the peripheral portion. It is also possible. However, from the viewpoint of good heat uniformity, it is considered preferable to flow from the periphery to the center as in the present embodiment. Since the flow velocity is higher in the central part than in the peripheral part, the heat exchange efficiency is higher accordingly. This is because the distribution of the heat exchange efficiency due to the difference in the temperature and the distribution of the heat exchange efficiency due to the difference in the flow velocity are reduced and uniformized.
図 1 6及び図 1 7は、 均熱性を高めるための温度制御室 8 1の構造に関する 2つ の変形例を示す。  FIG. 16 and FIG. 17 show two modifications of the structure of the temperature control chamber 81 for improving the temperature uniformity.
図 1 6のものでは、 温度制御室 8 1の高さ 8 1 Hが中心部に近づくほど大きくな るように、 底壁 8 5に傾斜が付いている。 図 1 7のものでは、 中心部にある程度近 い場所で底壁 8 5が段状に下がっていて、 やはり、 温度制御室 8 1の高さ 8 1 Hが 中心部にて周縁部より大きくなつている。 この 2つの変形例では、 温度制御室 8 1 の高さ 8 1 Hが中心部附近で大きくなっている分だけ、 中心部附近での流体流路の 断面積が拡がるので、 中心部での流速の増加が抑えられ、 結果として、 均熱性が高 る。  In the case of FIG. 16, the bottom wall 85 is inclined so that the height 81H of the temperature control chamber 81 becomes larger as approaching the center. In the case of Fig. 17, the bottom wall 85 is stepped down at a place somewhat near the center, and again, the height 81H of the temperature control chamber 81 is larger than the periphery at the center. ing. In these two modified examples, the cross-sectional area of the fluid flow path near the center is increased by the height 81 1 H of the temperature control chamber 81 near the center, so the flow velocity at the center is increased. Increase is suppressed, and as a result, the temperature uniformity is increased.
図 1 8は、 均熱性を高めるための温度制御室 8 1の構造に関する第 3の変形例を 示し、 図 1 9は図 1 8の A _ A線での断面図 (つまり、 温度制御室 8 1の底壁 8 5 の平面図) である。 なお、 図 1 8、 図 1 9では、 温度制御室 8 1内のフィン 9 5は 図示を省略してある。 FIG. 18 shows a third modification of the structure of the temperature control chamber 81 for improving the temperature uniformity. FIG. 19 is a cross-sectional view taken along line A_A of FIG. 1 is a plan view of the bottom wall 85 of FIG. In FIGS. 18 and 19, the fins 95 in the temperature control chamber 81 are The illustration is omitted.
この変形例では、 温度制御室 8 1の径はヒートパネル 2の径よりも大きく、 温度 制御室 8 1は、 そのヒートパネル 2より外周側へはみ出した部分において、 その内 側の上下の仕切板 1 2 3、 1 2 5によって温度制御室 8 1のより内方の領域から区 別されたリング状の小部屋 1 2 1を有している。 このリング状小部屋 1 2 1の底壁 に流体流入口 8 7が形成されており、 また、 このリング状小部屋 1 2 1の内側の上 下の仕切板 1 2 3、 1 2 5の間には、 流体がこの小部屋 1 2 1から温度制御室 8 1 の内方の領域へ流入するためスリッ卜が空いている。  In this modification, the diameter of the temperature control chamber 81 is larger than the diameter of the heat panel 2, and the temperature control chamber 81 is located at the portion protruding to the outer peripheral side from the heat panel 2, and the upper and lower partition plates on the inner side thereof It has a ring-shaped small room 1 2 1 separated from a region inside the temperature control room 8 1 by 1 2 3 and 1 2 5. A fluid inlet 87 is formed in the bottom wall of the ring-shaped small room 1 2 1, and between the upper and lower partition plates 1 2 3 and 1 2 5 inside the ring-shaped small room 1 2 1 In this case, a slit is vacant because the fluid flows from the small chamber 122 to the area inside the temperature control chamber 81.
流体流入口 8 7から小部屋 1 2 1に流入した流体は、 小部屋 1 2 1の天井に当た つて流れ方向を転換され、 ヒートパネル 2の下面 2 Aとほぼ平行な流れとなって、 仕切板 1 2 3、 1 2 5間のスリットを通って温度制御室 8 1の内方の領域へ流入す る。 流体流入口 8 7から流入した流体がヒートパネル 2の下面 2 Aに直角に直接当 たると、 この流体流入口 8 7に対応したヒートパネル 2の部分だけが局部的に熱交 換効率が高くなつて温度むらが生じるおそれがあるが、 この変形例ではそのような 問題が解消される。  The fluid flowing into the small room 1 2 1 from the fluid inlet 8 7 changes its direction of flow upon hitting the ceiling of the small room 1 2 1, and becomes a flow almost parallel to the lower surface 2 A of the heat panel 2. It flows into the area inside the temperature control chamber 81 through the slit between the partition plates 1 2 3 and 1 2 5. If the fluid flowing in from the fluid inlet 87 directly hits the lower surface 2A of the heat panel 2 at right angles, only the portion of the heat panel 2 corresponding to the fluid inlet 87 will locally increase the heat exchange efficiency. However, in this modification, such a problem is solved.
図 2 0は、 図 1 8及び図 1 9に示した変形例の更なる変形例を示す。図 2 0でも、 温度制御室 8 1内のフィン 9 5は図示省略してある。  FIG. 20 shows a further modification of the modification shown in FIGS. Also in FIG. 20, the fins 95 in the temperature control chamber 81 are not shown.
