JPH0763487A - Plate type heat pipe - Google Patents
Plate type heat pipeInfo
- Publication number
- JPH0763487A JPH0763487A JP5241918A JP24191893A JPH0763487A JP H0763487 A JPH0763487 A JP H0763487A JP 5241918 A JP5241918 A JP 5241918A JP 24191893 A JP24191893 A JP 24191893A JP H0763487 A JPH0763487 A JP H0763487A
- Authority
- JP
- Japan
- Prior art keywords
- heat pipe
- plate
- meandering
- tunnel
- thin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0233—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/0266—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明はプレート形ヒートパイプ
の構造に関するもので、プレート内に蛇行細径トンネル
ヒートパイプの層が作り込まれた薄肉軽量のプレート形
ヒートパイプの構造に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a plate heat pipe, and more particularly to a structure of a thin and lightweight plate heat pipe in which a layer of a meandering thin tunnel heat pipe is formed in a plate.
【0002】[0002]
【従来の技術】従来のプレート形ヒートパイプは断面略
図10及び平面略図11に例示してある如く、凹面部分
が形成されてある金属平板3−2と金属平板3−1とが
気密に積層接着されて、この凹面部分が密閉されたプレ
ート形コンテナ6として形成され、この中に作動液の所
定量が封入されてプレート形ヒートバイプとして構成さ
れた構造が一般的であった。7は補強用の支持柱であ
る。実用に際してはプレート形コンテナ6の内壁面には
各種のウイックが毛細管作用を与える為に形成されてあ
る場合が多い。2. Description of the Related Art In a conventional plate heat pipe, a metal flat plate 3-2 having a concave surface portion and a metal flat plate 3-1 are hermetically laminated and bonded as illustrated in a schematic sectional view 10 and a schematic plan view 11. In general, the concave portion is formed as a sealed plate-shaped container 6 in which a predetermined amount of hydraulic fluid is enclosed to form a plate-shaped heat visor. Reference numeral 7 is a supporting pillar for reinforcement. In practical use, various wicks are often formed on the inner wall surface of the plate-shaped container 6 to give a capillary action.
【0003】このように構成された従来型のプレート型
ヒートパイプは通常のヒートパイプと同様にトップヒー
トモードでの使用が出来ない、水平ヒートモードでの性
能が低下するなどの問題点があり、更に平板面に加わる
作動液の内圧に対する強度が小さい点が大きな問題点と
なっていた。即ち純水作動液が使用出来る範囲で且つ適
用温度範囲が80℃以下の場合は作動液の飽和蒸気圧が
小さいのでそれ程大きな問題にはならないが、純水作動
液でも150℃を越える適用温度に対しては飽和蒸気圧
の増加によりプレート平面が変形する恐れがあった。そ
の防止の為にはプレートの肉厚を充分に大きくする必要
があり、それによる熱抵抗の増加、重量の増加等の問題
が発生した。また零度以下に周囲温度が低下する場合に
は低温度用の作動液を使用する必要があり、低温度用の
作動液は一般に飽和蒸気圧が純水作動液の数倍もしくは
十数倍にも達し、プレートヒートパイプの耐圧強度を大
きくするにはプレートの肉厚を大幅に厚くする必要があ
り実用上それによる重量増加が大きな問題点となってい
た。The conventional plate-type heat pipe constructed as described above has the problems that it cannot be used in the top heat mode and the performance in the horizontal heat mode is deteriorated, like the ordinary heat pipe. Further, the fact that the strength of the hydraulic fluid applied to the flat plate surface against the internal pressure is small has been a serious problem. That is, when the working temperature range of pure water is 80 ° C or less, the saturated vapor pressure of the working solution is small, so it is not a big problem. On the other hand, there is a risk that the plate plane may be deformed due to an increase in saturated vapor pressure. In order to prevent this, it is necessary to make the plate sufficiently thick, which causes problems such as an increase in heat resistance and an increase in weight. If the ambient temperature drops below zero, it is necessary to use a low temperature hydraulic fluid, and the low temperature hydraulic fluid generally has a saturated vapor pressure several times or a dozen times that of pure water. In order to increase the pressure resistance of the plate heat pipe, it is necessary to significantly increase the thickness of the plate, and the increase in weight due to this has been a serious problem in practical use.
【0004】このような各種の問題点を解決する為にプ
レート内に蛇行細管ヒートパイプを挟持して内蔵せしめ
たプレート形ヒートパイプが実用化されている。図12
はその一例の構造を示す断面略図であり、図13はその
平面略図である。図において8はループ形又は非ループ
形の蛇行細管ヒートパイプであって、金属平板3−3、
3−4により挟持されると共にそれらの内面にろう接充
填材10により気密に接着されてある。9はろう接時の
ろう材の流失を防ぐ為のスペーサである。このヒートパ
イプのコンテナは外径2mm内径1.2mmの如き細管
であるから極めて耐圧強度が大きく、純銅細管コンテナ
やアルミニゥム細管コンテナの場合でも100Kg/c
m2以上の内圧に対しても容易に耐えることが出来る強
度があり、プレートの厚さを充分に薄くすることが出来
るものであった。In order to solve these various problems, a plate-type heat pipe in which a meandering thin pipe heat pipe is sandwiched and incorporated in a plate has been put into practical use. 12
Is a schematic sectional view showing the structure of an example thereof, and FIG. 13 is a schematic plan view thereof. In the figure, 8 is a loop type or non-loop type meandering thin tube heat pipe, which is a metal flat plate 3-3,
It is sandwiched by 3-4 and is hermetically adhered to the inner surface thereof by the brazing filler material 10. Reference numeral 9 is a spacer for preventing the brazing material from flowing out during brazing. Since this heat pipe container is a thin tube with an outer diameter of 2 mm and an inner diameter of 1.2 mm, it has extremely high pressure resistance, and even in the case of a pure copper thin tube container or an aluminum thin tube container, it is 100 kg / c.
It had a strength capable of easily withstanding an internal pressure of m 2 or more, and could sufficiently reduce the thickness of the plate.
【0005】本発明に適用される蛇行細管ヒートパイプ
としては次の各種の構造のものがある。即ち特開昭63
−318493(ループ型細管ヒートパイプ)、特願平
2−319461(ループ型細管ヒートパイプ)、特願
平3−61385(マイクロヒートパイプ)の3種類で
ある。特開昭63−318493は蛇行細管ヒートパイ
プの両端末が流通自在に連結されてエンドレスのループ
が形成されてあり、ループ内の所定の複数カ所に逆止弁
が設けられてあり、作動液が所定の方向に循環すること
により熱量が運搬される形でありトップヒートモード特
性に優れている。特願平2−319461はループ内の
逆止弁が省略されてあり、作動液の軸方向振動と作動液
の不特定方向の循環との両方により熱量が運搬される形
であり大容量の熱量運搬に適している。特願平3−61
385は非ループ形であってコンテナはループを形成せ
ず、作動液の軸方向振動のみにより熱量が運搬される形
であり細径化小型化に適し、信頼性に優れている。The meandering thin tube heat pipe applied to the present invention has the following various structures. That is, JP-A-63
There are three types: −318949 (loop type thin tube heat pipe), Japanese Patent Application No. 2-319461 (loop type thin tube heat pipe), and Japanese Patent Application No. 3-61385 (micro heat pipe). In JP-A-63-318493, both ends of a meandering thin tube heat pipe are rotatably connected to each other to form an endless loop, and check valves are provided at a plurality of predetermined positions in the loop, so that the hydraulic fluid is It excels in top heat mode characteristics because it is a form in which the amount of heat is conveyed by circulating it in a predetermined direction. In Japanese Patent Application No. 2-319461, the check valve in the loop is omitted, and the amount of heat is conveyed by both the axial vibration of the hydraulic fluid and the circulation of the hydraulic fluid in an unspecified direction. Suitable for transportation. Japanese Patent Application 3-61
385 is a non-loop type, the container does not form a loop, and the amount of heat is carried only by the axial vibration of the hydraulic fluid, which is suitable for thinning and downsizing, and has excellent reliability.
【0006】これら3種類の蛇行細管ヒートパイプは何
れも如何なる保持姿勢でも活発に作動する特性があるこ
とを共通の利点としている。従ってこれらの蛇行細管ヒ
ートパイプを内蔵するプレート形ヒートパイプは従来の
プレート形ヒートパイプの問題点をすべて解決するもの
であった。All of these three types of meandering thin tube heat pipes have the common advantage that they can be actively operated in any holding posture. Therefore, the plate type heat pipe incorporating these meandering thin tube heat pipes has solved all the problems of the conventional plate type heat pipes.
【0007】[0007]
【発明が解決しようとする課題】上述の如き蛇行細管ヒ
ートパイプ内蔵のプレート形ヒートパイプは従来の問題
点の全てを解決するものではあったが、業界の要望を完
全に満足せしめるには未だ次の如き問題点が残されてあ
った。The plate type heat pipe having the meandering thin tube heat pipe as described above solves all the problems in the past, but it is still not possible to completely satisfy the demands of the industry. There was a problem like that.
【0008】(イ)蛇行細管ヒートパイプの性能はプレ
ートの同一平面内に於ける蛇行のターン数が多いほど性
能が向上し、特にトップヒートモードに於ける性能がボ
トムヒートモードのときの性能と大差なく良好に作動す
る為には実験的に100mm幅の中に30ターン以上が
必要なことが実験的に知られている。然し細管コンテナ
の曲率半径は純銅細管に例を取ると中心線で管外径の
1.5倍程度が最小限界でありこれより曲率半径を小さ
くすると座屈状態になることも知られている。例えば1
00mm幅の中に外形3mmの蛇行細管を挟持せしめる
にはピッチ9mmで配接する必要があり、最多挟持本数
は11ターン程度となる。即ち保持姿勢の如何に拘わら
ず良好な性能を発揮せしめる為には3層の蛇行細管コン
テナを挟持内蔵せしめる必要があることになる。これは
プレート厚さの最低限界が13mm程度であることを意
味しそれより薄い厚さのプレートを構成するには性能を
犠牲にせざるを得ないことを意味する。(A) The performance of the meandering thin tube heat pipe is improved as the number of turns of the meandering in the same plane of the plate is increased. Especially, the performance in the top heat mode is the performance in the bottom heat mode. It is experimentally known that 30 turns or more are required in a 100 mm width experimentally in order to operate well without much difference. However, the radius of curvature of the thin tube container is, for example, about 1.5 times the outer diameter of the tube at the center line as the minimum limit in the case of a pure copper thin tube, and it is also known that if the radius of curvature is made smaller than this, it becomes in a buckling state. Eg 1
In order to hold a meandering thin tube having an outer diameter of 3 mm in a 00 mm width, it is necessary to connect the tubes at a pitch of 9 mm, and the maximum number of holding tubes is about 11 turns. That is, in order to exert good performance irrespective of the holding posture, it is necessary to sandwich and embed a three-layer meandering thin tube container. This means that the minimum limit of the plate thickness is about 13 mm, which means that the performance must be sacrificed to construct a plate having a smaller thickness.
【0009】(ロ)業界に於ける機器の小型化軽量化の
要望は止まることを知らず、内蔵される蛇行細管ヒート
パイプの重量と雖も無視出来なくなりつつあり、更に一
層の小型軽量化の為の対策が必要となりつつある。(B) The demand for miniaturization and weight saving of equipment in the industry has never stopped, and the weight and the weight of the built-in meandering thin tube heat pipe cannot be ignored, and for further size and weight reduction. Measures are becoming necessary.
【0010】(ハ)更に一層の高性能化の為には蛇行細
管ヒートパイプと挟持用金属平板との間の接触熱抵抗も
少なくしたい。金属平板と蛇行細管コンテナとの接触は
線接触又は破線状態の接触であり、この接触熱抵抗減少
の為のろう接材による充填接着はプレート形ヒートパイ
プの重量を増加せしめると共に熱応答性能を低下せしめ
ている。(C) In order to further improve the performance, it is desired to reduce the contact thermal resistance between the meandering thin tube heat pipe and the sandwiching metal flat plate. The contact between the metal flat plate and the meandering thin tube container is a line contact or a broken line contact, and the filling adhesion with the brazing material for reducing the contact thermal resistance increases the weight of the plate heat pipe and lowers the thermal response performance. I am busy.
【0011】(ニ)細管コンテナを小さな曲率半径で多
数ターンの曲げ加工を行い、その多数ターン、多数層を
金属平板の間に正確精密に整列挟持せしめ、ろう接する
作業は容易な作業ではなく、高温度下の困難な手作業に
頼らざるを得ない。また量産化が困難でありコスト高と
なることは避けられない。これらに起因してプレート形
ヒートパイプは業界のニーズに適合しているにも拘らず
特殊用途向け以外に対する実用が遅れている。プレート
形ヒートパイプ製造作業の機械化及び自動化に依るコス
ト削減は緊急の課題となりつつある。本発明は上記
(イ)(ロ)(ハ)(ニ)の各問題点を解決する。(D) The thin tube container is bent for a large number of turns with a small radius of curvature, and the large number of turns and a large number of layers are accurately and precisely aligned and sandwiched between the metal flat plates, and the brazing work is not easy work. There is no choice but to rely on difficult manual work at high temperatures. In addition, mass production is difficult and cost inevitably increases. Due to these factors, although the plate heat pipe meets the needs of the industry, it is delayed in practical use except for special purposes. Cost reduction by mechanization and automation of plate type heat pipe manufacturing work is becoming an urgent issue. The present invention solves each of the problems (a), (b), (c), and (d).
【0012】[0012]
【課題を解決する為の手段】問題点を解決するための手
段の基本的な考え方につき図1の断面略図により説明す
る。熱伝導性の良好な金属薄板1、3の積層構造体であ
るプレートの所定の単位薄板1の所定の接着面には所定
の深さ、所定の幅、所定のピッチで蛇行する一連の蛇行
長尺細溝2が形成されてあり、この蛇行細溝はその両端
末が連結されたエンドレスのループ形をなすか又は両端
末が連結されない非ループ形であるかの何れかであり、
その単位薄板の複数枚が相互に積層されてあるか、単位
薄板と細溝が形成されていない平薄板とが相互に積層さ
れてあるかの何れかにより、プレート内の積層境界面に
蛇行する長尺細径の密閉トンネル4を有する層の所定数
が形成される。The basic concept of means for solving the problems will be described with reference to the schematic sectional view of FIG. A series of meandering lengths that meander at a predetermined depth, a predetermined width, and a predetermined pitch on a predetermined bonding surface of a predetermined unit thin plate 1 of a plate that is a laminated structure of metal thin plates 1 and 3 having good thermal conductivity. The narrow groove 2 is formed, and the meandering groove is either an endless loop type in which both ends thereof are connected or a non-loop type in which both ends are not connected,
A plurality of the unit thin plates are stacked on top of each other, or a unit thin plate and a flat thin plate on which a narrow groove is not formed are stacked on top of each other. A predetermined number of layers having a long and narrow closed tunnel 4 are formed.
【0013】この密閉トンネル内に所定のヒートパイプ
作動液の所定量が封入されて、ループ形蛇行細管ヒート
パイプ又は非ループ形蛇行細管ヒートパイプと同一内部
構造のループ形蛇行細径トンネルヒートパイプ又は非ル
ープ形蛇行細径トンネルヒートパイプとして構成されて
あり、且つこの細径トンネルの円形換算直径は、トンネ
ル内に封入された作動液がその表面張力により常にトン
ネル内を閉塞し、如何なる保持姿勢でもこの閉塞状態を
維持したままトンネルの軸方向に循環または振動するよ
う充分に細径化された直径であることを特徴とするよう
構成される。A predetermined amount of a predetermined heat pipe hydraulic fluid is enclosed in the closed tunnel to form a loop type meandering thin tunnel heat pipe having the same internal structure as the loop type meandering thin tube heat pipe or the non-loop type meandering thin tube heat pipe. It is configured as a non-loop type meandering small-diameter tunnel heat pipe, and the circular equivalent diameter of this small-diameter tunnel is that the hydraulic fluid enclosed in the tunnel always closes the inside of the tunnel due to its surface tension, and it can be used in any holding posture. It is configured to have a diameter that is sufficiently thin so as to circulate or vibrate in the axial direction of the tunnel while maintaining this closed state.
【0014】[0014]
【作用】上述の如く構成されたプレート形ヒートパイプ
は次の如き作用を発揮する。 (イ)内蔵せしめる蛇行細径トンネルヒートパイプはタ
ーン部の曲率半径を極限に至るまで小さく出来る。即ち
細溝幅に溝山の幅1mm程度を加算しただけのピッチで
高密度に配接することが可能となり、多数ターンのトン
ネルヒートパイプを内蔵せしめることが出来る。従って
高性能で且つ厚さの薄いプレート形ヒートパイプを構成
することが可能になる。一例としては外径3mm内径2
mmの蛇行細管ヒートパイプに替えてトンネルヒートパ
イプを内蔵せしめる場合は径2mmのトンネルをピッチ
3mmで内蔵せしめることが可能であり、100mm幅
の中に33本を配接した厚さ5mmのプレート形ヒート
パイプを構成することが可能となり、内蔵本数は3倍、
厚さは1/2と大幅に改善される。The plate type heat pipe constructed as described above exhibits the following actions. (B) The meandering small-diameter tunnel heat pipe that can be built in can reduce the radius of curvature of the turn portion to the utmost limit. In other words, it becomes possible to connect at a high density with a pitch that is only the width of the narrow groove plus about 1 mm of the width of the groove, and a tunnel heat pipe with many turns can be built in. Therefore, it is possible to construct a plate-type heat pipe with high performance and thin thickness. As an example, outside diameter 3mm inside diameter 2
When a tunnel heat pipe is built in instead of the mm meandering thin tube heat pipe, a tunnel with a diameter of 2 mm can be built in with a pitch of 3 mm, and a plate type with a thickness of 5 mm in which 33 pieces are arranged in a 100 mm width. It becomes possible to configure a heat pipe, and the number of built-in units is three times,
The thickness is greatly improved to 1/2.
【0015】(ロ)蛇行細径トンネルヒートパイプの内
蔵は、挟持接着により蛇行細管ヒートパイプを内蔵せし
める場合に比較して細管コンテナの重量及び肉厚が無く
なること、挟持接着用プレートに比較して積層用プレー
トは強度をそれ程必要としないから薄肉に形成すること
が出来ること、挟持接着の為の接着材、充填材の重量が
ゼロになること、等の相乗効果により大幅な軽量化小型
化が可能になる。(B) Incorporating the meandering small-diameter tunnel heat pipe reduces the weight and wall thickness of the thin tube container as compared with the case where the meandering thin tube heat pipe is incorporated by sandwiching and bonding, and comparing with the sandwiching and bonding plate. Since the lamination plate does not require so much strength, it can be made thin, and the weight of the adhesive and the filler for sandwiching and bonding will be zero. It will be possible.
【0016】(ハ)挟持接着により蛇行細管ヒートパイ
プを内蔵せしめる場合には大きな接触熱抵抗が発生する
のに対して、蛇行細径トンネルヒートパイプの内蔵は接
触熱抵抗がゼロであるから性能が大幅に改善される。(C) When a meandering thin tube heat pipe is built in by sandwiching and adhering, a large contact heat resistance is generated, whereas the built-in meandering small diameter tunnel heat pipe has a zero contact heat resistance and therefore has a performance. Greatly improved.
【0017】(ニ)蛇行細径トンネルヒートパイプの形
成は、蛇行細溝の形成工程と溶着に依る積層工程の2工
程のみで形成される。蛇行細溝の形成は自動切削に依る
方法、放電加工に依り一括形成する方法、高圧プレスに
依り一括形成する方法等があり、何れも自動化が容易で
あり且つ加工時間を要せず、高度な精密加工が容易であ
る。また積層工程も大型熱処理炉に依る一括大量積層、
連続熱処理炉に依る半自動熱処理に依る積層、等に依り
容易に実施出来る。何れの工程も大量安価な製造を実施
するに容易な工程である。従って量産に当たっては大幅
なコスト低減が計れる。(D) The meandering small-diameter tunnel heat pipe is formed by only two steps, that is, the meandering narrow groove forming step and the laminating step by welding. The meandering fine grooves can be formed by automatic cutting, batch forming by electric discharge machining, batch forming by high pressure press, etc. All of them are easy to automate and do not require machining time, Precision processing is easy. In addition, the stacking process also uses a large-scale heat treatment furnace to perform batch mass stacking,
It can be easily carried out by stacking by semi-automatic heat treatment by a continuous heat treatment furnace. Both processes are easy processes for mass production at low cost. Therefore, in mass production, a significant cost reduction can be achieved.
【0018】[0018]
第一実施例 図1乃至図6は本発明の第一実施例を実施して構成され
たプレート形ヒートパイプの各種実施態様の説明図であ
る。何れも熱伝導性の良好な金属からなる単位薄板1及
び平薄板3の溶接積層体である。単位薄板1の溶接面に
は積層に先立って予め一連の長尺蛇行細溝2が形成され
てある。細溝2の形成は切削、放電加工、プレス成形等
何れの手段に依ってなされたものであっても良い。長尺
蛇行細溝2は積層に依り密閉蛇行細径トンネル4として
構成され、この密閉トンネル4に所定の作動液の所定量
が封入されて蛇行細径トンネルヒートパイプ4−1とし
て構成されてある。First Embodiment FIGS. 1 to 6 are explanatory views of various embodiments of a plate heat pipe configured by carrying out a first embodiment of the present invention. Both are welded laminates of a unit thin plate 1 and a flat thin plate 3 made of a metal having good thermal conductivity. A series of long meandering fine grooves 2 are formed in advance on the welding surface of the unit thin plate 1 prior to lamination. The fine groove 2 may be formed by any means such as cutting, electric discharge machining, and press molding. The long meandering narrow groove 2 is formed as a closed meandering thin diameter tunnel 4 by stacking, and a predetermined amount of a predetermined working liquid is enclosed in the closed tunnel 4 to form a meandering small diameter tunnel heat pipe 4-1. .
【0019】図1は長尺蛇行細溝2が形成されてある単
位薄板1と細溝が形成されていない単なる平薄板3とが
積層されてある例である。図2は半円形断面の長尺蛇行
細溝2が形成されてある2枚の単位薄板1−1と1−2
との細溝面が相互に向き合わせられて積層されてある例
である。この場合は蛇行細径トンネル4の断面形状が円
形となり、作動液の循環及び振動に際して無駄な抵抗の
発生が少ないことが利点となる。図3は2枚の単位薄板
1−1と1−2及び平薄板3の3枚で2層の蛇行細径ト
ンネル4が構成されてある。図4も2枚の単位薄板1−
1と1−2及び平薄板3の3枚で2層の蛇行細径トンネ
ル4が構成されてあるが、平薄板3を中心としこれを挟
持して2層の蛇行細径トンネル4が対象形に配置形成さ
れてあることが特徴になっている。図5、図6は蛇行細
径トンネルヒートパイプの平面形状を示す平面略図であ
る。平薄板3の一部を取り除いて示された蛇行細径トン
ネルヒートパイプは図5に於てはループ形蛇行細径トン
ネルヒートパイプ4−1となっており、図6に於ては非
ループ形蛇行細径トンネルヒートパイプ4−2になって
いる。FIG. 1 shows an example in which a unit thin plate 1 in which a long meandering narrow groove 2 is formed and a simple flat thin plate 3 in which no narrow groove is formed are laminated. FIG. 2 shows two unit thin plates 1-1 and 1-2 each having a long meandering narrow groove 2 having a semicircular cross section.
In this example, the thin groove surfaces of and are laminated so as to face each other. In this case, the meandering small-diameter tunnel 4 has a circular cross-sectional shape, which is advantageous in that unnecessary resistance is less likely to occur when the working fluid circulates and vibrates. In FIG. 3, two unit thin plates 1-1 and 1-2 and a flat thin plate 3 constitute a two-layer meandering small-diameter tunnel 4. Fig. 4 also shows two unit thin plates 1-
Two layers of the meandering small-diameter tunnel 4 are constituted by three sheets 1 and 1-2 and the flat thin plate 3, and the two-layer meandering small-diameter tunnel 4 is sandwiched around the flat thin plate 3 and the target shape is the thin meandering tunnel 4. It is characterized in that it is arranged and formed in. 5 and 6 are schematic plan views showing the planar shape of the meandering small-diameter tunnel heat pipe. The meandering thin tunnel heat pipe shown by removing a part of the flat thin plate 3 is a loop type meandering thin tunnel heat pipe 4-1 in FIG. 5, and is a non-loop type in FIG. It is a meandering thin tunnel heat pipe 4-2.
【0020】第二実施例 図7は本発明の第2実施例の説明図であって単位薄板1
の平面上における蛇行細溝の高密度整列状態を示してい
る。単位薄板1の接着面には所定の深さ、所定の幅の細
溝2−1の群が近接して平行並列に形成されてあり、そ
れらの細溝2−1の群に於けるターン部を形成する隣接
細溝は対をなして形成されてあり、対をなす細溝2−1
の端末は必ず単位薄板面の同一位置に至る迄形成されて
あり、対をなす細溝2−1の間に形成される溝山2−2
は対をなす両細溝の端末部に於て所定の長さだけ欠除せ
しめられてあり、この溝山欠除部2−3により対をなす
細溝の端末部は相互に流通自在になり、細溝のターン部
2−4として形成されてあり、このようにして細溝群全
体としては多数のターン部を有する長尺の蛇行細溝2と
して形成されてある。Second Embodiment FIG. 7 is an explanatory view of the second embodiment of the present invention, in which the unit thin plate 1 is used.
3 shows a high-density aligned state of meandering fine grooves on the plane of FIG. A group of thin grooves 2-1 having a predetermined depth and a predetermined width are formed in parallel and in parallel on the bonding surface of the unit thin plate 1, and the turn portion in the group of these thin grooves 2-1 is formed. The adjacent narrow grooves that form a pair are formed in pairs, and the pair of narrow grooves 2-1 are formed.
Is always formed up to the same position on the unit thin plate surface, and a groove crest 2-2 formed between a pair of narrow grooves 2-1.
Are notched by a predetermined length at the end portions of the pair of narrow grooves, and the groove mountain notch portion 2-3 allows the end portions of the pair of narrow grooves to freely flow with each other. The thin groove turn portion 2-4 is formed, and thus the entire thin groove group is formed as a long meandering thin groove 2 having a large number of turn portions.
【0021】このように整列形成される細溝2−1の群
は溝山2−2の幅の間隔で整列配置することが出来るか
ら、極限の高密度状態に整列配置せしめることが可能に
なり、プレート形ヒートパイプ内には従来の蛇行細管コ
ンテナ内蔵に比較して数倍するターン数の蛇行細径トン
ネルを内蔵せしめることが可能になる。Since the group of the fine grooves 2-1 formed in this manner can be arranged at intervals of the width of the groove crests 2-2, they can be arranged in an extremely high density state. , It becomes possible to incorporate a meandering small-diameter tunnel with a number of turns that is several times that of the conventional meandering thin-tube container in the plate-shaped heat pipe.
【0022】第三実施例 図8は本発明の第3実施例の断面説明図である。本実施
例は複数層の蛇行細径トンネルヒートパイプ4−1、4
−2の層が積層されて構成されたプレート形ヒートパイ
プに於て層間を貫通する連結細孔5により隣接層の蛇行
細径トンネルヒートパイプ4−1、4−2が相互に連結
されて、一連長尺のループ形蛇行細径トンネルヒートパ
イプ又は非ループ形蛇行細径トンネルヒートパイプとし
て構成されてあることを特徴としている。Third Embodiment FIG. 8 is a sectional explanatory view of a third embodiment of the present invention. In this embodiment, a plurality of layers of meandering thin tunnel heat pipes 4-1 and 4 are used.
-2, the meandering small diameter tunnel heat pipes 4-1 and 4-2 of the adjacent layers are connected to each other by the connection pores 5 penetrating the layers in the plate-shaped heat pipe configured by laminating layers of -2. It is characterized in that it is constructed as a series of long loop type meandering small diameter tunnel heat pipes or non-loop type meandering small diameter tunnel heat pipes.
【0023】図8においては、複数の蛇行細径トンネル
ヒートパイプ4−1、4−2の層は、夫々積層の単位で
ある単位薄板1−1及び1−2の接着面に作り込まれて
あり、それらの接着面は夫々平薄板3の両面に接着され
て平薄板3を挟持して積層されてあり、それにより形成
された蛇行細径トンネルの中に所定の作動液の所定量が
封入されて蛇行細径トンネルヒートパイプ4−1、4−
2として構成されてある。それらの細径トンネルヒート
パイプは夫々の端末において、両者間の隔壁をなしてい
る平薄板3を貫通して設けられた連結細孔5によって、
双方の作動液が流通自在であるように連結され、全体と
して一連長尺の蛇行細径トンネルヒートパイプとして構
成されてあることを特徴としている。In FIG. 8, a plurality of layers of meandering small-diameter tunnel heat pipes 4-1 and 4-2 are formed on the bonding surfaces of unit thin plates 1-1 and 1-2, which are units of lamination, respectively. The adhesive surfaces are laminated on both sides of the flat thin plate 3 with the flat thin plate 3 sandwiched therebetween, and a predetermined amount of a predetermined working fluid is enclosed in the meandering small-diameter tunnel formed thereby. Being meandering thin tunnel heat pipes 4-1 and 4-
It is configured as 2. These small-diameter tunnel heat pipes are connected at their respective ends by connecting pores 5 penetrating the flat thin plate 3 forming a partition wall between them,
It is characterized in that both hydraulic fluids are connected so that they can freely flow, and are configured as a series of long and narrow meandering tunnel heat pipes as a whole.
【0024】蛇行細径トンネルヒートパイプは蛇行細管
ヒートパイプと同様に一連の蛇行ヒートバイプの中に蛇
行ターン数が多く設けられてある程その性能が向上し、
そのターン数が一定のターン数を越えると、その適用姿
勢モードに拘わらず如何なる適用姿勢でも全く同様な高
性能を発揮するようになる。本実施例の如く連結細孔5
により隣接層の蛇行細径トンネルヒートパイプ4−1、
4−2が連結されて一連のヒートパイプとして構成され
る場合は、個別に夫々が独立せしめられて構成されてあ
る場合よりも、プレート形ヒートパイプの性能は一段と
向上する。またこれによりプレート形ヒートパイプはそ
の表裏が同一の性能になり、表裏間の温度差が無くなる
利点もある。Like the meandering thin tube heat pipe, the meandering thin tunnel heat pipe has a higher performance as the number of meandering turns is increased in a series of meandering heat pipes.
When the number of turns exceeds a certain number of turns, the same high performance is exhibited regardless of the applied posture mode in any applied posture. As in this example, the connecting pores 5
Due to the meandering thin tunnel heat pipe 4-1 in the adjacent layer,
When 4-2 is connected to be configured as a series of heat pipes, the performance of the plate heat pipe is further improved as compared with the case where each is individually configured. This also has the advantage that the plate-type heat pipe has the same performance on the front and back sides and eliminates the temperature difference between the front and back sides.
【0025】本実施例は図8の如き平薄板3を介在せし
めた積層構造に限定するものではない。図2に例示の如
きプレート形ヒートパイプを単位層としてその複数層が
積層された構造であっても良く、単位薄板1のみの多数
層が積層された構造であっても良い。各層間の隔壁に相
当する部分に連結細孔5を設けることにより、各層の蛇
行細径トンネルヒートパイプが相互に連結されて一連の
蛇行細径トンネルヒートパイプを構成することが出来る
全ての積層構造に適用することが出来る。This embodiment is not limited to the laminated structure in which the flat thin plate 3 is interposed as shown in FIG. The plate-shaped heat pipe as illustrated in FIG. 2 may be a structure in which a plurality of layers are stacked as a unit layer, or a structure in which a plurality of layers of only the unit thin plate 1 are stacked. By providing the connecting pores 5 in the portions corresponding to the partition walls between the layers, the multilayer structure in which the meandering small-diameter tunnel heat pipes of the respective layers are interconnected to form a series of meandering small-diameter tunnel heat pipes Can be applied to.
【0026】第4実施例 図9は本発明の第4実施例を示す平面説明図である。本
実施例は複数層の蛇行細径トンネル構造を有するプレー
ト形ヒートパイプに於いて、隣接層の蛇行細径トンネル
群は輪方向が相互に直交するよう配置されてあることを
特徴としている。図9に於て3は単位薄板1の複数層と
平薄板3の積層構造のプレート形ヒートパイプにおける
平薄板3を示す。4−1及び4−2は夫々それらの複数
層の中の所定の隣接層に作り込まれれてある蛇行細径ト
ンネルヒートパイプを示している。図に於ては何れも非
ループ形を示してあるがこれはループ形であっても良
い。図から明らかなように両蛇行細径トンネルヒートパ
イプの直管部群は相互に直交するように配設されてあ
る。Fourth Embodiment FIG. 9 is a plan view showing a fourth embodiment of the present invention. The present embodiment is characterized in that in a plate-type heat pipe having a plurality of layers of a serpentine small-diameter tunnel structure, the serpentine small-diameter tunnel groups of adjacent layers are arranged so that their ring directions are orthogonal to each other. In FIG. 9, reference numeral 3 indicates a flat thin plate 3 in a plate heat pipe having a laminated structure of a plurality of unit thin plates 1 and a flat thin plate 3. Reference numerals 4-1 and 4-2 respectively denote a meandering small-diameter tunnel heat pipe which is formed in a predetermined adjacent layer among the plurality of layers. In the figures, the non-loop type is shown, but this may be the loop type. As is apparent from the figure, the straight tube portions of both meandering small-diameter tunnel heat pipes are arranged so as to be orthogonal to each other.
【0027】蛇行細径トンネルヒートパイプは蛇行細管
ヒートパイプと同様に熱量の輸送は作動液の循環または
軸方向振動により行われる熱輸送方式であり、熱量の運
搬はトンネルの長さ方向のみに行われる。従って蛇行細
径トンネルヒートパイプを内蔵した層に於ては、平行並
列に整列配置されたトンネルの長さ方向に直交する方向
に向けての熱量運搬能力は極めて乏しく、この方向には
大きな温度勾配が発生する。Similar to the meandering thin tube heat pipe, the meandering thin tunnel heat pipe is a heat transporting method in which the heat quantity is transported by circulating the working fluid or axial vibration, and the heat quantity is transported only in the length direction of the tunnel. Be seen. Therefore, in the layer containing the meandering small-diameter tunnel heat pipe, the heat carrying capacity in the direction orthogonal to the length direction of the tunnels arranged in parallel and parallel is extremely poor, and a large temperature gradient is generated in this direction. Occurs.
【0028】本実施例の如く隣接層の直管部群が相互に
直交するように配設されてある場合は、各層の熱輸送能
力の方向性は相互に補完し合って、プレート型ヒートパ
イプは全方位に均等な熱輸送能力を発揮するように改善
される。 実験の結果このようなプレート型ヒートパイ
プに於てはプレートの如何なる位置に如何なる量の熱量
を加えてもプレートの表面は全て等温度に加熱され、温
度むらが極めて小さいことが実証された。図9の如く連
結細孔5により隣接層間の蛇行細径トンネルヒートパイ
プが相互に連結されて一連の蛇行細径トンネルヒートパ
イプとして構成されてある場合はプレート型ヒートパイ
プの表面温度均一化特性が更に向上すると共に各層間の
温度差も均一化される。When the straight pipe groups of adjacent layers are arranged so as to be orthogonal to each other as in the present embodiment, the directions of the heat transporting capacities of the respective layers complement each other and the plate type heat pipe is used. Is improved to provide uniform heat transfer capacity in all directions. As a result of the experiment, it was proved that in such a plate heat pipe, the surface of the plate was heated to the same temperature regardless of the amount of heat applied to any position of the plate, and the temperature unevenness was extremely small. As shown in FIG. 9, when the meandering small-diameter tunnel heat pipes between adjacent layers are connected to each other by the connecting pores 5 to constitute a series of meandering small-diameter tunnel heat pipes, the surface temperature equalizing characteristic of the plate-type heat pipe is As the temperature is further improved, the temperature difference between the layers is made uniform.
【0029】[0029]
【発明の効果】上述の如きプレート形ヒートパイプはプ
レート薄板内にトンネル構造を作り込み、細管コンテナ
を廃止した構成とした効果により、同一断面積のプレー
ト内に従来の数倍のトンネルヒートパイプ本数を内蔵す
ることが可能になり、プレートの厚さを従来の二分の一
以下とすることが可能になり、熱抵抗値も数分の一に低
下し、大幅な小型軽量化高性能化が可能になる。このよ
うに改善されたプレート形ヒートパイプはその応用範囲
が大幅に拡大される。応用例としては一部分の冷却でプ
レート全体が冷却される点の応用例としては(イ)大型
コンピュータのコールドプレート、プリント基板群間に
挿入してこれらを冷却するコールドプレート、多数発熱
素子一括冷却用コールドプレート、狭隘な実装部品の間
隙から熱量を取り出し冷却する熱輸送リボン等があり、
一部の加熱によりプレート全体が温度上昇する点の応用
例としては(ロ)強力小型で放熱困難な発熱素子冷却用
の熱拡散プレートがあり、プレート表面の温度均一性の
応用としては(ハ)熱処理用プレートがあり、更にプレ
ートの材質として弾性金属を用いバネ性を与えることに
より(ニ)着脱自在な熱接続リボン、(ホ)挿抜自在な
コールドプレート等としての応用も考えられる。本発明
の他の効果として、蛇行細管ヒートパイプ内蔵のプレー
ト形ヒートパイプに比較して画期的なコスト低減が見込
まれる点が上げられる。これは工程が僅かに2工程で構
成出来ること及び何れの工程も量産が容易な工程であり
且つ自動化が容易な工程であることによる。According to the plate type heat pipe as described above, the tunnel structure is formed in the thin plate of the plate, and the thin tube container is abolished. Since it is possible to build in, it is possible to reduce the thickness of the plate to one half or less of the conventional thickness, the thermal resistance value is also reduced to a few times, and it is possible to achieve large size and weight reduction and high performance. become. The application range of the plate heat pipe thus improved is greatly expanded. As an application example, the point that the whole plate is cooled by cooling a part is as follows: (a) A cold plate of a large computer, a cold plate that is inserted between printed circuit board groups to cool them, and a large number of heating elements collectively cooled There are cold plates, heat transport ribbons that take out heat from the narrow gaps between mounted parts and cool it,
As an application example of the point where the temperature of the entire plate rises due to some heating, (b) there is a heat diffusion plate for cooling the heating element, which is powerful and compact and difficult to dissipate heat. There is also a heat treatment plate, and by applying elastic properties to the material of the plate, it is possible to apply (d) as a detachable thermal connection ribbon, (e) as a detachable cold plate, etc. Another advantage of the present invention is that it is expected to achieve epoch-making cost reduction as compared with a plate-type heat pipe with a meandering thin tube heat pipe. This is because the process can be constituted by only two steps, and any of the steps is a step in which mass production is easy and automation is easy.
【図1】本発明のプレート形ヒートパイプの第1実施例
の構成の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the configuration of a first embodiment of a plate heat pipe of the present invention.
【図2】本発明のプレート形ヒートパイプの第1実施例
の構成の第2の例を示す断面図である。FIG. 2 is a sectional view showing a second example of the configuration of the first embodiment of the plate heat pipe of the present invention.
【図3】本発明のプレート形ヒートパイプの第1実施例
の構成の第3の例を示す断面図である。FIG. 3 is a sectional view showing a third example of the configuration of the first embodiment of the plate heat pipe of the present invention.
【図4】本発明のプレート形ヒートパイプの第1実施例
の構成の第4の例を示す断面図である。FIG. 4 is a sectional view showing a fourth example of the configuration of the first embodiment of the plate heat pipe of the present invention.
【図5】本発明のプレート形ヒートパイプの第1実施例
の平面内部構造の一例をを示す説明図である。FIG. 5 is an explanatory view showing an example of a planar internal structure of the first embodiment of the plate heat pipe of the present invention.
【図6】本発明のプレート形ヒートパイプの第1実施例
の平面内部構造の他の例を示す説明図である。FIG. 6 is an explanatory view showing another example of the planar internal structure of the first embodiment of the plate heat pipe of the present invention.
【図7】本発明のプレート形ヒートパイプの第2実施例
を示す説明図である。FIG. 7 is an explanatory view showing a second embodiment of the plate heat pipe of the present invention.
【図8】本発明のプレート形ヒートパイプの第3実施例
を示す説明図である。FIG. 8 is an explanatory view showing a third embodiment of the plate heat pipe of the present invention.
【図9】本発明のプレート形ヒートパイプの第4実施例
を示す説明図である。FIG. 9 is an explanatory view showing a fourth embodiment of the plate heat pipe of the present invention.
【図10】従来構造のプレート形ヒートパイプの構造の
一例を示す断面説明図である。FIG. 10 is an explanatory sectional view showing an example of the structure of a plate-type heat pipe having a conventional structure.
【図11】図10のプレート形ヒートパイプの平面構造
を示す平面説明図である。11 is an explanatory plan view showing a planar structure of the plate heat pipe of FIG.
【図12】従来構造のプレート形ヒートパイプの構造の
他の例を示す断面説明図である。FIG. 12 is a cross-sectional explanatory view showing another example of the structure of the plate-type heat pipe having the conventional structure.
【図13】図12のプレート形ヒートパイプの平面構造
を示す平面説明図である。13 is an explanatory plan view showing a planar structure of the plate heat pipe of FIG.
1 単位薄板 2 長尺蛇行細溝 2−1 細溝 2−2 溝山 2−3 溝山欠除部 2−4 ターン部 3 平薄板 3−1 金属平板 3−2 金属平板 3−3 金属平板 3−4 金属平板 4 蛇行細径トンネル 4−1 ループ形蛇行細径トンネルヒートパイプ 4−2 非ループ形蛇行細径トンネルヒートパイプ 5 連結細孔 6 プレート形コンテナ 7 支持柱 8 蛇行細管ヒートパイプ 9 スペーサ 10 ろう接充填材 1 unit thin plate 2 long meandering narrow groove 2-1 narrow groove 2-2 groove mountain 2-3 groove groove removing part 2-4 turn part 3 flat thin plate 3-1 metal flat plate 3-2 metal flat plate 3-3 metal flat plate 3-4 Metal flat plate 4 Meandering small-diameter tunnel 4-1 Loop type meandering small-diameter tunnel heat pipe 4-2 Non-loop type meandering small-diameter tunnel heat pipe 5 Connecting pores 6 Plate type container 7 Support column 8 Meandering thin tube heat pipe 9 Spacer 10 Brazing filler
Claims (4)
薄板の積層構造体の中にヒートパイプが内蔵せしめられ
てあるプレート形ヒートパイプであって、所定の単位薄
板の接着面には所定の深さ、所定の幅、所定のピッチで
蛇行する一連の蛇行長尺細溝が形成されてあり、この蛇
行細溝はその両端末が連結されたエンドレスのループ形
をなすか又は両端末が連結されない非ループ形であるか
の何れかであり、その単位薄板の複数枚が相互に積層さ
れてあるか、単位薄板と細溝が形成されていない平薄板
とが相互に積層されてあるかの何れかにより、プレート
内の積層境界面に蛇行する長尺細径の密閉トンネルを有
する層の所定数が形成され、この密閉トンネル内に所定
のヒートパイプ作動液の所定量が封入されて、ループ形
蛇行細管ヒートパイプ又は非ループ形蛇行細管ヒートパ
イプと同一内部構造のループ形蛇行細径トンネルヒート
パイプ又は非ループ形蛇行細径トンネルヒートパイプと
して構成されてあり、且つこの細径トンネルの円形換算
直径は、トンネル内に封入された作動液がその表面張力
により常にトンネル内を閉塞し、如何なる保持姿勢でも
この閉塞状態を維持したままトンネルの軸方向に循環ま
たは振動するよう充分に細径化された直径であることを
特徴とするプレート形ヒートパイプ。1. A plate type heat pipe in which a heat pipe is embedded in a laminated structure of unit thin plates made of a metal material having good thermal conductivity, and a predetermined unit thin plate has a predetermined bonding surface. Is formed with a series of meandering long narrow grooves that meander at a predetermined depth, a predetermined width, and a predetermined pitch.The meandering narrow grooves form an endless loop shape in which both ends are connected or both ends are formed. Either it is a non-loop type that is not connected, and whether multiple unit thin plates are stacked on top of each other, or unit thin plates and flat thin plates on which no thin grooves are formed are stacked on top of each other. By any of the above, a predetermined number of layers having a long and narrow closed tunnel meandering on the stacking boundary surface in the plate is formed, and a predetermined amount of a predetermined heat pipe hydraulic fluid is enclosed in the closed tunnel, Loop type meandering capillary tube heat pie Or a non-loop type meandering thin tube heat pipe with the same internal structure as a loop type meandering small diameter tunnel heat pipe or a non-loop type meandering small diameter tunnel heat pipe, and the circular equivalent diameter of this small diameter tunnel is a tunnel. The hydraulic fluid enclosed in the inside always closes the inside of the tunnel due to its surface tension, and the diameter is sufficiently thin so that it circulates or vibrates in the axial direction of the tunnel while maintaining this closed state in any holding posture. A plate-type heat pipe characterized by this.
さ、所定の幅の細溝群が近接して平行並列に形成されて
あり、それらの細溝群に於けるターン部を形成する隣接
細溝は対をなして形成されてあり、対をなす細溝の端末
は必ず単位薄板面の同一位置に至る迄形成されてあり、
対をなす細溝の間に形成される溝山は対をなす両細溝の
端末部に於て所定の長さだけ欠除せしめられてあり、こ
れにより対をなす細溝の端末部は相互に流通自在にな
り、細溝のターン部として形成されてあり、細溝群全体
としては多数のターン部を有する長尺の蛇行細孔として
形成されてあることを特徴とする請求項1に記載のプレ
ート形ヒートパイプ。2. A group of thin grooves having a predetermined depth and a predetermined width are closely formed in parallel and in parallel on a bonding surface of a predetermined unit thin plate, and a turn portion is formed in the narrow groove group. Adjacent narrow grooves are formed in pairs, and the ends of the pair of narrow grooves are always formed to reach the same position on the unit thin plate surface.
The groove crests formed between the pair of narrow grooves are notched by a predetermined length at the ends of the pair of narrow grooves, whereby the ends of the pair of narrow grooves are mutually separated. 2. It can be freely flown into a groove and is formed as a turn portion of a narrow groove, and the whole thin groove group is formed as a long meandering pore having a large number of turn portions. Plate type heat pipe.
層が積層されて構成されたプレート形ヒートパイプに於
て層間を貫通する連結細孔により各層の蛇行細径トンネ
ルヒートパイプが相互に連結されて、一連長尺のループ
形蛇行細径トンネルヒートパイプ又は非ループ形蛇行細
径トンネルヒートバイプとして構成されてあることを特
徴とする請求項1に記載のプレート形ヒートパイプ。3. A plate type heat pipe constructed by laminating a plurality of layers of meandering thin tunnel heat pipe layers, wherein the meandering small diameter tunnel heat pipes of each layer are connected to each other by connecting pores penetrating the layers. 2. The plate heat pipe according to claim 1, wherein the plate heat pipe is configured as a series of long loop type meandering small diameter tunnel heat pipes or non-loop type meandering small diameter tunnel heat pipes.
プレート形ヒートパイプに於いて、隣接層の蛇行細径ト
ンネル群は軸方向が相互に直交するよう配置されてある
ことを特徴とする請求項1に記載のプレート形ヒートパ
イプ。ト形ヒートパイプ。4. A plate-type heat pipe having a plurality of layers of meandering small-diameter tunnel structures, wherein the meandering small-diameter tunnel groups of adjacent layers are arranged so that their axial directions are orthogonal to each other. The plate-type heat pipe according to item 1. G-shaped heat pipe.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5241918A JP2544701B2 (en) | 1993-08-24 | 1993-08-24 | Plate type heat pipe |
GB9406246A GB2281388B (en) | 1993-08-24 | 1994-03-29 | Heat transfer device with serpentine heat pipes |
DE4419564A DE4419564B4 (en) | 1993-08-24 | 1994-06-03 | Plate heat pipe |
US08/352,217 US5697428A (en) | 1993-08-24 | 1994-12-02 | Tunnel-plate type heat pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5241918A JP2544701B2 (en) | 1993-08-24 | 1993-08-24 | Plate type heat pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0763487A true JPH0763487A (en) | 1995-03-10 |
JP2544701B2 JP2544701B2 (en) | 1996-10-16 |
Family
ID=17081495
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5241918A Expired - Lifetime JP2544701B2 (en) | 1993-08-24 | 1993-08-24 | Plate type heat pipe |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP2544701B2 (en) |
DE (1) | DE4419564B4 (en) |
GB (1) | GB2281388B (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0914875A (en) * | 1995-06-29 | 1997-01-17 | Akutoronikusu Kk | Porous flat metal tube heat pipe type heat exchanger |
JPH0949692A (en) * | 1995-08-09 | 1997-02-18 | Akutoronikusu Kk | Manufacture of thin tunnel plate heat pipe |
JPH0961074A (en) * | 1995-08-25 | 1997-03-07 | Akutoronikusu Kk | Closed temperature control system |
JPH0972680A (en) * | 1995-09-05 | 1997-03-18 | Akutoronikusu Kk | Structure of porous flat tube and manufacture thereof |
JPH09119788A (en) * | 1995-10-25 | 1997-05-06 | Showa Alum Corp | Radiator |
JPH09138083A (en) * | 1995-11-14 | 1997-05-27 | Furukawa Electric Co Ltd:The | Heat guide type heat plate |
JPH09303983A (en) * | 1996-05-09 | 1997-11-28 | Akutoronikusu Kk | Stereo-type heat pipe radiator |
JPH10185465A (en) * | 1996-12-24 | 1998-07-14 | Showa Alum Corp | Plate type heat pipe |
WO1998057111A1 (en) * | 1997-06-10 | 1998-12-17 | Komatsu, Ltd. | Temperature control device comprising heat pipe |
JPH10339591A (en) * | 1997-06-10 | 1998-12-22 | Komatsu Ltd | Temperature controller utilizing heat pipe |
JPH11183068A (en) * | 1997-12-18 | 1999-07-06 | Fujikura Ltd | Plate-shaped heat pipe |
JP2000253538A (en) * | 1999-03-04 | 2000-09-14 | Furukawa Electric Co Ltd:The | Electric junction box |
JP2001280868A (en) * | 2001-02-09 | 2001-10-10 | Actronics Co Ltd | Perforated flat metal heat pipe |
JP2001336889A (en) * | 2000-05-31 | 2001-12-07 | Ts Heatronics Co Ltd | Plate type heat pipe and its manufacturing method |
JP2002022376A (en) * | 2000-07-13 | 2002-01-23 | Teijin Seiki Co Ltd | Heat pipe |
US6360813B1 (en) | 1999-05-20 | 2002-03-26 | Ts Heatronics Co., Ltd. | Electronic components cooling apparatus |
JP2002130964A (en) * | 2000-08-09 | 2002-05-09 | Ts Heatronics Co Ltd | Thermal diffusion plate |
JP2002168578A (en) * | 2000-11-30 | 2002-06-14 | Ntt Advanced Technology Corp | Method for manufacturing heat pipe |
JP2005282951A (en) * | 2004-03-30 | 2005-10-13 | Institute Of Tsukuba Liaison Co Ltd | Heat exchanger having integrated laminate structure |
JP2005337691A (en) * | 2004-05-27 | 2005-12-08 | Ts Heatronics Co Ltd | Fine pore tunnel type heat pipe |
US7190582B2 (en) | 2001-12-13 | 2007-03-13 | Sony Corporation | Cooling device, electronic equipment device, and method of manufacturing cooling device |
JP2009103440A (en) * | 2008-11-20 | 2009-05-14 | Nippon Light Metal Co Ltd | Heat plate and its manufacturing method |
JP2009115448A (en) * | 2008-12-09 | 2009-05-28 | Nippon Light Metal Co Ltd | Heat plate and its manufacturing method |
JP2011101001A (en) * | 2009-11-04 | 2011-05-19 | Dr Ing Hcf Porsche Ag | Cooling device |
US7958934B2 (en) | 2002-08-07 | 2011-06-14 | Denso Corporation | Counter-stream-mode oscillating-flow heat transport apparatus |
JP2018009717A (en) * | 2016-07-12 | 2018-01-18 | 株式会社フジクラ | Oscillation type heat pipe |
JP2018185094A (en) * | 2017-04-26 | 2018-11-22 | レノボ・シンガポール・プライベート・リミテッド | Plate type heat transport device, electronic equipment and manufacturing method of plate type heat transport device |
JP2019173978A (en) * | 2018-03-26 | 2019-10-10 | 新光電気工業株式会社 | Loop type heat pipe and manufacturing method for the same |
JP2020020566A (en) * | 2018-07-23 | 2020-02-06 | 新光電気工業株式会社 | Loop type heat pipe and method of manufacturing the same |
US20200227880A1 (en) * | 2019-01-10 | 2020-07-16 | Hisense Laser Display Co., Ltd. | Laser light source and laser projection device |
WO2020150544A1 (en) * | 2019-01-18 | 2020-07-23 | LU, Ko-Hsin | Thin heat dissipation device and method for manufacturing the same |
KR20210137569A (en) * | 2019-03-26 | 2021-11-17 | 레이던 컴퍼니 | Vibrating Heat Pipes Using Ultrasonic Additive Manufacturing |
JP2021197534A (en) * | 2020-06-18 | 2021-12-27 | 日本発條株式会社 | Laminated body and manufacturing method of the same |
US11592145B2 (en) | 2019-01-10 | 2023-02-28 | Hisense Laser Display Co., Ltd. | Laser light source and laser projection device |
WO2023189070A1 (en) * | 2022-03-29 | 2023-10-05 | 古河電気工業株式会社 | Heat sink |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19628545A1 (en) * | 1996-07-16 | 1998-01-22 | Abb Patent Gmbh | Intensive cooling device for air-cooled current regulator |
WO2002014772A1 (en) * | 2000-08-14 | 2002-02-21 | Ts Heatronics, Co., Ltd. | High thermal conductive metal plate, high thermal conductive stainless steel plate, defogging mirror, medical and sanitary apparatuses, and cooking appliance |
DE102005062590A1 (en) * | 2005-12-27 | 2007-06-28 | Robert Bosch Gmbh | Circuit arrangement e.g. control device circuit arrangement, for motor vehicle, has heat pipes for heat transfer taking place within arrangement and thermally connected with heat transport channel for heat treatment of electronic component |
DE102007017623B4 (en) * | 2007-04-12 | 2009-05-14 | Rittal Gmbh & Co. Kg | Mounting plate for electrical or electronic components |
DE102007053090B4 (en) * | 2007-11-07 | 2011-12-15 | Rohde & Schwarz Gmbh & Co. Kg | Heat sink and cooling arrangement for electrical components and method for producing a heat sink and a cooling arrangement for electrical components |
DE102008052145B4 (en) * | 2008-10-20 | 2011-01-20 | Sew-Eurodrive Gmbh & Co. Kg | Arrangement for tempering an electrical component and electrical appliance with it |
JP5424107B2 (en) * | 2009-10-20 | 2014-02-26 | 中部電力株式会社 | Superconducting magnet with self-excited vibration heat pipe |
DE102013109962A1 (en) | 2013-09-11 | 2015-04-09 | Dr. Ing. H.C. F. Porsche Aktiengesellschaft | Safety device for a vehicle, in particular for a motor vehicle |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT321518B (en) * | 1971-09-17 | 1975-04-10 | Beteiligungs A G Fuer Haustech | Device for heating or cooling rooms using solar radiation |
DE3329325A1 (en) * | 1982-09-03 | 1984-03-08 | Peter 2563 Ipsach Herren | Heat sink for liquid cooling of at least one electrical power element |
DE3402003A1 (en) * | 1984-01-21 | 1985-07-25 | Brown, Boveri & Cie Ag, 6800 Mannheim | PERFORMANCE SEMICONDUCTOR MODULE |
JPH063354B2 (en) * | 1987-06-23 | 1994-01-12 | アクトロニクス株式会社 | Loop type thin tube heat pipe |
JPH02103957A (en) * | 1988-10-13 | 1990-04-17 | Furukawa Electric Co Ltd:The | Heat pipe type cooling apparatus |
JP2741255B2 (en) * | 1989-08-18 | 1998-04-15 | 株式会社日立製作所 | Heat transfer material for boiling cooling |
US5179500A (en) * | 1990-02-27 | 1993-01-12 | Grumman Aerospace Corporation | Vapor chamber cooled electronic circuit card |
US5219020A (en) * | 1990-11-22 | 1993-06-15 | Actronics Kabushiki Kaisha | Structure of micro-heat pipe |
-
1993
- 1993-08-24 JP JP5241918A patent/JP2544701B2/en not_active Expired - Lifetime
-
1994
- 1994-03-29 GB GB9406246A patent/GB2281388B/en not_active Expired - Fee Related
- 1994-06-03 DE DE4419564A patent/DE4419564B4/en not_active Expired - Fee Related
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0914875A (en) * | 1995-06-29 | 1997-01-17 | Akutoronikusu Kk | Porous flat metal tube heat pipe type heat exchanger |
JPH0949692A (en) * | 1995-08-09 | 1997-02-18 | Akutoronikusu Kk | Manufacture of thin tunnel plate heat pipe |
JPH0961074A (en) * | 1995-08-25 | 1997-03-07 | Akutoronikusu Kk | Closed temperature control system |
JPH0972680A (en) * | 1995-09-05 | 1997-03-18 | Akutoronikusu Kk | Structure of porous flat tube and manufacture thereof |
JPH09119788A (en) * | 1995-10-25 | 1997-05-06 | Showa Alum Corp | Radiator |
JPH09138083A (en) * | 1995-11-14 | 1997-05-27 | Furukawa Electric Co Ltd:The | Heat guide type heat plate |
JPH09303983A (en) * | 1996-05-09 | 1997-11-28 | Akutoronikusu Kk | Stereo-type heat pipe radiator |
JPH10185465A (en) * | 1996-12-24 | 1998-07-14 | Showa Alum Corp | Plate type heat pipe |
WO1998057111A1 (en) * | 1997-06-10 | 1998-12-17 | Komatsu, Ltd. | Temperature control device comprising heat pipe |
JPH10339591A (en) * | 1997-06-10 | 1998-12-22 | Komatsu Ltd | Temperature controller utilizing heat pipe |
JPH11183068A (en) * | 1997-12-18 | 1999-07-06 | Fujikura Ltd | Plate-shaped heat pipe |
JP2000253538A (en) * | 1999-03-04 | 2000-09-14 | Furukawa Electric Co Ltd:The | Electric junction box |
US6360813B1 (en) | 1999-05-20 | 2002-03-26 | Ts Heatronics Co., Ltd. | Electronic components cooling apparatus |
JP2001336889A (en) * | 2000-05-31 | 2001-12-07 | Ts Heatronics Co Ltd | Plate type heat pipe and its manufacturing method |
JP4584413B2 (en) * | 2000-05-31 | 2010-11-24 | ティーエス ヒートロニクス 株式会社 | Plate type heat pipe and manufacturing method thereof |
JP2002022376A (en) * | 2000-07-13 | 2002-01-23 | Teijin Seiki Co Ltd | Heat pipe |
JP4514910B2 (en) * | 2000-07-13 | 2010-07-28 | ナブテスコ株式会社 | Hollow heat pipe |
JP2002130964A (en) * | 2000-08-09 | 2002-05-09 | Ts Heatronics Co Ltd | Thermal diffusion plate |
JP2002168578A (en) * | 2000-11-30 | 2002-06-14 | Ntt Advanced Technology Corp | Method for manufacturing heat pipe |
JP2001280868A (en) * | 2001-02-09 | 2001-10-10 | Actronics Co Ltd | Perforated flat metal heat pipe |
US7190582B2 (en) | 2001-12-13 | 2007-03-13 | Sony Corporation | Cooling device, electronic equipment device, and method of manufacturing cooling device |
US7958934B2 (en) | 2002-08-07 | 2011-06-14 | Denso Corporation | Counter-stream-mode oscillating-flow heat transport apparatus |
JP2005282951A (en) * | 2004-03-30 | 2005-10-13 | Institute Of Tsukuba Liaison Co Ltd | Heat exchanger having integrated laminate structure |
JP2005337691A (en) * | 2004-05-27 | 2005-12-08 | Ts Heatronics Co Ltd | Fine pore tunnel type heat pipe |
JP2009103440A (en) * | 2008-11-20 | 2009-05-14 | Nippon Light Metal Co Ltd | Heat plate and its manufacturing method |
JP2009115448A (en) * | 2008-12-09 | 2009-05-28 | Nippon Light Metal Co Ltd | Heat plate and its manufacturing method |
JP2011101001A (en) * | 2009-11-04 | 2011-05-19 | Dr Ing Hcf Porsche Ag | Cooling device |
JP2018009717A (en) * | 2016-07-12 | 2018-01-18 | 株式会社フジクラ | Oscillation type heat pipe |
TWI691694B (en) * | 2017-04-26 | 2020-04-21 | 新加坡商聯想(新加坡)私人有限公司 | Plate type heat conveying device, electronic equipment and manufacturing method of plate type heat conveying device |
JP2018185094A (en) * | 2017-04-26 | 2018-11-22 | レノボ・シンガポール・プライベート・リミテッド | Plate type heat transport device, electronic equipment and manufacturing method of plate type heat transport device |
US10677539B2 (en) | 2017-04-26 | 2020-06-09 | Lenovo (Singapore) Pte Ltd | Plate-type heat transport device |
JP2019173978A (en) * | 2018-03-26 | 2019-10-10 | 新光電気工業株式会社 | Loop type heat pipe and manufacturing method for the same |
JP2020020566A (en) * | 2018-07-23 | 2020-02-06 | 新光電気工業株式会社 | Loop type heat pipe and method of manufacturing the same |
US11570411B2 (en) * | 2019-01-10 | 2023-01-31 | Hisense Laser Display Co., Ltd. | Laser light source and laser projection device |
US20200227880A1 (en) * | 2019-01-10 | 2020-07-16 | Hisense Laser Display Co., Ltd. | Laser light source and laser projection device |
US11592145B2 (en) | 2019-01-10 | 2023-02-28 | Hisense Laser Display Co., Ltd. | Laser light source and laser projection device |
WO2020150544A1 (en) * | 2019-01-18 | 2020-07-23 | LU, Ko-Hsin | Thin heat dissipation device and method for manufacturing the same |
US11974411B2 (en) | 2019-01-18 | 2024-04-30 | Lee Ke Chin | Thin heat dissipation device and method for manufacturing the same |
KR20210137569A (en) * | 2019-03-26 | 2021-11-17 | 레이던 컴퍼니 | Vibrating Heat Pipes Using Ultrasonic Additive Manufacturing |
JP2022528643A (en) * | 2019-03-26 | 2022-06-15 | レイセオン カンパニー | Vibration heat pipe using ultrasonic additive manufacturing |
JP2021197534A (en) * | 2020-06-18 | 2021-12-27 | 日本発條株式会社 | Laminated body and manufacturing method of the same |
WO2023189070A1 (en) * | 2022-03-29 | 2023-10-05 | 古河電気工業株式会社 | Heat sink |
Also Published As
Publication number | Publication date |
---|---|
GB2281388A (en) | 1995-03-01 |
DE4419564B4 (en) | 2006-12-07 |
JP2544701B2 (en) | 1996-10-16 |
GB2281388B (en) | 1997-05-14 |
GB9406246D0 (en) | 1994-05-18 |
GB2281388A8 (en) | 1996-10-28 |
DE4419564A1 (en) | 1995-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2544701B2 (en) | Plate type heat pipe | |
US5697428A (en) | Tunnel-plate type heat pipe | |
US5628363A (en) | Composite continuous sheet fin heat exchanger | |
JPH0914875A (en) | Porous flat metal tube heat pipe type heat exchanger | |
JP2017180856A (en) | Heat exchanger | |
US20180045472A1 (en) | Heat exchanger device | |
JP2010010418A (en) | Laminated cooler | |
JP7110390B2 (en) | Diffusion bonded heat exchanger | |
JP6528283B2 (en) | Heat exchanger | |
JP6321067B2 (en) | Diffusion bonding type heat exchanger | |
JPWO2019043802A1 (en) | Heat exchanger | |
JP2014142143A (en) | Heat pipe | |
US20090288811A1 (en) | Aluminum plate-fin heat exchanger utilizing titanium separator plates | |
JP3829242B2 (en) | Flat piping | |
WO2012008348A1 (en) | Heat exchanger | |
JP4193189B2 (en) | Pressure-resistant structure thin plate heat pipe and its manufacturing method | |
CN116734642A (en) | High heat flux modularization samming board | |
GB2426042A (en) | Plate fin heat exchanger assembly | |
JP2018141602A (en) | Micro flow passage heat exchanger | |
JPH03204596A (en) | Plate type heat exchanger | |
JP3364758B2 (en) | Heat sink for flat heating element | |
JP2015200445A (en) | Heat exchanger and method of manufacturing heat exchanger | |
CN218472067U (en) | Liquid cooling board and battery package | |
JPH01200134A (en) | Ice making heat exchanger for heat accumulation type cooling and heating device | |
JPH04260791A (en) | Heat transporting device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090725 Year of fee payment: 13 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100725 Year of fee payment: 14 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 15 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 15 |
|
R360 | Written notification for declining of transfer of rights |
Free format text: JAPANESE INTERMEDIATE CODE: R360 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 15 |
|
R370 | Written measure of declining of transfer procedure |
Free format text: JAPANESE INTERMEDIATE CODE: R370 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 15 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 16 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 16 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 16 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 17 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |