WO1998056732A1 - Nouvelle phase liante pour ciments phosphomagnesiens - Google Patents

Nouvelle phase liante pour ciments phosphomagnesiens Download PDF

Info

Publication number
WO1998056732A1
WO1998056732A1 PCT/FR1998/001185 FR9801185W WO9856732A1 WO 1998056732 A1 WO1998056732 A1 WO 1998056732A1 FR 9801185 W FR9801185 W FR 9801185W WO 9856732 A1 WO9856732 A1 WO 9856732A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
compound
parts
cement
size
Prior art date
Application number
PCT/FR1998/001185
Other languages
English (en)
Inventor
Dominique Lemos
Gilles Orange
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to AU79253/98A priority Critical patent/AU7925398A/en
Publication of WO1998056732A1 publication Critical patent/WO1998056732A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a new phosphomagnesium cement.
  • the preparation of a phosphomagnesium-type cement involves mixing the binding phase with water, possibly aggregates and various additives depending on the intended application.
  • the present invention therefore aims to provide a phosphomagnesium cement leading to mortars or grout having no demixing phenomenon, or phenomenon of water absorption by a support, while retaining the advantages of phosphomagnesium mortars and grout namely fast setting and hardening times.
  • Another aim is to provide a phosphomagnesium cement which does not exhibit demixing phenomenon while developing improved mechanical properties.
  • Another aim is to provide a phosphomagnesium cement whose mortar exhibits a rheological behavior adapted to the conditions of use.
  • the present invention relates to a phosphomagnesium cement obtained by mixing water and a binder phase based on:
  • At least one mineral compound A said mineral compound being introduced in the form:. either of particles (1) of size less than OJ ⁇ m,
  • agglomerates (3) capable of at least partially disaggregating, when mixing said binder phase and water, into particles of size less than
  • Another object of the invention relates to the use of this cement for the production of mortars or grout
  • the invention also relates to a composite material based on such cement and fibers.
  • the invention firstly relates to a phosphomagnesium cement obtained by mixing water and a binding phase based on: - at least one phosphorus compound,
  • agglomerates (3) capable of disaggregating at least in part, during the mixing of said binder phase and water, into particles of size less than 0J ⁇ m or into aggregates of size less than 0.1 ⁇ m, - at least one mineral compound B, the elementary particles of which have a size of between OJ and 1 ⁇ m,
  • the cements consist of a binding phase comprising, where appropriate, the usual additives in the field.
  • a different term is used to define cements comprising aggregates, in addition to said binding phase and any additives, for convenience, in the description, the unique term "cement" will be used to name these two types of compositions .
  • the cement according to the invention is a phosphomagnesium cement.
  • the binding phase of such a cement therefore comprises a first constituent based on phosphorus and a second constituent based on magnesium.
  • all of the phosphorus compounds can be used insofar as they comprise phosphorus pentoxide, available directly or in the form of a precursor.
  • phosphorus-based compound there may be mentioned without intending to be limited, phosphorus pentoxide, phosphoric acid or derivatives such as orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, or else salts of such acids, such as phosphates, hydrogenophosphates, orthophosphates, pyrophosphates, polyphosphates, tripolyphosphates, tetrapolyphosphates, aluminum, calcium, potassium, magnesium, ammonium, or mixtures thereof.
  • the salts of the phosphorus-based acids mentioned above are used.
  • phosphates potassium phosphate, magnesium, ammonium, or mixtures thereof are used.
  • the phosphorus-based constituent is ammonium dihydrogenophosphate, optionally mixed with ammonium tripolyphosphate.
  • the phosphorus-based constituent may be in a liquid or preferably solid form.
  • the phosphorus-based constituent is in the form of particles whose particle size is more particularly at most 300 ⁇ m. It should be noted that this value is not critical and that, if it is possible to use constituents whose particle size is greater than 300 ⁇ m, grinding before incorporation into the composition according to the invention may be desirable .
  • the constituent is used in a form adsorbed on a porous support. By way of support, mention may be made, for example, of diatomaceous earth, clay, bentonite, silica, alumina. The adsorption is carried out in a manner known per se.
  • the phosphorus-based constituent in solution or in suspension, is brought into contact with the support, with stirring, then the resulting suspension is heated so as to evaporate the excess liquid.
  • This operation can likewise be carried out by impregnating the support in a drum or on a rotating disc.
  • the second element of the binding phase is at least one magnesium-based constituent.
  • Any magnesium-based compound is suitable for the present invention insofar as it reacts with the first constituent, in the presence of water.
  • magnesium oxide By way of example, mention may be made, as suitable for carrying out the invention, of the following constituents: magnesium oxide, magnesium hydroxide, magnesium carbonate.
  • a constituent based on magnesium oxide is used.
  • Particularly suitable for so-called dead burned magnesia usually obtained after calcination of magnesium carbonate, at temperatures above 1200 ° C.
  • said magnesium oxide can be used in a pure form or can optionally comprise at least one element of the calcium, silicon, aluminum or even iron type; these elements being generally in the form of oxide or hydroxide.
  • this type of compound mention may be made of dolomite, a mixture comprising in particular magnesium oxide and calcium oxide. If magnesium oxide is used in pure form, the purity of said oxide is at least 80%.
  • a magnesium-based constituent is used whose specific surface is less than 4 nf7g. More specifically, the specific surface is less than 2 m 2 / g. Furthermore, the particle size of said constituent is usually between
  • the proportion of the magnesium-based constituent (expressed by weight of MgO) relative to that of the phosphorus-based constituent (expressed by weight of P2O5) is more particularly between 1 and 3.
  • the first essential characteristic of the cement according to the invention is that its binding phase comprises, in addition to the phosphorus and magnesium compounds, at least one mineral compound A having particular conditions on the shape of the objects which constitute it and the size of these objects.
  • the binding phase is based on phosphorus and magnesium compounds and at least one mineral compound A, the latter being introduced into the cement in the form of particles (1) of size less than OJ ⁇ m.
  • particles (1) is meant indivisible objects, having a unitary, unified form.
  • the binding phase is based on phosphorus and magnesium compounds and at least one mineral compound A, the latter being introduced into the cement in the form of aggregates (2).
  • aggregates (2) is meant objects formed from the encirclement of several smaller objects, which are themselves in a unitary, unified form, such as the particles defined above.
  • the aggregates introduced have a size less than OJ ⁇ m.
  • the binding phase is based on phosphorus and magnesium compounds and at least one mineral compound A, the latter being introduced in the form of agglomerates (3).
  • Agglomerates (3) are understood to mean objects formed from the stack of several smaller objects: particles and / or aggregates.
  • the agglomerates introduced must be able to at least partially disaggregate into the objects which constitute them (particles or aggregates), in order to lead in the mixed with objects smaller than OJ ⁇ m.
  • the mineral compound A of the binding phase In the cement from the mixture of the binding phase (compound of phosphorus • + * compound of magnesium + mineral compound A + mineral compound B + mineral compound C) and water, the mineral compound A of the binding phase must be present in the form of objects of size less than 0.1 ⁇ m, said objects (particles, aggregates) having been introduced as is or in agglomerated form. Their mixture with the phosphorus and magnesium compounds, and the water must lead in the latter case to their disagglomeration.
  • the mineral compound can be introduced as a mixture of these three forms (particles, aggregates, agglomerates).
  • size is understood to mean the average size of the particles, aggregates or agglomerates. This size is measured by transmission electron microscopy (TEM) for objects of size less than OJ ⁇ m, and by laser granulometry for objects of size greater than OJ ⁇ m.
  • TEM transmission electron microscopy
  • the mineral compound A is introduced in the form of agglomerates having a size of at most 60 ⁇ m, advantageously at most 20 ⁇ m. Such a size of the agglomerates allows easier handling of the mineral compound.
  • the mineral compound A can be chosen from Si ⁇ 2, Ti ⁇ 2, AI 2 O 3 , ZrO 2 , Cr 2 0 3 , talc, mica, kaolin, wollastonite, bentonite, metakaolin. They can be synthetic products. They can be crystallized or amorphous compounds obtained, for example, by grinding and sieving to the desired size.
  • This precipitation silica preferably has a specific surface of between 50 and 250 m 2 / g.
  • the silica introduced may advantageously be in the form of agglomerates of average size less than 50 ⁇ m, said agglomerates being made up of aggregates of average size less than 0J ⁇ m.
  • It may, for example, be precipitated silica T38AB sold by Rhône-Poulenc in the form of agglomerates of size less than 50 ⁇ m. These agglomerates divide in the mixture of binding phase and water in the form of aggregates of size less than 0.1 ⁇ m. These aggregates, which are themselves formed of elementary particles of size 15 nm, are indivisible in the binder / water phase mixture.
  • ground silica smoke fumed silica, lignite, smectite.
  • the content of mineral compound A in the binding phase of the cement according to the invention is generally between 1 and 20 parts by weight per 100 parts of the binding phase, preferably between 1 and 15 parts.
  • the binding phase also comprises at least one inorganic compound B, the elementary particles of which have a size of between 0J and 1 ⁇ m.
  • This compound B can be can be chosen from SiO, TiO 2 , AI 2 O 3 , ZrO 2 , Cr 2 O 3 , talc, mica, kaolin, wollastonite, bentonite, metakaolin, fly ash. They can be synthetic products. They can be crystallized or amorphous compounds obtained, for example, by grinding and sieving to the desired size. Preferably, it is silica smoke. It may, for example, be silica smoke marketed by the company Elkem, the elementary particles of which have a size of between OJ and 0.8 ⁇ m.
  • the amount of compound B in the cement according to the invention is at least 2 parts by weight per 100 parts by weight of binder phase, preferably at most 12 parts by weight per 100 parts by weight of binder phase .
  • the binding phase also comprises at least one inorganic compound C, the elementary particles of which have a size of between 1 and 100 ⁇ m, preferably between 1 and 50 ⁇ m.
  • This compound C can be can be chosen from sand, SiO 2 , TiO 2 , AI 2 O 3 , Zr0 2 ,
  • Cr 2 O 3 talc, mica, kaolin, wollastonite, bentonite, metakaolin, fly ash.
  • They can be synthetic products. They can be crystallized or amorphous compounds obtained, for example, by grinding and sieving to the desired size.
  • fly ash for example siliceous ash sold by the company Carling, the elementary particles of which have a size of between 5 and 25 ⁇ m.
  • the amount of compound C in the cement according to the invention is at least 10 parts by weight per 100 parts by weight of binder phase, preferably at most 30 parts by weight per 100 parts by weight of binder phase .
  • the size of the elementary particles corresponds to the average size of the elementary particles measured after deagglomeration. This size is measured by laser particle size.
  • the bonding phase of the cement according to the invention further comprises at least one organic silicon compound.
  • This compound can be chosen from silicones, silanes, siliconates.
  • a particularly interesting compound is an aqueous silicone dispersion, characterized: - in that the droplets of non-aqueous phase of this dispersion are obtained from at least one polyorganosiloxane (POS) resin (A), having the particularity, before emulsification: . be a carrier of condensable hydroxyl substituents and present at a level of at least 0.05% by weight;
  • POS polyorganosiloxane
  • siloxyl units D, T and optionally M and / or Q the siloxy units T being present in a molar ratio T / (M + D + T + Q) of between 0.5 and 0.85,
  • composition of its non-aqueous phase is as follows:
  • POS resins (A) of the type defined above and optionally substituted by at least one activation function Fa 100 parts by weight of one or more POS resins (A) of the type defined above and optionally substituted by at least one activation function Fa,. 0 to 20 parts by weight of at least one basic activator (B) chosen, preferably, from water-soluble or water-dispersible amines and / or from products obtained from silanes and / or oligo or polysiloxane carriers, per molecule and before emulsification, at least one hydroxyl and at least one activation function Fa with the condition that the composition is free of activator (B) if and only if the functions Fa carried by other components of the composition, in particular those carried by (A) and / or by (D), are present in sufficient quantity; . at least one condensation catalyst (C) selected, preferably from organometallic compounds and more preferably dialkyltin dicarboxylates;
  • the amount of organic silicon compound present in the cement is at least 0J0 parts by weight per 100 parts by weight of binder phase, preferably d '' at most 5 parts by weight.
  • the organic silicon compound can be introduced in liquid or solid form.
  • the silicon compound is used in a form adsorbed on a porous support.
  • a porous support mention may be made, for example, of diatomaceous earth, clay, bentonite, silica, alumina, magnesia.
  • the adsorption is carried out in a manner known per se.
  • the silicon compound, in solution or in suspension is brought into contact with the support, under stirring, then the resulting suspension is heated so as to evaporate the excess liquid. This operation can even be carried out by impregnating the support in a drum or a rotating disc.
  • This organic silicon compound brings different properties to the cement according to the invention: it makes it possible to reduce the percentage of occluded air and to waterproof cement. The cement obtained is therefore improved from the point of view of:
  • the level of adhesion on concrete support is increased by more than 50% compared to the same mortar formula tested under the same conditions but without the addition of an organic silicon compound.
  • the loss of mass by chemical attack is reduced by 50% compared to the same mortar formula tested under the same conditions but without adding an organic silicon compound.
  • the bonding phase of the cement according to the invention can also comprise an agent delaying setting. More particularly, this agent is chosen from compounds capable of complexing magnesium.
  • the latter can in particular be carboxylic acids, such as citric, oxalic, tartaric acids, acids, esters or salts containing boron, acids, esters or salts containing phosphorus, such as sodium tripolyphosphate, ferrous sulfate, sodium sulfate and lignosulfonate, zinc chloride, copper acetate, sodium gluconate, sulfate sodium acetate cellulose, the product of the reaction of formaldehyde with aminolignosulfate, dialdehyde starch, N, N- dimethyloldihydroxyethylene urea, silicofluorides, tall oil and sucrose, these compounds being taken alone or as a mixture.
  • the carboxylic acids are used, alone or as a mixture, and preferably the acids, esters or salts containing boron.
  • boric acid and its salts such as the alkali metal salts, such as sodium (borax), the amine or ammonium.
  • the esters of boric acid are also suitable for implementing the invention, such as trialkyloxyborates, triaryloxyborates.
  • the additive is used in the form of a powder whose average diameter is from 10 to 200 ⁇ m.
  • the quantity of agent delaying the setting is at most 10 parts by weight per 100 parts by weight of the three aforementioned constituents (compounds of phosphorus and magnesium and mineral compound). Preferably, this quantity is at most 5 parts by weight relative to the same reference.
  • the cements obtained by the mixture according to the invention can also comprise aggregates of size greater than 100 ⁇ m, as constituent elements.
  • the quantity of aggregates in the cement according to the invention is at most 1000 parts by weight per 100 parts by weight of binder phase.
  • the amount of sand, silica or the other compounds mentioned in the above list is at most 900 parts by weight relative to the same reference as above.
  • the amount of condensed silica smoke or fly ash is preferably at most 100 parts by weight per 100 parts by weight of binder phase.
  • the cement according to the invention can also comprise a water-repellent agent.
  • the cement according to the invention can comprise all the conventional additives, such as thinning agents, such as sodium lignosulfonate and naphthalene sulfonate condensates, naphthalene, tripolyphosphate, sodium hexametaphosphate, ammonium hydrogen phosphate. , melanin, alkyl siiiconates, aminopropyltriethoxysilane, sucroglycerides, polyacrylates, potassium siliconate.
  • thinning agents such as sodium lignosulfonate and naphthalene sulfonate condensates, naphthalene, tripolyphosphate, sodium hexametaphosphate, ammonium hydrogen phosphate.
  • melanin alkyl siiiconates, aminopropyltriethoxysilane, sucroglycerides, polyacrylates, potassium siliconate.
  • Antifoaming agents can likewise be constituent elements of the cement according to the invention.
  • antifoams based on polydimethylsiloxanes and polypropylene glycol.
  • silicones in the form of a solution, of a solid, and preferably in the form of a resin, of an oil or of an emulsion, preferably, in water.
  • Particularly suitable are the silicones essentially comprising units M (RSiOr j 5) and D (R2SKI ".
  • the radicals R identical or different, are more particularly chosen from hydrogen and alkyl radicals comprising 1 to 8 atoms of carbon, the methyl radical being preferred, the number of units is preferably between 30 and 120.
  • texture and viscosity agents can be added: cellulose fibers, guar, starch, cellulose ether, starch ethers, polyvinyl alcohol.
  • the quantity of these additives in the cement is at most 10 parts by weight per 100 parts by weight of binder phase.
  • the amount of additives is at most 5 parts by weight.
  • the cement according to the invention can also comprise at least one additive chosen from polymers in the form of particles insoluble in water, and water.
  • the monomers can be chosen from:
  • the acrylic esters that is to say the esters of acrylic acid and of methacryic acid with C * - C ⁇ 2 alkanols, preferably C1-C3, such as methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, isobutyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, methacrylate n-butyl, isobutyl methacrylate,
  • - ethylenic unsaturated mono and di-carboxylic acids such as acrylic acid, methacryiic acid, itaconic acid, maleic acid, fumaric acid and the mono-alkyl esters of dicarboxylic acids of the type mentioned with the alkanols preferably having 1 to 4 carbon atoms and their N-substituted derivatives,
  • ethylene monomers containing a sulfonic acid group and its alkali or ammonium salts for example vinylsulfonic acid, vinylbenzene sulfonic acid, alpha-acrylamido methylpropane-sulfonic acid, 2-sulfoethylenemethacrylate,
  • - ethylenically unsaturated monomers comprising a secondary, tertiary or quaternary amino group or a heterocyciic group containing nitrogen, for example vinylpyridines, vinylimidazole, aminoalkyl (meth) acrylates and aminoalkyl (meth) acrylamides such as dimethylaminoethylacrylate or methacrylate, ditertiobutylamino-ethylacrylate or -methacrylate, dimethylamino methylacrylamide or -methacrylamide ... as well as zwitterionic monomers such as sulfopropyl (dimethyl) aminopropyl acrylate ...
  • esters of (meth) acrylic acids with alkanediols preferably containing 2-8 carbon atoms such as mono (meth) acrylate of glycol, mono (meth) acrylate of hydroxypropyl, mono (meth) acryiate of 1 -4 butanediol as well as the monomers comprising two polymerizable double bonds such as ethylene glycol dimethacrylate,
  • the polymer used in the cement according to the invention is obtained from the polymerization of at least one ethylenically unsaturated monomer and at least one monomer chosen from monomers with a carboxylic function and acrylamide or methacrylamide .
  • the ethylenically unsaturated monomer can be chosen from: styrene, butadiene, acrylic or methacrylic esters of C 1 -C 12 alkyl and their corresponding acids or vinyl esters. It may advantageously be a water-insoluble polymer prepared from a styrene / butadiene mixture as regards the ethylenically unsaturated monomers.
  • the monomer having a carboxylic function can be chosen from carboxylic acids containing ethylenic unsaturation. It can for example be chosen from acrylic acid, itaconic acid, fumaric acid, crotonic acid, maleic acid, maleic anhydride, mesaconic acid, glutaconic acid or their mixtures.
  • the polymers prepared from a mixture of monomers comprising 99.9 to 92% by weight of at least one ethylenically unsaturated monomer and 0.1 to 8% by weight, preferably 2 to 5%, of at least one monomer with a carboxylic function.
  • the polymer is obtained from the polymerization of at least one monomer chosen from vinyl esters of carboxylic acid such as vinyl acetate, vinyl versatate, vinyl propionate. It can in particular be a vinyl versatate / vinyl acetate copolymer.
  • the polymer can be introduced into the mixture in various forms.
  • the polymer is in the form of a dispersion in water of particles of the polymer. It is what is commonly called a latex.
  • Such latexes are obtained by the process as defined above.
  • the value of their dry extract is not critical. It is generally around 50% by weight.
  • the size of the latex particles resulting from the polymerization of ethylenically unsaturated monomers and of monomers with a carboxylic function can be between 0.05 and 5 ⁇ m, preferably between 0.12 and 0J8 ⁇ m, even more preferably between 0J 0 and 0 , 20 ⁇ m. That of the latex particles resulting from the polymerization of vinyl ester monomers of carboxylic acids is generally between 1 and 2 ⁇ m.
  • the polymer is in the form of a powder redispersible in water.
  • the polymer is introduced into the cement mixture in an amount such that its content is 0.5 to 30 parts by weight per 100 parts by weight of binder phase.
  • the cement can be obtained by bringing the binder phase described above into contact with at least one polymer insoluble in water and in addition at least one second additive chosen from aminoalkylsilanes, and water.
  • the aminosilane is an aminoalkyl (ethoxysilane).
  • anti-foaming or boiling agents such as polypropylene glycol.
  • the amount of water to be introduced for the preparation of the cement according to the invention is such that a homogeneous and malleable plastic paste is obtained. It depends on the subsequent application of the cement. Indeed, if one wishes to make internal coatings of piping, the composition is generally more cohesive than a cement intended to constitute a floor covering, or for the preparation of slabs or panels. In general, the water content is at most 50% by weight, preferably between 35 and 40%, relative to the weight of binder phase.
  • the cements according to the invention have the advantage of exhibiting no demixing phenomenon, improved mechanical properties, and more particularly, they exhibit rheological behavior adapted to their application.
  • the mixing of the binding phase and the water can be carried out by any suitable method.
  • a composition is generally prepared comprising the binder phase, the aggregates, if necessary the retarding agent and all or part of the optional additives in general solid, previously mentioned, in particular the organic silicon compound.
  • Said composition is then mixed with water, the latter comprising, if this is the case, the elements not introduced in the previous stage of preparation of the composition, such as liquid additives in particular.
  • the components are mixed by any known means and preferably under shearing conditions, for example using a mixer.
  • the mixing operation is advantageously carried out at a temperature close to room temperature.
  • the cements according to the invention can be used as grout or mortar depending on the proportions of water and aggregates used and the nature of these aggregates. It is possible to use them as repair and sealing mortars, for example in the rapid repair of roads, bridges, and airport runways. Thus, they are used to seal cracks, holes or cover degraded areas as well as for the repair of reinforced concrete structures. Indeed, mortars or grouts, in addition to good adhesion to so-called Portland cements, have significant mechanical properties of resistance to bending and compression, making them particularly suitable for this type of application.
  • They can likewise be used as floor coverings, pipes, resistant to chemical attacks, having excellent hardness and resistance to abrasion. They can also be used for the production of panels in general and in particular of interior or exterior facing panels. For this, the composition obtained is poured into an appropriate mold, to give slabs or panels. It can also be projected. The molded or sprayed products are then allowed to dry, advantageously at a temperature close to room temperature.
  • the present invention finally relates to a composite material based on the cement described above and on fibers.
  • fibers suitable for obtaining said material mention may be made of polypropylene, polyester, polyamide fibers, such as for example KEVLAR®, carbon fibers, polyamide, polyvinyl alcohol, cellulose fibers or amorphous cast ribbons.
  • Glass fibers can likewise be used to obtain the composite material according to the invention. All the glass fibers usually used in cements are suitable. It is therefore possible to use alkali-resistant fibers, such as the special glass fibers obtained in particular by treatment with zirconium, as well as the soda-lime glass fibers. However, advantageously, the standard glass fibers are also suitable for obtaining composite materials according to the invention. This is the case of conventional glasses such as borosilicate glasses which are usually destroyed in an alkaline medium.
  • the fibers have lengths varying from 5 mm to several hundred millimeters.
  • the amount of fibers in the composite material according to the invention is between 1 and 10% relative to the weight of binder phase.
  • the composite materials according to the invention are obtained by mixing the cement as described above, with the fibers. The mixing is done under the same cement preparation conditions and will therefore not be repeated here.
  • the composition thus obtained is poured into an appropriate mold, to give slabs or panels.
  • the molded products are then allowed to dry, advantageously at a temperature close to room temperature.
  • the composite materials according to the invention can be used in particular to give facade panels. The advantage of these materials lies in their manufacturing speed, and mainly in their drying speed.
  • Prismatic test pieces (4 ⁇ 4 ⁇ 16 cm 3 ) are produced by pouring the mortar or the grout into standard mild steel molds. These test pieces are removed from the mold 1 hour after setting time and dried at room temperature. The mechanical properties are tested on these test pieces.
  • the tests are carried out in three-point bending (NFP 18407) on six half-test pieces and in compression (NFP 15451) on six half-test pieces using a hydraulic testing machine (200 kN).
  • Adhesion measurement is carried out in three-point bending (NFP 18407) on six half-test pieces and in compression (NFP 15451) on six half-test pieces using a hydraulic testing machine (200 kN).
  • a 1 cm coating is made from the mortar or grout to be tested on a concrete slab. A day later, coring of the dry coating is then carried out, and a metal stud is glued into the hole left by the coring. The stud is then torn off using a tachometer: the force applied for an area of 20 to 25 cm 2 determines the value of the adhesion.
  • the occluded air is measured on the fresh mortar using a 1 liter capacity aerometer according to DIN 1164.
  • a prismatic test piece (4 ⁇ 4 ⁇ 16 cm 3 ) is produced. It is removed from the mold 24 hours later and stabilized for 6 days in a conditioned room (23 ° C, 50% humidity). It is then weighed. The test piece is then placed vertically in a container containing a quantity of water such that a small part of the test pieces is immersed (submerged height: 2 to 3 mm). The water repellency is evaluated by capillary absorption, which is followed by the mass gain ( ⁇ m) of the test piece.
  • a phosphomagnesium mortar is prepared from the following constituents:
  • binder phase consisting of:
  • silica sand E 10 whose elementary particles have a size of the order of 100 ⁇ m
  • CEN 31 196-1 50% by weight of CEN 31 196-1 standardized sand whose elementary particles have a size of between 100 and 500 ⁇ m.
  • the T38AB silica is a precipitation silica marketed by Rhône-Poulenc having the following characteristics: - size of the agglomerates: 50 ⁇ m
  • the mortar is prepared by mixing the materials defined above with water: the water content is such that the weight ratio water / binder phase is 0.36.
  • the mixing is carried out as follows: the materials are kneaded using a HOBART type kneader in the dry state for 30 s at low speed (60 rpm), then water is added in the proportion desired. Then, the mixing is continued for 1 min 30 at low speed and then 1 min 30 at high speed (120 rpm).
  • the mortar obtained is very fluid: it flows when applied to a vertical support. This behavior greatly limits the use of mortar.
  • the mechanical properties at 7 days are as follows:
  • compressive strength 35 MPa.
  • flexural strength 6.5 MPa.
  • the adhesion on concrete is 0.8 MPa.
  • a phosphomagnesium mortar is prepared from the following constituents:
  • boric acid which is a retarding agent
  • silica smoke 940 UP sold by ELKEM, the elementary particles of which have a size of between 0J and 1 ⁇ m,. 7.8% by weight of C600 sand, the elementary particles of which have a size of between 5 and 50 ⁇ m, - 10% by weight of silica sand E 10,
  • This phosphomagnesium mortar is prepared according to the method of Example 1.
  • the ratio by weight of water / binder phase is 0.25.
  • the mortar obtained has a beautiful homogeneous and unctuous texture, it sticks when applied on a vertical support.
  • a phosphomagnesium mortar is prepared from the following constituents: - 49% by weight of a mixture of:
  • This phosphomagnesium mortar is prepared according to the method of Example 1.
  • the water / binder phase weight ratio is 0.24.
  • the mortar obtained has a beautiful homogeneous and unctuous texture, it sticks when applied on a vertical support. No penetrant phenomenon is observed.
  • a phosphomagnesium mortar is prepared from the following constituents:
  • silica smoke the elementary particles of which have a size of between 0.1 and 1 ⁇ m,. 17.75% by weight of C600 sand, - 50% by weight of CEN 31 196-1 standardized sand, - 10% by weight of E10 silica sand.
  • This phosphomagnesium mortar is prepared according to the method of Example 1.
  • the ratio by weight of water / binder phase is 0.26.
  • a silicone emulsion is added in an amount of 0.5% by weight of the mortar.
  • the mortar obtained has a beautiful homogeneous and unctuous texture, it sticks when applied on a vertical support. No penetrant phenomenon is observed.
  • the occluded air is greatly reduced (less than 4%).
  • the water absorption is less than 1 g in 24 hours.
  • the mechanical properties at 7 days are as follows:
  • compressive strength 50 MPa.
  • flexural strength 8 MPa.
  • the adhesion to concrete is 1.4 MPa in the absence of a primer.
  • the loss of mass by total immersion in acid (HCI, CH 3 COOH) is less than 10% by weight at 1 month.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

L'invention concerne un ciment phosphomagnésien obtenu par mélange d'eau et d'une phase liante à base: d'au moins un composé du phosphore, d'au moins un composé du magnésium, d'au moins un composé minéral A, ledit composé minéral étant introduit sous forme: soit de particules (1) de taille inférieure à 0,1 νm, soit d'agrégats (2) de taille inférieure à 0,1 νm, soit d'agglomérats (3) susceptibles de se désagglomérer au moins en partie, lors du mélange de ladite phase liante et de l'eau, en particules de taille inférieure à 0,1 νm ou en agrégats de taille inférieure à 0,1 νm, d'au moins un composé minéral B dont les particules élémentaires ont une taille comprise entre 0,1 et 1 νm, d'au moins un composé minéral C dont les particules élémentaires ont une tialle comprise entre 1 et 100 νm.

Description

NOUVELLE PHASE LIANTE POUR CIMENTS PHOSPHOMAGNESIENS
L'invention a trait à un nouveau ciment phosphomagnésien.
La préparation d'un ciment type phosphomagnésien passe par le mélange de la phase liante avec de l'eau, éventuellement des granulats et divers additifs selon l'application visée.
Lors de ce mélange et avant que le ciment ne se soit solidifié, on constate un phénomène de démixtion : les constituants solides du ciment, en particulier les granulats, ont tendance à floculer sous l'effet de la gravité au fond du ciment, laissant en surface une couche constituée essentiellement de la phase liquide (eau + sel dissout de phosphate).
Ce phénomène a des conséquences graves sur les caractéristiques finales du ciment : en effet le matériau est moins dense, moins homogène d'où des propriétés mécaniques affaiblies, un aspect esthétique médiocre, une durabilité diminuée, une porosité plus grande.
Dans le cas où le mortier ou le coulis, élaboré à partir du ciment phosphomagnésien, est déposé sur un support poreux, on observe également un phénomène d'absorption de l'eau par le support. Cette absorption conduit là encore à un matériau présentant de mauvaises propriétés et en particulier une mauvaise adhérence sur le support.
Ce phénomène est d'autant plus marqué que la teneur en eau est importante, ce qui est le cas par exemple des compositions de type coulis. On observe en outre que la rhéologie du mortier préparé à partir de ce type de ciment n'est pas toujours adaptée. Par rhéologie non adaptée, on entend le fait que le mortier présente une fluidité ne convenant pas à son application : soit trop visqueux, soit trop coulant. Dans le premier cas, il s'applique difficilement, dans le second cas, lorsqu'il est appliqué sur un mur, il ne reste pas collé à la paroi, mais coule.
La présente invention a donc pour objectif de proposer un ciment phosphomagnésien conduisant à des mortiers ou coulis ne présentant pas de phénomène de démixtion, ou de phénomène d'absorption de l'eau par un support, tout en conservant les avantages des mortiers et coulis phosphomagnésiens à savoir temps de prise et durcissement rapides.
Un autre but est de proposer un ciment phosphomagnésien qui ne présente pas de phénomène de démixtion tout en développant des propriétés mécaniques améliorées. Un autre but est de proposer un ciment phosphomagnésien dont le mortier présente un comportement rhéologique adapté aux conditions de mise en oeuvre.
Dans ces buts, la présente invention a pour objet un ciment phosphomagnésien obtenu par mélange d'eau et d'une phase liante à base :
- d'au moins un composé du phosphore,
- d'au moins un composé du magnésium,
- d'au moins un composé minéral A, ledit composé minéral étant introduit sous forme : . soit de particules (1 ) de taille inférieure à OJ μm,
. soit d'agrégats (2) de taille inférieure à OJ μm,
. soit d'agglomérats (3) susceptibles de se désagglomérer au moins en partie, lors du mélange de ladite phase liante et de l'eau, en particules de taille inférieure à
OJ μm ou en agrégats de taille inférieure à OJ μm, - d'au moins un composé minéral B dont les particules élémentaires ont une taille comprise entre OJ et 1 μm,
- d'au moins un composé minéral C dont les particules élémentaires ont une taille comprise entre 1 et 100 μm,
Un autre objet de l'invention concerne l'utilisation de ce ciment pour la réalisation de mortiers ou de coulis
Enfin, l'invention a également pour objet un matériau composite à base d'un tel ciment et de fibres.
D'autres avantages et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description et des exemples qui vont suivre.
L'invention concerne tout d'abord un ciment phosphomagnésien obtenu par mélange d'eau et d'une phase liante à base : - d'au moins un composé du phosphore,
- d'au moins un composé du magnésium,
- d'au moins un composé minéral A, ledit composé minéral étant introduit sous forme :
. soit de particules (1 ) de taille inférieure à OJ μm, . soit d'agrégats (2) de taille inférieure à 0,1 μm,
. soit d'agglomérats (3) susceptibles de se désagglomérer au moins en partie, lors du mélange de ladite phase liante et de l'eau, en particules de taille inférieure à 0J μm ou en agrégats de taille inférieure à 0,1 μm, - d'au moins un composé minéral B dont les particules élémentaires ont une taille comprise entre OJ et 1 μm,
- d'au moins un composé minéral C dont les particules élémentaires ont une taille comprise entre 1 et 100 μm, Classiquement, les ciments sont constitués d'une phase liante comprenant le cas échéant, les additifs usuels dans le domaine. Bien qu'un terme différent soit utilisé pour définir des ciments comprenant des granulats, outre ladite phase liante et les éventuels additifs, pour plus de commodité, dans la description, le terme unique de "ciment" sera utilisé pour nommer ces deux types de compositions. Le ciment selon l'invention est un ciment phosphomagnésien. La phase liante d'un tel ciment comprend donc un premier constituant à base de phosphore et un second constituant à base de magnésium.
Pour ce qui est du premier constituant à base de phosphore, tous les composés du phosphore sont utilisables dans la mesure où ils comprennent du pentoxyde de phosphore, disponible directement ou sous la forme d'un précurseur.
Ainsi, à titre de composé à base de phosphore, on peut mentionner sans intention de se limiter, le pentoxyde de phosphore, l'acide phosphorique ou des dérivés comme l'acide orthophosphorique, l'acide pyrophosphorique, l'acide polyphosphorique, ou encore les sels de tels acides, comme les phosphates, les hydrogénophosphates, les orthophosphates, les pyrophosphates, les polyphosphates, les tripolyphosphates, les tétrapolyphosphates, d'aluminium, de calcium, de potassium, de magnésium, d'ammonium, ou leurs mélanges.
Il est à noter que les rejets contenant du phosphore des industries fabriquant des fertilisants, ou encore des aciéries (décapage de l'acier, traitement pour réduire la corrosion) peuvent être employés comme constituants à base de phosphore.
Selon un mode de réalisation particulier de l'invention, on utilise les sels des acides à base de phosphore mentionnés auparavant.
De préférence, on met en oeuvre des phosphates, des hydrogénophosphates de potassium, de magnésium, d'ammonium, ou leurs mélanges. D'une façon encore plus préférée, le constituant à base de phosphore est le dihydrogenophosphate d'ammonium, éventuellement mélangé à du tripolyphosphate d'ammonium.
Le constituant à base de phosphore peut se présenter sous une forme liquide ou de préférence solide.
Selon une première variante, le constituant à base de phosphore se trouve sous la forme de particules dont la granulométrie est plus particulièrement d'au plus 300 μm. Il est à noter que cette valeur n'est pas critique et que, s'il est possible d'utiliser des constituants dont la taille des particules est supérieure à 300 μm, un broyage avant incorporation dans la composition selon l'invention peut être souhaitable. Selon une seconde variante, le constituant est utilisé sous une forme adsorbée sur un support poreux. A titre de support, on peut mentionner par exemple les terres de diatomées, l'argile, la bentonite, la silice, l'alumine. L'adsorption est effectuée de manière connue en soi. Ainsi, d'une façon classique le constituant à base de phosphore, en solution ou en suspension, est mis en contact avec le support, sous agitation, puis la suspension résultante est chauffée de façon à faire évaporer le liquide en excès. Cette opération peut de même être réalisée par imprégnation du support dans un tambour ou sur disque tournant.
Le second élément de la phase liante est au moins un constituant à base de magnésium.
Tout composé à base de magnésium convient à la présente invention dans la mesure où il réagit avec le premier constituant, en présence d'eau.
A titre d'exemple, on peut citer comme convenant à la mise en oeuvre de l'invention, les constituants suivants : l'oxyde de magnésium, l'hydroxyde de magnésium, le carbonate de magnésium.
De préférence, on utilise un constituant à base d'oxyde de magnésium. Convient notamment la magnésie dite "dead burned" habituellement obtenue après calcination de carbonate de magnésium, à des températures supérieures à 1200 °C.
D'une façon avantageuse, ledit oxyde de magnésium peut être mis en oeuvre sous une forme pure ou peut éventuellement comprendre au moins un élément du type calcium, silicium, aluminium ou encore fer ; ces éléments se trouvant en général sous forme d'oxyde ou d'hydroxyde. A titre d'exemple de ce type de composé, on peut citer la dolomie, mélange comprenant notamment de l'oxyde de magnésium et de l'oxyde de calcium. Si l'oxyde de magnésium est utilisé sous forme pure, la pureté dudit oxyde, est d'au moins 80 %.
On utilise de préférence un constituant à base de magnésium dont la surface spécifique est inférieure à 4 nf7g. Plus particulièrement, la surface spécifique est inférieure à 2 m2/g. Par ailleurs, la granulométrie dudit constituant est habituellement comprise entre
10 et 500 μm. Il serait envisageable d'utiliser des composés dont la granulométrie se trouve en dehors de la gamme précitée, mais sans que cela n'apporte d'avantages particuliers. Ainsi, si la granulométrie est supérieure à 500 μm, une étape de broyage préalable à l'incorporation dans la composition peut être nécessaire. Par ailleurs, si la granulométrie desdits constituants était inférieure à 10 μm, on pourrait constater une modification des propriétés de la composition mise en contact avec l'eau. On peut notamment constater un accroissement de la vitesse de prise du ciment, sauf à augmenter la teneur en agent retardant la prise, dont il sera question dans la suite de la description. De ce fait, le ciment obtenu selon le procédé de l'invention pourrait être moins intéressant sur le plan de la mise en oeuvre ou sur le plan économique.
Il est à noter que les deux constituants décrits auparavant, s'ils se présentent sous forme solide, peuvent éventuellement faire l'objet d'une étape de broyage avant leur utilisation dans le procédé selon l'invention.
La proportion du constituant à base de magnésium (exprimée en poids de MgO) rapportée à celle du constituant à base de phosphore (exprimée en poids de P2O5) est plus particulièrement comprise entre 1 et 3.
La première caractéristique essentielle du ciment selon l'invention est que sa phase liante comprend, en plus des composés du phosphore et du magnésium, au moins un composé minéral A présentant des conditions particulières sur la forme des objets qui le constituent et la taille de ces objets.
Selon un premier mode de réalisation de l'invention, la phase liante est à base de composés du phosphore et du magnésium et d'au moins un composé minéral A, ce dernier étant introduit dans le ciment sous forme de particules (1) de taille inférieure à OJ μm. On entend par particules (1) des objets indivisibles, se présentant sous une forme unitaire, unifiée.
Selon un premier mode de réalisation de l'invention, la phase liante est à base de composés du phosphore et du magnésium et d'au moins un composé minéral A, ce dernier étant introduit dans le ciment sous forme d'agrégats (2). On entend par agrégats (2), des objets formés de l'empiiement de plusieurs objets plus petits, qui sont eux sous une forme unitaire, unifiée, tels que les particules définies précédemment. Les agrégats introduits présentent une taille inférieure à OJ μm. Ces agrégats sont en général très difficilement divisibles, et en particulier indivisibles dans un mélange des composés du magnésium et du phosphore et d'eau.
Selon un premier mode de réalisation de l'invention, la phase liante est à base de composés du phosphore et du magnésium et d'au moins un composé minéral A, ce dernier étant introduit sous forme d'agglomérats (3). On entend par agglomérats (3), des objets formés de l'empilement de plusieurs objets plus petits : des particules et/ou des agrégats. Selon l'invention, lors de leur mélange avec les composés du magnésium et du phosphore et l'eau, les agglomérats introduits doivent pouvoir au moins en partie se désagglomérer en les objets qui les constituent (particules ou agrégats), afin de conduire dans le mélange à des objets de taille inférieure à OJ μm. Dans le ciment issu du mélange de la phase liante (composé du phosphore •+* composé du magnésium + composé minéral A + composé minéral B + composé minéral C ) et de l'eau, le composé minéral A de la phase liante doit se présenter sous forme d'objets de taille inférieure à 0,1 μm, lesdits objets (particules, agrégats) ayant été introduits tels quels ou sous forme agglomérée. Leur mélange avec les composés du phosphore et du magnésium, et l'eau doit conduire dans ce dernier cas à leur désagglomération.
Le composé minéral peut être introduit comme un mélange de ces trois formes (particules, agrégats, agglomérats).
Pour le composé minéral A, on entend par taille, la taille moyenne des particules, agrégats ou agglomérats. Cette taille est mesurée par microscopie électronique par transmission (MET) pour les objets de taille inférieure à OJ μm, et par granulométrie laser pour les objets de taille supérieure à OJ μm. De préférence, le composé minéral A est introduit sous forme d'agglomérats présentant une taille d'au plus 60 μm, avantageusement d'au plus 20 μm. Une telle taille des agglomérats permet une manipulation plus aisée du composé minéral.
Le composé minéral A peut être choisi parmi Siθ2, Tiθ2, AI2O3, ZrO2, Cr203, le talc, le mica, le kaolin, la wollastonite, la bentonite, le métakaolin. Il peut s'agir de produits de synthèse. Ce peut être des composés cristallisés ou amorphes obtenus par exemple par broyage, et tamisage à la taille désirée.
Il s'agit notamment de la silice et, selon la mise en oeuvre préférée de l'invention, de silice de précipitation. Cette silice de précipitation présente de préférence une surface spécifique comprise entre 50 et 250 m2/g. La silice introduite peut avantageusement se présenter sous la forme d'agglomérats de taille moyenne inférieure à 50 μm, lesdits agglomérats étant constitués d'agrégats de taille moyenne inférieure à 0J μm.
Il peut s'agir par exemple de la silice précipitée T38AB commercialisée par Rhône- Poulenc se présentant sous forme d'agglomérats de taille inférieure à 50 μm. Ces agglomérats se divisent dans le mélange de phase liante et d'eau sous forme d'agrégats de taille inférieure à 0,1 μm. Ces agrégats, qui sont eux-mêmes formés de particules élémentaires de taille 15 nm, sont indivisibles dans le mélange phase liante/eau.
On peut utiliser également de la fumée de silice broyée, de la silice pyrogénée, de la lignite, de la smectite.
La teneur en composé minéral A de la phase liante du ciment selon l'invention est comprise, en général, entre 1 et 20 parties en poids pour 100 parties de la phase liante, de préférence entre 1 et 15 parties.
Selon la deuxième caractéristique essentielle du ciment selon l'invention, la phase liante également comprend au moins un composé minéral B dont les particules élémentaires ont une taille comprise entre 0J et 1 μm. Ce composé B peut être peut être choisi parmi SiO , TiO2, AI2O3, ZrO2, Cr2O3, le talc, le mica, le kaolin, la wollastonite, la bentonite, le métakaolin, les cendres volantes. Il peut s'agir de produits de synthèse. Ce peut être des composés cristallisés ou amorphes obtenus par exemple par broyage, et tamisage à la taille désirée. De préférence, il s'agit de fumée de silice. Il peut s'agir par exemple de la fumée de silice commercialisée par la société Elkem dont les particules élémentaires ont une taille comprise entre OJ et 0,8 μm.
Habituellement, la quantité de composé B dans le ciment selon l'invention est d'au moins 2 parties en poids pour 100 parties en poids de phase liante, de préférence d'au plus 12 parties en poids pour 100 parties en poids de phase liante.
Selon la troisième caractéristique essentielle du ciment selon l'invention, la phase liante comprend en outre au moins un composé minéral C dont les particules élémentaires ont une taille comprise entre 1 et 100 μm, de préférence entre 1 et 50 μm. Ce composé C peut être peut être choisi parmi le sable, SiO2, TiO2, AI2O3, Zr02,
Cr2O3, le talc, le mica, le kaolin, la wollastonite, la bentonite, le métakaolin, les cendres volantes. Il peut s'agir de produits de synthèse. Ce peut être des composés cristallisés ou amorphes obtenus par exemple par broyage, et tamisage à la taille désirée.
Il s'agit de préférence de cendres volantes, par exemple des cendres siliceuses commercialisées par la société Carling, dont les particules élémentaires ont une taille comprise entre 5 et 25 μm.
Habituellement, la quantité de composé C dans le ciment selon l'invention est d'au moins 10 parties en poids pour 100 parties en poids de phase liante, de préférence d'au plus 30 parties en poids pour 100 parties en poids de phase liante.
Pour les composés minéraux B et C, la taille des particules élémentaires correspond à la taille moyenne des particules élémentaires mesurée après désagglomération. Cette taille est mesurée par granulométrie laser.
Selon un mode préféré de l'invention, la phase liante du ciment selon l'invention comprend en outre au moins un composé organique du silicium. Ce composé peut être choisi parmi les silicones, les silanes, les siliconates.
Un composé tout particulièrement intéressant est une dispersion silicone aqueuse, caractérisée : - en ce que les goutelettes de phase non-aqueuse de cette dispersion sont obtenues à partir d'au moins une résine (A) polyorganosiloxanique (POS), ayant pour particularité, avant émulsification : . d'être porteuse de substituants hydroxyles condensables et présents à hauteur d'au moins 0,05 % en poids ;
. et de comporter des motifs siloxyles D, T et éventuellement M et/ou Q, les motifs siloxyles T étant présents dans un ratio molaire T/(M+D+T+Q) compris entre 0,5 et 0,85,
- et en ce que la composition de sa phase non-aqueuse est la suivante :
. 100 parties en poids d'une ou plusieurs résines POS (A) du type de celle définie ci-dessus et éventuellement substituée par au moins une fonction d'activation Fa, . 0 à 20 parties en poids d'au moins un activateur basique (B) choisi, de préférence, parmi les aminés hydrosolubles ou hydrodispersables et/ou parmi les produits obtenus à partir des silanes et/ou les oligo ou polysiloxanes porteurs, par molécule et avant émulsification, d'au moins un hydroxyle et d'au moins une fonction d'activation Fa avec la condition selon laquelle la composition est exempte d'activateur (B) si et seulement si les fonctions Fa portées par d'autres composants de la composition, en particulier celles portées par (A) et/ou par (D), sont présentes en quantité suffisante ; . au moins un catalyseur de condensation (C) sélectionné, de préférence parmi les composés organométalliques et plus préférentiellement les dicarboxylates de dialkylétain ;
. 0 à 30 parties en poids d'au moins un coréticulant (D), sélectionné de préférence parmi les produits obtenus à partir des silanes et/ou des siloxanes initialement porteurs d'au moins deux fonctions -ORd (R = H ou groupement hydrocarboné aliphatique de préférence en C-*-C20), par molécule, ce coréticulant (D) étant éventuellement substitué par au moins une fonction d'activation Fa par molécule,
. 0,01 à 10 parties en poids d'au moins un tensio-actif (E). Une telle émulsion est plus particulièrement définie dans la demande de brevet FR 97 14681. Habituellement, la quantité de composé organique du silicium présente dans le ciment est d'au moins 0J0 partie en poids pour 100 parties en poids de phase liante, de préférence d'au plus 5 parties en poids.
Le composé organique du silicium peut être introduit sous forme liquide ou solide.
Selon une variante, le composé du silicium est utilisé sous une forme adsorbée sur un support poreux. A titre de support, on peut mentionner, par exemple, les terres de diatomées, l'argile, la bentonite, la silice, l'alumine, la magnésie. L'adsorption est effectuée de manière connue en soi. Ainsi, d'une façon classique, le composé du silicium, en solution ou en suspension, est mis en contact avec le support, sous agitation, puis la suspension résultante est chauffée de façon à faire évaporer le liquide en excès. Cette opération peut même être réalisée par imprégnation du support dans un tambour ou un disque tournant.
Ce composé organique du silicium apporte différentes propriétés au ciment selon l'invention : il permet de réduire le pourcentage d'air occlus et d'hydrofuger de ciment. Le ciment obtenu est dès lors amélioré du point de vue de :
- la résistance aux acides,
- la tenue au gel et au dégel,
- l'adhérence sur support béton, - l'abrasion humide.
Par exemple, le niveau d'adhérence sur support béton est accru de plus de 50 % par rapport à la même formule de mortier testée dans les mêmes conditions mais sans ajout d'un composé organique du silicium. De même, la perte de masse par agression chimique (immersion totale 1 mois dans HCI ou CH3COOH) est réduite de 50 % par rapport à la même formule de mortier testée dans les mêmes conditions mais sans ajout d'un composé organique du silicium.
La phase liante du ciment selon l'invention peut également comprendre un agent retardant la prise. Plus particulièrement, cet agent est choisi parmi des composés susceptibles de complexer le magnésium.
Ces derniers peuvent être notamment des acides carboxyliques, tels que les acides citrique, oxalique, tartrique, des acides, esters ou sels contenant du bore, des acides, esters ou sels contenant du phosphore, comme le tripolyphosphate de sodium, le sulfate ferreux, le sulfate et lignosulfonate de sodium, le chlorure de zinc, l'acétate de cuivre, le gluconate de sodium, le sulfate acétate de sodium cellulose, le produit de la réaction du formaldéhyde avec l'aminolignosulfate, le dialdéhyde amidon, la N,N- diméthyloldihydroxyéthylène urée, les silicofluorures, le tall oil et le sucrose, ces composés étant pris seuls ou en mélange. De préférence, on utilise, seuls ou en mélange, les acides carboxyliques, et de préférence, les acides, esters ou sels contenant du bore.
Ainsi, dans cette dernière catégorie de composés, on peut mentionner, sans intention de se limiter, l'acide borique et ses sels, tels que les sels de métaux alcalins, comme le sodium (borax), les sels d'aminé ou d'ammonium. Les esters de l'acide borique conviennent aussi à la mise en oeuvre de l'invention, comme les trialkyloxyborates, les triaryloxyborates.
Selon un mode particulier, l'additif est mis en oeuvre sous la forme d'une poudre dont le diamètre moyen est de 10 à 200 μm. La quantité d'agent retardant la prise est d'au plus 10 parties en poids pour 100 parties en poids des trois constituants précités (composés du phosphore et du magnésium et composé minéral). De préférence, cette quantité est d'au plus 5 parties en poids rapporté à la même référence.
Les ciments obtenus par le mélange selon l'invention peuvent comprendre en outre des granulats de taille supérieure à 100 μm, en tant qu'éléments constitutifs.
Il s'agit, en général, des granulats classiquement utilisés dans les compositions de phosphomagnésiens. On peut mentionner le sable, la silice, l'alumine, l'oxyde de zirconium, la dolomie brute, le minerai de chrome, le calcaire, le clinker, la vermiculite, la perlite, le mica, le gypse, la cellulose, le laitier.
Habituellement, la quantité de granulats dans le ciment selon l'invention est d'au plus 1000 parties en poids pour 100 parties en poids de phase liante.
Selon un mode de réalisation particulier, la quantité de sable, silice ou des autres composés cités dans la liste ci-dessus, est d'au plus 900 parties en poids rapporté à la même référence que précédemment.
De même, la quantité de fumée de silice condensée ou de cendres volantes est de préférence d'au plus 100 parties en poids pour 100 parties en poids de phase liante.
Le ciment selon l'invention peut comprendre par ailleurs un agent hydrofugeant.
Enfin, le ciment selon l'invention peut comprendre tous les additifs classiques, comme les fluidifiants, tels que le lignosulfonate de sodium et les condensés de naphtalène sulfonate, le naphtalène, le tripolyphosphate, l'hexamétaphosphate de sodium, l'hydrogénophosphate d'ammonium, la mélanine, les alkyles siiiconates, l'aminopropyltriéthoxysilane, les sucroglycérides, les polyacrylates, le siliconate de potassium.
Des agents antimousse peuvent de même être des éléments constitutifs du ciment selon l'invention. A titre d'exemple, on peut citer en particulier les antimousses à base de polydiméthyl-siloxanes et le polypropylène glycol. Parmi ce type d'agents, on peut citer également les silicones sous la forme d'une solution, d'un solide, et de préférence sous la forme d'une résine, d'une huile ou d'une émulsion, de préférence, dans l'eau. Conviennent tout particulièrement les silicones comprenant essentiellement des motifs M (RSiOrj 5 ) et D (R2SKI». Dans ces formules, les radicaux R, identiques ou différents, sont plus particulièrement choisis parmi l'hydrogène et les radicaux alkyles comprenant 1 à 8 atomes de carbone, le radical méthyle étant préféré. Le nombre de motifs est de préférence compris entre 30 et 120.
Enfin, on peut ajouter des agents de texture et de viscosité : fibres de cellulose, guar, amidon, éther cellulosique, éthers d'amidon, alcool polyvinylique. D'une façon générale, la quantité de ces additifs dans le ciment est d'au plus 10 parties en poids pour 100 parties en poids de phase liante. De préférence, la quantité d'additifs est d'au plus 5 parties en poids.
Le ciment selon l'invention peut comprendre en outre au moins un additif choisi parmi les polymères sous forme de particules insoluble dans l'eau, et de l'eau.
Tous types de polymères sous forme de particules insoluble dans l'eau peuvent être utilisés et notamment ceux issus de la polymérisation de monomères à insaturations éthyléniques. Les monomères peuvent être choisis parmi :
- le styrène, le butadiène, les esters acryliques et les nitriles vinyliques.
- les esters acryliques, c'est-à-dire les esters de l'acide acrylique et de l'acide méthacryiique avec les alcanols en C*--Cι2, de préférence C1-C3, tels que l'acrylate de méthyle, l'acrylate d'éthyle, l'acrylate de propyle, l'acrylate de n-butyle, l'acrylate d'isobutyle, l'acrylate de 2-éthylhexyle, le méthacrylate de méthyle, le méthacrylate d'éthyle, le méthacrylate de n-butyle, le méthacrylate d'isobutyle,
- les nitriles vinyliques ayant de 3 à 12 atomes de carbone, en particulier l'acrylonitrile et le méthacrylonitrile,
- l'alpha-méthylstyrène ou le vinyltoluène, - les esters vinyliques d'acide carboxylique comme l'acétate de vinyle, le versatate de vinyle, le propionate de vinyle,
- les acides mono-et di-carboxyliques insaturés éthyléniques comme l'acide acrylique, l'acide méthacryiique, l'acide itaconique, l'acide maléique, l'acide fumarique et les mono-alkylesters des acides dicarboxyliques du type cité avec les alcanols ayant de préférence 1 à 4 atomes de carbone et leur dérivés N-substitués,
- les amides des acides carboxyliques insaturés comme l'acrylamide, le méthacrylamide, le N-méthalolacrylamide ou -méthacrylamide,
- les monomères éthyléniques comportant un groupe acide sulfonique et ses sels alcalins ou d'ammonium par exemple l'acide vinylsulfonique, l'acide vinylbenzène sulfonique, l'acide alpha-acrylamido méthylpropane-sulfonique, le 2- sulfoéthylèneméthacrylate,
- les monomères éthylèniquement insaturés comportant un groupe amino secondaire, tertiaire ou quaternaire ou un groupe hétérocyciique contenant de l'azote par exemple les vinylpyridines, le vinylimidazole, les (meth)acrylates d'aminoalkyle et les (meth)acrylamides d'aminoalkyle comme le diméthylaminoéthylacrylate ou méthacrylate, le ditertiobutylamino-éthylacrylate ou -méthacrylate, le diméthylamino méthylacrylamide ou -méthacrylamide ... de même que les monomères zwitterioniques comme l'acrylate de sulfopropyl (diméthyl) aminopropyle ... - les esters des acides (meth) acryliques avec des alcanediols contenant de préférence 2-8 atomes de carbone tels que le mono (meth) acryiate de glycol, le mono(meth)acrylate d'hydroxypropyle, le mono(meth) acryiate de 1 -4 butanediol ainsi que les monomères comportant deux doubles liasons polymérisables comme le diméthacrylate d'éthylène-glycol,
- le (meth) acryiate de glycidyle,
- les silanes vinyliques et acryliques.
Selon un mode préféré, le polymère mis en oeuvre dans le ciment selon l'invention est issu de la polymérisation d'au moins un monomère à insaturation éthylénique et au moins un monomère choisi parmi les monomères à fonction carboxylique et l'acrylamide ou le méthacrylamide.
Dans ce cas, le monomère à insaturation éthylénique peut être choisi parmi : le styrène, le butadiène, les esters acryliques ou méthacryliques d'alkyle en C-|-C12 et leurs acides correspondants ou les esters vinyliques. Il peut s'agir, de manière avantageuse, d'un polymère insoluble dans l'eau préparé à partir d'un mélange styrène/butadiène en ce qui concerne les monomères à insaturation éthylénique.
Quant au monomère à fonction carboxylique, il peut être choisi parmi les acides carboxyliques à insaturation éthylénique. Il peut par exemple être choisi parmi l'acide acrylique, l'acide itaconique, l'acide fumarique, l'acide crotonique, l'acide maléique, l'anhydride maléique, l'acide mésaconique, l'acide glutaconique ou leurs mélanges.
Selon ce premier mode, on préfère tout particulièrement les polymère préparés à partir d'un mélange de monomères comportant 99,9 à 92 % en poids d'au moins un monomère à insaturation éthylénique et 0,1 à 8 % en poids, de préférence 2 à 5 %, d'au moins un monomère à fonction carboxylique. Selon un autre mode préféré, le polymère est issu de la polymérisation d'au moins un monomère choisi parmi les esters vinyliques d'acide carboxylique comme l'acétate de vinyle, le versatate de vinyle, le propionate de vinyle. Il peut notamment s'agir d'un copolymère versatate de vinyle/acétate de vinyle.
Le polymère peut être introduit dans le mélange sous diverses formes. Selon une première variante, le polymère se présente sous forme d'une dispersion dans l'eau de particules du polymère. Il s'agit de ce qu'on appelle couramment un latex. De tels latex sont obtenus par le procédé tel que défini ci-dessus. La valeur de leur extrait sec n'est pas critique. Il est en général de l'ordre de 50 % en poids.
La taille des particules de latex issu de la polymérisation de monomères à insaturation éthylénique et de monomères à fonction carboxylique peut être comprise entre 0,05 et 5 μm, de préférence entre 0,12 et 0J8 μm, encore plus préférentiellement entre 0J 0 et 0,20 μm. Celle des particules de latex issu de la polymérisation de monomères d'esters vinyliques d'acides carboxyliques est en général comprise entre 1 et 2 μm.
Selon une deuxième variante, le polymère se présente sous forme d'une poudre redispersable dans l'eau. En général, le polymère est introduit dans le mélange de ciment en quantité telle que sa teneur est de 0,5 à 30 parties en poids pour 100 parties en poids de phase liante.
Selon une variante préférée de l'invention, le ciment est susceptible d'être obtenu par mise en contact de la phase liante précédemment décrite avec au moins un polymère insoluble dans l'eau et en outre au moins un second additif choisi parmi les aminoalkylsilanes, et de l'eau.
On peut observer, lors de l'introduction du polymère dans la composition du ciment selon l'invention, un entraînement d'air qui peut conduire à un matériau final poreux et à de mauvaises propriétés mécaniques. L'introduction d'un aminoalkylsilane permet d'éviter ce phénomène.
De préférence, l'aminosilane est un aminoalkyl(éthoxysilane).
On peut également ajouter des agents anti-mousses ou débullants tels que le polypropylène glycol.
La quantité d'eau à introduire pour la préparation du ciment selon l'invention est telle que l'on obtienne une pâte plastique, homogène et malléable. Elle dépend de l'application ultérieure du ciment. En effet, si l'on désire faire des revêtements internes de tuyauterie, la composition est en général plus cohésive qu'un ciment destiné à constituer un revêtement de sol, ou pour la préparation de dalles ou de panneaux. En général, la teneur en eau est d'au plus 50 % en poids, de préférence comprise entre 35 et 40 %, par rapport au poids de phase liante.
Les ciments selon l'invention ont l'avantage de ne présenter aucun phénomène de démixtion, des propriétés mécaniques améliorées, et tout particulièrement, ils présentent un comportement rhéologique adapté à leur application.
Le mélange de la phase liante et de l'eau peut être effectué selon toute méthode appropriée. Ainsi, on peut procéder en apportant tous les éléments constitutifs du ciment et l'eau, simultanément ou séparément. Selon cette dernière possibilité, on prépare en général une composition comprenant la phase liante, les granulats, le cas échéant l'agent retardant et tout ou partie des additifs éventuels en général solides, précédemment cités, notamment le composé organique du silicium. On mélange ensuite ladite composition avec de l'eau, celle-ci comprenant, si tel est le cas, les éléments non introduits dans l'étape antérieure de préparation de la composition, comme les additifs liquides notamment.
Il est à noter que l'on peut aussi envisager de mettre en oeuvre des mélanges plus ou moins complets des éléments constitutifs du ciment. L'essentiel du procédé est qu'il soit mis en oeuvre de façon à obtenir une répartition de tous les éléments constitutifs la plus homogène possible dans la masse du ciment.
Le mélange des éléments constitutifs se fait par tout moyen connu et de préférence dans des conditions cisaillantes, en utilisant par exemple un malaxeur. L'opération de mélange est avantageusement effectuée à une température voisine de la température ambiante.
Les ciments selon l'invention peuvent être utilisés en tant que coulis ou mortiers selon les proportions d'eau et d'agrégats utilisées et la nature de ces agrégats. II est possible de les utiliser en tant que mortiers de réparation et de scellement, par exemple dans la réfection rapide de routes, ponts, et pistes d'aéroport. Ainsi, ils sont utilisés pour obturer des craquelures, des trous ou recouvrir des zones dégradées ainsi que pour la réparation d'ouvrages en béton armé. En effet, les mortiers ou coulis, outre une bonne adhérence aux ciments dits de Portland, présentent des propriétés mécaniques de résistance à la flexion et à la compression importantes, les rendant particulièrement appropriés pour ce type d'applications.
Ils peuvent de même être employés en tant que revêtements de sols, de tuyauteries, résistants aux attaques chimiques, présentant une excellente dureté et tenue à l'abrasion. On peut également les utiliser pour la réalisation de panneaux en général et en particulier de panneaux de parement intérieurs ou extérieurs. Pour cela, la composition obtenue est coulée dans un moule approprié, pour donner des dalles ou des panneaux. Elle peut également être projetée. Les produits moulés ou projetés sont ensuite mis à sécher, d'une façon avantageuse à une température voisine de la température ambiante.
Enfin, il est possible de préparer à partir de ces ciments des composés réfractaires devant résister à de hautes températures tels que des mortiers de scellement pour conduits de cheminées ou des panneaux anti-feu.
La présente invention concerne enfin un matériau composite à base du ciment précédemment décrit et de fibres.
A titre d'exemple de fibres convenables pour l'obtention dudit matériau, on peut citer les fibres en polypropylène, en polyester, en polyamide, comme par exemple le KEVLAR®, les fibres de carbone, le polyamide, l'alcool polyvinylique, les fibres de cellulose ou les rubans de fontes amorphes.
Des fibres de verre peuvent de même être utilisées pour l'obtention du matériau composite selon l'invention. Toutes les fibres de verre employées habituellement dans les ciments conviennent. On peut donc employer des fibres alcali-résistantes, comme les fibres de verres spéciaux obtenus notamment par traitement avec du zirconium, de même que les fibres de verres sodo-calciques. Cependant, d'une façon avantageuse, les fibres de verre standards conviennent aussi à l'obtention de matériaux composites selon l'invention. C'est le cas des verres classiques comme les verres borosilicatés qui sont habituellement détruits en milieu alcalin.
Les fibres ont des longueurs variant de 5 mm à plusieurs centaines de millimètres.
La quantité de fibres dans le matériau composite selon l'invention est comprise entre 1 et 10 % par rapport au poids de phase liante.
Les matériaux composites selon l'invention sont obtenus par mélange du ciment tel que décrit précédemment, avec les fibres. Le mélange se fait dans les mêmes conditions de préparation du ciment et ne seront donc pas reprises ici. La composition ainsi obtenue est coulée dans un moule approprié, pour donner des dalles ou des panneaux. Les produits moulés sont ensuite mis à sécher, d'une façon avantageuse à une température voisine de la température ambiante. Les matériaux composites selon l'invention peuvent être utilisés notamment pour donner des panneaux de façade. L'avantage de ces matériaux réside dans leur vitesse de fabrication, et principalement dans leur vitesse de séchage.
Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLES
Mesure des propriétés mécaniques
On réalise des éprouvettes prismatiques (4X4X16 cm3) en coulant le mortier ou le coulis dans des moules standards en acier doux. Ces éprouvettes sont démoulées 1 heure après le temps de prise et séchées à température ambiante. Les propriétés mécaniques sont testées sur ces éprouvettes.
Les essais sont réalisés en flexion en trois points (NFP 18407) sur six demi- éprouvettes et en compression (NFP 15451) sur six demi-éprouvettes à l'aide d'une machine d'essai hydraulique (200 kN). Mesure de l'adhésion
Un revêtement de 1 cm est réalisé à partir du mortier ou le coulis à tester sur une dalle en béton. Un jour plus tard, on effectue ensuite un carottage du revêtement sec, et on colle un plot métallique dans le trou laissé par le carottage. Le plot est ensuite arraché à l'aide d'un arrachemetre : la force appliquée pour une surface de 20 à 25 cm2 détermine la valeur de l'adhésion.
Mesure de l'air occlus
L'air occlus est mesuré sur le mortier frais à l'aide d'un aéromètre de capacité 1 litre selon la norme DIN 1164.
Mesure des propriétés d'hvdrofugation
On réalise une éprouvette prismatique (4X4X16 cm3). Elle est démoulée 24 heures après, et stabilisée 6 jours dans une salle conditionnée (23 °C, 50 % d'humidité). Elle est alors pesée. L'éprouvette est ensuite placée verticalement dans un récipient contenant une quantité d'eau telle qu'une faible partie des éprouvettes soit immergée (hauteur immergée : 2 à 3 mm). L'hydrofugation est évaluée par l'absorption capillaire, laquelle est suivie par la prise de masse (Δm) de l'éprouvette.
Exemple comparatif 1
On prépare un mortier phosphomagnésien à partir des constituants suivants :
- 30 % en poids de phase liante constituée de :
. 46 % en poids de phosphate monoammonique, . 46 % en poids d'oxyde de magnésium,
. 3 % en poids d'acide borique qui est un agent retardant, . 5 % en poids de silice T38AB,
- 20 % en poids de sable siliceux E 10 dont les particules élémentaires ont une taille de l'ordre de 100 μm, - 50 % en poids de sable normalisé CEN 31 196-1 dont les particules élémentaires ont une taille comprise entre 100 et 500 μm.
La silice T38AB est une silice précipitation commercialisée par Rhône-Poulenc présentant les caractéristiques suivantes : - taille des agglomérats : 50 μm
- taille des agrégats : inférieure à 0J μm (mesurées par MET). On prépare le mortier par mélange des matériaux définis ci-dessus avec de l'eau : la teneur en eau est telle que le rapport en poids eau / phase liante est de 0,36. Le mélange est réalisé de la manière suivante : on malaxe à l'aide d'un malaxeur type HOBART les matériaux à l'état sec pendant 30 s à petite vitesse (60 tr/min), puis on ajoute l'eau dans la proportion souhaitée. Ensuite, on continue à malaxer pendant 1 min 30 à petite vitesse puis 1 min 30 à grande vitesse (120 tr/min).
Le mortier obtenu est très fluide : il coule lorsqu'il est appliqué sur un support vertical. Ce comportement limite fortement l'utilisation du mortier.
Les propriétés mécaniques à 7 jours sont les suivantes :
. résistance en compression : 35 MPa . résistance en flexion : 6,5 MPa. L'adhérence sur béton est 0,8 MPa.
Exemple 2 selon l'invention
On prépare un mortier phosphomagnésien à partir des constituants suivants :
- 40 % en poids d'un mélange de :
. 34,5 % en poids de phosphate monoammonique, . 34,5 % en poids d'oxyde de magnésium,
. 2,25 % en poids d'acide borique qui est un agent retardant,
. 6 % de silice T38AB,
. 5 % en poids de fumée de silice 940 UP, commercialisée par ELKEM, dont les particules élémentaires ont une taille comprise entre 0J et 1 μm, . 7,8 % en poids de sable C600 dont les particules élémentaires ont une taille comprise entre 5 et 50 μm, - 10 % en poids de sable siliceux E 10,
- 50 % en poids de sable normalisé CEN 31 196-1.
On prépare ce mortier phosphomagnésien selon le procédé de l'exemple 1. Le rapport en poids eau / phase liante est de 0,25.
Le mortier obtenu présente une belle texture homogène et onctueuse, il colle lorsqu'il est appliqué sur un support vertical.
On n'observe aucun phénomène de ressuage. Ses propriétés mécaniques à 7 jours sont les suivantes :
. résistance en compression : 49,8 MPa . résistance en flexion : 7,65 MPa. L'adhérence sur béton est sensiblement améliorée, elle est de 1 MPa. Exemple 3 selon l'invention
On prépare un mortier phosphomagnésien à partir des constituants suivants : - 49 % en poids d'un mélange de :
. 34,5 % en poids de phosphate monoammonique, . 34,5 % en poids d'oxyde de magnésium, . 2,25 % en poids d'acide borique qui est un agent retardant, . 6 % en poids de silice T38AB, . 5 % en poids de fumée de silice dont les particules élémentaires ont une taille comprise entre OJ et 1 μm, . 17,75 % en poids de sable C600,
- 51 % en poids de sable normalisé CEN 31 196-1.
On prépare ce mortier phosphomagnésien selon le procédé de l'exemple 1.
Le rapport en poids eau / phase liante est de 0,24.
Le mortier obtenu présente une belle texture homogène et onctueuse, il colle lorsqu'il est appliqué sur un support vertical. On n'observe aucun phénomène de ressuage.
Ses propriétés mécaniques à 7 jours sont les suivantes : . résistance en compression : 58 MPa . résistance en flexion : 7,75 MPa. L'adhérence sur béton est de : . 0,8 MPa en l'absence de primaire,
. 1,5 MPa en présence d'un primaire.
Exemple 4 selon l'invention
On prépare un mortier phosphomagnésien à partir des constituants suivants :
- 40 % en poids d'un mélange de :
. 34,5 % en poids de phosphate monoammonique, . 34,5 % en poids d'oxyde de magnésium, . 2,25 % en poids d'acide borique qui est un agent retardant, . 6 % en poids de silice T38AB,
. 5 % en poids de fumée de silice dont les particules élémentaires ont une taille comprise entre 0,1 et 1 μm, . 17,75 % en poids de sable C600, - 50 % en poids de sable normalisé CEN 31 196-1 , - 10 % en poids de sable siliceux E10.
On prépare ce mortier phosphomagnésien selon le procédé de l'exemple 1. Le rapport en poids eau / phase liante est de 0,26.
On ajoute une émulsion silicone à raison de 0,5 % en poids du mortier.
Le mortier obtenu présente une belle texture homogène et onctueuse, il colle lorsqu'il est appliqué sur un support vertical. On n'observe aucun phénomène de ressuage.
L'air occlu est fortement réduit (inférieur à 4 %).
L'absorption d'eau est inférieure à 1 g en 24 h.
Les propriétés mécaniques à 7 jours sont les suivantes :
. résistance en compression : 50 MPa . résistance en flexion : 8 MPa.
L'adhérence sur béton est de 1 ,4 MPa en l'absence de primaire.
La perte de masse par immersion totale dans l'acide (HCI, CH3COOH) est inférieure à 10 % en poids à 1 mois.

Claims

REVENDICATIONS
1. Ciment phosphomagnésien obtenu par mélange d'eau et d'une phase liante à base :
- d'au moins un composé du phosphore, - d'au moins un composé du magnésium,
- d'au moins un composé minéral A, ledit composé minéral étant introduit sous forme :
. soit de particules (1 ) de taille inférieure à OJ μm, . soit d'agrégats (2) de taille inférieure à OJ μm,
. soit d'agglomérats (3) susceptibles de se désagglomérer au moins en partie, lors du mélange de ladite phase liante et de l'eau, en particules de taille inférieure à
OJ μm ou en agrégats de taille inférieure à OJ μm,
- d'au moins un composé minéral B dont les particules élémentaires ont une taille comprise entre OJ et 1 μm,
- d'au moins un composé minéral C dont les particules élémentaires ont une taille comprise entre 1 et 100 μm.
2. Ciment phosphomagnésien selon la revendication 1 , caractérisé en ce que le composé minéral A est de la silice précipitée introduite sous la forme d'agglomérats de taille inférieure à 50 μm, lesdits agglomérats étant constitués d'agrégats de taille inférieure à 0J μm.
3. Ciment phosphomagnésien selon la revendication 1 ou 2, caractérisé en ce que le composé minéral B est de la fumée de silice.
4. Ciment phosphomagnésien selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité de composé B dans le ciment est d'au moins 2 parties en poids pour 100 parties en poids de phase liante, de préférence d'au plus 12 parties en poids pour 100 parties en poids de phase liante.
5. Ciment phosphomagnésien selon l'une quelconque des revendications précédentes, caractérisé en ce que le composé minéral C est constitué de cendres volantes.
6. Ciment phosphomagnésien selon l'une quelconque des revendications précédentes, caractérisé en ce que la quantité de composé C dans le ciment est d'au moins 10 parties en poids pour 100 parties en poids de phase liante, de préférence d'au plus 30 parties en poids pour 100 parties en poids de phase liante.
7. Ciment phosphomagnésien selon l'une quelconque des revendications précédentes, caractérisé en ce que la phase liante du ciment comprend au moins un composé organique du silicium.
8. Ciment phosphomagnésien selon la quelconque revendication précédente, caractérisé en ce que le composé organique du silicium est choisi parmi les silicones, les silanes, les siliconates.
9. Ciment phosphomagnésien selon l'une quelconque des revendications 7 ou 8, caractérisé en ce que la quantité de composé organique du silicium est d'au moins 0J0 parties en poids pour 100 parties en poids de phase liante, de préférence d'au plus 5 parties en poids.
10. Ciment phosphomagnésien selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend un additif choisi parmi les polymères sous forme de particules insolubles dans l'eau.
11. Ciment phosphomagnésien selon l'une quelconque des revendications précédentes, caractérisé en ce que la teneur en eau est d'au plus 50 % en poids, rapporté au poids de phase liante.
12. Utilisation du ciment phosphomagnésien selon l'une quelconque des revendications 1 à 11 en tant que coulis ou mortier.
13. Matériau composite à base de ciment phosphomagnésien selon l'une quelconque des revendications 1 à 11 et de fibres.
PCT/FR1998/001185 1997-06-10 1998-06-10 Nouvelle phase liante pour ciments phosphomagnesiens WO1998056732A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU79253/98A AU7925398A (en) 1997-06-10 1998-06-10 Novel binding phase for magnesium phosphate cement

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR97/07312 1997-06-10
FR9707312A FR2764285B1 (fr) 1997-06-10 1997-06-10 Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers

Publications (1)

Publication Number Publication Date
WO1998056732A1 true WO1998056732A1 (fr) 1998-12-17

Family

ID=9507909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1998/001185 WO1998056732A1 (fr) 1997-06-10 1998-06-10 Nouvelle phase liante pour ciments phosphomagnesiens

Country Status (3)

Country Link
AU (1) AU7925398A (fr)
FR (1) FR2764285B1 (fr)
WO (1) WO1998056732A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518212B1 (en) 2000-09-18 2003-02-11 The University Of Chicago Chemically bonded phospho-silicate ceramics
US7491267B2 (en) 2001-08-10 2009-02-17 Ceratech, Inc. Composite materials and methods of making and using such composite materials

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6204214B1 (en) 1996-03-18 2001-03-20 University Of Chicago Pumpable/injectable phosphate-bonded ceramics
FR2809391B1 (fr) * 2000-05-29 2003-05-09 Rhodia Chimie Sa Nouveau mortier phosphomagnesien, procede d'obtention de ce mortier
FR2809724B1 (fr) * 2000-06-05 2003-05-09 Rhodia Chimie Sa Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant
CN113772986B (zh) * 2021-10-29 2022-08-16 沈阳建筑大学 一种适用于铵基磷酸镁水泥体系的缓凝剂及其使用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133733A2 (fr) * 1983-08-11 1985-03-06 Stauffer Chemical Company Production de matériaux solides contenant du pentoxyde de phosphore pour ciments à prise rapide
EP0534385A1 (fr) * 1991-09-25 1993-03-31 Takenaka Corporation Substance hydraulique
EP0661242A1 (fr) * 1993-12-31 1995-07-05 Rhone-Poulenc Chimie Préparation de ciments phosphomagnésiens
WO1997021639A1 (fr) * 1995-12-08 1997-06-19 Rhodia Chimie Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
WO1997045380A1 (fr) * 1996-05-24 1997-12-04 Rhodia Chimie Nouvelle composition de ciment phosphomagnesien comprenant un polymere sous forme de particules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0133733A2 (fr) * 1983-08-11 1985-03-06 Stauffer Chemical Company Production de matériaux solides contenant du pentoxyde de phosphore pour ciments à prise rapide
EP0534385A1 (fr) * 1991-09-25 1993-03-31 Takenaka Corporation Substance hydraulique
EP0661242A1 (fr) * 1993-12-31 1995-07-05 Rhone-Poulenc Chimie Préparation de ciments phosphomagnésiens
WO1997021639A1 (fr) * 1995-12-08 1997-06-19 Rhodia Chimie Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
WO1997045380A1 (fr) * 1996-05-24 1997-12-04 Rhodia Chimie Nouvelle composition de ciment phosphomagnesien comprenant un polymere sous forme de particules

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6518212B1 (en) 2000-09-18 2003-02-11 The University Of Chicago Chemically bonded phospho-silicate ceramics
US7491267B2 (en) 2001-08-10 2009-02-17 Ceratech, Inc. Composite materials and methods of making and using such composite materials

Also Published As

Publication number Publication date
FR2764285A1 (fr) 1998-12-11
AU7925398A (en) 1998-12-30
FR2764285B1 (fr) 1999-08-20

Similar Documents

Publication Publication Date Title
EP0865416B1 (fr) Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
RU2516298C2 (ru) Смеси, содержащие кремнийорганические соединения, и их применение
JP5657095B2 (ja) 硬化可能な混合物
US7875674B2 (en) Building materials incorporated with hydrophobic silicone resin(s)
CN1395600A (zh) 改善了稳定性的硅酸盐涂层物
EP2467349A2 (fr) Ciment geopolymerique et son utilisation
JP2774235B2 (ja) オルガノシロキサン液組成物とその用途
WO2013044980A1 (fr) Mélange durcissable
EP0910556B1 (fr) Nouvelle composition de ciment phosphomagnesien comprenant un polymere sous forme de particules
JP2019534232A (ja) 疎水化繊維セメント製品、その製造のための方法およびその使用
WO1998056732A1 (fr) Nouvelle phase liante pour ciments phosphomagnesiens
EP3830050A1 (fr) Liant contenant une argile
FR2809724A1 (fr) Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant
WO1981001702A1 (fr) Procede de production de platres-mortiers et produits obtenus par ce procede
JPS58500061A (ja) 変性硬化モルタルの製法
FR2721601A1 (fr) Ciments comprenant des polysaccharides, des protéines végétales et son mode de préparation.
JP5904708B6 (ja) 有機珪素化合物含有混合物及びその使用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1999501773

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: CA

122 Ep: pct application non-entry in european phase