リング状の小部屋 1 2 1の内側には、 天井から底まで繋がった 1枚の仕切板があ るが、 この仕切板 1 2 7には随所に多数の穴 1 2 9が空いていて、 これらの穴 1 2 9を通じて小部屋 1 2 1内の流体がシャワー流となって温度制御室 8 1の内方領域 へ噴出する。  Inside the ring-shaped small room 1 2 1, there is one partition plate connected from the ceiling to the bottom, but this partition plate 1 2 7 has many holes 1 2 9 everywhere, The fluid in the small room 122 is jetted as a shower flow to the inner region of the temperature control room 81 through these holes 122.
図 2 1及び図 2 2は、 均熱性を高めるための温度制御室 8 1の流体流入口 8 7に 関する更に別の 2つの変形例を示す。  FIGS. 21 and 22 show yet another two modifications of the fluid inlet 87 of the temperature control chamber 81 for improving the heat uniformity.
図 2 1のものでは、 流体流入口 8 7が温度制御室 8 1の側壁 8 3に直角な向きで 形成されていて、 流体はヒートパネル 2の下面 2 Aに平行に温度制御室 8 1内に流 入する。 図 2 2のものでは、 流体流入口 8 7が温度制御室 8 1の底壁 8 5に斜めの 向きで形成されていて、 流体はヒートパネル 2の下面 2 Aに平行に近い向きで温度 制御室 8 1内に流入する。 いずれの変形例においても、 流体流入口 8 7から流入し た流体がヒートパネル 2の下面 2 Aに直角に直接当たることによる局所的な温度む らの問題が軽減される。 In Fig. 21, the fluid inlet 87 is formed in a direction perpendicular to the side wall 83 of the temperature control chamber 81, and the fluid flows in the temperature control chamber 81 parallel to the lower surface 2A of the heat panel 2. Flow Enter. In Fig. 22, the fluid inlet 87 is formed in the bottom wall 85 of the temperature control chamber 81 in an oblique direction, and the fluid is temperature-controlled in a direction parallel to the lower surface 2A of the heat panel 2. It flows into room 81. In any of the modifications, the problem of local temperature unevenness caused by the fluid flowing from the fluid inlet 87 directly hit the lower surface 2A of the heat panel 2 at right angles is reduced.
図 2 3は、 均熱性を高めるための温度制御室 8 1の流体流入口 8 7に関する更に 別の変形例を示す底壁の平面図である。  FIG. 23 is a plan view of a bottom wall showing still another modified example of the fluid inlet 87 of the temperature control chamber 81 for improving the heat uniformity.
流体流入口 8 7は、 細長いスリットであって、 底壁 8 5の周縁部に一周に亘つて 形成されている。 そのため、 底壁 8 5の周縁部に一周に亘り一様に流体を流入させ ることができ、 周方向での場所による温度むらが解消される。  The fluid inlet 87 is an elongated slit, which is formed around the periphery of the bottom wall 85 over one circumference. Therefore, the fluid can be made to flow uniformly around the periphery of the bottom wall 85 over the entire circumference, and temperature unevenness depending on the location in the circumferential direction is eliminated.
図 2 4は、 上述の実施形態とは異なる方法で製造したヒートパネル 2と温度制御 室 8 1の構造例を示す。  FIG. 24 shows an example of the structure of the heat panel 2 and the temperature control chamber 81 manufactured by a method different from the above-described embodiment.
図 1 2〜図 2 3で説明した構造は、 一般に、 前もって製造されたヒートパネル 2 の下面 2 Aに、 温度制御室 8 1の側壁 8 3及び底壁 8 5を接合することにより製造 される。 これに対し、 図 2 4に示した構造は、 次の方法で製造されたものである。 まず、 ヒートパネル 2の底板となるべき板材 1 3 1を用意し、 その上面には例えば 図 5に示したヒートパネル 2の柱 4 3を多数立設し、 下面には例えばピン形又は針 形のフィン 9 5を多数立設する。 次に、 この板材 1 3 1の上側に、 ヒートパネル 2 の天井壁及び側壁となる板材 1 3 3を接合し、 また、 下面に、 温度制御室 8 1の天 井壁及び側壁となる板材 1 3 5を接合する。 この製造方法は、 図 1 2〜図 2 3で説 明した構造の製造方法より、 場合によっては容易である。  The structure described in FIGS. 12 to 23 is generally manufactured by joining the side wall 83 and the bottom wall 85 of the temperature control chamber 81 to the lower surface 2A of the heat panel 2 manufactured in advance. . In contrast, the structure shown in Fig. 24 was manufactured by the following method. First, a plate material 1 3 1 to be the bottom plate of the heat panel 2 is prepared, and for example, a number of columns 43 of the heat panel 2 shown in FIG. Many fins 95 are erected. Next, on the upper side of the plate 1 3 1, a plate 1 3 3 serving as a ceiling wall and a side wall of the heat panel 2 is joined, and on the lower surface, a plate 1 serving as a ceiling wall and a side wall of the temperature control room 81 1 3 Join 5 In some cases, this manufacturing method is easier than the manufacturing method of the structure described with reference to FIGS.
図 2 5は、 第 3の実施形態の更に別の変形例を下側から視た部分断面図である。 この変形例では、 温度制御室 8 1の底壁 8 5の下面に、 その下面全域に迷路のよ うに巡らされた電熱線ヒー夕 1 4 1が接合されている。 加熱は専ら電熱線ヒー夕 1 4 1で行なうか又は電熱線ヒー夕 1 4 1と加熱流体とで行い、 冷却は専ら冷却流体 で行う。 FIG. 25 is a partial cross-sectional view of yet another modified example of the third embodiment viewed from below. In this modification, a heating wire heater 141 wrapped like a maze is joined to the lower surface of the bottom wall 85 of the temperature control room 81 over the entire lower surface. Heating is performed exclusively with heating wire 14 1 or heating wire 14 1 and heating fluid, and cooling is performed exclusively with cooling fluid Do with.
図 2 6、 図 2 7及び図 2 8は、 電熱線ヒ一夕を用いた別の 2つの変形例を示す。 図 2 6では、 ヒートパネル 2の上面 2 Bに電熱線ヒー夕 1 4 3が接合されている。 電熱線ヒ一夕 1 4 3は図示しないウェハに最も近接することになるので、 加熱の効 率が大変良い。 図 2 7では、 ヒートパネル 2の下面 2 Aに、 防滴性の電熱線ヒー夕 1 4 5が接合されている。 電熱線ヒ一夕 1 4 5はヒートパネル 2に直接接触してい るので、 図 2 5のものより加熱の効率がかなり良い。 図 2 8では、 ヒートパネル 2 の周縁部 1 5 1が他の部分より厚く形成されていて、 この厚い周縁部 1 5 1の幅広 の外周面 2 Cに一周に亘つて、 電熱線ヒー夕 1 4 7が接合されている。  FIG. 26, FIG. 27 and FIG. 28 show another two modifications using the heating wire. In FIG. 26, the heating wire 144 is joined to the upper surface 2 B of the heat panel 2. Heating efficiency is very good because the heating wire is closest to the wafer not shown. In FIG. 27, a drip-proof heating wire 144 is joined to the lower surface 2 A of the heat panel 2. The heating efficiency is much better than that of Fig. 25 because the heating wire is directly in contact with the heat panel 2. In FIG. 28, the peripheral portion 151 of the heat panel 2 is formed thicker than the other portions, and the heating peripheral portion 1C extends over the wide outer peripheral surface 2C of the thick peripheral portion 151. 4 7 are joined.
図 2 9及び図 3 0は更に別の 2つの変形例を示す。  FIG. 29 and FIG. 30 show two further modified examples.
図 2 9では、 ヒートパネルの底壁 1 5 3内にその全面に亘つて、 電熱線ヒー夕 1 5 5が埋め込まれている。 図 3 0では、 温度制御室 8 1内にその全域に亘つて、 コ ィル状の電熱線ヒ一夕 1 5 7が詰込まれている。 このコイル状電熱線ヒー夕 1 5 7 は、 熱交換フィンとしても機能する。 更に別の変形例として、 図示してないが、 温 度制御室 8 1内に設けたフィン (図 1 4に例示したような各種のタイプであり得 る) に電熱線ヒー夕の機能を持たせてもよい。  In FIG. 29, a heating wire 150 is embedded in the bottom wall 153 of the heat panel over the entire surface. In FIG. 30, a coil-shaped heating wire 157 is packed in the temperature control room 81 over the entire area. The coiled heating wire 157 also functions as a heat exchange fin. As yet another modification, although not shown, fins (which may be of various types as illustrated in FIG. 14) provided in the temperature control room 81 have a function of heating and heating. You may let it.
図 2 5〜図 3 0に示した複数夕ィプの電熱線ヒー夕を組合せることも可能である。 例えば、 図 2 5に示したように温度制御室 8 1の底面に電熱線ヒ一夕 1 4 1を設け ると共に、 図 2 6に示したようにヒートパネル 2の上面 2 Bにも電熱線ヒー夕 1 4 3を設ける、 というようにである。  It is also possible to combine multiple types of heating wire heaters shown in FIGS. 25 to 30. For example, as shown in Fig. 25, a heating wire is provided on the bottom of the temperature control room 81, and the heating wire is also provided on the upper surface 2B of the heat panel 2 as shown in Fig. 26. Heater 1 4 3 and so on.
図 3 1は更にまた別の変形例を示す。 図 3 2は図 3 1の A— A線での断面図であ o  FIG. 31 shows still another modification. Fig. 32 is a sectional view taken along the line A-A in Fig. 31.
この変形例では、 温度制御室 8 1内に加熱流体用の流路 1 6 1と冷却流体用の流 路 1 6 3とが互いに独立して形成されている。 ヒートパネル 2の底面 2 Aは、 加熱 流体流路 1 6 1と冷却流体流路 1 6 3の天井面を構成している。 この 2つの流路 1 6 1、 1 6 3は、 例えば図 3 2に示すように渦卷き状にヒートパネル 2の全面に亘 つて配設されている。 そして、 それら渦巻き状の流路 1 6 1、 1 6 3の例えば外周 側の口 1 6 9、 1 7 1からそれそれの流体が供給され、 中心側の口 1 6 5、 1 6 7 からそれそれの流体が排出される。 流路 1 6 1、 1 6 3は渦巻き状に曲っているた め、 その中を流れる流体は流路 1 6 1、 1 6 3の外周面に衝突して乱流となり、 熱 交換効率が良い。 温度制御室 8 1の材料は熱伝導性の高い材料が好ましい。 流路 1 6 1、 1 6 3は渦巻き状以外の形状、 例えば蛇行状であってもよい。 In this modification, a flow path 16 1 for the heating fluid and a flow path 16 3 for the cooling fluid are formed in the temperature control chamber 81 independently of each other. The bottom surface 2 A of the heat panel 2 forms a ceiling surface of the heating fluid channel 16 1 and the cooling fluid channel 16 3. These two channels 1 Numerals 61 and 163 are arranged in a spiral shape over the entire surface of the heat panel 2 as shown in FIG. 32, for example. Then, for example, the fluids are supplied from the outer peripheral ports 16 9, 17 1 of the spiral flow paths 16 1, 16 3, respectively, from the central ports 16 5, 16 7. Its fluid is drained. Since the flow passages 16 1 and 16 3 are spirally bent, the fluid flowing therethrough collides with the outer peripheral surface of the flow passages 16 1 and 16 3 and becomes turbulent, resulting in good heat exchange efficiency. . The material of the temperature control chamber 81 is preferably a material having high thermal conductivity. The channels 16 1 and 16 3 may have a shape other than the spiral shape, for example, a meandering shape.
図 3 3は更にまた別の変形例を示し、 図 3 4は図 3 3の A— A線での断面図であ る。  FIG. 33 shows still another modification, and FIG. 34 is a cross-sectional view taken along line AA of FIG.
この変形例では、 図 3 1に示した加熱流体流路 1 6 1に代えて、 電熱線ヒ一夕 1 7 3が温度制御室 8 1内に埋め込まれ又は挿入されている。 図 3 4に示すように、 温度制御室 8 1内に冷却流体流路 1 6 3が蛇行状に配設され、 その間隙に棒状の電 熱線ヒー夕 1 Ί 3が挿入されている。 、 1 6 3が蛇行状に曲がりくねっているた め、 中を流れる流体はある程度乱流となる。 なお、 流路 1 6 3を図 3 2に示したよ うな渦巻き状にして、その間隙に渦巻き状の電熱線ヒ一夕 1 7 3を揷入してもよい。 図 3 5は更に別の変形例を示す。  In this modification, a heating wire heater 173 is embedded or inserted in the temperature control chamber 81 in place of the heating fluid flow path 161 shown in FIG. As shown in FIG. 34, a cooling fluid flow path 16 3 is arranged in a meandering manner in the temperature control chamber 81, and a rod-shaped heating wire heater 1-3 is inserted in the gap. Since 163 is meandering, the fluid flowing therethrough is somewhat turbulent. The flow path 163 may be formed in a spiral shape as shown in FIG. 32, and a spiral heating wire 173 may be inserted into the gap. FIG. 35 shows another modification.
ヒートパネル 2は図 2 8のものと同様にその周縁部 1 5 1が他の部分より厚く形 成されていて、 この厚い周縁部 1 5 1の幅広の外周面 2 Cに一周に亘つて、 リング 状の温度制御室 8 1が形成されている。 ヒートパネル 2の外周面 2 Cは温度制御室 8 1の内周面を構成しており、 そこには多数の熱交換フィン 9 5が外側へ向かって 立設されている。 温度制御室 8 1には 1つの流体流入口 8 7と 1つの流体排出口 9 1とが、 ヒートパネル 2の中心軸について対称の位置に形成されている。  As shown in FIG. 28, the heat panel 2 has a peripheral portion 151 formed thicker than the other portions, and extends over a wide outer peripheral surface 2C of the thick peripheral portion 151. A ring-shaped temperature control chamber 81 is formed. An outer peripheral surface 2C of the heat panel 2 constitutes an inner peripheral surface of the temperature control chamber 81, and a number of heat exchange fins 95 are erected outward on the inner peripheral surface. In the temperature control chamber 81, one fluid inlet 87 and one fluid outlet 91 are formed at positions symmetrical with respect to the central axis of the heat panel 2.
以上、 本発明の幾つかの好適な実施形態及びその変形例を説明したが、 本発明は 上述の形態のみに限らず、 他の種々の形態でも実施することができるものである。 例えば、 冷却は実施形態と同様にヒートパイプ下面から行うが、 加熱はウェハの上 方に配置した赤外線ランプを用いてヒートパイプを介さずに行うというように、 ヒ —トパイプを利用する場面を加熱か冷却の一方のみとすこともできる。 さらに、 上 述の実施形態のような半導体ウェハの処理装置だけでなく、 その他各種の基板の処 理装置や、 壁面やテーブル面の温度制御装置にも本発明を適用することができる。 As described above, some preferred embodiments of the present invention and modifications thereof have been described. However, the present invention is not limited to the above-described embodiments, and can be implemented in other various forms. For example, cooling is performed from the bottom of the heat pipe as in the embodiment, but heating is performed on the wafer. It is also possible to use heat pipes only for heating or cooling, for example, by using an infrared lamp located on the side without using a heat pipe. Further, the present invention can be applied not only to the semiconductor wafer processing apparatus as in the above-described embodiment, but also to various other substrate processing apparatuses and wall and table surface temperature control apparatuses.

Claims

請 求 の 範 囲 The scope of the claims
1 . 前面と背面とをもったプレート形ヒートパイプと、  1. A plate-shaped heat pipe with front and back,
このヒートパイプの背面から離れて配置され、 熱媒体を射出して前記ヒートパイ プの背面に当てる非接触夕ィプの少なくとも一種類の熱源装置と  At least one type of heat source device of a non-contact type, which is disposed apart from the rear surface of the heat pipe and injects a heat medium and contacts the rear surface of the heat pipe;
を備えた温度制御装置。 Temperature control device equipped with.
2 . 請求項 1記載のものにおいて、  2. In the claim 1,
前記プレート形ヒートパイプが、 作動液の封入された多数のパイプを有し、 それ ら多数のパイプは連通してパイプ網を形成し、 かつ前記プレート形ヒートパイプの ほぼ全面に亘つて実質的に均一な密度で配置されている温度制御装置。  The plate-type heat pipe has a number of pipes filled with a working fluid, the number of pipes communicating with each other to form a pipe network, and substantially over the entire surface of the plate-type heat pipe. Temperature control device arranged at a uniform density.
3 . 請求項 2記載のものにおいて、  3. In claim 2,
前記多数のパィプの各々が正多角形又は円形である温度制御装置。  A temperature control device wherein each of said plurality of pipes is a regular polygon or a circle.
4 . 請求項 2記載のものにおいて、  4. In the item of claim 2,
前記パイプ網の網目が前記パイプ網のほぼ全域に亘つて実質的に均一の密度で配 置されている温度制御装置。  A temperature control device, wherein the mesh of the pipe network is arranged at a substantially uniform density over substantially the entire area of the pipe network.
5 . 請求項 1乃至 3記載のものにおいて、  5. Claims 1 to 3,
前記プレート形ヒートパイプの背面が凹凸を有する温度制御装置。  A temperature control device wherein the back surface of the plate-type heat pipe has irregularities.
6 . 請求項 1乃至 4記載のものにおいて、  6. In claims 1 to 4,
前記プレート形ヒートパイプの前面が平坦である温度制御装置。  A temperature control device wherein the front surface of the plate-shaped heat pipe is flat.
7 . 請求項 1乃至 6記載のものにおいて、  7. Claims 1 to 6,
前記熱源装置が、 前記熱媒体としての液体、 気体又は液体と気体の混合体である 流体を前記ヒートパイプの背面へ向けて噴射する流体噴射機構を含んだ温度制御装  A temperature control device including a fluid ejection mechanism for ejecting a fluid, which is a liquid, a gas, or a mixture of a liquid and a gas, as the heat medium toward a back surface of the heat pipe;
8 . 請求項 7記載のものにおいて、 8. In the device of claim 7,
前記流体噴射機構が、 加熱用の流体を噴射する加熱機構と、 冷却用の流体を噴射 する冷却機構とを含んだ温度制御装置。 A temperature control device, wherein the fluid ejection mechanism includes a heating mechanism that ejects a heating fluid, and a cooling mechanism that ejects a cooling fluid.
9 . 請求項 1乃至 7記載のものにおいて、 9. Claims 1 to 7,
前記熱源装置が、 前記熱媒体としての電磁波を前記ヒートパイプの背面へ向けて 放射する電磁波放射手段を含んだ温度制御装置。  A temperature control device, wherein the heat source device includes an electromagnetic wave radiating unit that radiates an electromagnetic wave as the heat medium toward a back surface of the heat pipe.
1 0 . 請求項 1乃至 9記載のものにおいて、  10. In the claims 1 to 9,
前記熱源装置が、 前記熱媒体を前記ヒートパネルの背面に、 この背面の全体に亘 つて実質的に均一な密度で当てるよう構成されている温度制御装置。  A temperature control device, wherein the heat source device is configured to apply the heat medium to a rear surface of the heat panel at a substantially uniform density over the entire rear surface.
1 1 . 前面と背面と側面とをもったプレート形ヒートパイプであって、 前記背 面又は側面に熱流体が当たったときこの熱流体を乱流とするための乱流機構を有し たプレート形ヒートパイプ。  11. A plate-shaped heat pipe having a front surface, a back surface, and a side surface, the plate having a turbulent flow mechanism for causing a turbulent flow of the thermal fluid when the thermal fluid hits the back surface or the lateral surface. Shaped heat pipe.
1 2 . 請求項 1 1記載のものにおいて、  1 2. In claim 11,
前記乱流機構が、 前記熱流体の乱流を前記プレート形ヒートパイプの背面又は側 面のほぼ全面に亘つて形成するように構成されているプレ一ト形ヒ一トパイプ。  A plate type heat pipe, wherein the turbulence mechanism is configured to form the turbulent flow of the thermal fluid over substantially the entire back or side surface of the plate type heat pipe.
1 3 . 請求項 1 1記載のものにおいて、  1 3. In claim 11,
前記乱流機構が、 前記熱流体又は前記熱流体と気体との混合体を前記プレート形 ヒートパイプの背面に噴射する流体噴射機構を含んでいるプレート形ヒートパイプ。  A plate-shaped heat pipe, wherein the turbulence mechanism includes a fluid ejection mechanism for injecting the hot fluid or a mixture of the hot fluid and a gas onto a back surface of the hot plate.
1 4 . 請求項 1 1記載のものにおいて、  1 4. In the item of claim 11,
前記乱流機構が、 前記プレート形ヒートパイプの凹凸形状に形成された背面又は 側面を含んでいるプレート形ヒートパイプ。  The plate heat pipe, wherein the turbulence mechanism includes a back surface or a side surface formed in an uneven shape of the plate heat pipe.
1 5 . 請求項 1 1記載のものにおいて、  1 5. In the claim 1,
前記乱流機構が、 前記プレート形ヒートパイプの背面又は側面に設けられた多数 の熱交換フィンを含んでいるプレート形ヒートパイプ。  The plate-shaped heat pipe, wherein the turbulence mechanism includes a number of heat exchange fins provided on a back surface or a side surface of the plate-shaped heat pipe.
1 6 . 請求項 1 5記載のものにおいて、  16. In the matter of claim 15,
前記熱交換フィンがピン形タイプ又は針形タイプであるプレート形ヒートパイプ。 A plate-type heat pipe in which the heat exchange fins are of a pin type or a needle type.
1 7 . 請求項 1 5又は 1 6記載のものにおいて、 17. In the matter described in claim 15 or 16,
前記熱交換フィンが前記プレート形ヒートパイプの背面又は側面のほぼ全面に亘 つて配置されているプレ一ト形ヒートパイプ。 The heat exchange fins extend over substantially the entire back or side surface of the plate-type heat pipe. A plate-type heat pipe that is placed at the end.
1 8 . 請求項 1 1記載のものにおいて、  1 8. In the claim 11,
前記乱流機構が、 前記プレート形ヒートパイプの背面又は側面に設けられた、 前 記熱流体を流すための流路を含んでいるプレート形ヒートパイプ。  The plate-shaped heat pipe, wherein the turbulence mechanism includes a flow path for flowing the heat fluid, which is provided on a back surface or a side surface of the plate-shaped heat pipe.
1 9 . 請求項 1 8記載のものにおいて、  1 9. In the claim 18,
前記流路内に多数の熱交換フィンが配置されているプレート形ヒートパイプ。  A plate-shaped heat pipe in which a large number of heat exchange fins are arranged in the flow path.
2 0 . 請求項 1 9記載のものにおいて、 20. In the one described in claim 19,
前記プレート形ヒートパイプの背面又は側面が前記流路の壁の一部を構成してお り、 前記熱交換フィンが前記壁の一部としての前記プレート形ヒートパイプの背面 又は側面に接合されているプレート形ヒートパイプ。  A back surface or a side surface of the plate-shaped heat pipe constitutes a part of a wall of the flow path, and the heat exchange fins are joined to a back surface or a side surface of the plate-shaped heat pipe as a part of the wall. Plate heat pipe.
2 1 . 請求項 1 8記載のものにおいて、  2 1. In the claim 18,
前記流路が、 前記プレ一ト形ヒートパイプの背面のほぼ全域を覆うようにして前 記背面のほぼ全域に亘つて広がっており、  The flow path extends over substantially the entire rear surface of the plate-shaped heat pipe so as to cover substantially the entire rear surface of the heat pipe.
前記広がつた流路の周縁部に前記熱流体の流入口又は排出口を有し、 前記流路の 中央部に前記熱流体の排出口又は流入口を有するプレート形ヒートパイプ。  A plate-shaped heat pipe having an inlet or an outlet for the thermal fluid at a peripheral portion of the widened channel, and an outlet or an inlet for the thermal fluid at a center of the channel.
2 2 . 請求項 2 1記載のものにおいて、  2 2. In the method described in claim 21,
前記流路が、 前記プレート形ヒートパイプの背面に接して形成された円形状のも のであり、  The flow path is a circular one formed in contact with the back surface of the plate-shaped heat pipe,
前記円形状の流路の周縁部に前記熱流体の流入口又は排出口を有し、 前記流路の 中央部に前記熱流体の排出口又は流入口を有するプレート形ヒートパイプ。  A plate-shaped heat pipe having an inlet or an outlet for the thermal fluid at a peripheral portion of the circular channel, and an outlet or an inlet for the thermal fluid at a center of the channel.
2 3 . 請求項 2 1又は 2 2記載のものにおいて、  23. In the matter described in claim 21 or 22,
前記流路内に多数の熱交換フィンが配置されているプレート形ヒートパイプ。  A plate-shaped heat pipe in which a large number of heat exchange fins are arranged in the flow path.
2 4 . 請求項 2 3記載のものにおいて、 2 4. In the thing described in claim 23,
前記プレート形ヒートパイプの背面が前記流路のー側の壁を構成しており、 前記熱交換フィンが前記一側の壁としての前記プレート形ヒ一トパイプの背面に 接合されているプレート形ヒートパイプ。 The back surface of the plate-shaped heat pipe constitutes a negative wall of the flow path, and the heat exchange fins are provided on the back surface of the plate-shaped heat pipe as the one-side wall. Plate-shaped heat pipe joined.
2 5 . 請求項 2 1又は 2 2記載のものにおいて、  25. In the matter described in claim 21 or 22,
前記流路の周縁部付近の高さより前記流路の中心部付近の高さの方が大きいプレ ート形ヒートパイプ。  A plate-type heat pipe in which the height near the center of the flow path is larger than the height near the periphery of the flow path.
2 6 . 請求項 2 1又は 2 2記載のものにおいて、  26. In the matter described in claim 21 or 22,
前記プレート形ヒートパイプの背面が前記流路のー側の壁を構成しており、 前記流入口から流入する前記熱流体の流れを前記プレート形ヒートパイプの背面 に対しほぼ平行な方向に制御する流れ制御機構を有するプレート形ヒートパイプ。  The back surface of the plate-shaped heat pipe constitutes a negative wall of the flow path, and controls the flow of the thermal fluid flowing from the inflow port in a direction substantially parallel to the back surface of the plate-shaped heat pipe. Plate type heat pipe with flow control mechanism.
2 7 . 前面と背面と側面とをもち、 前記前面側で対象物を加熱又は冷却するプ レート形ヒートパイプと、  27. A plate-type heat pipe having a front face, a back face, and side faces, and heating or cooling an object on the front face side;
前記プレート形ヒートパイプの背面又は側面側に設けられた、 前記背面又は側面 に熱流体の乱流を当てるための温度制御室と  A temperature control chamber provided on the back or side surface of the plate-shaped heat pipe, for applying a turbulent flow of a thermal fluid to the back surface or side surface;
を備えた温度制御装置。 Temperature control device equipped with.
2 8 請求項 2 7記載のものにおいて、  2 8 In claim 27,
前記温度制御室が、 前記熱流体の乱流を前記プレート形ヒートパイプの背面又は 側面のほぼ全面に亘つて当てるように構成されている温度制御装置。  The temperature control device, wherein the temperature control chamber is configured to apply the turbulent flow of the thermal fluid over substantially the entire back surface or side surface of the plate-type heat pipe.
2 9 . 請求項 2 7記載のものにおいて、  29. In the matter of claim 27,
前記温度制御室の内部に、 前記熱流体又は前記熱流体と気体との混合体を前記プ レート形ヒートパイプの背面に噴射する流体噴射機構を備えている温度制御装置。  A temperature control device, comprising: a fluid ejection mechanism for injecting the heat fluid or a mixture of the heat fluid and a gas into a rear surface of the plate-type heat pipe inside the temperature control chamber.
3 0 . 請求項 2 7記載のものにおいて、  30. In the matter of claim 27,
前記温度制御室内に、 前記熱流体を流すための流路を備えている温度制御装置。 A temperature control device comprising a flow path for flowing the thermal fluid in the temperature control chamber.
3 1 . 請求項 3 0記載のものにおいて、 3 1. In the claim 30,
前記流路内に多数の熱交換フィンが配置されている温度制御装置。  A temperature control device in which a number of heat exchange fins are arranged in the flow path.
3 2 . 請求項 3 1記載のものにおいて、  3 2. In the thing described in claim 31,
前記プレート形ヒートパイプの背面又は側面が前記流路の壁の一部を構成してお り、 前記熱交換フィンが前記壁の一部としての前記プレート形ヒートパイプの背面 又は側面に接合されている温度制御装置。 The back or side surface of the plate-shaped heat pipe constitutes a part of the wall of the flow path. A temperature control device in which the heat exchange fins are joined to a back surface or a side surface of the plate-shaped heat pipe as a part of the wall.
3 3 . 請求項 3 0記載のものにおいて、  3 3. In the claim 30,
前記流路が、 前記プレート形ヒートパイプの背面のほぼ全域を覆うようにして前 記背面のほぼ全域に亘つて広がっており、  The flow path extends over substantially the entire back surface of the plate-shaped heat pipe so as to cover substantially the entire back surface of the plate-shaped heat pipe,
前記広がった流路の周縁部に前記熱流体の流入口又は排出口を有し、 前記流路の 中央部に前記熱流体の排出口又は流入口を有する温度制御装置。  A temperature control device having an inlet or an outlet for the thermal fluid at a peripheral portion of the widened flow channel, and an outlet or an inlet for the thermal fluid at a center of the flow channel.
3 4 . 請求項 3 0記載のものにおいて、  34. In the one described in claim 30,
前記流路が、 前記プレート形ヒートパイプの背面に接して形成された円形状のも のであり、  The flow path is a circular one formed in contact with the back surface of the plate-shaped heat pipe,
前記円形状の流路の周縁部に前記熱流体の流入口又は排出口を有し、 前記流路の 中央部に前記熱流体の排出口又は流入口を有する温度制御装置。  A temperature control device comprising: an inlet or an outlet for the thermal fluid at a peripheral portion of the circular channel; and an outlet or an inlet for the thermal fluid at a center of the channel.
3 5 . 請求項 3 3又は 3 4記載のものにおいて、  35. In the matter described in claim 33 or 34,
前記流路内に多数の熱交換フィンが配置されている温度制御装置。  A temperature control device in which a number of heat exchange fins are arranged in the flow path.
3 6 . 請求項 3 5記載のものにおいて、  36. In the matter of claim 35,
前記プレート形ヒートパイプの背面が前記流路のー側の壁を構成しており、 前記熱交換フィンが前記一側の壁としての前記プレート形ヒ一トパイプの背面に 接合されている温度制御装置。  A temperature control device, wherein a back surface of the plate-type heat pipe constitutes a negative wall of the flow path, and the heat exchange fins are joined to a back surface of the plate-type heat pipe as the one-side wall. .
3 7 . 請求項 3 5又は 3 6記載のものにおいて、  37. In the matter described in claim 35 or 36,
前記流路の周縁部付近の高さより前記流路の中心部付近の高さの方が大きい温度 制御装置。  A temperature control device, wherein the height near the center of the flow path is larger than the height near the periphery of the flow path.
3 8 . 請求項 3 3又は 3 4記載のものにおいて、  38. In the method described in claim 33 or 34,
前記プレート形ヒートパイプの背面が前記流路のー側の壁を構成しており、 前記流入口から流入する前記熱流体の流れを前記プレート形ヒートパイプの背面 に対しほぼ平行な方向に制御する流れ制御機構を有する温度制御装置。 The back surface of the plate-shaped heat pipe constitutes a negative wall of the flow path, and controls the flow of the thermal fluid flowing from the inflow port in a direction substantially parallel to the back surface of the plate-shaped heat pipe. A temperature control device having a flow control mechanism.
3 9 . 請求項 2 7記載のものにおいて、 39. In the matter of claim 27,
前記温度制御室に、 加熱用の熱流体と冷却用の熱流体とを選択的に供給する流体 供給機構をさらに備えた温度制御装置。  A temperature control device further comprising a fluid supply mechanism for selectively supplying a heating fluid and a cooling fluid to the temperature control chamber.
4 0 . 請求項 2 7記載のものにおいて、  40. In the claim 27,
前記温度制御室に前記熱流体を供給する流体供給機構をさらに備え、  Further comprising a fluid supply mechanism for supplying the thermal fluid to the temperature control chamber,
前記熱流体供給機構は、 前記熱流体を送るポンプと、 前記熱流体を加熱又は冷却 する流体温度制御装置と、 前記温度制御室に前記熱流体を供給しないときに、 前記 温度制御室をバイパスして前記ポンプと流体温度制御装置とを通して前記熱流体を 循環させるためのバイパス路とを有する温度制御装置。  A pump for feeding the hot fluid, a fluid temperature control device for heating or cooling the hot fluid, and a bypass for the hot fluid when the hot fluid is not supplied to the temperature control chamber. A temperature control device having a bypass for circulating the thermal fluid through the pump and the fluid temperature control device.
4 1 . 請求項 2 7に記載のものにおいて、  41. In the matter of claim 27,
前記プレート形ヒートパイプの前面、 背面、 側面及び壁内、 並びに前記温度制御 室の内部、 底面、 側面及び壁内のうちの少なくとも一つに電熱線ヒ一夕が設けられ ている温度制御装置。  A temperature control device, wherein a heating wire is provided on at least one of a front surface, a back surface, a side surface, and a wall of the plate-shaped heat pipe, and at least one of an inside, a bottom surface, a side surface, and a wall of the temperature control chamber.
PCT/JP1998/002423 1997-06-10 1998-06-02 Temperature control device comprising heat pipe WO1998057111A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP9/152705 1997-06-10
JP9152705A JPH10339591A (en) 1997-06-10 1997-06-10 Temperature controller utilizing heat pipe
JP35225197A JPH11173774A (en) 1997-12-05 1997-12-05 Plate type heat pipe and temperature controller using it
JP9/352251 1997-12-05

Publications (1)

Publication Number Publication Date
WO1998057111A1 true WO1998057111A1 (en) 1998-12-17

Family

ID=26481558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002423 WO1998057111A1 (en) 1997-06-10 1998-06-02 Temperature control device comprising heat pipe

Country Status (1)

Country Link
WO (1) WO1998057111A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618858B2 (en) 2010-01-22 2017-04-11 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method involving thermal conditioning of a table
CN106894002A (en) * 2017-03-31 2017-06-27 昆山国显光电有限公司 A kind of PECVD film formation devices and its film build method
CN111707117A (en) * 2020-05-29 2020-09-25 上海交通大学 Optimized heat dissipation device of flat-plate evaporator

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591994A (en) * 1982-06-25 1984-01-07 Toshiba Corp Heat pipe for temperature control
JPS6338245A (en) * 1986-08-01 1988-02-18 Ishikawajima Harima Heavy Ind Co Ltd Cold plate
JPS6390769U (en) * 1986-11-29 1988-06-13
JPH0763487A (en) * 1993-08-24 1995-03-10 Akutoronikusu Kk Plate type heat pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS591994A (en) * 1982-06-25 1984-01-07 Toshiba Corp Heat pipe for temperature control
JPS6338245A (en) * 1986-08-01 1988-02-18 Ishikawajima Harima Heavy Ind Co Ltd Cold plate
JPS6390769U (en) * 1986-11-29 1988-06-13
JPH0763487A (en) * 1993-08-24 1995-03-10 Akutoronikusu Kk Plate type heat pipe

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618858B2 (en) 2010-01-22 2017-04-11 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method involving thermal conditioning of a table
US10191377B2 (en) 2010-01-22 2019-01-29 Asml Netherlands, B.V. Lithographic apparatus and a device manufacturing method
USRE49297E1 (en) 2010-01-22 2022-11-15 Asml Netherlands B.V. Lithographic apparatus and a device manufacturing method
CN106894002A (en) * 2017-03-31 2017-06-27 昆山国显光电有限公司 A kind of PECVD film formation devices and its film build method
CN111707117A (en) * 2020-05-29 2020-09-25 上海交通大学 Optimized heat dissipation device of flat-plate evaporator

Similar Documents

Publication Publication Date Title
JPH10339591A (en) Temperature controller utilizing heat pipe
US5239443A (en) Blind hole cold plate cooling system
TWI459889B (en) Vapor chamber
US7156159B2 (en) Multi-level microchannel heat exchangers
US7188662B2 (en) Apparatus and method of efficient fluid delivery for cooling a heat producing device
JP3511007B2 (en) Apparatus for fluid impingement thermal cycler, method of circulating a plurality of samples between at least two different temperatures using the same, and method of using the same to perform polymerase chain reaction
JPH10284382A (en) Temperature control equipment
WO2018210067A1 (en) Radiator and communication device
TWI229406B (en) Device for compensating heat deviation in modular IC test handler
US20150156914A1 (en) Heat radiation system for power semiconductor module
CN109764706A (en) A kind of micro-channel heat exchanger structure and working method with jet pipe
JPH11173774A (en) Plate type heat pipe and temperature controller using it
WO1998057111A1 (en) Temperature control device comprising heat pipe
CN114174735B (en) Thermoelectric element heat exchange module
TW389950B (en) Temperature control device
JP4943444B2 (en) Partition structure type heating unit and heating device using the same
JPH10259955A (en) Liquid temperature control device
JP2008300447A (en) Heat radiation device
RU2003128422A (en) DEVICE FOR BLOWING A FLUID MEDIUM AT LEAST ONE SIDE OF THIN ELEMENT AND INSTALLATION FOR BLOWING
JPH10312943A (en) Temperature controller
JP2000172347A (en) Temperature controller utilizing heat pipe
JPH11184538A (en) Temperature controller
CN111189141A (en) Intelligent cold and hot fan
JPH04347494A (en) Hot air supplying method and heat dissipating method
JP2003185366A (en) Heat exchanger

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase