WO1998047931A1 - Polymeres, leurs procedes de production et compositions durcissables produites a partir de ces polymeres - Google Patents

Polymeres, leurs procedes de production et compositions durcissables produites a partir de ces polymeres Download PDF

Info

Publication number
WO1998047931A1
WO1998047931A1 PCT/JP1998/001759 JP9801759W WO9847931A1 WO 1998047931 A1 WO1998047931 A1 WO 1998047931A1 JP 9801759 W JP9801759 W JP 9801759W WO 9847931 A1 WO9847931 A1 WO 9847931A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
main chain
same
Prior art date
Application number
PCT/JP1998/001759
Other languages
English (en)
French (fr)
Inventor
Kenichi Kitano
Yoshiki Nakagawa
Masato Kusakabe
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to DE69833747T priority Critical patent/DE69833747T2/de
Priority to US09/403,272 priority patent/US6423787B1/en
Priority to EP98914060A priority patent/EP0976766B1/en
Publication of WO1998047931A1 publication Critical patent/WO1998047931A1/ja
Priority to US10/763,268 priority patent/US7202310B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/42Introducing metal atoms or metal-containing groups

Definitions

  • the present invention relates to a polymer, a method for producing the polymer, and a curable composition using the polymer.
  • the present invention relates to a vinyl polymer having an alkenyl group or a crosslinkable silyl group at at least one main chain terminal, a method for producing the polymer, and a curable composition using the polymer.
  • Polymers having a crosslinkable functional group at the terminal of the main chain are known to be crosslinked by themselves or in combination with an appropriate hardener to give a cured product having excellent heat resistance and durability. ing.
  • a polymer having an alkenyl group or a crosslinkable silyl group at the terminal of the main chain is a typical example.
  • the polymer having an alkenyl group at the terminal of the main chain is cross-linked and cured by using a compound containing a hydrosilyl group as a curing agent or by utilizing a photoreaction.
  • a polymer having a crosslinkable silyl group at the terminal of the main chain gives a cured product by absorbing moisture in the presence of a suitable condensation catalyst.
  • the main chain skeleton of the polymer having such an alkenyl group or a crosslinkable silyl group at the terminal of the main chain includes polyether polymers such as polyethylene oxide, polypropylene oxide, and polytetramethylenoxide; polybutadiene, polyisoprene, and polychloroprene. Examples thereof include hydrocarbon-based polymers such as propylene, polyisobutylene, and hydrogenated products thereof; and polyester-based polymers such as polyethylene terephthalate, polybutylene terephthalate, and polycaprolactone. These polymers are used for various purposes based on their main-chain skeleton and cross-linking format.
  • the (meth) acryl-based polymers include the above-mentioned polyether-based polymers, hydrocarbon-based polymers and polyesters having high weather resistance and transparency. It has properties that cannot be obtained with telluric polymers.
  • a (meth) acrylic polymer having an alkenyl group or a crosslinkable silyl group in a side chain instead of a terminal of a main chain is used for a highly weather-resistant paint or the like.
  • a vinyl polymer having a crosslinkable functional group at a terminal of a main chain can provide a cured product having excellent curability. Therefore, many researchers have studied simple manufacturing methods, but it is not easy to manufacture them industrially.
  • Japanese Patent Application Laid-Open No. H12-247403 discloses a method of synthesizing a vinyl polymer having alkenyl groups at both ends using an alkenyl group-containing disulfide as a chain transfer agent.
  • Japanese Patent Application Laid-Open No. Hei 6-219192 also discloses that a vinyl polymer having hydroxyl groups at both ends is synthesized by using a disulfide having a hydroxyl group as a chain transfer agent.
  • JP-A-59-168014 discloses that a disulfide compound having a crosslinkable silyl group is used as a chain transfer agent, and a crosslinkable silyl group is added to both terminals of a vinyl polymer.
  • Japanese Patent Application Laid-Open No. 61-133201 discloses that a crosslinkable silyl group is introduced into both terminals of a vinyl polymer by using a hydrosilane or a halogenated silane having a crosslinkable silyl group. A method for doing so is disclosed.
  • ordinary radical polymerization is used in these methods, it is difficult to control the molecular weight and molecular weight distribution (ratio of weight average molecular weight to number average molecular weight) of the obtained polymer. Summary of the Invention
  • the present invention provides a vinyl-based polymer in which an alkenyl group or a crosslinkable silyl group is introduced into a main chain terminal at a high ratio without through a sulfur atom, a method for producing these polymers, and It is an object of the present invention to provide a curable composition using these polymers.
  • the present invention provides at least an alkenyl group represented by the following general formula (1):
  • R 1 and R 2 are the same or different; Represents a valent organic group.
  • R 3 represents a divalent organic group having 1 to 20 carbon atoms which may contain one or more ether bonds or ester bonds.
  • R 4 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or a carbon number? Represents up to 10 aralkyl groups.
  • R 5 represents a direct bond or a divalent organic group having 1 to 19 carbon atoms which may contain one or more ether bonds or ester bonds.
  • the present invention is also a vinyl polymer having a crosslinkable silyl group at least at one main chain terminal, which is obtained by adding a hydrosilane compound having a crosslinkable silyl group to the polymer (A).
  • this polymer is referred to as polymer (B).
  • the present invention is also a vinyl polymer having an alkenyl group represented by the following general formula (5) at least at one main chain terminal.
  • this polymer is referred to as polymer (C).
  • R ′ and R 2 are the same as above.
  • R 6 and R 7 are the same or different and each represent an electron-withdrawing substituent, or one represents an electron-withdrawing substituent, and the other represents hydrogen, an alkyl group having 1 to 10 carbon atoms or phenyl. Represents a group.
  • R 8 is directly Represents a bond or a divalent organic group having 110 carbon atoms which may contain one or more ether bonds.
  • R 9 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 10 carbon atoms or a carbon number? Represents up to 10 aralkyl groups.
  • the present invention is also a vinyl polymer having a crosslinkable silyl group represented by the following general formula (6) at least at one main chain terminal.
  • this polymer is referred to as polymer (D).
  • R 10 and R ′ 1 are the same or different and are an alkyl group having 120 carbon atoms, an aryl group having 6 20 carbon atoms, and a carbon number? Or an aralkyl group of up to 20 or (R ′) 3 S i ⁇ i (wherein R ′ represents a monovalent hydrocarbon group having 120 carbon atoms, and three R ′s are the same. Or a different group.)).
  • R ' when two or more R 1 ′ are present, they may be the same or different.
  • Y represents a hydroxyl group or a hydrolyzable group, and when two or more are present, they may be the same or different.
  • a represents 0 1 2 or 3;
  • b represents 0 1 or 2.
  • m is an integer of 0 19. However, it satisfies that a + mb ⁇ l.
  • the present invention also provides a method for producing a vinyl polymer having a group represented by the following general formula (7) at at least one main chain terminal by polymerizing a vinyl monomer.
  • the terminal halogen is represented by the following general formula (8), or when R 3 is a divalent organic group represented by —C (0) -R 5 — ), which is a method for producing the above polymer (A) substituted with an alkenyl group-containing oxyanion.
  • R 1 and R 2 are the same as above.
  • X represents chlorine, bromine or iodine.
  • R 3 R 4 and R 5 are the same as above.
  • M + is an alkali metal ion or 4 Represents a class ammonium ion.
  • the present invention is also the method for producing the polymer (B), wherein a hydrosilane compound having a crosslinkable silyl group represented by the following general formula (9) is added to the polymer (A).
  • the present invention further comprises producing a vinyl polymer having a group represented by the above general formula (7) at at least one terminal by polymerizing a vinyl monomer. It is also a method for producing the polymer (C), wherein the polymer (C) is substituted with an alkenyl group-containing carbanion represented by the formula (10).
  • the present invention further provides a vinyl-based polymer having at least one terminal having a group represented by the above general formula (7) by polymerizing a vinyl-based monomer.
  • This is also a method for producing the polymer (D), wherein the polymer (D) is substituted with a crosslinkable silyl group-containing carbonyl represented by the general formula (11).
  • the present invention further provides a method for producing the polymer (D), wherein a hydrosilane compound having a crosslinkable silyl group represented by the general formula (9) is added to the polymer (C). .
  • the present invention is also a curable composition containing (a) the polymer (A) or (C), and (b) a compound containing a hydrosilyl group.
  • the present invention is also a curable composition containing the above polymer (B) or (D) as a main component.
  • the polymer (A) of the present invention is a vinyl polymer having the alkenyl group represented by the general formula (1) at least at one main chain terminal.
  • R 3 is a divalent organic group represented by 1 C ( ⁇ ) 1 R 5 —
  • the alkenyl group represented by the general formula (1 ′) Is a vinyl polymer having at least one main chain terminal.
  • R 1 and R 2 are the same or different and represent a monovalent organic group.
  • the monovalent organic group is not particularly limited as long as it is a monovalent organic group derived from a group bonded to a vinyl group of a vinyl monomer used for producing a polymer main chain.
  • R 3 represents a divalent organic group having 1 to 20 carbon atoms which may contain one or more ether bonds or ester bonds.
  • one (CH 2 ) one (n represents an integer of 1 to 20); — CH (CH 3 ) one, one CH (CH 2 CH 3 ) one, one C (CH 3 ) 2 -,-C (CH 3 ) (CH 2 CH 3 ) one, one C (CH 2 CH 3 )-,-CH 2 CH (CH 3 ) one; one (CH 2 )tician-0-(n is 1 Represents an integer of up to 20); — CH (CH 3 ) -0—, one CH (CH 2 CH 3 ) — 0 —, — C (CH 3 ) — 0 —, one C (CH 3 ) (CH 2 CH 3 ) 1 0-, 1 C (CH 2 CH 3 ) 1; 1 (CH 2 ) n 1 0-CH 2- (n represents an integer of 1 to 19); — CH (CH 3 ) one, one CH (CH 2
  • R 3 may include a benzene ring. Examples of this case, o-, m-, p - CH -, 0-, m-, p - C 6 H 4 - CH 2 -, o-, m -, ⁇ - CH 4 over 0, 0 —, m—, p-CH 4 ⁇ — CH 2 —, o—, m 1, p-C 6 H 4 -0- CH (CH 3 ) 1, o-, m—, p-C 6 — 0-C
  • C 6 represents a phenylene group
  • n represents an integer of 0 to 14.
  • R 3 is represented by the general formula (3):
  • the general formula (1) can be represented by the general formula (1 ′).
  • R 5 represents a direct bond, or a divalent organic group having 1 to 19 carbon atoms which may contain one or more ether bonds or ester bonds.
  • Specific examples of the divalent organic group include those already exemplified for R 3 .
  • Preferred examples of the above R 5 include a direct bond or a compound represented by the general formula (4): One (CH 2 ) n- (4)
  • n represents an integer of 1 to 19.
  • R 4 represents hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, or an aralkyl group having 7 to 10 carbon atoms. Represent. Among them, hydrogen or a methyl group is preferable from the viewpoint of reactivity when the polymer (A) is used as a curable resin.
  • the vinyl monomer used for producing the main chain of the vinyl polymer of the present invention is not particularly limited, and various types can be used.
  • styrene-based monomers and (meth) acrylic acid-based monomers are preferred in view of the physical properties of the product. More preferred are acrylate monomers and methacrylate monomers, and even more preferred are butyl acrylate.
  • the vinyl polymer of the present invention has a molecular weight distribution, that is, a ratio (MwZM n) between the weight average molecular weight (Mw) and the number average molecular weight (M n) measured by gel permeation mouth chromatography (GPC). It is preferably 1.8 or less. More preferably, it is 1.6 or less, and still more preferably, it is 1.3 or less.
  • GPC gel permeation mouth chromatography
  • a chromate form is usually used as a mobile phase, and the measurement is performed using a polystyrene gel column.
  • the number average molecular weight and the like can be determined in terms of polystyrene.
  • the number average molecular weight of the vinyl polymer of the present invention is not particularly limited, but is preferably in the range of 500 to 1000, more preferably 300 to 500. molecule When the amount is less than 500, the intrinsic properties of the vinyl polymer are hardly exhibited, and when the amount is more than 100, handling becomes difficult.
  • the polymer (B) of the present invention is a vinyl-based polymer having a crosslinkable silyl group at at least one main chain terminal, which is obtained by adding a silane compound having a crosslinkable silyl group to the polymer (A). It is a polymer.
  • hydrosilane compound having a crosslinkable silyl group is not particularly limited, and a compound as exemplified below is used.
  • the addition of the polymer (A) to the hydrosilane conjugate will be described later in detail.
  • the polymer (C) of the present invention is a vinyl polymer having the alkenyl group represented by the general formula (5) at least at one main chain terminal.
  • the alkenyl group is bonded to the main chain of the vinyl polymer via a hardly-cleavable carbon-carbon bond. It does not impair the inherent properties of the polymer such as weather resistance.
  • R 1 and R 2 in the general formula (5) are the same as those described above, and those exemplified above are used.
  • R 6 and R 7 may both represent an electron-withdrawing substituent, only one of them represents an electron-withdrawing substituent, the other is hydrogen, and the number of carbon atoms is 1 to 10; May represent an alkyl group or a phenyl group. That is, at least one of R 6 and R 7 is an electron-withdrawing substituent, which is indispensable in the production of this polymer as described later. When both R 6 and R 7 represent electron-withdrawing substituents, they may be the same or different.
  • the electron-withdrawing substituent is not particularly limited, and may be a conventionally known electron-withdrawing substituent.
  • one C_ ⁇ 2 R esteer group
  • one C (0) R keto group
  • one CON R 2
  • an amino-de-group
  • one COSR Choesuteru group
  • one CN two tolyl group
  • R represents an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, and preferably has 1 carbon atom.
  • - C0 2 R one C (0) R and,, - CN is preferred especially.
  • R 8 represents a direct bond or a divalent organic group having 1 to 10 carbon atoms.
  • the divalent organic group is not particularly limited, and may be, for example, one (CH 2 ) argue-(n represents an integer of 1 to 10), 0—, m—, p-CeH 4 (Fu Among them,-(CH 2 ) casual-is preferable.
  • the divalent organic group may contain one or more ether bonds, and specific examples thereof include —CH 2 —O—CH 2 mono- (CH 2 ) 2 —0—CH 2 -,-(CH 2 ) 3 1 0-CH 2 -,-(CH 2 ) 2 1 0-(CH 2 ) 2
  • R 9 is hydrogen, an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms or a carbon number? Represents up to 10 aralkyl groups. Among them, hydrogen or a methyl group is preferable from the viewpoint of reactivity when the polymer (C) is used as a curable resin.
  • the vinyl monomer used for the production of the main chain of the polymer (C) is not particularly limited, and those already exemplified can be used. Further, the molecular weight distribution and the number average molecular weight of this polymer preferably satisfy the above-mentioned ranges for the polymer (A).
  • the polymer (D) of the present invention is a vinyl polymer having the crosslinkable silyl group represented by the general formula (6) at least at one main chain terminal.
  • the crosslinkable silyl group is bonded to the main chain of the vinyl polymer via a hardly-breakable carbon-carbon bond, the cured product obtained from this polymer is obtained. Does not impair the inherent properties of the vinyl polymer, such as weather resistance.
  • R ′, R 2 , R 6 , R 7 , R 8 and R g are the same as those described above, and those exemplified above are used.
  • 1 ⁇ ° and 1 ⁇ ' are the same or different and each is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and a carbon number? To 20 or an aralkyl group, or a triorganosiloxy group represented by (R ′) 3 S i 0—.
  • R ′ represents a monovalent hydrocarbon group having 1 to 20 carbon atoms, and three R ′s are the same. May be present or different. Further, when two or more R 1 D or R ′ 1 forces are present, they may be the same or different.
  • R IQ and R 11 include, for example, an alkyl group such as a methyl group and an ethyl group; a cycloalkyl group such as a cyclohexyl group; an aryl group such as a phenyl group; an aralkyl group such as a benzyl group. Groups; triorganosiloxy groups such as trimethylcyclooxy groups and triphenylsiloxy groups.
  • Y represents a hydroxyl group or a hydrolyzable group, and when two or more are present, they may be the same or different.
  • the hydrolyzable group is not particularly limited, and may be a conventionally known group. Specific examples include a hydrogen atom, a halogen atom, an alkoxy group, an acyloxy group, a ketoximate group, an amino group, an amide group, an acid amide group, an aminooxy group, a mercapto group, and an alkenyloxy group. Among them, an alkoxy group is preferred because it has mild hydrolyzability and is easy to handle.
  • the above Y can be bonded to one gay atom in the range of 1-3.
  • a + mb that is, the sum of the hydrolyzable group and the hydroxyl group is preferably in the range of 1 to 5.
  • two or more of the above hydrolyzable groups are bonded to a gayne atom, they may be the same or different.
  • the number of gay atoms contained in the general formula (6) may be one, or may be two or more. In the case of a silicon atom linked by a siloxane bond, the number is up to about 20. Is also good.
  • a crosslinkable silyl group refers to a silyl group to which the above-mentioned group Y is bonded, and is represented by a hydroxyl group or a hydroxyl group generated by hydrolysis of a hydrolyzable group. S i monocrosslinks can be formed.
  • a represents 0, 1, 2 or 3.
  • B represents 0, 1 or 2.
  • m represents an integer of 0 to 19. However, a, b, and m satisfy a + m b ⁇ 1.
  • the vinyl monomer used for the production of the main chain of the polymer (D) is not particularly limited, and those already exemplified and the like can be used. Further, the molecular weight distribution and the number average molecular weight of this polymer preferably satisfy the above-mentioned ranges for the polymer (A).
  • the polymer (A) of the present invention can be obtained, for example, by the following production method. That is, a vinyl-based monomer is polymerized to produce a vinyl-based polymer having at least one main chain terminal represented by the general formula (7). The polymer is obtained by substitution with an alkenyl-containing oxyanion represented by the general formula (8).
  • the vinyl-based monomer used in the above-mentioned production method is not particularly limited, and those exemplified above are used.
  • the vinyl polymer having a terminal represented by the above general formula (7) can be obtained by polymerization using a halogen-based chain transfer agent or living radical polymerization that has been energetically studied recently (for example, Matyjaszewski et al. Macromolecules (J. Am. Chem. Soc.), 1975, 1117, 561.44; Macromolecules 1 ecu 1 es), 1995, Vol. 28, pp. 790; Science (Science), 1996, Vol. 272, pp. 866, or Sawamo to et al. , McMouth Moleculars, 1959, Vol. 28, pp. 17211). Among them, the latter is preferred because the reaction and the structure of the product are easily controlled.
  • the following is a terminal-based vinyl polymer represented by the above general formula (7) using living radical polymerization. The method for manufacturing the will be described in detail.
  • the living radical polymerization uses an organic halide (for example, an ester compound having a halogen at the ⁇ -position or a compound having a halogen at the benzyl position) or a sulfonyl halide compound as an initiator, and a transition metal complex as a catalyst. It is characterized in that a vinyl monomer is polymerized by using it. By using this polymerization method, it is possible to control the molecular weight and molecular weight distribution of the vinyl polymer, which were difficult with conventional radical polymerization (molecular weight distribution: 1.1 to 1.8).
  • R 1 2 — C 6 H 4 -S 0 2 X (wherein, R 13 is the same as above; X represents chlorine, bromine or iodine).
  • an organic halide or a sulfonyl halide compound having a functional group other than the functional group that initiates the polymerization can also be used.
  • a vinyl polymer having a functional group at one main chain terminal and a structure represented by the above general formula (7) at the other main chain terminal is produced.
  • Examples of such a functional group include an alkenyl group, a crosslinkable silyl group, a hydroxyl group, an epoxy group, an amino group, and an amide group.
  • the organic halide having an alkenyl group is not particularly limited, and examples thereof include those having a structure represented by the general formula (12).
  • R 1 7 is.
  • R 18 and R 19 represents a hydrogen or a methyl group are the same or different connexion, hydrogen, alkyl group having 1 to 2 carbon atoms 0 or Ariru group having a carbon number of 6 to 2 0 represents a Ararukiru group having a carbon number of 7 to 2 0, R 1 8 and R 19 may be linked to each other at the other end.
  • R 2 ° is one C (0) 0- (ester group), one C (0) represents one (keto group) or 0—, m—, p-phenylene group, and R 2 ′ is a direct bond or
  • X represents chlorine, bromine or iodine.
  • R 18 and R '9 is hydrogen, methyl, Echiru group, n- propyl group, an isopropyl group, n- butyl group, a pentyl group, hexyl group and the like to.
  • R 18 and R 19 may be linked at the other end to form a cyclic skeleton.
  • X represents chlorine, bromine or iodine.
  • N represents an integer of 0 to 20.
  • X represents chlorine, bromine or iodine.
  • N represents an integer of 1 to 20.
  • m represents an integer of 0 to 20.
  • Examples of the organic halide having an alkenyl group further include a compound represented by the general formula (13).
  • R 22 is a direct bond, one C (0) 0— (ester group), one C ( ⁇ ) one ( A keto group) or 0-, m-, p-phenylene group.)
  • R 2 i represents a direct bond or a divalent organic group having 1 to 20 carbon atoms (which may contain one or more ether bonds).
  • this compound is a halogenated arylide because a vinyl group is bonded to the carbon to which the halogen is bonded.
  • R 22 since the carbon-halogen bond is activated by the adjacent vinyl group, R 22 does not necessarily need to be a C (0) group or a phenylene group, and may be a direct bond.
  • R 22 is preferably a C (0) 0 group, a C (0) group or a phenylene group in order to activate a carbon-halogen bond.
  • the alkenyl group of the initiator may react with the polymerization growth terminal during the polymerization reaction. Caution must be taken.
  • the organic halide having a crosslinkable silyl group is not particularly limited, and examples thereof include those having a structure represented by the general formula (14).
  • organic halide having a crosslinkable silyl group a compound represented by the general formula (15) is further exemplified.
  • Such compounds include (CH 30 ) Si CH 2 CH C (H) (X) C 6 H 5 , (CH 30 ) (CH 3 ) Si CH 2 CH 2 C (H) (X) C 6 H 5 , (CH 30 ) S i (CH 2 ) C (H) (X)-C 0 2 R, (CH 30 ) (CH 3 ) S i (CH 2 ) C (H) (X) — C0 2 R, (CH 3 0) S i (CH 2 ) C (H) (X) C ⁇ 2 R, (CH 3 0) 2 (CH 3 ) S i (CH 2 ) C (H) (X) 1 C0 2 R, (CH 3 0) 3 S i (CH 2 ) C (H) (X)-CO 2 R, (CH 3 ⁇ ) 2 (CH 3 ) S i (CH) C (H) ( X) - C O2 R, (CH 3 0) S i (CH 2) 9 C (H) (X) one
  • the organic halo-genated compound having a hydroxyl group or the halo-genated sulfonyl compound The substance is not particularly limited, and the following compounds are exemplified.
  • X represents chlorine, bromine or iodine.
  • R is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a 7 to 20 carbon atom. Represents an aralkyl group, and n represents an integer of 1 to 20.
  • the organic halide or the sulfonyl halide compound having an amino group is not particularly limited, and examples thereof include the following compounds.
  • X represents chlorine, bromine or iodine.
  • R is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a C 7 to 20 carbon atom. Represents an aralkyl group, and n represents an integer of 1 to 20.
  • the organic halide or the sulfonyl halide compound having the epoxy group is not particularly limited, and the following compounds are exemplified.
  • X represents chlorine, bromine or iodine.
  • R is hydrogen, an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or a carbon atom having? Represents an aralkyl group, and n represents an integer of 1 to 20.
  • the alkenyl group represented by the above general formula (1) is converted to A vinyl-based polymer having two or more in one molecule can be produced. That is, when polymerization is carried out using an initiator having two starting points, a vinyl polymer having alkenyl groups at both ends is obtained.
  • initiators include the following compounds.
  • C s H 4 represents a phenylene group.
  • X represents chlorine, bromine or iodine.
  • R is an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms or a carbon number? Represents up to 20 aralkyl groups.
  • n represents an integer of 0 to 20.
  • the living radical polymerization can be carried out without a solvent or in various solvents.
  • the solvent examples include: hydrocarbon solvents such as benzene and toluene; ether solvents such as getyl ether and tetrahydrofuran; halogenated hydrocarbon solvents such as methylene chloride and chloroform; acetone and methylethyl ketone; Ketone solvents such as methyl isobutyl ketone; alcohol solvents such as methanol, ethanol, propanol, isopropanol, n-butyl alcohol, and tert-butyl alcohol; acetonitrile, propionitrile, benzonitrile, etc.
  • hydrocarbon solvents such as benzene and toluene
  • ether solvents such as getyl ether and tetrahydrofuran
  • halogenated hydrocarbon solvents such as methylene chloride and chloroform
  • acetone and methylethyl ketone Ketone solvents such as methyl isobutyl ketone
  • alcohol solvents such
  • Nitrile solvents such as ethyl acetate and butyl acetate
  • carbonate solvents such as ethylene carbonate and propylene carbonate.
  • the transition metal complex used as a catalyst for the living radical polymerization is not particularly limited, and preferred are complexes of monovalent copper, divalent ruthenium, divalent iron or divalent nickel. Of these, copper complexes are preferred. Specific examples of monovalent copper compounds include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous perchlorate, etc. It is.
  • ligands such as polyamines such as 2,2'-biviridyl and its derivatives, 1,10-phenanthroline and its derivatives, and pentamethylmethylenetriamine to increase the catalytic activity Is added.
  • divalent preparative list Rifuweniru phosphine emission complex of ruthenium chloride (Ru C l 2 (PP h 3) 3) is also preferable as a catalyst.
  • ruthenium compound is used as a catalyst, aluminum alkoxides are added as an activator.
  • the polymerization in the production method of the present invention may be a polymerization using a halogenated product as a chain transfer agent (telogen) in addition to the living radical polymerization.
  • a halogenated product as a chain transfer agent (telogen) in addition to the living radical polymerization.
  • the halogenated compound include carbon tetrachloride, carbon tetrabromide, methylene chloride, and methylene bromide.
  • the terminal halogen of the vinyl polymer having at least one main chain terminal having the group represented by the general formula (7) produced by the production method described above may be replaced with an alkenyl group represented by the general formula (8).
  • the polymer (A) of the present invention can be obtained by substitution with the contained oxyanion.
  • the method of substitution with an alkenyl-containing oxyanion will be described in detail.
  • R 3 and R 4 are the same substituents as those described above, and specific examples thereof include all of those exemplified above.
  • the general formula (8) is represented by the general formula (8 ′).
  • M + is a counter cation of oxyanion, and represents an alkali metal ion or a quaternary ammonium ion.
  • metal ions include lithium ions, sodium ions, and potassium ions.
  • quaternary ammonium ions include tetramethylammonium ion, tetraethylammonium ion, trimethylbenzylammonium ion, Trimethyldodecylammonium ion, tetrabutylammonium ion, dimethylpiberdinium ion and the like can be mentioned.
  • Preferred values for M ′ are sodium ion or lithium ion.
  • H 2 C CH-CH 2 one 0H
  • H 2 C CH - CH (CH 3) one 0H
  • H 2 C C (CH 3 ) one CH 2 -OH.
  • H 2 C CH-C (O) -OH
  • H 2 C C (CH 3) one C (O) one 0 H
  • H 2 C CH -CH 2 one C (0) -OH
  • H 2 C CH-(CH 2 ) n one C (0) -OH (n represents an integer of 2 to 20 )
  • H 2 C CH — (CH 2 )tician-OC (0) one ( CH 2 ) m — C (0) -OH (m and n are the same or different and represent an integer of 0 to 19)
  • o—, m—, p—H 2 C CH—C 6 H 4 — C ( ⁇ ) -OH
  • an alkenyl-containing oxyanion represented by the general formula (8) can be prepared.
  • Various compounds can be used as the basic compound.
  • solvent used when reacting the above precursor with the above base examples include hydrocarbon solvents such as benzene and toluene; ether solvents such as dimethyl ether and tetrahydrofuran; methylene chloride and chloroform. Halogenated hydrocarbon solvents; ketone solvents such as acetone, methylethyl ketone, and methyl isobutyl ketone; methanol, ethanol, propanol, isopropanol, n-butyl alcohol Alcohol-based solvents such as alcohol and tert-butyl alcohol; nitrile-based solvents such as acetonitrile, propionitrile, and benzonitrile; ester-based solvents such as ethyl acetate and butyl acetate; ethylene-based solvents such as ethylene carbonate and propylene carbonate Carbonate solvents; amide solvents such as dimethylformamide and dimethylacetamide; These can be used alone or in combination of two or more
  • the alkenyl group-containing oxyanion in which M is a quaternary ammonium ion can be obtained by directly reacting the above precursor with an alkylamine or pyridine compound, but M + is an alkali metal ion by the method described above. It can also be obtained by preparing a product and reacting it with a quaternary ammonium halide.
  • the above-mentioned quaternary ammonium halides include tetramethylammonium halide, tetraethylammonium halide, trimethylbenzylammonium halide, trimethyldodecylammonium halide, and tetrabutylammonium halide.
  • a halide is exemplified.
  • the alkenyl group-containing oxyanion of the general formula (8) prepared by the above method is reacted with the vinyl polymer having a terminal structure of the general formula (7) obtained by the polymerization method described above.
  • the polymer (A) can be obtained.
  • This reaction can be carried out at 0 to 150 ° C. in the above-mentioned solvent.
  • the amount of the alkenyl group-containing oxyanion of the general formula (8) to be used is 1 to 5 equivalents, preferably 1 to 2 equivalents, relative to the terminal structure of the general formula (7).
  • the vinyl polymer having a crosslinkable silyl group at the terminal of the main chain which is the polymer (B) of the present invention, is the same as the polymer (A) having the alkenyl group at the terminal of the main chain, but having the general formula It can be obtained by adding a hydrosilane compound having a crosslinkable silyl group represented by (9).
  • R 1 D , R 11. Y, a, b, and m are the same as those described above.
  • hydrosilylation catalyst described later can be used.
  • the polymer (C) of the present invention can be produced, for example, by the following method. That is, a vinyl polymer having the group represented by the general formula (7) at at least one main chain terminal is produced by the above-described method, and then the terminal halo of the polymer is produced.
  • the polymer is obtained by substituting the gen with an alkenyl group-containing carbodione represented by the general formula (10).
  • R 6 , R 7 , R 8 , R 9 and M + are the same substituents as described above. All of those exemplified in the above.
  • Negative charges in the carbanione represented by the general formula (10) are depolarized because one or two electron-withdrawing substituents are bonded to the carbon atom.
  • Karuboa two on the negative charges are non-polar localization is, c also are more stable compared to Karuboa two on not, reactive is mild, selective and terminal halogen in the general formula (7) It reacts and does not react with other substituents such as an ester group, so that an alkenyl group can be efficiently introduced into the terminal of the main chain.
  • the alkenyl group-containing carbanione represented by the general formula (10) can be obtained by reacting a basic compound with the precursor to extract the active proton of the precursor.
  • the basic compound As the basic compound, those exemplified above are used.
  • the basic compound may be used in an equivalent amount or a small excess amount with respect to the precursor, and is preferably 1 to 1.2 equivalents.
  • H 2 C CH- CH ( C0 2 CH 3)
  • H 2 C CH - CH ( C_ ⁇ 2 C 2 H 5)
  • p-H 2 C CH- C 6 H 4 —CH (C0 2 CH 3 ) 2
  • o-, m-, p-H 2 C CH-C 6 -CH (C0 2 C 2 H 5 ) 2
  • o-, m-, p- H 2 C CH-C 6 H 4 1 CH 2 CH (C0 2 CH 3 ) 2
  • o, m, p-H 2 C CH-Ce H 4 -CH 2 CH (C ⁇ 2 C 2 H 5 ) 2
  • H 2 C CH -CH (C (0) CH 3 ) (C ⁇
  • Examples of the solvent used in the reaction between the precursor and the basic compound include: hydrocarbon solvents such as benzene and toluene; ether solvents such as dimethyl ether and tetrahydrofuran; methylene chloride; Halogenated hydrocarbon solvents such as mouth form; ketone solvents such as acetone, methylethylketone, methylisobutylketone; methanol, ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol, etc.
  • Alcohol solvents such as acetonitril, propionitrile and benzonitrile; ester solvents such as ethyl acetate and butyl acetate; carbonate solvents such as ethylene carbonate and propylene carbonate; Dimethylformamide, dimethylacetamide, etc. Amide solvents and the like. These can be used alone or in combination of two or more.
  • H 2 C CH—CH 2 CH (C0 2 C If 2 H 5) (when using the Arirumaron acid Jechiru), to the reaction vessel in an inert gas atmosphere, a basic compound, for example, were charged potassium one tert one butoxide, in an ether-based solvent such as tetrahydrofuran Suspended and dispersed.
  • a basic compound for example, were charged potassium one tert one butoxide, in an ether-based solvent such as tetrahydrofuran Suspended and dispersed.
  • quaternary ammonium halides include tetramethylammonium halide, tetraethylammonium halide, trimethylbenzylammonium halide, trimethyldodecylammonium halide, Examples thereof include tetrabutylammonium halide.
  • the polymer (C ) Is obtained.
  • This reaction can be performed at 0 150 ° C. in the above-mentioned solvent.
  • the amount of the carbodione represented by the general formula (10) may be an equivalent amount or a small excess with respect to the halogen terminal of the general formula (7), and is preferably 11.2 equivalent.
  • the polymer (D) of the present invention can be produced, for example, by the following method. That is, a vinyl polymer having at least one main chain terminal having the group represented by the general formula (7) is produced by the above-described method. The above polymer is obtained by replacement with the crosslinkable silyl group-containing carbionione represented by 11).
  • R 6 RHY abm M is the same as above.
  • the carborione represented by the general formula (11) can be obtained by reacting a basic compound with a precursor thereof and extracting an active proton.
  • a carbanione represented by the general formula (11) is prepared, and a vinyl polymer having a halogen terminal represented by the general formula (7) is obtained. And the desired polymer (D) can be obtained.
  • the polymer (D) can also be produced by the following method. That is, the addition of a hydrosilane compound having a crosslinkable silyl group represented by the above general formula (9) to a vinyl polymer having an alkenyl group at the terminal of the main chain, which is the polymer (C), is allowed to react. Thereby, the above polymer is obtained.
  • the polymer (C) may be used alone or as a mixture of two or more.
  • hydrosilane compound having a crosslinkable silyl group When the hydrosilane compound having a crosslinkable silyl group is added to the polymer (C), a hydrosilylation catalyst described later can be used.
  • a curable composition containing the alkenyl group as a main component can be obtained.
  • the vinyl polymer having an alkenyl group at the terminal of the main chain of the present invention refers to the polymer (A) and the polymer (C). That is, the curable composition of the present invention contains (a) the polymer (A) or the polymer (C), and (b) a compound having a silyl group having an open mouth.
  • the vinyl polymer as the component (a) may be used alone or as a mixture of two or more.
  • the molecular weight of the component (a) is not particularly limited, and is preferably in the range of 500 to 100,000, and more preferably in the range of 300 to 500,000. When the molecular weight is less than 500, the intrinsic properties of the vinyl polymer are not easily exhibited, and when the molecular weight is more than 100, the viscosity or the solubility is extremely low, making it difficult to handle. become.
  • the compound having a hydrosilyl group as the component (b) is not particularly limited, and various compounds can be used. That is, it is represented by the following general formula (16) or (17) Linear polysiloxane;
  • R 25 and R 26 are the same or different and each represent an alkyl group having 1 to 6 carbon atoms or a phenyl group.
  • R 27 is an alkyl group having 1 to 10 carbon atoms or carbon number? Represents an aralkyl group of 10.
  • a represents an integer of 0 to 100.
  • b represents an integer of 2 to 100.
  • c represents an integer of 0 to 100.
  • D represents an integer of 0 to 8.
  • e represents an integer of 2 to 10.
  • f represents an integer of 0 to 8. Note that d, e, and f satisfy 3 ⁇ d + e + f ⁇ l 0.)
  • polysiloxanes may be used alone or in combination of two or more.
  • a polysiloxane having a fluorinated group is preferred from the viewpoint of compatibility with the vinyl polymer.
  • examples of such compounds include a linear polysiloxane represented by the following general formula (19) or (20), and a cyclic polysiloxane represented by the following general formula (21) or (22) Is mentioned.
  • R 28 represents hydrogen or a methyl group.
  • G represents an integer of 2 to 100.
  • h represents an integer of 0 to 100.
  • C 6 H 5 represents a phenyl group.
  • R 28 represents hydrogen or a methyl group.
  • I represents an integer of 2 to 10.
  • j represents an integer of 0 to 8.
  • i and j represent 3 ⁇ i + j. Satisfies the relationship of ⁇ 10.
  • C 6 HB is a phenyl group.
  • a low molecular weight compound having two or more alkenyl groups in the molecule is added to the polysiloxane represented by (22) by an addition reaction so that some hydrosilyl groups remain even after the reaction.
  • Various compounds can be used as the low-molecular compound having two or more alkenyl groups.
  • hydrocarbon compounds such as 1,4-pentanedene, 1,5-hexadiene, 1,6-heptadiene, 1,7-octadiene, 1,8-nonadiene, and 1,9-decadiene; 0,0'-Ether compounds such as diarylbisphenol A and 3,3'diarylbisphenol A; ester compounds such as diarylphthalate, diarylisophthalate, triarylolelimite and tetraarylvilleromelate Compounds: Examples of compounds such as diethylene glycol diaryl carbonate and the like.
  • Such a compound is prepared by slowly dropping a small amount of the above alkenyl group-containing low molecular weight compound onto the polysiloxane of the above general formulas (16) to (22) in the presence of a hydrosilylation catalyst. can get.
  • these compounds the availability of raw materials, the ease of removing the excessively used hydrosilyl group-containing compounds, and ( a) The following are preferable in consideration of the compatibility with the vinyl polymer as the component.
  • the vinyl polymer (a) and the hydrosilyl group-containing compound (b) can be mixed in any ratio, but from the viewpoint of curability, the alkenyl group and the hydrosilyl group are mixed.
  • the molar ratio of the groups is preferably in the range from 0.2 to 5, more preferably from 0.4 to 2.5. When the molar ratio is 5 or more, only a cured product with insufficient curing and stickiness with low strength is obtained, and when it is less than 0.2, a large amount of active hydrosilyl groups in the cured product after curing is obtained. As a result, cracks and voids are generated, and a uniform and strong cured product cannot be obtained.
  • the curing reaction between component (a) and component (b) proceeds by mixing and heating the two components, but even if a hydrosilylation catalyst is further added to promote the reaction more quickly.
  • a hydrosilylation catalyst include a radical initiator such as an organic peroxide and an azo compound, and a transition metal catalyst.
  • the radical initiator is not particularly limited, and various types can be used.c For example, di-t-butylperoxide, 2,5-dimethyl-1,2,5-di (t-butylperoxy) hexane, 2,5-dimethyl-2,5-di (t-butylperoxy) 1-3-Hexine, dicumylperoxide, t-butynoleminoreleperoxide, a, a'-dianoleperoxide such as bis (t-butylperoxy) isopropylbenzene; benzoylperoxide, p- Benzoyl peroxide, m-clo benzoyl peroxide, 2,4-dicyclo benzoyl peroxide, diacyl peroxide such as lauroyl veloxide; super-benzoic acid Peroxyesters such as peroxyesters; diisopropylpropyl percarbonate, peroxydicarbonates such as di-2-ethylhex
  • These catalysts may be used alone or in combination of two or more.
  • (a) relative to alkenyl groups 1 mo 1 component is preferably employed in the range of 1 0 1 - 1 0 8 mo 1, more preferably 1 0 3 - 1, which is 0 of 6 mo 1 range.
  • the 1 0 8 cured with less than mo 1 does not proceed sufficiently c, since arsenide Doroshiriru catalyst is expensive, 1 0-'mo 1 or more is preferably not used.
  • the two components (a) and (b) and, if necessary, the above-mentioned hydrosilylation catalyst are mixed and cured, excellent deep curability can be obtained without a phenomenon such as foaming.
  • a uniform cured product can be obtained.
  • the curing conditions are not particularly limited, and curing is generally performed at 0 ° C. to 200 ° C., preferably at 30 ° C. to 150 ° C., for 10 seconds to 24 hours. In particular, at high temperatures of 80 ° C to 150 ° C, it is as short as 10 seconds to 1 hour. Some cure in time.
  • the properties of the cured product depend on the main chain skeleton and molecular weight of the (a) vinyl polymer used and (b) the compound containing a hydrosilyl group, but it can be made widely from rubbery to resinous. .
  • Specific applications of the cured product obtained from the curable composition include sealing materials, adhesives, adhesive materials, elastic adhesives, paints, powder paints, foams, potting materials for electric and electronic devices, Films, gaskets, various molding materials, artificial marble, etc.
  • a curable composition containing the same as a main component can also be prepared.
  • the vinyl polymer having a crosslinkable silyl group at the terminal of the main chain of the present invention refers to polymers (B) and (D).
  • the polymer as the main component may be used alone or in combination of two or more.
  • the molecular weight is not particularly limited, but is preferably in the range of 500 to 1000, more preferably in the range of 300 to 500.
  • the molecular weight is 500 or less, the intrinsic properties of the vinyl polymer having a crosslinkable silyl group at the terminal of the main chain are hardly exhibited, and when the molecular weight is 1000 or more, handling is performed. Becomes difficult.
  • a vinyl polymer having a crosslinkable silyl group at the terminal of the main chain is three-dimensionally cured by a crosslinking reaction when it comes into contact with moisture. Since the hydrolysis rate varies depending on the temperature, humidity, and type of the crosslinkable silyl group, an appropriate crosslinkable silyl group must be selected according to the use conditions. When storing a vinyl polymer having a crosslinkable silyl group at the terminal of the main chain, it is necessary to cut off contact with water as much as possible.
  • a curing catalyst may be added to accelerate the curing reaction of the curable composition.
  • the catalyst include alkyl titanates and organic gaytitanates; metal salts of carboxylic acids such as tin octylate and dibutyltin dilaurate; and amine salts such as dibutylamine-12-ethylhexoate.
  • other acidic and basic catalysts may be used.
  • the amount of use is not particularly limited, but it is preferably used in an amount of 0.01 to 5% by weight based on the vinyl polymer as the main component.
  • a uniform cured product can be obtained by mixing the above-mentioned curing catalyst with the polymer as the main component, if necessary, and curing the mixture.
  • the curing conditions are not particularly limited, and are generally 0 to The temperature is 100 ° C., preferably 10 to 50 ° C., for about 1 hour to 1 week.
  • the properties of the cured product depend on the main chain skeleton and molecular weight of the polymer used, but can be widely prepared from rubbery to resinous.
  • Example 1
  • a reflux tube was attached to a 50 mL three-necked round bottom flask, and potassium-tert-butoxide (160 mg, 1.43 mmo 1) and dimethyl ketone were added to the reaction vessel under a nitrogen atmosphere.
  • Tilacetoamide (3 mL) was charged, 0-arylphenol (192 mg, 1.43 mmo 1) was added in an equimolar amount, and the mixture was reacted at room temperature for 30 minutes, and then the poly (methyl acrylate) obtained above was obtained.
  • a solution of (2.0 g) in dimethylacetamide (2 mL) was added dropwise, and the mixture was reacted at room temperature for 2 hours.
  • the reaction solution was neutralized with ice water / hydrochloric acid, and extracted with ethyl acetate (30 mL). The organic layer was washed twice with dilute hydrochloric acid and once with brine. The organic layer was dried over Na 2 SO 4 , the volatiles were distilled off under reduced pressure, dissolved in a small amount of ethyl acetate, and reprecipitated from hexane. Poly (methyl acrylate) was obtained (yield 1.70 g).
  • the purified poly (methyl acrylate) is dissolved in ethyl acetate (2 mL), and the polyvalent hydridosilicon compound shown in the following formula and the 1,1,3,3-tetramethyl 0-valent platinum one 1, 3-divinyl disiloxane complex (8. 3 X 1 0- 9 mo l / L xylene solution), in addition to the poly (methyl acrylate) was combined well mixed.
  • the amount of the polyhydric hydride silicon compound to be used is such that the molar ratio of the alkenyl group of the polymer to the silyl group at the hydrid of the hydride silicon compound becomes 1 / 1.2, and that the platinum catalyst the amount, relative to the alkenyl group of the polymer was 1 0 one 3 equivalents of a molar ratio.
  • n-butyl acrylate (7.5 mL, 6.72 g, 51.3 mmol), a, a mg, 1.03 mmo 1), cuprous bromide (150 mg, 1.03 mmo 1), 2,2'-biviridyl (32 2 mg, 2.06 mmo 1) , Ethyl acetate (6 mL) and acetonitrile (1.5 mL) were charged, nitrogen gas was blown for 10 minutes to remove dissolved oxygen, and the tube was sealed. The mixture was heated to 130 ° C and reacted for 1.5 hours c The mixture was diluted with ethyl acetate (20 mL), and the resulting insoluble solid was filtered.
  • the product was dissolved in toluene, aluminum silicate (Kyowa Chemical Co., Ltd .: Kyoword 700 PEL) was added in the same amount as the polymer, and the mixture was stirred for 2 hours to remove trace impurities in the polymer.
  • the number of alkenyl groups introduced per oligomer was 1.70 by '7 NMR analysis.
  • the polyhydric hydrid silicon compound used in Example 1 was added and mixed well.
  • the amount of the polyhydric dihydric silicon compound used is such that the molar ratio of the alkenyl group of the polymer to the hydrosilyl group of the hydridic silicon compound becomes 1 Z 1.2, and that the platinum catalyst was used in a molar ratio of 10 to 4 equivalents to the alkenyl group of the polymer.
  • composition thus obtained was subjected to a curing test on a hot plate at 130 ° C., and the gelation time was measured to be 60 seconds.
  • the remaining composition was poured into a mold, degassed under reduced pressure, and heat-cured at 100 ° C. for 20 hours to obtain a sheet-like cured product having rubber elasticity.
  • the cured product was immersed in toluene for 24 hours, and its gel fraction was measured from the change in weight before and after, and was found to be 85%.
  • n-butyl acrylate (112 mL, 100 g, 0.78 mo1) ⁇ a, a 2 g, 15.6 mm 0 1), cuprous bromide (2.24 g, 15.6 mmo l), 2, 2'-viviridyl (4.87 g, 31.2 mmo) 1), ethyl acetate (90 mL), and acetonitrile (22.4 mL) were charged, nitrogen gas was blown for 10 minutes to remove dissolved oxygen, and the tube was sealed. The mixture was heated to 130 ° C and reacted for 2.0 hours.
  • the mixture was diluted with ethyl acetate (300 mL), the resulting insoluble solid was filtered, and the filtrate was further diluted with ethyl acetate (200 mL).
  • the filtrate was washed twice with dilute hydrochloric acid and once with brine.
  • the organic layer was dried over N a 2 S 0 4, the volatiles were distilled off under reduced pressure, the poly (acrylic acid one n- heptyl) 8 having a halogen at both termini 5.9 g (polymerization yield: 86%).
  • the number average molecular weight of the polymer was 570, as measured by GPC (in terms of polystyrene), and the molecular weight distribution was 1.37.
  • poly (1-n-butyl acrylate) having terminal halogens obtained as described above 83.9 g was prepared.
  • the potassium salt of 4-monopentenoic acid synthesized in Example 2 (7.74 g, 56.0 mmo 1) and dimethylacetamide (80 mL) were charged, and the mixture was heated to 70 ° in a nitrogen atmosphere. The reaction was performed at C for 6 hours.
  • the mixture was diluted with ethyl acetate (200 mL) and washed three times with water and once with brine.
  • the organic layer was dried over Na 2 SO, and the polymer was isolated by evaporating the volatiles under reduced pressure.
  • composition thus obtained was poured into a mold, degassed under reduced pressure, and heat-cured at 50 ° C. for 20 hours to obtain a sheet-like cured product having rubber elasticity.
  • the cured product was immersed in toluene for 24 hours, and its gel fraction was measured by weight change before and after, and was found to be 93% .o
  • the volatiles were distilled off under reduced pressure to obtain 35.0 g of poly (1-n-butyl acrylate) having a halogen at both terminals represented by the following formula (polymerization yield: 87%).
  • the number average molecular weight of the polymer was 107,000 by GPC measurement (polystyrene conversion), and the molecular weight distribution was 1.15.
  • poly (1-n-butyl acrylate) having a halogen at the terminal obtained as described above (35.0 g) was produced.
  • the potassium salt of 4-pentenoic acid synthesized in Example 2 (2.23 g, 16.1 mmo 1) and dimethylacetamide (35 mL) were charged, and the mixture was stirred under nitrogen atmosphere for 70 minutes. The reaction was carried out at ° C for 4 hours. The mixture was diluted with ethyl acetate and washed with 2% hydrochloric acid and brine. The organic layer was dried over Na 2 SO 4 and the polymer was isolated by evaporating the volatiles under reduced pressure.
  • poly (1-n-butyl acrylate) having an alkenyl group at the end obtained in Example 5 (15.0 g), dimethoxymethylhydrosilane (1.8 mL) were added. , 14.5 mm 01), dimethyl orthoformate (0.26 mL, 2.42 mmo 1), and a platinum catalyst.
  • the platinum catalyst was used in a molar ratio of 2 XI (T 4 equivalents) to the alkenyl group of the polymer.
  • the reaction mixture was heated at 100 ° C. for 4 hours. By distilling off, poly (mono-n-butyl acrylate) having a silyl group at a terminal represented by the following formula was obtained.
  • the number of silyl groups introduced per oligomer molecule was 146 by ' ⁇ NMR analysis.
  • dibutyltin dimethoxide and water were added to poly (butyl acrylate) having a silyl group at a terminal, and mixed well.
  • the amounts of tin catalyst and water used were each 1 part by weight with respect to the polymer.
  • composition thus obtained was poured into a mold, degassed under reduced pressure, and heat-cured at 50 ° C for 20 hours to obtain a sheet-like cured product having rubber elasticity.
  • the cured product was immersed in toluene for 24 hours, and its gel fraction was measured from the change in weight before and after.
  • Potassium mono-tert-butoxide (5.61 g, 50 mmo 1) was charged into a 20 OmL round bottom flask, and methanol (5 OmL) was slowly added dropwise at 0 ° C.
  • Methacrylic acid (4.4 mL, 52. Omol) was slowly added dropwise to this solution at 0 ° C with stirring to precipitate white crystals.
  • the reaction solution was heated to room temperature, and the precipitated white crystals were separated by filtration and dried at room temperature under reduced pressure to obtain a potassium salt of methacrylic acid represented by the following formula (3.31.8, yield 53%). ).
  • Halogen-terminated poly (mono- ⁇ -butyl acrylate) obtained in Example 3 25.9 mg
  • the potassium salt of methacrylic acid synthesized in Production Example 3 (14.9 mg, 0.12 mmo 1), and dimethylacetamide (2.5 mL) were charged, and the mixture was stirred at room temperature. 6
  • the reaction was performed for 1 hour. 17.3 mg of potassium salt of methacrylic acid was added, and the mixture was further reacted at the same temperature for 22 hours.
  • the mixture was diluted with ethyl acetate, and the volatile component of the organic layer c washed with water was distilled off under reduced pressure to obtain poly (1-n-butyl acrylate) having an alkenyl group at the terminal represented by the following formula.
  • the number of alkenyl groups introduced per oligomer molecule was 1.66 by 'NMR analysis.
  • the reaction mixture was diluted to about 5 O mL with ethyl acetate and washed twice with 2% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to isolate the product. The polymer was purified by dissolving the product in a small amount of ethyl acetate and reprecipitating from hexane. According to NMR analysis, the number of alkenyl groups introduced per molecule was 0.622.
  • Oily sodium hydride (106 mg, 2.64 mm 01) was charged into a 50 mL three-neck round bottom flask, and the sodium hydride was washed several times with dry hexane under a nitrogen atmosphere. Thereafter, dimethylacetamide (3. OmL) was added. Further, a solution of arylmalononitrinole (292 mg, 2.76 mmol) in dimethylacetamide (1.0 mL) was added dropwise at 0 ° C, and the mixture was stirred at the same temperature for 1 hour. A solution of poly (methyl acrylate) (1.08) having a halogen at the terminal synthesized in Example 8 (2. OmL) was added and stirred at room temperature for 1 hour.
  • the reaction mixture was neutralized with ice water and dilute hydrochloric acid, extracted with ethyl acetate (3 OmL), and the organic layer was washed twice with 2% hydrochloric acid and once with brine. After the organic layer was dried over anhydrous sodium sulfate, the solvent was distilled off under reduced pressure to isolate the product.
  • a polyvalent hydrosilyl compound and a platinum complex were mixed with the obtained polymer having a terminal alkenyl group, and heated to obtain a rubber-like cured product.
  • Example 9 The alkenyl-terminated polymer obtained in Example 9 was reacted with dimethoxymethylsilane using a platinum complex to obtain a crosslinkable silyl-terminated polymer.
  • a tin-based condensation curing catalyst and water were mixed with the obtained crosslinkable silyl-terminated polymer, a rubber-like cured product was obtained.
  • a vinyl polymer having a high ratio of an alkenyl group or a crosslinkable silyl group at a terminal of a main chain which has been difficult to produce, and a simple production method thereof.
  • these crosslinkable functional groups are surely introduced into the terminal of the main chain, a cured product having excellent curing properties can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

明細書 重合体、 該重合体の製造方法、 及び、 該重合体を用いた硬化性組成物 技術分野
本発明は、 アルケニル基又は架橋性シリル基を、 少なくとも 1つの主鎖末端に 有するビニル系重合体、 該重合体の製造方法、 及び、 該重合体を用いた硬化性組 成物に関する。 背景技術
架橋性官能基を主鎖末端に有する重合体は、 そのもの単独で、 又は、 適切な硬 化剤と組み合わせることによって架橋し、 耐熱性、 耐久性等の優れた硬化物を与 えることが知られている。 なかでも、 アルケニル基又は架橋性シリル基を主鎖末 端に有する重合体はその代表例である。 アルケニル基を主鎖末端に有する重合体 は、 ヒ ドロシリル基含有化合物を硬化剤として用いることにより、 あるいは、 光 反応を利用することにより架橋硬化する。 また、 架橋性シリル基を主鎖末端に有 する重合体は、 適当な縮合触媒の存在下、 湿分を吸収することにより硬化物を与 える。
このようなアルケニル基又は架橋性シリル基を主鎖末端に有する重合体の主鎖 骨格としては、 ポリエチレンォキシド、 ポリプロピレンォキシド、 ポリテトラメ チレンォキシド等のポリエーテル系重合体; ポリブタジェン、 ポリイソプレン、 ポリクロ口プレン、 ポリイソプチレン又はそれらの水素添加物等の炭化水素系重 合体; ポリエチレンテレフタレート、 ポリブチレンテレフタレート、 ポリ力プロ ラク トン等のポリエステル系重合体等が例示される。 これらの重合体は、 その主 鎖骨格と架橋形式に基づき、 様々な用途に用いられている。
これらの重合体はイオン重合や縮重合により得られるが、 ラジカル重合で得ら れるビニル系重合体で主鎖末端に架橋性官能基を有するものは、 ほとんど実用化 されていない。 ビニル系重合体の中でも、 (メタ) アク リル系重合体は、 高い耐 候性、 透明性等、 上記のポリエーテル系重合体、 炭化水素系重合体及びポリエス テル系重合体では得られない特性を有している。 例えば、 アルケニル基又は架橋 性シリル基を、 主鎖末端ではなく側鎖に有する (メタ) アクリル系重合体は、 高 耐候性の塗料等に利用されている。
このような架橋性官能基を側鎖に有するビニル系重合体に対して、 架橋性官能 基を主鎖末端に有するビニル系重合体では、 硬化物性の優れた硬化物を得ること ができる。 従って、 これまで多くの研究者によって、 その簡便な製造方法が検討 されてきたが、 それらを工業的に製造することは容易ではない。
特開平 1 一 2 4 7 4 0 3号公報には、 連鎖移動剤としてアルケニル基含有ジス ルフィ ドを用いて、 両末端にアルケニル基を有するビニル系重合体を合成する方 法が開示されている。 また、 特開平 6 - 2 1 1 9 2 2号公報には、 同じく連鎖移 動剤として水酸基を有するジスルフィ ドを用いて、 両末端に水酸基を有するビニ ル系重合体を合成し、 更に、 水酸基の反応性を利用して両末端にアルケニル基を 有するビニル系重合体を合成する方法が開示されている。 しかしながら、 これら の方法では、 両末端に確実にアルケニル基を導入するために、 連鎖移動剤を大量 に使用しなければならず、 製造工程上問題がある。 また、 これらの方法で得られ るビニル系重合体では、 アルケニル基が硫黄原子を介して重合体主鎖に結合して いるため、 ビニル系重合体の本来の特性である耐候性に悪影響を与え、 更には硫 黄に特有な臭気の問題が生ずる。
一方、 特開昭 5 9 — 1 6 8 0 1 4号公報には、 連鎖移動剤として、 架橋性シリ ル基を有するジスルフィ ド化合物を用い、 ビニル系重合体の両末端に架橋性シリ ル基を導入する方法が開示されている。 また、 特開昭 6 1 - 1 3 3 2 0 1号公報 には、 架橋性シリル基を有するヒ ドロシラン又はハロゲン化シランを用いること による、 ビニル系重合体の両末端に架橋性シリル基を導入する方法が開示されて いる。 しかしながら、 これらの方法においても、 両末端に確実に架橋性シリル基 を導入することは困難であり、 満足な特性を有する硬化物を得ることはできない。 また、 これらの方法では通常のラジカル重合が用いられているため、 得られる重 合体の分子量及び分子量分布 (重量平均分子量と数平均分子量の比) のコント口 —ルは困難である。 発明の要約
本発明は、 上記現状に鑑み、 アルケニル基又は架橋性シリル基が、 硫黄原子を 介さずに、 高い比率で主鎖末端に導入されたビニル系重合体、 これらの重合体の 製造方法、 及び、 これらの重合体を用いた硬化性組成物を提供することを目的と するものである。
すなわち本発明は、 下記一般式 (1 ) で表されるアルケニル基を、 少なく とも
1つの主鎖末端に有するビニル系重合体である。 特に、 R3 が、 — C (0) — R 5 一で表される 2価の有機基である場合は、 下記一般式 ( 1 ' ) で表されるアル ケニル基を、 少なくとも 1つの主鎖末端に有するビニル系重合体である。 本明細 書中、 このような重合体を重合体 (A) という。
— CH2 - C (R1 )(R2) - 0 - R3 - C (R4 ) =CH2 (1 )
一 CH2 — C (R1 )(R2)— 0C (〇) — R5 — C (R4 ) =CH2 ( 1 ' ) 式中、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 R3 は、 1個 以上のエーテル結合又はエステル結合を含んでいてもよい炭素数 1〜 2 0の 2価 の有機基を表す。 R4 は、 水素、 炭素数 1 ~ 1 0のアルキル基、 炭素数 6〜 1 0 のァリール基又は炭素数?〜 1 0のァラルキル基を表す。 R5 は、 直接結合、 又 は、 1個以上のエーテル結合若しくはエステル結合を含んでいてもよい炭素数 1 〜 1 9の 2価の有機基を表す。
本発明は、 また、 上記重合体 (A) に、 架橋性シリル基を有するヒ ドロシラン 化合物を付加させてなる、 少なく とも 1つの主鎖末端に架橋性シリル基を有する ビニル系重合体でもある。 本明細書中、 この重合体を重合体 (B) という。
本発明は、 更にまた、 下記一般式 (5) で表されるアルケニル基を、 少なくと も 1つの主鎖末端に有するビニル系重合体でもある。 本明細書中、 この重合体を 重合体 (C) という。
一 CH2 - C (R1 )(R2 ) — C (R6 )(R7 ) — R8 - C (R9 ) =CH2
(5) 式中、 R' 及び R2 は、 上記と同じ。 R6 及び R7 は、 共に、 同一若しくは異な つて、 電子吸引性置換基を表すか、 又は、 一方が電子吸引性置換基を表し、 他方 が水素、 炭素数 1〜1 0のアルキル基若しくはフヱニル基を表す。 R8 は、 直接 結合、 又は、 1個以上のエーテル結合を含んでいてもよい炭素数 1 1 0の 2価 の有機基を表す。 R9 は、 水素、 炭素数 1 ~ 1 0のアルキル基、 炭素数 6 1 0 のァリ一ル基又は炭素数?〜 1 0のァラルキル基を表す。
本発明は、 更に、 下記一般式 (6) で表される架橋性シリル基を、 少なく とも 1つの主鎖末端に有するビニル系重合体でもある。 本明細書中、 この重合体を重 合体 (D) という。
— CH2 - C (R' )(RZ ) -C (R6 )(R7 ) 一 R8 - CH (R9 ) 一 CH2
- [S i (R10) (Y) 0] m — S i (R11) (Y) (6) 式中、 R1 R2 R6 R7 R8 及び R9 は、 上記と同じ。 R10及び R'1は、 同一若しくは異なって、 炭素数 1 2 0のアルキル基、 炭素数 6 2 0のァリ一 ル基、 炭素数?〜 2 0のァラルキル基、 又は、 (R' ) 3 S i〇一 (式中、 R' は、 炭素数 1 2 0の 1価の炭化水素基を表し、 3個の R' は同一であってもよ く、 異なっていてもよい。 ) で表される トリオルガノン口キシ基を表す。 R '。又 は R1'が 2個以上存在するとき、 それらは同一であってもよく、 異なっていても よい。 Yは、 水酸基又は加水分解性基を表し、 2個以上存在するとき、 それらは 同一であってもよく、 異なっていてもよい。 aは、 0 1 2又は 3を表す。 b は、 0 1又は 2を表す。 mは、 0 1 9の整数である。 ただし、 a+mb≥ l であることを満足するものとする。
本発明は、 また、 ビニル系モノマ一を重合して、 下記一般式 (7) で表される 基を少なく とも 1つの主鎖末端に有するビニル系重合体を製造し、 次いで、 この 重合体の末端ハロゲンを、 下記一般式 (8) で表されるか、 又は、 R3 がー C (0) 一 R5 —で表される 2価の有機基である場合には下記一般式 (8 ' ) で表 される、 アルケニル基含有ォキシァニオンで置換する上記重合体 (A) の製造方 法でもある。
一 CH2 — C (R1 )(R2 ) (X) (7)
式中、 R1 及び R2 は、 上記と同じ。 Xは、 塩素、 臭素又はヨウ素を表す。
M 0- -R3 - C (R4 ) = CH2 (8)
M 0 - C (0) 一 R5 — C (R4 ) =CH2 ( 8 ' )
式中、 R3 R4 及び R5 は、 上記と同じ。 M+ は、 アルカリ金属イオン又は 4 級アンモニゥムイオンを表す。
本発明は、 更にまた、 上記重合体 (A) に、 下記一般式 (9) で表される架橋 性シリル基を有するヒ ドロシラン化合物を付加させる、 上記重合体 (B) の製造 方法でもある。
H-[ S i (R'。) (Y) 0] m - S i (R") (Y) (9) 式中、 R'°、 R". Y、 a、 b及び mは、 上記と同じである。
本発明は更に、 ビニル系モノマーを重合して、 上記一般式 (7) で表される基 を少なく とも 1つの末端に有するビニル系重合体を製造し、 上記重合体の末端ハ ロゲンを下記一般式 (1 0) で表されるアルケニル基含有カルボア二オンで置換 する、 上記重合体 (C) の製造方法でもある。
M+ C (R6 )(R7 ) —R8 — C (R9 ) = CH2 ( 1 0) 式中、 R6 〜R9 及び M+ は、 上記に同じである。
本発明は、 更にまた、 ビニル系モノマーを重合して、 上記一般式 (7) で表さ れる基を少なく とも 1つの末端に有するビニル系重合体を製造し、 上記重合体の 末端ハロゲンを下記一般式 ( 1 1 ) で表される架橋性シリル基含有カルボァニォ ンで置換する、 上記重合体 (D) の製造方法でもある。
M+ C- (R6 )(R7 ) 一 R8 -CH (R9 ) -CH2 一 [ S i (R'。) 2b
(Y) 0] m - S ΐ (R ) (Y) ( 1 1 ) 式中、 R6 〜ί γ、 M+ 、 a、 b及び mは、 上記に同じである。
本発明は、 更に、 上記重合体 (C) に、 上記一般式 (9) で表される架橋性シ リル基を有するヒ ドロシラン化合物を付加させる、 上記重合体 (D) の製造方法 で める。
本発明は、 また、 (a) 上記重合体 (A) 又は (C) 、 及び、 (b) ヒ ドロシ リル基含有化合物を含有する硬化性組成物でもある。
本発明は、 更にまた、 上記重合体 (B) 又は (D) を主成分とする硬化性組成 物でもある。 発明の詳細な開示
以下、 本発明を詳述する。 重合体 (A)
本発明の重合体 (A) は、 上記一般式 (1) で表されるアルケニル基を、 少な くとも 1つの主鎖末端に有するビニル系重合体である。 特に、 上記一般式 (1) において、 R3 が、 一 C (〇) 一 R5 —で表される 2価の有機基である場合は、 上記一般式 (1 ' ) で表されるアルケニル基を、 少なくとも 1つの主鎖末端に有 するビニル系重合体である。
上記一般式 (1) 又は (1 ' ) において、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 上記 1価の有機基としては、 重合体主鎖の製造に用いられ るビニル系モノマーのビニル基に結合した基に由来する 1価の有機基であれば特 に限定されない。
上記一般式 (1) において、 R3 は、 1個以上のエーテル結合又はエステル結 合を含んでいてもよい炭素数 1〜2 0の 2価の有機基を表す。 具体例としては、 一 (CH2 ) 一 (nは、 1~2 0の整数を表す。 ) ; — CH (CH3 ) 一、 一 CH (CH2 CH3 ) 一、 一 C (CH3 ) 2 -、 — C (CH3 ) (CH2 CH3 ) 一、 一 C (CH2 CH3 ) ―、 - CH2 CH (CH3 ) 一 ; 一 (CH2 ) „ ー0— (nは 1〜20の整数を表す。 ) ; — CH (CH3 ) ー0—、 一 CH (C H2 CH3 ) — 0 -、 — C (CH3 ) — 0 -、 一 C (CH3 ) (CH2 CH3 ) 一 0 -、 一 C (CH2 CH3 ) 一〇一 ; 一 (CH2 ) n 一 0 - CH2 - (n は、 1〜1 9の整数を表す。 ) ; — CH (CH3 ) —〇一 CH2 —、 -CH (C H2 CH3 ) 一 0 CH2 ―、 — C (CH3 ) 一 0 - CH2 -、 — C (CH3 ) (CH2 CH3 ) 一〇一 CH2 —、 一 C (CH2 CH3 ) 2 一〇一 CH2 —、 一 (CH2 ) 一 0C (0) 一 ; 一 (CH2 ) „ -0 C (0) 一 (CH2 ) m -
(m及び nは、 同一又は異なって、 0〜1 9の整数を表す。 ただし、 O m+n ≤ 1 9を満たす。 ) ; — (CH2 ) „ —C (〇) 0— (CH2 ) m — (m及び n は、 同一又は異なって、 0〜 1 9の整数を表す。 ただし、 0≤m+n≤ 1 9を満 たす。 ) ; 一 CH2 ― C (〇) 0- (CH2 ) -0- CH2 一、 - CH (CH ) 一 C (〇) 0 - (CH2 ) 一 0— CH2 -、 -CH (CH2 CH3 ) 一 C
(0) 0 (CH2 ) 一 0 -、 - C (CH3 ) 一 C (0) 0 -、 一 C (CH ) (CH2 CH3 ) - C (O) 0—、 一 C (CH2 CH3 ) 2 一 C (〇) 0— 等が挙げられる。
また、 R3 は、 ベンゼン環を含んでいてもよい。 この場合の具体例としては、o—, m—, p - C H ―、 0—, m—, p - C 6 H4 — CH2 —、 o—, m ―, ρ - C H4 ー0—、 0 —, m—, p - C H4 一〇— CH2 —、 o—, m 一, p - C6 H4 -0- CH (CH3 ) 一、 o -, m—, p - C 6 —0 - C
(C H3 ) 2 一 ; o -, m―, p - C6 H4 ― (CH2 ) n 一 (nは、 0〜 1 4 の整数を表す。 ) ; 0—, m—, p-C6 H 4 ― 0— (CH2 ) n ― (nは、 0 〜 1 4の整数を表す。 ) ; 0—, m—, p— CH2 ― C6 H4 一、 o—, m—, p - CH2 - C H4 - CH2 一、 o -, m -, p— CH2 - C6 H4 ― 0 -、 o—, m—, ρ - CH2 - C H4 一〇— CH2 —、 o _, m— , p - C H2 一 C6 H4 一 0— CH (CH3 ) 一 ; o -, m -, p - CH2 - C6 H4 一 0 - C
(CH3 ) - ; o—, m -, p -CH2 -C6 H4 - (CH2 ) n ― (nは、 0〜 1 3の整数を表す。 ) ; 0 —, m—, p - CH2 —C6 H4 ー0— (CH2 ) „ 一 (nは、 0〜 1 3の整数を表す。 ) ; 0—, m—, p— C6 H4 一 C ( 〇) 〇一、 0 —, m—, p— CH2 - C 6 H4 - C (0) 0— ; o—, m—, p ― C (〇) - C H4 ― C (〇) 0- (CH2 ) ― (nは、 0〜1 2の整数を 表す。 ) 等が挙げられる。
これらのうち、 好ましいものとしては、 一般式 (2 ) ;
一 C6 H4 一 (CH2 ) (2)
で表される 2価の有機基が挙げられる。 式中、 C6 は、 フヱニレン基を表す nは、 0~ 1 4の整数を表す。
また、 上記 R3 は、 一般式 (3) ;
-C (0) 一 R5 - (3)
で表される 2価の有機基であってもよい。 この時、 上記一般式 ( 1 ) は、 上記一 般式 ( 1 ' ) により表すことができる。 式中、 R5 は、 直接結合を表すか、 又は、 1個以上のエーテル結合若しくはエステル結合を含んでいてもよい炭素数 1 ~ 1 9の 2価の有機基を表す。 この 2価の有機基の具体例としては、 R3 で既に例示 したもの等を挙げることができる。 上記 R5 の好ましいものは、 直接結合、 又は、 一般式 (4) ; 一 ( C H 2 ) n - ( 4 )
で表される 2価の有機基である。 式中、 nは、 1〜 1 9の整数を表す。
上記一般式 ( 1 ) 又は ( 1 ' ) において、 R 4 は、 水素、 炭素数 1〜 1 0のァ ルキル基、 炭素数 6 ~ 1 0のァリール基又は炭素数 7〜 1 0のァラルキル基を表 す。 これらのうち、 重合体 (A ) を硬化性樹脂として使用する際の反応性の観点 から、 水素又はメチル基が好ましい。
本発明のビニル系重合体の主鎖の製造に用いられるビニル系モノマーとしては 特に限定されず、 各種のものを用いることができる。 例示するならば、 (メタ) アクリル酸、 (メタ) アクリル酸メチル、 (メタ) アクリル酸ェチル、 (メタ) アクリル酸一 n—プロピル、 (メタ) アクリル酸イソプロピル、 (メタ) ァクリ ル酸一 n—ブチル、 (メタ) アクリル酸イソブチル、 (メタ) アクリル酸一 t e r t—ブチル、 (メタ) アクリル酸一 n—ペンチル、 (メタ) アクリル酸一 n— へキシル、 (メタ) アクリル酸シクロへキシル、 (メタ) アクリル酸一 n—ヘプ チル、 (メタ) アクリル酸一 n—ォクチル、 (メタ) アクリル酸一 2—ェチルへ キシル、 (メタ) アクリル酸ノニル、 (メタ) アクリル酸デシル、 (メタ) ァク リル酸ドデシル、 (メタ) アクリル酸フヱニル、 (メタ) アクリル酸トルィル、 (メタ) アクリル酸ベンジル、 (メタ) アクリル酸一 2—メ トキシェチル、 (メ タ) ァクリル酸一 3 —メ トキシブチル、 (メタ) ァクリル酸ー 2—ヒ ドロキシェ チル、 (メタ) アクリル酸一 2—ヒ ドロキシプロピル、 (メタ) アクリル酸ステ ァリル、 (メタ) アクリル酸グリシジル、 (メタ) アクリル酸 2—アミノエチル、 ァー (メタクリロイルォキシプロピル) トリメ トキシシラン、 (メタ) アクリル 酸のエチレンオキサイ ド付加物、 (メタ) アクリル酸トリフルォロメチルメチル、
(メタ) アクリル酸 2— トリフルォロメチルェチル、 (メタ) アクリル酸 2—パ —フルォロェチルェチル、 (メタ) アクリル酸 2—パーフルォロェチルー 2—パ —フルォロブチルェチル、 (メタ) アクリル酸 2—パーフルォロェチル、 (メ 夕) アクリル酸パ一フルォロメチル、 (メタ) アクリル酸ジパ一フルォロメチル メチル、 (メタ) アクリル酸 2—パーフルォロメチル一 2—パ一フルォロェチル メチル、 (メタ) アクリル酸 2—パーフルォ口へキシルェチル、 (メタ) ァクリ ル酸 2—パーフルォロデシルェチル、 (メタ) アクリル酸 2—パーフルォ口へキ サデシルェチル等の (メタ) アクリル酸系モノマー ; スチレン、 ビニルトルエン、 ーメチルスチレン、 クロルスチレン、 スチレンスルホン酸及びその塩等のスチ レン系モノマ一 ;パーフルォロエチレン、 パ一フルォロプロピレン、 フツイヒビニ リデン等のフッ素含有ビニルモノマ一 ; ビニルトリメ トキシシラン、 ビニルトリ ェトキシシラン等のケィ素含有ビニル系モノマ一 ;無水マレイン酸、 マレイン酸、 マレイン酸のモノアルキルエステル及びジアルキルエステル; フマル酸、 フマル 酸のモノアルキルエステル及びジアルキルエステル; マレイ ミ ド、 メチルマレイ ミ ド、 ェチルマレイ ミ ド、 プロピルマレイミ ド、 ブチルマレイミ ド、 へキシルマ レイ ミ ド、 ォクチルマレイミ ド、 ドデシルマレイミ ド、 ステアリルマレイミ ド、 フェニルマレイミ ド、 シク口へキシルマレイミ ド等のマレイ ミ ド系モノマー ; ァ クリロニトリル、 メタクリロニトリル等の二トリル基含有ビニル系モノマ一 ; ァ クリルァミ ド、 メタクリルァミ ド等のァミ ド基含有ビニル系モノマ一 ;酢酸ビニ ル、 プロピオン酸ビニル、 ビバリ ン酸ビニル、 安息香酸ビニル、 桂皮酸ビニル等 のビニルエステル類;エチレン、 プロピレン等のアルゲン類; ブタジエン、 イソ プレン等の共役ジェン類;塩化ビニル、 塩化ビニリデン、 塩化ァリル、 ァリルァ ルコール等が挙げられる。 これらは、 単独で用いても良いし、 複数を共重合させ ても構わない。 なかでも、 生成物の物性等から、 スチレン系モノマー及び (メ 夕) アクリル酸系モノマーが好ましい。 より好ましくは、 アクリル酸エステルモ ノマー及びメタク リル酸エステルモノマーであり、 更に好ましくは、 ァクリル酸 ブチルである。
本発明のビニル系重合体は、 分子量分布、 すなわち、 ゲルパ一ミエ一シヨンク 口マトグラフィ一 (G P C ) で測定した重量平均分子量 (Mw) と数平均分子量 (M n ) の比 (MwZM n ) カ^ 1 . 8以下の値であることが好ましい。 より好 ましくは、 1 . 6以下であり、 更に好ましくは、 1 . 3以下である。 本発明での G P C測定においては、 通常、 移動相としてクロ口ホルムを用い、 測定はポリス チレンゲルカラムにて行う。 数平均分子量等は、 ポリスチレン換算で求めること ができる。
本発明のビニル系重合体の数平均分子量は特に制限はないが、 5 0 0〜 1 0 0 0 0 0の範囲にあるのが好ましく、 3 0 0 0〜 5 0 0 0 0がより好ましい。 分子 量が 5 0 0以下であると、 ビニル系重合体の本来の特性が発現されにく く、 また、 1 0 0 0 0 0以上であると、 ハンドリングが困難になる。
重合体 (B)
本発明の重合体 (B) は、 上記重合体 (A) に、 架橋性シリル基を有するヒ ド 口シラン化合物を付加させてなる、 少なくとも 1つの主鎖末端に架橋性シリル基 を有するビニル系重合体である。
上記架橋性シリル基を有するヒ ドロシラン化合物としては特に限定されず、 後 に例示するような化合物が用いられる。 上記重合体 (A) と上記ヒ ドロシランィ匕 合物との付加については、 後に詳述する。
重合体 (C)
本発明の重合体 (C) は、 上記一般式 (5) で表されるアルケニル基を、 少な く とも 1つの主鎖末端に有するビニル系重合体である。 一般式 (5) から明らか なように、 アルケニル基が、 切断されにくい炭素一炭素結合を介してビニル系重 合体の主鎖に結合しているので、 この重合体から得られる硬化物は、 ビニル系重 合体の本来の特性である耐候性等の性質を損なうことがない。
上記一般式 (5) の R1 及び R2 は、 上述の基と同じあり、 上で例示したもの 等が用いられる。
上記一般式 (5) において、 R6 及び R7 は、 共に、 電子吸引性置換基を表し てもよいし、 一方のみが電子吸引性置換基を表し、 他方が水素、 炭素数 1〜 1 0 のアルキル基又はフヱニル基を表してもよい。 すなわち、 R6 及び R7 の少なく とも一方は、 電子吸引性置換基であり、 このことは後に述べるように、 この重合 体の製造において不可欠である。 また、 R6 及び R7 力 共に電子吸引性置換基 を表す場合、 それらは同一であっても異なっていてもよい。
上記電子吸引性置換基としては特に限定されず、 従来公知の電子吸引性置換基 であってよい。 この具体例としては、 一 C〇2 R (エステル基) 、 一 C (0) R (ケト基) 、 一 CON (R2 ) (アミ ド基) 、 一 COSR (チォエステル基) 、 一 CN (二トリル基) 、 一 N02 (ニトロ基) 等が挙げられる。 上記の各式中、 Rは、 炭素数 1〜 2 0のアルキル基、 炭素数 6〜 2 0のァリ一ル基又は炭素数 7 〜 2 0のァラルキル基を表し、 好ましくは、 炭素数 1〜 1 0のアルキル基又はフ ヱニル基である。 これらのうち、 — C02 R、 一 C (0) R、 及び、 — CNが特 に好ましい。
上記一般式 (5) において、 R8 は、 直接結合を表すか、 又は、 炭素数 1〜 1 0の 2価の有機基を表す。 上記 2価の有機基としては特に限定されず、 例えば、 一 (CH2 ) „ ― (nは、 1〜 1 0の整数を表す) 、 0—, m—, p - Ce H4 一 (フユ二レン基) 等が挙げられる。 なかでも、 ― (CH2 ) „ —が好ましい。 上記 2価の有機基は、 1個以上のエーテル結合を含んたものであってもよく、 そ の具体例としては、 — CH2 -O-CH2 一、 一 (CH2 ) 2 — 0— CH2 ―、 ― (CH2 ) 3 一 0— CH2 —、 ― (CH2 ) 2 一 0— (CH2 ) 2 一等が挙げ りれ o
上記一般式 (5) において、 R9 は、 水素、 炭素数 1〜 1 0のアルキル基、 炭 素数 6〜 1 0のァリール基又は炭素数?〜 1 0のァラルキル基を表す。 これらの うち、 重合体 (C) を硬化性樹脂として使用する際の反応性の観点から、 水素又 はメチル基が好ましい。
上記重合体 (C) の主鎖の製造に用いられるビニル系モノマーとしては特に限 定されず、 既に例示したもの等が用いられる。 また、 この重合体の分子量分布及 び数平均分子量は、 重合体 (A) に関して既述の範囲を満たすことが好ましい。 重合体 (D)
本発明の重合体 (D) は、 上記一般式 (6) で表される架橋性シリル基を、 少 なくとも 1つの主鎖末端に有するビニル系重合体である。 一般式 (6) から明ら かなように、 架橋性シリル基が、 切断されにくい炭素一炭素結合を介してビニル 系重合体の主鎖に結合しているので、 この重合体から得られる硬化物は、 ビニル 系重合体の本来の特性である耐候性等の性質を損なうことがない。
上記一般式 (6) において、 R' 、 R2 、 R6 、 R7 、 R8 及び Rg は、 上記 と同じであり、 上で例示したもの等が用いられる。
上記一般式 (6) において、 1^°及び1^'は、 同一又は異なって、 炭素数 1 ~ 2 0のアルキル基、 炭素数 6〜 2 0のァリール基、 炭素数?〜 2 0のァラルキル 基、 又は、 (R' ) 3 S i 0—で表される トリオルガノシロキシ基を表す。 上記 式中、 R' は、 炭素数 1〜2 0の 1価の炭化水素基を表し、 3個の R' は同一で あってもよく、 異なっていてもよい。 また、 R 1 D又は R ' 1力 2個以上存在する とき、 それらは同一であってもよく、 異なっていてもよい。 R I Q及び R 1 1の具体 例としては、 例えば、 メチル基、 ェチル基等のアルキル基; シクロへキシル基等 のシク口アルキル基; フヱニル基等のァリ一ル基;ベンジル基等のァラルキル 基; トリメチルシ口キシ基、 トリフヱニルシ口キシ基等のトリオルガノシロキシ 基等が挙げられる。
上記一般式 (6 ) において、 Yは、 水酸基又は加水分解性基を表し、 2個以上 存在するとき、 それらは同一であってもよく、 異なっていてもよい。 上記加水分 解性基としては特に限定されず、 従来公知のものであってよい。 具体的には、 水 素、 ハロゲン原子、 アルコキシ基、 ァシルォキシ基、 ケトキシメート基、 ァミノ 基、 アミ ド基、 酸アミ ド基、 アミノォキシ基、 メルカプト基、 アルケニルォキシ 基等が挙げられる。 なかでも、 加水分解性がマイルドで取り扱いやすいという点 から、 アルコキシ基が好ましい。
上記 Yは、 1個のゲイ素原子に 1〜3個の範囲で結合することができる。 また、 a + m b、 すなわち、 加水分解性基及び水酸基の総和は、 1〜5の範囲が好まし い。 上記加水分解性基がゲイ素原子に 2個以上結合するときは、 それらは同一で あってもよく、 異なっていてもよい。 上記一般式 (6 ) に含まれるゲイ素原子は、 1個でもよく、 2個以上であってもよいが、 シロキサン結合により連結されたケ ィ素原子の場合には 2 0個程度まであってもよい。
本明細書中、 架橋性シリル基とは、 上述の基 Yの結合したシリル基を指し、 水 酸基、 又は、 加水分解性基が加水分解して生じた水酸基により、 一 S i— 0— S i 一架橋を形成することができる。
上記一般式 (6 ) において、 aは、 0、 1、 2又は 3を表す。 また、 bは、 0、 1又は 2を表す。 mは、 0 ~ 1 9の整数を表す。 ただし、 a、 b及び mは、 a + m b≥ 1であることを満足するものとする。
重合体 (D ) の主鎖の製造に用いられるビニル系モノマーとしては特に限定さ れず、 既に例示したもの等が用いられる。 また、 この重合体の分子量分布及び数 平均分子量は、 重合体 (A ) に関して既述の範囲を満たすことが好ましい。
重合体 (A ) の製造方法 本発明の重合体 (A) は、 例えば、 以下の製造方法により得ることができる。 すなわち、 ビニル系モノマ一を重合して、 上記一般式 (7) で表される基を少な く とも 1つの主鎖末端に有するビニル系重合体を製造し、 次いで、 この重合体の 末端ハロゲンを、 上記一般式 (8) で表されるアルケニル基含有ォキシァニオン で置換することにより上記重合体が得られる。
上記製造方法において用いられるビニル系モノマーとしては特に限定されず、 既に例示したもの等が用いられる。
上記一般式 (7) で表される末端を有するビニル系重合体は、 ハロゲン系連鎖 移動剤を用いた重合や、 最近精力的に研究されているリビングラジカル重合 (例 えば、 M a t y j a s z e w s k i ら、 ジャ一ナノレ ·ォブ · ケミカノレ . ソサイエ ティ一 (J. Am. Ch em. S o c. ) 、 1 9 9 5年、 1 1 7巻、 5 6 1 4 頁; マクロモレキュールズ (Ma c r omo 1 e c u 1 e s) 、 1 9 9 5年、 2 8卷、 7 9 0 1頁;サイエンス (S c i e n c e) 、 1 9 9 6年、 2 7 2卷、 8 6 6頁、 又は、 S awamo t oら、 マク口モレキュールズ、 1 9 9 5年、 2 8 巻、 1 7 2 1頁を参照) 等を利用することにより得られる。 なかでも、 反応及び 生成物の構造を制御しやすいことから、 後者のリビングラジカル重合が好ましい 以下に、 リビングラジカル重合を用いた、 上記一般式 (7) で表される末端を 有するビニル系重合体の製造方法について詳述する。
上記リビングラジカル重合は、 開始剤として、 有機ハロゲン化物 (例えば、 α 位にハロゲンを有するエステル化合物や、 ベンジル位にハロゲンを有する化合 物) 又はハロゲン化スルホニル化合物を用い、 触媒として、 遷移金属錯体を用い てビニル系モノマーを重合することを特徴とする。 この重合法を用いると、 従来 のラジカル重合では困難であった、 ビニル系重合体の分子量及び分子量分布の制 御が可能となる (分子量分布: 1. 1〜 1. 8) 。
上記有機ハロゲン化物又はハ口ゲン化スルホニル化合物は、 ハ口ゲンが結合し ている炭素がカルボニル基、 フヱニル基又はスルフォニル基と結合しているため、 炭素一ハロゲン結合が容易に活性化されて開始剤として機能し得る。 これらの化 合物を具体的に例示すれば、 C6 Η5 — CH2 X、 C6 Η5 — C (Η) (X) C H3 、 C6 H5 一 C (X) (CH3 ) (式中、 C6 Hs は、 フヱニル基を表す c Xは、 塩素、 臭素又はヨウ素を表す。 ) ; R12_ C (H) (X) — C 02 R'3、 R12— C (CH3 ) (X) 一 C 02 R1 3、 R 12— C (H) (X) — C (〇) Rl R, 2- C (CH3 ) (X) — C (0) R'3 (式中、 R '2及び R 1 3は、 同一若しく は異なって、 水素原子、 炭素数 1 ~ 2 0のアルキル基、 炭素数 6〜2 0のァリ一 ル基又は炭素数?〜 2 0のァラルキル基を表す。 Xは、 塩素、 臭素又はヨウ素を 表す。 ) ; R 1 2— C 6 H4 - S 02 X (式中、 R 13は、 上記と同じ。 Xは、 塩素、 臭素又はヨウ素を表す。 ) 等が挙げられる。
上記リビングラジカル重合の開始剤として、 重合を開始する官能基以外の官能 基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物を用いることもで きる。 このような場合、 一方の主鎖末端に官能基を、 他方の主鎖末端に上記一般 式 (7 ) で表される構造を有するビニル系重合体が製造される。 このような官能 基としては、 アルケニル基、 架橋性シリル基、 ヒ ドロキシル基、 エポキシ基、 ァ ミノ基、 アミ ド基等が挙げられる。
上記アルケニル基を有する有機ハロゲン化物としては特に限定されず、 例えば、 一般式 ( 1 2 ) に示す構造を有するものが例示される。
R 18R 19C (X) - R2。— R21 - C (R 17) = CH2 ( 1 2 )
(式中、 R 1 7は、 水素又はメチル基を表す。 R 18及び R 19は、 同一若しくは異な つて、 水素、 炭素数 1〜2 0のアルキル基、 炭素数 6〜2 0のァリール基又は炭 素数 7〜2 0のァラルキル基を表し、 R 1 8と R19は、 他端において相互に連結し ていてもよい。 R2°は、 一 C (0) 0- (エステル基) 、 一 C (0) 一 (ケト 基) 、 又は、 0—, m—, p—フヱニレン基を表す。 R2'は、 直接結合、 又は、
1個以上のエーテル結合を含んでいてもよい炭素数 1〜 2 0の二価の有機基を表 す。 Xは、 塩素、 臭素又はヨウ素を表す。 )
上記置換基 R 18及び R ' 9の具体例としては、 水素、 メチル基、 ェチル基、 n— プロピル基、 イソプロピル基、 n—ブチル基、 ペンチル基、 へキシル基等が挙げ られる。 R 18と R 19は他端において連結して環状骨格を形成していてもよい。 上記一般式 (1 2 ) で示される、 アルケニル基を有する有機ハロゲン化物の具 体例としては、 X CH2 C (〇) 0 (CH2 ) „ CH = CH2 、 H3 C C (H)
(X) C (〇) 0 (C H2 ) „ C H = CH2 、 (H3 C) 2 C (X) C (0) 0 (C H2 ) „ CH = CH CH3 CH2 C (H) (X) C (0) 〇 (CH2 ) , CH = CH2
、C02(CH2)nCH-CH2
X
(上記の各式において、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 0〜2 0の 整数を表す。 ) ;
XCH2 C (0) 0 (CH2 ) 0 (CH2 ) m CH=CH2 、 H3 C C (H) (X) C (〇) 0 (CH2 ) „ 0 (CH2 ) m CH = CH2 、 (H3 C) 2 C (X) C (0) 0 (CH2 ) „ 0 (CH2 ) m CH=CH2 、 CH3 CH2 C (H) (X) C (0) 〇 (CH2 ) „ 〇 (CH2 ) m CH=CH2
Figure imgf000017_0001
(上記の各式において、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 1〜2 0の 整数を表す。 mは、 0〜20の整数を表す。 ) ;
o, m, p-XCH2 -C6 H4 一 (CH2 ) „ -CH = CH2 、 o, m, p- CH3 C (H) (X) -C6 H4 - (CH2 ) „ — CH二 CH2 、 o, m, p - CH3 CH2 C (H) (X) — C6 H4 一 (CH2 ) „ — CH = CH2 (上記の 各式において、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 0〜20の整数を表 す。 ) ;
o, m, p-XCH2 - C H4 一 (CH2 ) n 一 0 - (C H2 ) m 一 CH二 C H2 、 0, m, p - CH3 C (H) (X) — C6 H4 一 (CH2 ) n 一 0— (C H2 ) m -CH=CH2 、 o, m, p - CH3 CH2 C (H) (X) — C6 H4 一 (CH2 ) „ —〇— (CH2 ) ra CH- CH2 (上記の各式において、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 1〜2 0の整数を表す。 mは、 0〜2 0の 整数を表す。 ) ;
o, m, p -XCH2 -C6 H4 ー0 - (CH2 ) n 一 CH二 CH2 、 o, m, p - CH3 C (H) (X) -C6 H4 一 0 - (CH2 ) n -CH = CH2 、 o, m, p - CH3 CH2 C (H) (X) _C6 H4 一 0 - (CH2 ) n 一 CH二 C H2 (上記の各式において、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 0〜2 0の整数を表す。 ) ;
o, m, p -XCH2 -C6 H4 — 0 - (CH2 ) „ 一〇一 (CH2 ) m 一 CH = CH2 、 o, m, p-CHa C (H) (X) 一 C6 H„ 一〇一 (CH2 ) n 一 0— (CH2 ) m -CH=CH2 、 o, m, p - CH3 CH2 C (H) (X) 一 C6 -0- (CH2 ) n —0— (CH2 ) m - CH = CH2 (上記の各式に おいて、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 1〜2 0の整数を表す。 m は、 0〜2 0の整数を表す。 ) 等が挙げられる。
上記アルケニル基を有する有機ハロゲン化物としては、 更に、 一般式 ( 1 3) で示される化合物も挙げられる。
H2 C二 C (R17) 一 R21 - C (R18) (X) - R22 - R19 (1 3)
(式中、 R'7、 R18、 R19、 R2'及び Xは上記に同じ。 R22は、 直接結合、 一 C (0) 0— (エステル基) 、 一 C (〇) 一 (ケト基) 、 又は、 0—, m—, p— フエ二レン基を表す。 )
上記一般式 ( 1 3) において、 R2 iは、 直接結合又は炭素数 1〜2 0の 2価の 有機基 ( 1個以上のエーテル結合を含んでいても良い) を表すが、 直接結合であ る場合は、 ハロゲンの結合している炭素にビニル基が結合しているため、 この化 合物は、 ハロゲン化ァリル化物である。 この場合は、 隣接ビニル基によって炭素 —ハロゲン結合が活性化されているので、 R22は、 C (0) 〇基やフヱニレン基 等である必要は必ずしもなく、 直接結合であってもよい。 R21が直接結合でない 場合は、 炭素一ハロゲン結合を活性化するために、 R22は、 C (0) 0基、 C (0) 基又はフヱニレン基であることが好ましい。 上記一般式 ( 1 3) の化合物を具体的に例示するならば、 CH2 =CHCH2 X、 CH2 = C (CH3 ) CHZ X、 CH2 =CHC (H) (X) CH3 、 CH =C (CH3 ) C (H) (X) CH3 、 CH2 =CHC (X) (CH3 ) 2 、 CH2 =CHC (H) (X) C2 H5 、 CH2 =CHC (H) (X) CH (CH 3 ) 2 、 CH2 =CHC (H) (X) Cs H5 、 CH2 =CHC (H) (X) C H2 C H5 、 CH2 二 CHCH2 C (H) (X) 一 C02 R、 CH2 = C H (CH2 ) C (H) (X) - C〇2 R、 CH2 =CH (CH2 ) 3 C (H) (X) 一 C〇2 R、 CHZ = CH (CH2 ) C (H) (X) — C〇2 R、 CH = CHCH2 C (H) (X) 一 C6 H5 、 CH2 =CH (CH2 ) 2 C (H) (X) 一 C6 H5 、 CH2 = CH (CH2 ) C (H) (X) — C6 H5 (上記 の各式において、 は、 塩素、 臭素又はヨウ素を表す。 Rは、 炭素数 1〜2 0の アルキル基、 炭素数 6〜2 0のァリール基又は炭素数?〜 2 0のァラルキル基を 表す。 ) 等を挙げることができる。
上記アルケニル基を有するハロゲン化スルホニル化合物の具体例を挙げるなら ば、 o -, m―, p -CH2 = CH- (CH2 ) n - C 6 H4 — S02 X、 o—, m—, p - C H2 = CH- (CH2 ) n 一 0— C6 H 一 S 02 X、 (上記の各 式において、 Xは、 塩素、 臭素又はヨウ素を表す。 nは、 0〜2 0の整数を表す c ) 等である。
上記アルケニル基を有する開始剤を用いて重合を行った場合、 重合反応中に、 開始剤のアルケニル基が重合成長末端と反応する可能性があるため、 反応温度、 反応時間等の重合条件には注意が必要である。
上記架橋性シリル基を有する有機ハロゲン化物としては特に限定されず、 例え ば、 一般式 ( 1 4) に示す構造を有するものが例示される。
R18R19C (X) 一 R2。一 R21 - C (H) (R'7) CH2 一 [S i (R23) 2一。
(Y) , 0] m -S i (R24) - a (Y) a ( 1 4)
(式中、 R'7、 R, 8、 R'\ R2。、 R2 ,、 R23、 R2 X、 Y、 a、 b及び mは、 上記と同じ。 )
上記一般式 ( 1 4) の化合物を具体的に例示するならば、 XCH2 C (0) 0 (CH2 ) „ S i (OCH3 ) 、 CH3 C (H) (X) C (0) 0 (CH2 ) „ S i (OCH3 ) 、 (CH3 ) 2 C (X) C (0) 0 (CH2 ) n S i (〇 CH3 ) , X CH2 C (0) 0 (CH2 ) „ S i (CH3 ) (OCH3 ) 2 、 CH3 C (H) (X) C (0) 〇 (CH2 ) „ S i (CH3 ) (OCH3 ) 2 、 (CH3 ) 2 C (X) C (0) 0 (CH2 ) „ S i (CH3 ) (0 CH3 ) 2 (上記の各式において、 Xは塩素、 臭素又はヨウ素を表す。 nは、 0〜2 0の整 数を表す。 ) ;
XCH2 C (〇) 0 (CH2 ) „ 0 (CH2 ) m S i (O CH3 ) 3 、 H3 C C (H) (X) C (〇) 〇 (CH2 ) n 0 (CH2 ) m S i (0 CH3 ) 3 、 (H C) 2 C (X) C (0) 0 (CH2 ) „ 0 (CH2 ) m S i (OCH3 ) 3 、 CH3 CH2 C (H) (X) C (0) 0 (CH2 ) „ 0 (CH2 ) m S i (OC H3 ) 3 、 XCH2 C (〇) 0 (CH2 ) „ 〇 (CH2 ) m S i (CH3 ) (0 CH3 ) 2 、 H3 C C (H) (X) C (0) 0 (CH2 ) „ 〇 (CH2 ) m 一 S i (CH3 ) (OCHs ) 2 、 (H3 C) 2 C (X) C (0) 0 (CH2 ) n 0 (CH2 ) m - S i (CH3 ) (0 CH3 ) 2 、 CH3 CH2 C (H) (X) C (0) 0 (CH2 ) n 0 (CH2 ) m -S i (CH3 ) (OCH3 ) 2 (上記の 各式において、 Xは塩素、 臭素又はヨウ素を表す。 nは、 1〜2 0の整数を表す£ mは、 0〜20の整数を表す。 ) ;
o, m, p -X CH2 - C H4 一 (CH2 ) 2 S i (0 CH3 ) 3 、 0, m, p - CH3 C (H) (X) - C H4 一 (CH2 ) 2 S i (0 CH3 ) 3 、 0, m, p— CH C H2 C (H) (X) - C 6 H4 一 (CH2 ) 2 S i (O CH3 ) 3 、 0, m, p -XCH2 一 C6 H4 ― (CH2 ) S i (OCH3 ) 3 、 0, m, p— CH3 C (H) (X) - C6 - (CH2 ) 3 S i (〇CH3 ) 3 、 0 , m, p -CH3 CH2 C (H) (X) -C6 H4 - (CH2 ) S i (OC H3 ) 、 0, m, p— XCH2 - C6 H4 ― (CH2 ) 2 —0— (CH2 ) 3 S i (OCH3 ) 3 、 0, m, p -CH3 C (H) (X) - C6 H4 一 (CH2 ) 2 -O- (C H2 ) 3 S i (O CH3 ) 3 、 0, m, p CH3 CH2 C ( H) (X) 一 C6 H4 一 (CH2 ) 2 一 0 - (CH2 ) S i (OCH3 ) 3 、 0, m, p -XCH2 - C -O- (CH2 ) 3 S i (0 CH3 ) 3 、 0, m, p -CH3 C (H) (X) - C6 H4 —0— (CH2 ) 3 S i (OCH3 ) 3 、 o, m, p - CH3 CH2 C (H) (X) 一 C6 H4 —0— (CH2 ) 3 一 S i (OCH3 ) 、 0, m, p -X CH2 - C H4 —0 (CH2 ) 2 一 0 ― (CH2 ) — S i (OCH3 ) 3 、 0, m, p - CH3 C (H) (X) - C H4 -0- (CH2 ) 2 —0— (CH2 ) S i (OCH3 ) 3 、 0, m, p - CH3 CH2 C (H) (X) - C6 H4 一 0 - (CH2 ) 2 一〇— (CH2 ) S i (OCH3 ) (上記の各式において、 は、 塩素、 臭素又はヨウ素を表 す。 ) 等が挙げられる。
上記架橋性シリル基を有する有機ハロゲン化物としては、 更に、 一般式 (1 5) で表される化合物も例示される。
(R24) (Y) S i - [OS i (R23) ( Y ) ― C H 一 C
(H) (R17) 一 R21 - C (R18) (X) - R 一 R19 (1 5)
(式中、 R'7、 R18、 R19、 R2'、 R22、 R23. R2\ a、 b、 m、 X及び Yは 上記に同じ。 )
このような化合物を具体的に例示するならば、 (CH3 0) S i CH2 CH C (H) (X) C6 H5 、 (CH3 0) (CH3 ) S i CH2 CH2 C ( H) (X) C6 H5 、 (CH3 0) S i (CH2 ) C (H) (X) - C02 R、 (CH3 0) (CH3 ) S i (CH2 ) C (H) (X) — C02 R、 (CH3 0) S i (CH2 ) C (H) (X) 一 C〇2 R、 (CH3 0) 2 (CH3 ) S i (CH2 ) C (H) (X) 一 C02 R、 (CH3 0) 3 S i (CH2 ) C (H) (X) - C O 2 R、 (CH3 〇) 2 (CH3 ) S i (CH ) C (H) (X) - C O2 R、 (CH3 0) S i (CH2 ) 9 C (H) (X) 一 C〇2 R、 (CH3 0) 2 (CH3 ) S i (CH2 ) 9 C (H) (X) — C02 R、 (CH3 0) S i (CH2 ) 3 C (H) (X) - C6 H5 、 (C H3 0) 2 (CH3 ) S i (CH2 ) C (H) (X) - C6 H5 、 (CH3 0) S i (CH2 ) C (H) (X) — C6 H5 、 (CH3 0) (CH3 ) S i (CH2 ) C (H) (X) -C6 H5 (上記の各式において、 Xは、 塩素、 臭素又はヨウ素を表す。 Rは、 炭素数 1〜2 0のアルキル基、 炭素数 6〜 20の ァリール基又は炭素数 7〜 2 0のァラルキル基を表す。 ) 等が挙げられる。
上記ヒ ドロキシル基を有する有機ハ口ゲン化物又はハ口ゲン化スルホニル化合 物としては特に限定されず、 下記のような化合物が例示される。
HO - (CH2 ) n 一 OC (0) C (H)(R)(X)
(式中、 Xは、 塩素、 臭素又はヨウ素を表す。 Rは、 水素、 炭素数 1〜2 0のァ ルキル基、 炭素数 6〜2 0のァリール基、 又は、 炭素数 7〜 2 0のァラルキル基 を表す。 nは、 1〜2 0の整数を表す。 )
上記ァミノ基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物とし ては特に限定されず、 下記のような化合物が例示される。
H2 N - (CH2 ) n -OC (0) C (H)(R)(X)
(式中、 Xは、 塩素、 臭素又はヨウ素を表す。 Rは、 水素、 炭素数 1〜2 0のァ ルキル基、 炭素数 6〜2 0のァリール基、 又は、 炭素数 7〜2 0のァラルキル基 を表す。 nは、 1〜2 0の整数を表す。 )
上記エポキシ基を有する有機ハロゲン化物又はハロゲン化スルホニル化合物と しては特に限定されず、 下記のような化合物が例示される。
Figure imgf000022_0001
(式中、 Xは、 塩素、 臭素又はヨウ素を表す。 Rは、 水素、 炭素数 1〜2 0のァ ルキル基、 炭素数 6〜2 0のァリール基、 又は、 炭素数?〜 2 0のァラルキル基 を表す。 nは、 1〜2 0の整数を表す。 )
上記リビングラジカル重合において、 開始剤として、 2つ以上の開始点を有す る有機ハロゲン化物又はハロゲン化スルホニル化合物を用いて重合を行うと、 上 記一般式 ( 1 ) で表されるアルケニル基を 1分子内に 2つ以上有するビニル系重 合体を製造することができる。 すなわち、 2つの開始点を持つ開始剤を用いて重 合を行うと、 アルケニル基を両末端に有するビニル系重合体が得られる。
このような開始剤を具体的に例示すれば、 以下に示す化合物が挙げられる。
Figure imgf000023_0001
CH3 CH3
(i-2) o,m,p- X CH2— C6H4— CH2— X
Figure imgf000023_0002
X一 CH2一 C一 CH2— X
II (i- 8) 0
X— CH一 C一 CH一 X
I II I (i-9)
CH3 O CH3
Figure imgf000023_0003
o 0
X— CH2— C一 0— (CH2>n - O— C一 CH2— X (i-12)
CH3 O 0 CH3
o
X― CH— C一 0— (CH2)n - 0— C— CH— X (i-13)
(i - 14)
(i一 15)
(i-16)
(i-17)
Figure imgf000024_0001
O
一 II
o,m,p- x CH2— C II— O— CEH4 O C一 CH2― X (i - 18) CH3 0 0 CH3
— C IH— C II一 (i-19)
o,m,p- x— O— CeH4 ~ 0— C一 CH— X
o,m,p-
Figure imgf000024_0002
o,m,p- X一 S02—— C6H4— S02一 X (i - 21)
上記式中、 C s H 4 は、 フエ二レン基を表す。 Xは、 塩素、 臭素又はヨウ素を 表す。 Rは、 炭素数 1〜2 0のアルキル基、 炭素数 6〜 2 0のァリール基又は炭 素数?〜 2 0のァラルキル基を表す。 nは、 0〜2 0の整数を表す。 上記リビングラジカル重合は、 無溶剤又は各種の溶剤中で行うことができる。 上記溶剤としては、 例えば、 ベンゼン、 トルエン等の炭化水素系溶媒; ジェチル エーテル、 テトラヒ ドロフラン等のエーテル系溶媒;塩化メチレン、 クロ口ホル ム等のハロゲン化炭化水素系溶媒; アセ トン、 メチルェチルケ トン、 メチルイソ ブチルケトン等のケトン系溶媒; メタノ一ル、 ェタノール、 プロパノ一ル、 ィソ プロパノ一ル、 n—ブチルアルコール、 t e r t—ブチルアルコール等のアルコ —ル系溶媒; ァセトニトリル、 プロピオ二トリル、 ベンゾニトリル等の二トリル 系溶媒;酢酸ェチル、 酢酸ブチル等のエステル系溶媒; エチレンカーボネート、 プロピレンカーボネート等のカーボネート系溶媒等が挙げられる。 これらは、 単 独又は 2種以上を混合して用いることができる。 また、 上記重合は、 室温〜 2 0
0 °Cの範囲で行うことができ、 好ましくは、 5 0〜 1 5 0°Cの範囲である。 上記リビングラジカル重合の触媒として用いられる遷移金属錯体としては特に 限定されず、 好ましいものとして、 1価の銅、 2価のルテニウム、 2価の鉄又は 2価のニッケルの錯体が挙げられる。 なかでも、 銅の錯体が好ましい。 1価の銅 化合物を具体的に例示するならば、 塩化第一銅、 臭化第一銅、 ヨウ化第一銅、 シ アン化第一銅、 酸化第一銅、 過塩素酸第一銅等である。 銅化合物を用いる場合、 触媒活性を高めるために 2, 2 ' —ビビリジル及びその誘導体、 1, 1 0—フエ ナントロリ ン及びその誘導体、 ペンタメチルジェチレントリアミ ン等のポリアミ ン等の配位子が添加される。 また、 2価の塩化ルテニウムの ト リス ト リフヱニル ホスフィ ン錯体 (Ru C l 2 (PP h3 ) 3 ) も触媒として好適である。 ルテニ ゥム化合物を触媒として用いる場合は、 活性化剤としてアルミニウムアルコキシ ド類が添加される。 更に、 2価の鉄のビストリフヱニルホスフィ ン錯体 (F e C 12 (P P h3 ) 2 ) 、 2価のニッケルのビストリフヱニルホスフィ ン錯体 (N
1 C 12 (P Ph3 ) 2 ) 、 及び、 2価のニッケルのビス ト リブチルホスフィ ン 錯体 (N i B r 2 (P B u 3 ) 2 ) も、 触媒として好適である。
本発明の製造方法における重合は、 上記リビングラジカル重合以外に、 ハロゲ ン化物を連鎖移動剤 (テロ一ゲン) として用いる重合であってもよい。 上記ハロ ゲン化物としては、 四塩化炭素、 四臭化炭素、 塩化メチレン、 臭化メチレン等が 用いられる。 上記製造方法により製造された、 上記一般式 (7) で表される基を少なく とも 1つの主鎖末端に有するビニル系重合体の末端ハロゲンを、 上記一般式 (8) で 表されるアルケニル基含有ォキシァニオンで置換することにより、 本発明の重合 体 (A) が得られる。 以下に、 アルケニル基含有ォキシァニオンによる置換法に ついて詳述する。
上記アルケニル基含有ォキシァニオンを表す一般式 (8) において、 R3 及び R4 は、 上記のものと同じ置換基であり、 これらの具体例としては、 上で例示し たものが全て使用できる。 特に、 R3 、 一 C (0) 一 R5 —で表される場合に は、 上記一般式 (8) は、 上記一般式 (8 ' ) で表される。
上記一般式 (8) において、 M+ は、 ォキシァニオンの対カチオンであり、 ァ ルカリ金属イオン又は 4級アンモニゥムイオンを表す。 上記アル力リ金属イオン としては、 リチウムイオン、 ナトリウムイオン、 カリウムイオン等が挙げられる c 上記 4級アンモニゥムイオンとしては、 テトラメチルアンモニゥムイオン、 テト ラエチルアンモニゥムイオン、 トリメチルベンジルアンモニゥムイオン、 トリメ チルドデシルアンモニゥムイオン、 テトラプチルアンモニゥムイオン、 ジメチル ピベリジニゥムイオン等が挙げられる。 M' の好ましいものは、 ナトリウムィォ ン又は力リゥムイオンである。
上記一般式 (8) で表されるアルケニル基含有ォキシァニオンの前駆体として は、 H2 C = CH-CH2 一 0H、 H2 C = CH - CH (CH3 ) 一 0H、 H2 C = C (CH3 ) 一 CH2 -OH. H2 C = CH- (CH2 ) „ 一 OH (nは、 2〜2 0の整数を表す。 ) 、 H2 C = CH— CH2 — 0_ (CH2 ) 2 一〇H、 H2 C = CH - C (0) 0- (CH2 ) -OH, H2 C = C (CH3 ) — C (〇) 0- (CH2 ) 一〇H、 o—, m—, p -H2 C = CH-C5 H4 —0 H、 o—, m—, p— H2 C = CH-CH2 — C6 H, 一〇H、 o—, m—, p -H2 C = CH— CH2 - 0— C6 H4 一 0H、 o—, m—, p— H2 C = CH 一 C6 H4 - CH2 一 0H、 o -, m -, p - H2 C = CH - CH2 - C6 H4 - CH2 -OH. o—, m -, p -H2 C = CH-CH2 一 0— C6 一 CH 2 一〇H等が挙げられる。
更に、 上記一般式 (8) で表されるアルケニル基含有ォキシァニオンの前駆体 として、 H2 C = CH-C (O) -OH, H2 C = C (CH3 ) 一 C (O) 一 0 H、 H2 C = CH-CH2 一 C (0) -OH, H2 C = CH - (CH2 ) n 一 C (0) -OH (nは、 2〜2 0の整数を表す。 ) 、 H2 C = CH— (CH2 ) „ -OC (0) 一 (CH2 ) m — C (0) -OH (m及び nは、 同一又は異なって、 0〜1 9の整数を表す。 ) 、 o—, m—, p— H2 C = CH— C6 H4 — C ( 〇) -OH, o—, m—, p -H2 C = CH-CH2 一 C6 H4 — C (0) —〇 H、 o -, m -, p -H2 C = CH-CH2 一 0 - C6 H4 一 C (0) -OH, o— , m -, p-H2 C = CH- (CH2 ) „ —0C (0) — C6 H4 一 C ( 〇) -OH (nは、 0〜1 3の整数を表す。 ) 等も挙げられる。 これらは、 上記 一般式 (8 ' ) で表すことができる化合物でもある。
上記前駆体を塩基性化合物と作用させることによって、 上記一般式 (8) で表 されるアルケニル基含有ォキシァニオンを調製することができる。 上記塩基性化 合物としては各種のものを使用できる。 例示すると、 ナトリウムメ トキシド、 力 リウムメ トキシド、 リチウムメ トキシ ド、 ナ ト リウムエトキシ ド、 カリウムエト キシ ド、 リチウムエトキシ ド、 ナ ト リウム一 t e r t—ブトキシ ド、 カリウム一 t e r t—ブトキシド、 炭酸ナトリウム、 炭酸力リウム、 炭酸リチウム、 炭酸水 素ナトリウム、 水酸化ナトリウム、 水酸化力リゥム、 水素化ナトリウム、 水素化 カリウム、 メチルリチウム、 ェチルリチウム、 n—ブチルリチウム、 t e r t— ブチルリチウム、 リチウムジイソプロピルアミ ド、 リチウムへキサメチルジシラ ジ ド ; ト リメチルァミ ン、 ト リェチルァミ ン、 ト リブチルァミ ン等のアルキルァ ミ ン ; テトラメチルエチレンジァミ ン、 ペンタメチルジェチレントリアミ ン等の ポリアミ ン ; ピリジン、 ピコリン等のピリジン系化合物等が挙げられる。 上記塩 基性化合物の使用量は、 上記前駆体に対して、 0. 5〜5当量、 好ましくは 0. 8〜1. 2当量である。
上記前駆体と上記塩基を反応させる際に用いられる溶媒としては、 例えば、 ベ ンゼン、 トルエン等の炭化水素系溶媒; ジェチルェ一テル、 テトラヒ ドロフラン 等のエーテル系溶媒;塩化メチレン、 クロ口ホルム等のハロゲン化炭化水素系溶 媒; アセ トン、 メチルェチルケ トン、 メチルイソブチルケ トン等のケ トン系溶 媒; メタノール、 エタノール、 プロパノール、 イソプロパノール、 n—ブチルァ ルコール、 t e r t—ブチルアルコール等のアルコール系溶媒; ァセトニトリル、 プロピオ二トリル、 ベンゾニトリル等の二トリル系溶媒;酢酸ェチル、 酢酸プチ ル等のエステル系溶媒; エチレン力一ボネ一ト、 プロピレンカーボネート等の力 ーボネート系溶媒; ジメチルホルムアミ ド、 ジメチルァセトアミ ド等のアミ ド系 溶媒等が挙げられる。 これらは、 単独又は 2種以上を混合して用いることができ る
上記一般式 (8 ) で表されるアルケニル基含有ォキシァニオンの具体的な製法 について、 更に説明する。 例えば、 前駆体として、 0—, m—, p— H 2 C = C H - C H 2 - C 6 H 4 一 O H (ァリルフヱノール) を使用する場合であれば、 不 活性ガス雰囲気下の反応容器に、 塩基性化合物、 例えば、 カリウム一 t e r t— ブトキシドを仕込み、 ジメチルァセトアミ ド等の溶媒中で懸濁分散させる。 この 分散液中に上記ァリルフヱノ一ルを等モル加え、 室温〜 7 0 °Cで 3 0分〜 1時間 反応させることにより、 酸性プロ トンがカリウムに置換されたアルケニル基含有 ォキシァニォンが得られる。
M十 が 4級アンモニゥムイオンであるアルケニル基含有ォキシァニオンは、 上 記前駆体にアルキルァミ ン又はピリジン系化合物を直接作用させることにより得 られるが、 上記のような方法で M+ がアルカリ金属イオンであるものを調製し、 これに 4級アンモニゥムハライ ドを作用させることによつても得られる。 上記 4 級アンモニゥムハライ ドとしては、 テトラメチルアンモニゥムハライ ド、 テトラ ェチルアンモニゥムハライ ド、 トリメチルベンジルアンモニゥムハライ ド、 トリ メチルドデシルアンモニゥムハライ ド、 テトラブチルアンモニゥムハライ ド等が 例示される。
上記のような方法で調整される一般式 (8 ) のアルケニル基含有ォキシァニォ ンを、 既に述べた重合法により得られた一般式 (7 ) の末端構造を有するビニル 系重合体と反応させることにより、 重合体 (A ) を得ることができる。 この反応 は、 既に述べた溶媒中、 0〜 1 5 0 °Cで行うことができる。 一般式 (8 ) のアル ケニル基含有ォキシァニオンの使用量は、 一般式 (7 ) の末端構造に対して、 1 〜5当量であり、 好ましくは 1〜し 2当量である。 重合体 (B) の製造方法
本発明の重合体 (B) である架橋性シリル基を主鎖末端に有するビニル系重合 体は、 重合体 (A) であるアルケニル基を主鎖末端に有するビニル系重合体に、 上記一般式 (9) で表される架橋性シリル基を有するヒ ドロシラン化合物を付加 させることにより得られる。
上記一般式 (9) において、 R1 D、 R11. Y、 a、 b及び mは、 上記と同じ基 でめる。
上記一般式 (9) で表される化合物の具体例としては、 例えば、 HS i C 13 、 HS i (CH3 ) C l 2 、 HS i (CH3 ) 2 C l、 HS i (〇CH3 ) 3 、 HS i (CH3 ) (〇CH3 ) 2 、 HS i (CH3 ) 2 OCH3 、 HS i (0 C 2 Hs ) HS i (CH3 ) (〇C2 H5 ) 2 、 HS i (CH3 ) 2 OC2 H 5 、 HS i (0C3 H7 ) 3 、 HS i (C2 H5 ) (〇CH3 ) 2 、 HS i (C 2 H5 ) 2 0CH3 , HS i (C6 H5 ) (O C H3 ) 2 . HS i (C6 H5 ) 2 (OCH3 ) 、 HS i (CH3 ) (OC (0) CH3 ) 2 、 HS i (CH3 )
2 0— [S i (CH3 ) 2 0] 2- S i (CH3 ) (0CH3 ) 2 、 HS i (CH ) [0— N=C (CH3 ) 2]2 (ただし、 上記式中、 C6 H5 はフ 二ル基を 示す) 等が挙げられる。
上記一般式 (9) で表されるヒ ドロシラン化合物の中でも、 特に下記一般式 (9 ' ) ;
H-S i (R8 ) (Y) (9 ' )
(式中、 R8 、 Y、 aは上記と同じ。 ) で表される化合物が、 入手容易な点から 好ましい。
このような架橋性シリル基を有するヒ ドロシリル基含有化合物を、 アルケニル 基を有するビニル系重合体に付加させる際には、 後述のヒ ドロシリル化触媒を使 用することができる。
重合体 (C) の製造方法
本発明の重合体 (C) は、 例えば、 以下に示す方法により製造することができ る。 すなわち、 上述の方法により上記一般式 (7) で表される基を少なく とも 1 つの主鎖末端に有するビニル系重合体を製造し、 次いで、 この重合体の末端ハロ ゲンを、 上記一般式 (1 0) で表されるアルケニル基含有カルボア二オンで置換 することにより上記重合体が得られる。
上記アルケニル基含有カルボア二オンを表す一般式 ( 1 0) において、 R6 、 R7 、 R8 、 R9 及び M+ は、 上述のものと同じ置換基であり、 これらの具体例 としては、 上で例示したものが全て挙げられる。
一般式 ( 1 0) のカルボア二オンにおける負電荷は、 その炭素原子に電子吸引 性置換基が 1〜2個結合しているため、 非極在化されている。 負電荷が非極在化 されたカルボア二オンは、 そうでないカルボア二オンと比較してより安定である c また、 反応性がマイルドであり、 一般式 (7) 中の末端ハロゲンと選択的に反応 し、 エステル基等の他の置換基とは反応しないので、 効率良くアルケニル基を主 鎖末端に導入することが可能である。
一般式 ( 1 0) で表されるアルケニル基含有カルボア二オンは、 その前駆体に 対して塩基性化合物を作用させ、 上記前駆体の活性プロ トンを引き抜く ことによ つて得られる。
上記塩基性化合物としては、 上で例示したもの等が用いられる。 上記塩基性化 合物は、 上記前駆体に対して等量又は小過剰量で用いればよく、 好ましくは 1 ~ 1. 2当量である。
上記前駆体としては、 以下のような化合物: H2 C = CH— CH (C02 CH 3 ) 2 、 H2 C = CH - CH (C〇2 C2 H5 ) 2 、 H2 C = CH- (CH2 ) „ CH (C02 CH3 ) 、 H2 C = CH- (CH2 ) „ CH (C02 C 2 H5 ) 2 、 o—, m— , p - H2 C = CH-C6 H4 —CH (C02 CH3 ) 2 、 o 一, m -, p -H2 C = CH - C6 - CH (C02 C2 H5 ) 2 、 o -, m 一, p -H2 C = CH-C6 H4 一 CH2 CH (C02 CH3 ) 2 、 o , m , p - H2 C = CH-Ce H4 - CH2 CH (C〇2 C 2 H5 ) 2 、 H2 C = CH -CH (C (0) CH3 ) (C〇2 C2 H5 ) 、 H2 C = CH - (CH2 ) n C H (C (O) CH3 ) (C02 C2 H5 ) 、 o , m—, p -Hz C = CH-C H4 一 CH (C (〇) CH3 ) (C〇2 C2 H5 ) 、 o—, m—, p— H2 C = CH-C6 一 CH2 CH (C (0) CH3 ) (C02 C2 H5 ) 、 H2 C = CH-CH (C (〇) CH3 ) 2 、 H2 C = CH- (CH2 ) n CH (C ( 0) CH3 ) 2 、 o -, m -, p -H2 C = CH-C6 H4 一 CH (C (0) C H3 ) 2 、 o -, m -, p - H2 C = CH-C6 H4 — CH2 CH (C (〇) C H3 ) 2 、 H2 C = CH-CH (CN) (C02 C2 H5 ) 、 H2 C = CH - (C H2 ) „ CH (CN) (C02 C2 H5 ) 、 o -, m -, p - H2 C = CH - C H4 一 CH (CN) (C02 C2 H5 ) 、 o—, m -, p— H2 C = CH - C H4 一 CH2 CH (CN) (C02 C2 H5 ) 、 H2 C = CH - CH (C N) 2 、 H2 C = CH - (CH2 ) „ CH (CN) 2 、 o -, m -, p -H2 C 二 CH - C6 H4 一 CH (CN) 、 o -, m -, p—H2 C = CH-C6 H„ 一 CH2 CH (CN) 2 、 H2 C = CH- (CH2 ) „ N〇2 、 o -, m -, p — H2 C = C H- C H4 - C H2 N02 、 o -, m -, p - H2 C = CH— C 6 H4 一 CH2 CH2 N02 、 H2 C = CH- CH (C6 H5 ) (C02 C 2 H 5 ) 、 H2 C = CH- (CH2 ) CH (C6 H5 ) (C02 C2 H5 ) 、 o -, m -, p— H2 C二 CH— C6 H4 — CH (C6 H5 ) (C02 C2 H5 ) 、 o 一, m―, p - H2 C = CH - C6 H4 一 CH2 CH (C6 H5 ) (C〇2 C2 H5 ) が例示される。 上記式中、 nは、 1〜1 0の整数を表す。 C6 H, は、 フ ェニレン基を表し、 C6 H5 は、 フヱニル基を表す。
上記前駆体と上記塩基性化合物との反応の際に用いられる溶媒としては、 例え ば、 ベンゼン、 トルエン等の炭化水素系溶媒; ジェチルェ一テル、 テトラヒ ドロ フラン等のエーテル系溶媒;塩化メチレン、 クロ口ホルム等のハロゲン化炭化水 素系溶媒; アセ トン、 メチルェチルケ トン、 メチルイソプチルケ トン等のケ トン 系溶媒; メタノール、 エタノール、 プロパノール、 イソプロパノール、 n—プチ ルアルコール、 t e r t—ブチルアルコール等のアルコール系溶媒; ァセ トニト リル、 プロピオ二トリル、 ベンゾニトリル等の二トリル系溶媒;酢酸ェチル、 酢 酸ブチル等のエステル系溶媒; エチレンカーボネート、 プロピレン力一ボネ—ト 等のカーボネー ト系溶媒; ジメチルホルムアミ ド、 ジメチルァセ トアミ ド等のァ ミ ド系溶媒等が挙げられる。 これらは、 単独又は 2種以上を混合して用いること ができる。
一般式 (1 0) のアルケニル基含有カルボア二オンの具体的な製法について更 に説明する。 例えば、 上記前駆体として、 H2 C = CH— CH2 CH (C02 C 2 H5 ) (ァリルマロン酸ジェチル) を使用する場合であれば、 不活性ガス雰 囲気下で反応容器に、 塩基性化合物、 例えばカリウム一 t e r t一ブトキシドを 仕込み、 テトラヒ ドロフラン等のエーテル系溶媒中に懸濁分散させる。 この分散 液中に上記ァリルマロン酸ジェチルを等モル加え、 室温〜還流温度で 1 0分〜 1 時間反応させることにより、 酸性プロ トンがカリゥムイオンに置換されたカルボ ァニオンが得られる。
M が 4級アンモニゥムィォンであるアルケニル基含有カルボァニォンを得る には、 上記のような方法で M+ がアルカリ金属イオンであるものを調製した後に、 4級アンモニゥムハライ ドを作用させる。 上記 4級アンモニゥムハライ ドとして は、 テトラメチルアンモニゥムハライ ド、 テトラェチルァンモニゥムハライ ド、 トリメチルベンジルァンモニゥムハライ ド、 トリメチルドデシルァンモニゥムハ ライ ド、 テトラプチルアンモニゥムハライ ド等が例示される。
上記のような方法で調製された一般式 (1 0) のアルケニル基含有カルボア二 オンを、 一般式 (7) の末端構造を有するビニル系重合体と反応させることによ り、 重合体 (C) が得られる。 この反応は、 既に述べた溶媒中、 0 1 50°Cで 行うことができる。 一般式 (1 0) のカルボア二オンの使用量は、 一般式 (7) のハロゲン末端に対して等量又は小過剰量でよく、 好ましくは 1 1. 2当量で める。
重合体 (D) の製造方法
本発明の重合体 (D) は、 例えば、 以下に示す方法により製造することができ る。 すなわち、 上述の方法により上記一般式 (7) で表される基を少なく とも 1 つの主鎖末端に有するビニル系重合体を製造し、 次いで、 この重合体の末端ハロ ゲンを、 下記一般式 (1 1) で表される架橋性シリル基含有カルボア二オンで置 換することにより上記重合体が得られる。
M+ C (R6 )(R7 ) 一 R8 - C (R9 ) — CH2 - [ S i (R'。) 2b ( Y) b 0] m -S i (R11) (Y) (1 1)
式中、 R6 R H Y a b m M は上記に同じである。
この方法は、 既に述べた重合体 (C) の製造方法と同じ方法論に基づく もので ある。 上記一般式 ( 1 1 ) のカルボア二オンは、 その前駆体に対して塩基性化合物を 作用させ、 活性プロ トンを引き抜くことによって得ることができる。 上記一般式
( 1 1 ) で表されるカルボア二オンの前駆体としては以下のような化合物 : (C H3 0) 3 S i (CH2 ) n — CH (C02 C2 H5 ) 2 、 (CH3 0) 3 S i
(C H2 ) , CH (C〇2 CH3 ) 、 o一, m—, p - (C H3 0) S i C H2 CH2 - C6 H4 一 CH (C〇2 CH3 ) 2 、 o , m -, p - (CH3 0) S i CH2 CH2 一 C6 H4 - CH (C〇2 C2 H5 ) 2 、 o—, m— , p - (CH3 〇) S i CH2 CH2 - C6 一 CH2 CH (CO 2 CH3 )
2 、 o -, m―, p - (C H3 0) S i CH2 CH2 一 C6 H4 - CH2 CH (C02 C2 H5 ) 2 、 (CH3 0) S i (CH2 ) „ 一 CH (C (〇) CH ) (C02 CH3 ) 、 (CH3 0) S i (CH2 ) „ -CH (C (0) CH ) (C 02 C 2 H5 ) 、 o—, m—, p— (CH3 0) S i C H2 C H2
C6 H4 - CH (C (0) CH3 ) (C02 C2 H5 ) 、 o -, m -, p - (C H3 〇) S i CH2 CH2 - C H4 一 CH2 CH (C (0) CH3 ) (CO 2 C2 H5 ) 、 (CH3 0) 3 S i (CH2 ) „ CH (C (0) CH3 ) 2 、 o 一, m -, p - (CH3 0) S i CH2 CH2 —C6 H4 - CH (C (〇) C H3 ) 2 、 o—, m -, p - (CH3 0) S i CH2 CH2 一 C6 H4 — CH 2 CH (C (0) CH3 ) . (CH3 0) S i (CH2 ) „ CH (CN)
(C02 C 2 H5 ) 、 o -, m—, p - (CH3 O) 3 S i CH2 C H2 - C 6 H4 - CH (CN) (CO 2 C H5 ) 、 o—, m—, p— (CH3 〇) 3 S i CH2 CH2 一 C6 H4 - CH2 CH (CN) (C〇2 C2 H5 ) 、 (CH3 0) S i (CH2 ) „ CH (CN) 2 、 o—, m , p - (CH3 0) 3 S i CH2 CH2 - C6 H4 - CH (CN) 2 、 o -, m -, p - (CH3 〇) 3 S i CH2 CH2 -C6 - CH2 CH (CN) 2 . (CH3 0) 3 S i (CH ) n CH2 N02 、 o -, m -, p - (CH3 〇) 3 S i CH2 CH2 - C6 H4 — CH2 N〇2 、 o -, m—, p— (CH3 〇) 3 S i CH2 C H2 一 C6 H4 一 CH2 CH2 NO 2 、 (CH3 0) 3 S i (CH2 ) „ 一 CH (C 6 H5 ) (C02 C H5 ) 、 o -, m , p— (CH3 0) 3 S i CH2 C H2 — C H4 —CH (Co H5 ) (C〇2 C2 H5 ) 、 o—, m—, p— (CH3 0) 1 (0 εΗ〇 ) - a '-ui '- o 、 い H s0 300) ( SH 90) HO- u
( SH3) ] S ( 6H3) z (0 εΗ3) Z K 3H3 3 H 3 - 9Q- z HD ZH0 I S ( εΗ0) z (0 8H0) — d '-ui '—o ^ON ZH 0 - H 9〇 一 3H〇 ZH0 ΐ S ( 8HD) z (〇 εΗ〇 ) - d '-m o ^ ^ON
SH3 u ( ZH0) ΐ S ( EH0) 3 (0 8H0) 1 (NO) HO SH3- ^ H 93 - ZH 3 3 H 3 ΐ S ( EH0) z (0 εΗ3) — d '— ui o リ (N 3) HO- ^ H 9つ — ZH3 ZH3 ΐ S ( εΗ3) z (0 EH3) - 3 '— ui 0 z (NO) HO u ( 2H3) ΐ S ( εΗ3) z (0 εΗ3) 、 ( SH 3z00) ( O) HD 3H3- H 93 - 3H0 3HO T S ( εΗ0) 3 (O εΗ3) — d '— ui 1— o ( SH z 303) (NO) H〇 一 9 つ 一 SH 〇 ZH3 ΐ S ( εΗ0) 1 (0 εΗ0) - d '— ui '—ο 、 ( 33 300) (NO) HO u ( 3HD) ! S ( εΗ3) 3 (0 εΗ3) z ( EH3 (0) 3) HO ZH3 - H 9つ 一 ZH3 zH〇 i S ( 8H0) 2 (0 εΗ0) - d ui '—ο 3 ( つ (0) 3) HO— 9 〇 一 3H0 ZH3 ΐ S ( εΗ 〇 ) 1 (0 εΗ〇 ) - d '一 ui '一 o s ( ε Η 3 (o) 0) HO u ( ZH3) ΐ S ( EH3) 3 (0 EH3) ( SH zz〇 〇 ) ( EH0 (0) 0) HO 3 HO - H 93 - 2H3 3H0 ΐ S ( εΗ〇 ) 1 (0 EH3) - d '一 i '— o
、 ( SH ZD z〇 ) ( εΗ3 (0) 3) HO- 9〇 一 ZH3 ZH3 ΐ S (
CHD) z (〇 εΗ0) - d '-ui '- o ( SH z s03) ( εΗ3 (0) 3) HO- u ( ZH0) I S ( eH0) z (0 εΗ0) 、 ( εΗ〇 ζΟ0) ( ε H3 (O) 3) H3- u ( 2H0) I S ( EH3) 2 (0 ε H 0 ) 3 ( s H 3303) HO ZH0— 9 〇 一 SH0 2 H 0 ΐ S ( SH3) z (0 EH3) 一 ΰ '一 m '一 o ( ^HO z03) HO 2 H 3 - H 93 - 3H3 3 H 3 ΐ S ( εΗ3) 1 (〇 EH3) - d '— ui '— o ^ ( 3 H 33 z03) H — ' H 9つ 一 3H3 3H0 Ϊ S ( SH3) z (0 EH3) — d '— m '- o い HO z03) HO— "H 93 - ZH3 3H3 ΐ S ( εΗ0) 3 (0 εΗ〇 ) 一 d
'— ui o 、 2 ( <=H0 z00) HO u ( 3H3) ΐ S ( εΗ3) 1 (0 εΗ 3) Z ( SH ZZ0つ ) HO— " ( zH〇 ) i S ( eHQ) z (0 EH0)
、 ( SH z0 Z0D) ( SH 9D) HD SH〇 一 9 D - ZHD ZH3 ΐ S ε z ε
6SZ.I0/86Jf/XDd Τ£6.^/86 OAV (CH3 ) S i CH2 CH2 一 C6 H4 一 CH (C6 Hs ) (C02 C2 H5 ) 、 o—, m -, p— (CH3 0) 2 (CH3 ) S i CH2 CH2 一 C6 H4 一 CH 2 CH (Ce H5 ) (C02 C2 H5 ) 等が例示される (上記式中、 nは、 1〜
1 0の整数を表す。 ) 。
これらの前駆体に対して上述した塩基性化合物を作用させることにより上記一 般式 ( 1 1 ) で示すカルボア二オンが調製され、 上記一般式 (7) のハロゲン末 端を有するビニル系重合体と反応させることにより、 目的とする重合体 (D) を 得ることができる。
重合体 (D) は、 また、 以下の方法によっても製造することができる。 すなわ ち、 重合体 (C) であるアルケニル基を主鎖末端に有するビニル系重合体に、 上 述の一般式 (9) で表される架橋性シリル基を有するヒ ドロシラン化合物を付加 反応させることにより上記重合体が得られる。 この場合、 重合体 (C) は単独で 用いても、 2種以上を混合して用いてもよい。
上記架橋性シリル基を有するヒ ドロシラン化合物を、 重合体 (C) に付加させ る際には、 後述のヒ ドロシリル化触媒を使用することができる。
重合体 (A) 又は (C) を用いる硬化性組成物
本発明のアルケニル基を主鎖末端に有するビニル系重合体より、 これを主剤と する硬化性組成物を得ることができる。 本発明のアルケニル基を主鎖末端に有す るビニル系重合体とは、 重合体 (A) 及び重合体 (C) を指す。 すなわち、 本発 明の硬化性組成物は、 (a) 重合体 (A) 又は重合体 (C) 、 及び、 (b) ヒ ド 口シリル基含有化合物を含有するものである。
(a) 成分のビニル系重合体は、 単独で用いてもよく、 また、 2種類以上を混 合して用いてもよい。 (a) 成分の分子量としては特に限定されず、 5 0 0〜 1 0 0 0 0 0の範囲にあるのが好ましく、 3 0 0 0〜 5 0 0 0 0の範囲にあるのが より好ましい。 5 0 0以下であると、 ビニル系重合体の本来の特性が発現されに く く、 1 0 0 0 0 0以上であると、 非常に高粘度又は溶解性が低くなり、 取り扱 いが困難になる。
(b) 成分のヒ ドロシリル基含有化合物としては特に限定されず、 各種のもの を用いることができる。 すなわち、 下記一般式 ( 1 6) 又は ( 1 7) で表される 鎖状ポリシロキサン ;
R 25 3 S i 0- [S i (R 25) 2 0] a - [S i (H) (R26) 0] b — [S i (R26) (R27) 0] c -S i R 25 3 ( 1 6 )
HR 25 2 S i O - [S i (R 25) 2 0] a - [S i (H) (R26) 0] b — [S i (R26) (R27) 0] c -S i R 25 2 H (1 7)
(式中、 R25及び R26は、 同一若しくは異なって、 炭素数 1〜6のアルキル基、 又は、 フヱニル基を表す。 R27は、 炭素数 1〜1 0のアルキル基又は炭素数?〜 1 0のァラルキル基を表す。 aは、 0〜1 00の整数を表す。 bは、 2〜1 00 の整数を表す。 cは、 0〜1 00の整数を表す。 ) 、 及び、
下記一般式 (1 8) で表される環状ポリシロキサン ;
R25 H R26
(Si0)d-(Sip)e-(Si0), (18)
R25 R26 R2
(式中、 R25、 R26及び R27は上記と同じ。 dは、 0〜8の整数を表す。 eは、 2〜1 0の整数を表す。 f は、 0〜8の整数を表す。 なお、 d、 e及び f は、 3 ≤d + e+ f ≤ l 0を満たす。 ) を用いることができる。
これらは単独で用いても 2種以上を混合して用いてもかまわない。 これらのポ リシロキサンの中でも、 ビニル系重合体との相溶性の観点から、 フユ二ル基を有 するポリシロキサンが好ましい。 このような化合物の例として、 下記一般式 (1 9) 又は (20) で表される鎖状ポリシロキサン、 及び、 下記一般式 (2 1 ) 又 は (2 2) で表される環状ポリシロキサンが挙げられる。
(CH3 ) a S i O - [S i (H) (CH3 ) 0] [S i (C6 H5 ) 2 〇] h - S i (CH3 ) 3 (1 9)
(CH3 ) 3 S i O - [S i (H) (CH3 ) 0] [S i (CH3 ) (CH 2 C (H) (R28) C6 H5 } 0] h -S i (CH3 ) 3 (20)
(式中、 R28は、 水素又はメチル基を表す。 gは、 2〜1 00の整数を表す。 h は、 0〜1 00の整数を表す。 C6 H5 は、 フヱニル基である。 )
Figure imgf000037_0001
Figure imgf000037_0002
(式中、 R28は、 水素又はメチル基を表す。 iは、 2〜1 0の整数を表す。 jは、 0〜 8の整数を表す。 なお、 i及び jは、 3≤ i + j ≤ 1 0の関係を満たす。 C 6 HB は、 フヱニル基である。 )
更に、 (b) 成分のヒ ドロシリル基含有化合物として、 上記一般式 ( 1 6) 〜
(2 2) で表されるポリシロキサンに対して、 分子中に 2個以上のアルケニル基 を有する低分子化合物を、 反応後にも一部のヒ ドロシリル基が残るようにして付 加反応させて得られる化合物を用いることもできる。 上記の 2個以上のアルケニ ル基を有する低分子化合物としては、 各種のものを用いることができる。 例示す るならば、 1, 4一ペンタジェン、 1, 5—へキサジェン、 1, 6—ヘプタジェ ン、 1 , 7—ォクタジェン、 1, 8—ノナジェン、 1, 9—デカジエン等の炭化 水素系化合物 ; 0, 0' —ジァリルビスフエノール A、 3, 3 ' ージァリルビス フエノール A等のエーテル系化合物; ジァリルフタレ一 ト、 ジァリルイソフタレ — ト、 トリァリノレト リメ リテー ト、 テ トラァリルビロメ リテー ト等のエステル系 化合物 ; ジエチレングリコールジァリルカーボネ一ト等の力一ボネ一ト系化合物 等が挙げられる。
このような化合物は、 ヒ ドロシリル化触媒の存在下、 上記一般式 ( 1 6) 〜 ( 2 2) のポリシロキサンに対して、 少量の上記アルケニル基含有低分子化合物 をゆっく り滴下することにより得られる。 このような化合物のうち、 原料の入手 容易性、 過剰に用いたヒ ドロシリル基含有化合物の除去のしゃすさ、 及び、 ( a ) 成分であるビニル系重合体への相溶性を考慮して、 下記のものが好ましい
Figure imgf000038_0001
( nは、 2、 3又は 4である。 mは、 5〜 1 0の整数である。 )
本発明の硬化性組成物において、 ビニル系重合体 (a ) とヒ ドロシリル基含有 化合物 (b ) は、 任意の割合で混合することができるが、 硬化性の面から、 アル ケニル基とヒ ドロシリル基のモル比が、 0 . 2〜 5の範囲にあることが好ましく、 0 . 4〜2 . 5であることがより好ましい。 モル比が 5以上になると、 硬化が不 十分でベとつきのある強度の小さい硬化物しか得られず、 また、 0 . 2より小さ いと、 硬化後も硬化物中に活性なヒ ドロシリル基が大量に残るので、 クラックや ボイ ドが発生し、 均一で強度のある硬化物が得られない。
成分 (a ) と成分 (b ) との硬化反応は、 2成分を混合して加熱することによ り進行するが、 反応をより迅速に進めるために、 ヒ ドロシリル化触媒を更に添加 してもよい。 このようなヒ ドロシリル化触媒としては、 例えば、 有機過酸化物や ァゾ化合物等のラジカル開始剤、 及び、 遷移金属触媒等が挙げられる。
上記ラジカル開始剤としては特に制限はなく各種のものを用いることができる c 例示するならば、 ジ一 t一ブチルペルォキシド、 2, 5—ジメチル一 2, 5—ジ ( t—ブチルペルォキシ) へキサン、 2, 5—ジメチル— 2, 5—ジ ( t—ブチ ルペルォキシ) 一 3—へキシン、 ジクミルペルォキシド、 tーブチノレク ミノレペル ォキシド、 a, a ' —ビス ( t一ブチルペルォキシ) イソプロピルベンゼンのよ うなジァノレキルペルォキシド;ベンゾィルペルォキシド、 p—クロ口べンゾィル ペルォキシド、 m—クロ口ベンゾィルペルォキシド、 2, 4ージクロ口べンゾィ ルペルォキシド、 ラウロイルベルォキシドのようなジァシルペルォキシド;過安 息香酸一 t一ブチルのような過酸エステル;過ジ炭酸ジィソプロピル、 過ジ炭酸 ジー 2—ェチルへキシルのようなペルォキシジカーボネー ト ; 1, 1 ージ ( t一 ブチルペルォキシ) シクロへキサン、 1, 1 —ジ ( t一ブチルペルォキシ) 一 3, 3 , 5— トリメチルシクロへキサンのようなペルォキシケタール等が挙げられる c また、 上記遷移金属触媒としては、 例えば、 白金単体、 アルミナ、 シリカ、 力 一ボンブラック等の担体に白金固体を分散させたもの ;塩化白金酸;塩化白金酸 とアルコール、 アルデヒ ド、 ケトン等との錯体; 白金一才レフイン錯体、 白金 (0) —ジビ二ルテトラメチルジシロキサン錯体等が挙げられる。 白金化合物以 外の触媒の例としては、 Rh C l (P P h3 ) 3 、 Rh C l 3 、 Ru C l 3 、 I r C l 3 、 F e C l 3 、 A 1 C 1 3 、 P d C 1 2 · H2 〇、 N i C l 2 、 T i C l 4 等が挙げられる。 これらの触媒は単独で用いてもよく、 2種類以上を併用 してもかまわない。
触媒量としては特に制限はないが、 (a) 成分のアルケニル基 1 mo 1 に対し、 1 0―1〜 1 0— 8mo 1の範囲で用いるのが好ましく、 より好ましくは 1 0— 3〜 1 0 6 mo 1の範囲である。 1 0— 8mo 1より少ないと硬化が十分に進行しない c また、 ヒ ドロシリル化触媒は高価であるので、 1 0—'mo 1以上は用いないのが 好ましい。
上記硬化性組成物において、 2成分 (a) 及び (b) と、 必要に応じて上記ヒ ドロシリル化触媒とを混合し硬化させれば、 発泡等の現象を伴わずに、 深部硬化 性の優れた均一な硬化物を得ることができる。 硬化条件については特に限定され ず、 一般に 0 °C〜 2 0 0で、 好ましくは 3 0 °C~ 1 5 0でで、 1 0秒〜 2 4時間 硬化するのがよい。 特に、 8 0°C〜 1 5 0°Cの高温では 1 0秒〜 1時間程度の短 時間で硬化するものも得られる。 硬化物の性状は、 用いる (a ) ビニル系重合体 及び (b ) ヒ ドロシリル基含有化合物の主鎖骨格や分子量に依存するが、 ゴム状 のものから樹脂状のものまで幅広く作成することができる。 上記硬化性組成物か ら得られる硬化物の具体的な用途を挙げるならば、 シーリング材、 接着剤、 粘着 材、 弾性接着剤、 塗料、 粉体塗料、 発泡体、 電気電子用ポッティ ング材、 フィル ム、 ガスケッ ト、 各種成形材料、 人工大理石等である。
重合体 (B ) 又は (D ) を用いる硬化性組成物
本発明の架橋性シリル基を主鎖末端に有するビニル系重合体より、 これを主成 分とする硬化性組成物を調製することもできる。 本発明の架橋性シリル基を主鎖 末端に有するビニル系重合体とは、 重合体 (B ) 及び (D ) を指す。
この硬化性組成物においては、 主成分である重合体を、 単独で用いても、 また、 2種類以上を混合して用いてもよい。 その分子量については特に制限はないが、 5 0 0 〜 1 0 0 0 0 0の範囲にあるのが好ましく、 3 0 0 0 〜 5 0 0 0 0の範囲 がより好ましい。 分子量が 5 0 0以下であると、 架橋性シリル基を主鎖末端に有 するビニル系重合体の本来の特性が発現されにく く、 また、 1 0 0 0 0 0以上で あると、 ハンドリングが困難になる。
架橋性シリル基を主鎖末端に有するビニル系重合体は、 水分と接触すると、 架 橋反応により 3次元化して硬化する。 加水分解速度は、 温度、 湿度、 及び、 架橋 性シリル基の種類により変化するので、 使用条件に応じて適切な架橋性シリル基 を選択しなければならない。 また、 架橋性シリル基を主鎖末端に有するビニル系 重合体の保存の際には、 水分との接触を可能な限り断つ必要がある。
上記硬化性組成物の硬化反応を促進するために、 硬化触媒を添加してもよい。 触媒としては、 アルキルチタン酸塩、 有機ゲイ素チタン酸塩;ォクチル酸錫、 ジ プチル錫ジラウレート等のカルボン酸の金属塩; ジブチルァミ ン一 2—ェチルへ キソエート等のアミ ン塩等が挙げられ、 また、 他の酸性触媒及び塩基性触媒も使 用しうる。 その使用量としては特に制限はないが、 主成分であるビニル系重合体 に対し、 0 . 0 1 〜 5重量%用いるのが好ましい。
主成分である重合体に、 必要に応じて上記硬化触媒を混合し硬化させれば、 均 一な硬化物を得ることができる。 硬化条件としては特に限定されず、 一般に 0 〜 1 0 0 °C、 好ましくは 1 0〜 5 0 °Cで 1時間〜 1週間程度である。 硬化物の性状 は、 用いる重合体の主鎖骨格や分子量に依存するが、 ゴム状のものから樹脂状の ものまで幅広く作成することができる。
上記硬化物の具体的な用途を挙げるならば、 シーリ ング材、 接着剤、 粘着材、 弾性接着剤、 塗料、 粉体塗料、 発泡体、 電気電子用ポッティ ング材、 フィルム、 ガスケッ ト、 各種成形材料、 人工大理石等である。 発明を実施するための最良の形態
以下に実施例を掲げて本発明を更に詳しく説明するが、 本発明はこれら実施例 にのみ限定されるものではない。 実施例 1
3 0 mLの耐圧反応器に、 アクリル酸メチル ( 7. 5 mL, 7. 1 7 g. 8 3. 4 mm o 1 ) . a, α' —ジブ口モー p—キシレン (4 3 8 mg、 1. 6 7 mm o 1 ) 、 臭化第一銅 ( 2 3 9 m g、 1. 6 7 mm o 1 ) 、 2, 2 ' —ビビリジル
( 5 1 8 m g、 3. 3 4 mm o 1 ) 、 酢酸ェチル ( 6. 0 mL) 、 及び、 ァセト 二トリル ( 1. 5 mL) を仕込み、 1 0分以上、 窒素を吹き込んで溶存酸素を除 去した後、 封管した。 この混合物を 1 3 0°Cに加熱し、 1時間反応させた。 混合 物を酢酸ェチル ( 2 0 mL) で希釈し、 希塩酸で 3回、 ブラインで 1回洗浄した c 有機層を N a 2 S O, で乾燥し、 揮発分を減圧下留去し、 下式に示すポリ (ァク リル酸メチル) を得た (収量 6. 0 1 g) 。 重合体の数平均分子量は G P C測定
(ポリスチレン換算) により 5 6 0 0、 分子量分布は 1. 2 6であった。
Figure imgf000041_0001
次いで、 5 0 mLの三口丸底フラスコに、 還流管をつけ、 窒素雰囲気下で反応容 器にカリウム一 t e r t—ブトキシド ( 1 6 0 m g、 1. 4 3 mm o 1 ) 、 ジメ チルァセトアミ ド (3 mL) を仕込み、 0—ァリルフヱノール ( 1 9 2mg、 1. 4 3 mmo 1 ) を等モル加え、 室温で 3 0分間反応させたのち、 上記で得られた ポリ (アクリル酸メチル) (2. 0 g) のジメチルァセトアミ ド ( 2 mL) 溶液 を滴下し、 室温で 2時間反応させた。 反応溶液を氷水一塩酸で中和し、 酢酸ェチ ル (3 0 mL) で抽出した。 有機層を希塩酸で 2回、 ブラインで 1回洗浄した。 有機層を N a 2 S04 で乾燥し、 揮発分を減圧下留去し、 少量の酢酸ェチルに溶 解し、 へキサンから再沈することにより、 下式に示す両末端にアルケニル基を有 するポリ (アクリル酸メチル) を得た (収量 1. 7 0 g) 。 生成物をトルエンに 溶解し、 重合体と等量の珪酸アルミ (協和化学製: キヨ一ワー ド 7 0 0 PEL) を添加して還流温度で 1時間撹拌し、 重合体中の微量不純物を除去した。 オリゴ マー 1分子当たりに導入されたアルケニル基は、 'Η NMR分析より、 1. 2 4個であった。
Figure imgf000042_0001
次に、 精製されたポリ (アクリル酸メチル) を酢酸ェチル (2 mL) に溶解し、 下式に示す多価ハイ ドロジヱンシリ コン化合物、 及び、 0価白金の 1, 1, 3, 3—テ トラメチル一 1, 3—ジビニルジシロキサン錯体 (8. 3 X 1 0— 9mo l /Lキシレン溶液) を、 上記のポリ (アクリル酸メチル) 溶液に加えて、 よく混 合した。 多価ハイ ドロジヱンシリコン化合物の使用量は、 重合体のアルケニル基 とハイ ドロジヱンシリコン化合物のヒ ド口シリル基がモル比で 1 / 1. 2となる 量、 また、 白金触媒の使用量は、 重合体のアルケニル基に対して、 モル比で 1 0 一3当量とした。
Figure imgf000043_0001
このようにして得られた組成物の一部を 1 3 0 °Cのホッ トプレー ト上にて硬化 試験を行い、 ゲル化時間を測定すると、 4分であった。 また、 残りの組成物を型 枠に流し込んで、 揮発分を減圧留去し、 1 0 0°Cで 1 4時間加熱硬化させ、 ゴム 状の硬化物を得た。 硬化物をアセ トンに 2 4時間浸漬し、 前後の重量変化からそ のゲル分率を測定すると、 4 5 %であった。 製造例 1 アルケニル基を有するカルボン酸塩の製造 その 1
水酸化力リウムの 1 /2 Nェタノール溶液 (2 0 0 mL) にゥンデシレン酸 ( 1 8. 8 g、 0. 1 0 2 mo 1 ) を撹拌しながら 0 °Cでゆっく り滴下した。 揮 発分を減圧下留去することにより粗生成物を得た。 粗生成物をァセトンで洗浄後、 減圧下加熱することにより下式に示すゥンデシレン酸の力リゥム塩の白色固体を 得た (8. 8 8 g、 収率 8 8 %) 。
CH2 = CH- (CH2 ) 8 一 C02 ― K + 実施例 2
3 O mLの耐圧ガラス反応容器に、 アクリル酸— n—ブチル (7. 5 mL, 6. 7 2 g、 5 1. 3 mmo l ) 、 a, a —ジブ口モー p—キシレン (2 7 0 mg、 1. 0 3 mm o 1 ) 、 臭化第一銅 ( 1 5 0 m g、 1. 0 3 mm o 1 ) 、 2 , 2 ' —ビビリジル (3 2 2 mg、 2. 0 6 mmo 1 ) 、 酢酸ェチル (6 mL) 、 及び、 ァセトニトリル ( 1. 5 mL) を仕込み、 窒素ガスを 1 0分間吹き込んで溶存酸 素を除去した後、 封管した。 混合物を 1 3 0°Cに加熱し、 1. 5時間反応させた c 混合物を酢酸ェチル (2 0 mL) で希釈し、 生成した不溶固体をろ過した後、 濾 液を希塩酸で 2回、 ブラインで 1回洗浄した。 有機層を N a 2 S 04 で乾燥し、 揮発分を減圧下留去し、 下式に示す両末端にハロゲンを有するポリ (アクリル酸 n—ブチル) を 5. O g得た (重合収率 7 5 %) 。 重合体の数平均分子量は G P C測定 (ポリスチレン換算) により 5 6 0 0、 分子量分布は 1. 3 2であった c
Figure imgf000044_0001
次に、 上記のようにして得られた末端にハロゲンを有するポリ (アクリル酸— n—プチル) (5. 0 0 g) 、 製造例 1で合成されたゥンデシレン酸のカリウム 塩 (4 7 6 mg、 2. 1 4 mmo l ) 、 及び、 ジメチルァセトアミ ド ( 1 0 m L) を仕込み、 窒素雰囲気下、 7 0°Cで 6時間反応させた。 混合物の揮発分を減 圧留去した後、 酢酸ェチルを加えて不溶分を濾別した。 濾液の揮発分を減圧留去 することにより、 下式に示す、 末端にアルケニル基を有するポリ (アクリル酸 n プチル) 4. 7 7 gを得た。 生成物をトルエンに溶解し、 重合体と等量の珪 酸アルミ (協和化学製: キヨ—ワード 7 0 0 PEL) を添加して 2時間撹拌し、 重合体中の微量不純物を除去した。 オリゴマ— 1分子当たりに導入されたァルケ ニル基は、 'Η NMR分析より、 1. 7 0個であった。
Figure imgf000044_0002
次に、 精製されたポリ (アクリル酸プチル) に、 実施例 1で用いた多価ハイ ド 口ジヱンシリ コン化合物、 及び、 白金触媒を加えて、 よく混合した。 多価ハイ ド 口ジヱンシリ コン化合物の使用量は、 重合体のアルケニル基とハイ ドロジヱンシ リコン化合物のヒ ドロシリル基がモル比で 1 Z 1. 2となる量、 また、 白金触媒 の使用量は、 重合体のアルケニル基に対して、 モル比で 1 0— 4当量とした。
このようにして得られた組成物の一部を 1 3 0°Cのホッ トプレー ト上にて硬化 試験を行い、 ゲル化時間を測定すると、 6 0秒であった。 また、 残りの組成物を 型枠に流し込んで、 減圧脱気し、 1 0 0 °Cで 2 0時間加熱硬化させ、 ゴム弾性を 有するシート状硬化物を得た。 硬化物をトルエンに 2 4時間浸漬し、 前後の重量 変化からそのゲル分率を測定すると、 8 5 %であった。
シート状硬化物から 2 ( 1 /3) 号形ダンベル試験片を打ち抜き、 島津製ォ一 トグラフを用いて、 引っ張り試験を行った (測定条件: 2 3°C、 2 0 0 mmXm i n) 。 破断強度は 0. 2 3 MP a, 破断伸びは 1 2 8 %であった。 製造例 2 アルケニル基を有するカルボン酸塩の製造その 2
カリウムメ トキシド ( 1 6. 8 3 g、 0. 2 4 0 mo l ) をメタノール (2 0 0 mL) に溶解し、 4一ペンテン酸 (2 4. 5 6 g、 0. 2 4 5 m o 1 ) を撹拌 しながら 0 °Cでゆつく り滴下した。 揮発分を減圧下留去することにより粗生成物 を得た。 粗生成物を酢酸ェチルで洗浄後、 減圧下加熱することにより下式に示す 4一ペンテン酸の力リゥム塩の白色固体を得た (2 9. 2 g、 収率 8 8 %) 。 CH2 =CH- (CH2 ) 2 一 C02 - 実施例 3
5 0 0 mLの耐圧ガラス反応容器に、 ァクリル酸一 n—ブチル ( 1 1 2 mL、 1 0 0 g、 0. 7 8 m o 1 ) ^ a, a 一ジブ口モー p—キシレン (4. 1 2 g、 1 5. 6 mm 0 1 ) 、 臭化第一銅 ( 2. 2 4 g、 1 5. 6 mmo l ) 、 2, 2 ' —ビビリジル ( 4. 8 7 g、 3 1. 2 mmo 1 ) 、 酢酸ェチル (9 0 mL) 、 及 び、 ァセトニトリル (2 2. 4 mL) を仕込み、 窒素ガスを 1 0分間吹き込んで 溶存酸素を除去した後、 封管した。 混合物を 1 3 0°Cに加熱し、 2. 0時間反応 させた。 混合物を酢酸ェチル (3 0 0 mL) で希釈し、 生成した不溶固体をろ過 した後、 濾液をさらに酢酸ェチル (2 0 0 mL) で希釈した。 濾液を希塩酸で 2 回、 ブラインで 1回洗浄した。 有機層を N a 2 S 04 で乾燥し、 揮発分を減圧下 留去し、 両末端にハロゲンを有するポリ (アクリル酸一 n—プチル) を 8 5. 9 g得た (重合収率 8 6 %) 。 重合体の数平均分子量は G P C測定 (ポリスチレン 換算) により 5 7 0 0、 分子量分布は 1. 3 7であった。
次に、 還流管をつけた 5 0 mLの三口丸底フラスコに、 上記のようにして得ら れた末端にハロゲンを有するポリ (アクリル酸一 n—プチル) (8 3. 9 g) 、 製造例 2で合成された 4一ペンテン酸のカリウム塩 (7. 7 4 g、 5 6. 0 mm o 1 ) 、 及びジメチルァセトアミ ド (8 0 mL) を仕込み、 窒素雰囲気下、 7 0 °Cで 6時間反応させた。 混合物を酢酸ェチル (2 0 0 mL) で希釈し、 水で 3回、 ブラインで 1回洗浄した。 有機層を N a 2 S O, で乾燥し、 揮発分を減圧下留去 することにより重合体を単離した。 重合体と等量の珪酸アルミ (協和化学製: キ ョーワード 7 0 O P EL) を添加して 1 0 0 °Cで 2時間撹拌し、 重合体中の微量 不純物を除去することにより、 下式に示す末端にアルケニル基を有するポリ (ァ クリル酸プチル) を得た。 オリゴマー 1分子当たりに導入されたアルケニル基は、 Ή NMR分析より、 1. 7 3個であった。
Figure imgf000046_0001
実施例 4
2 0 0 mLの耐圧ガラス反応容器に、 実施例 3で得られた末端にアルケニル基 を有するポリ (アクリル酸一 n—ブチル) (6 0. 0 g) 、 ジメ トキシメチルヒ ドロシラン (8. 4 mL、 6 8. 1 mm o 1 ) 、 オルトぎ酸ジメチル ( 2. 5 m L、 2 2. 9 mmo 1 ) 、 及び、 白金触媒を仕込んだ。 ただし、 白金触媒の使用 量は、 重合体のアルケニル基に対して、 モル比で 1 0—4当量とした。 反応混合物 を 1 0 0°Cで 3時間加熱した。 混合物の揮発分を減圧留去することにより、 下式 に示す、 末端にシリル基を有するポリ (アクリル酸一 n—プチル) を得た。 オリ ゴマー 1分子当たりに導入されたシリル基は、 'Η NMR分析より、 1. 5 9 個であった。 H3CO ,OCH3
C02nBu C02nBu 次に、 末端にシリル基を有するポリ (アクリル酸プチル) に、 ジブチルスズジ メ トキシド及び水を加えてよく混合した。 スズ触媒及び水の使用量は、 それぞれ 重合体に対して 1重量部とした。
このようにして得られた組成物を型枠に流し込んで、 減圧脱気し、 5 0°Cで 2 0時間加熱硬化させ、 ゴム弾性を有するシー ト状硬化物を得た。 硬化物をトルェ ンに 2 4時間浸潰し、 前後の重量変化からそのゲル分率を測定すると、 9 3 %で あった o
シー ト状硬化物から 2 ( 1 /3 ) 号形ダンベル試験片を打ち抜き、 島津製ォ一 トグラフを用いて、 引っ張り試験を行った (測定条件: 2 3°C、 2 0 0 mm/m i n) 。 破断強度は 0. 2 6 MP a、 破断伸びは 7 5 %であった。 実施例 5
還流管をつけた 1 0 0 mLの三口丸底フラスコに臭化第一銅 (0. 6 2 5 g、 1 5. 6 mmo 1 ) 、 ァセ トニト リル ( 5. 0 m L ) 、 及び、 ペンタメチルジェ チレントリアミン (0. 9 1 mL) を仕込み、 窒素ガスで置換した。 ァクリル酸 —n—ブチル (5 0 mL、 4 4. 7 g、 0. 3 9 mo l ) 、 及び、 ジェチル— 2, 5一ジブ口モアジぺ一ト ( 1. 5 7 g、 4. 3 6 mm o 1 ) を添加し、 7 0。 で 7時間加熱撹拌した。 混合物を酢酸ェチルで希釈し、 活性アルミナで処理した。 揮発分を減圧下留去し、 下式に示す両末端にハロゲンを有するポリ (アクリル酸 一 n—ブチル) を 3 5. 0 g得た (重合収率 8 7 %) 。 重合体の数平均分子量は G P C測定 (ポリスチレン換算) により 1 0 7 0 0、 分子量分布は 1. 1 5であ つ T乙
Figure imgf000048_0001
次に、 還流管をつけた 2 0 0 mLの三口丸底フラスコに、 上記のようにして得 られた末端にハロゲンを有するポリ (アクリル酸一 n—プチル) (3 5. 0 g) 、 製造例 2で合成された 4—ペンテン酸のカリウム塩 (2. 2 3 g、 1 6. 1 mm o 1 ) 、 及び、 ジメチルァセトアミ ド (3 5 mL) を仕込み、 窒素雰囲気下、 7 0°Cで 4時間反応させた。 混合物を酢酸ェチルで希釈し、 2 %塩酸、 ブラインで 洗浄した。 有機層を N a 2 S04 で乾燥し、 揮発分を減圧下留去することにより 重合体を単離した。 重合体と等量の珪酸アルミ (協和化学製: キヨ一ワー ド 7 0 O P E L) を添加して 1 0 0°Cで 4時間撹拌し、 下式に示す末端にアルケニル基 を有するポリ (アクリル酸プチル) を得た。 オリゴマー 1分子当たりに導入され たアルケニル基は、 'Η NMR分析より、 1. 8 2個であった。
Figure imgf000048_0002
実施例 6
2 0 0 mLの耐圧ガラス反応容器に、 実施例 5で得られた末端にアルケニル基 を有するポリ (アクリル酸一 n—プチル) ( 1 5. 0 g) 、 ジメ トキシメチルヒ ドロシラン ( 1. 8 m L、 1 4. 5 mm 0 1 ) 、 オルトぎ酸ジメチル ( 0. 2 6 mL, 2. 4 2 mmo 1 ) 、 及び、 白金触媒を仕込んだ。 ただし、 白金触媒の使 用量は、 重合体のアルケニル基に対して、 モル比で 2 X I (T4当量とした。 反応 混合物を 1 0 0°Cで 4時間加熱した。 混合物の揮発分を減圧留去することにより、 下式に示す、 末端にシリル基を有するポリ (アクリル酸一 n—プチル) を得た。 オリゴマー 1分子当たりに導入されたシリル基は、 'Η NMR分析より、 1 4 6個であった。
Figure imgf000049_0001
次に、 末端にシリル基を有するポリ (アクリル酸プチル) に、 ジブチルスズジ メ トキシド及び水を加えてよく混合した。 スズ触媒及び水の使用量は、 それぞれ 重合体に対して 1重量部とした。
このようにして得られた組成物を型枠に流し込んで、 減圧脱気し、 5 0°Cで 2 0時間加熱硬化させ、 ゴム弾性を有するシート状硬化物を得た。 硬化物をトルェ ンに 2 4時間浸漬し、 前後の重量変化からそのゲル分率を測定すると、 9 8 %で めつ 7 "こ o
シート状硬化物から 2 ( 1 Z3 ) 号形ダンベル試験片を打ち抜き、 島津製ォ一 トグラフを用いて引っ張り試験を行った (測定条件: 2 3°C、 2 0 0 mm/ i n) 。 破断強度は 0. 3 5 MP a、 破断伸びは 7 7 %であった。 製造例 3 アルケニル基を有するカルボン酸塩の製造 その 3
2 0 OmL丸底フラスコにカリウム一 t e r t—ブトキシド (5. 6 1 g、 5 0 mmo 1 ) を仕込み、 0 °Cでメタノール (5 O mL) をゆっく り滴下した。 撹 拌しながら 0 °Cでこの溶液にメタクリル酸 (4. 4 mL、 5 2. O mmo l ) を ゆつく り滴下することにより白色結晶が析出した。 室温まで反応溶液を昇温し、 析出した白色結晶を濾別し、 室温で減圧乾燥することにより下式に示すメタクリ ル酸のカリウム塩を得た (3. 3 1 8、 収率5 3 %) 。
CH2 =C (CH3 ) 一 C〇2 ― K一 実施例 7
実施例 3で得られた末端にハロゲンを有するポリ (アクリル酸一 η—ブチル) (2 5 9 mg) 、 製造例 3で合成されたメタクリル酸のカリウム塩 ( 1 4. 9 m g、 0. 1 2 mmo 1 ) 、 及び、 ジメチルァセ トアミ ド ( 2. 5 mL) を仕込み、 室温で 6 1時間反応させた。 メタクリル酸の力リゥム塩を 1 7. 3 mg追カロし、 同温でさらに 2 2時間反応させた。 混合物を酢酸ェチルで希釈し、 水で洗浄した c 有機層の揮発分を減圧留去することにより、 下式に示す、 末端にアルケニル基を 有するポリ (アクリル酸一 n—プチル) を得た。 オリゴマー 1分子当たりに導入 されたアルケニル基は、 'Η NMR分析より、 1. 6 6個であった。
Figure imgf000050_0001
実施例 8
1 Lの耐圧ガラス反応容器に、 アクリル酸メチル ( 1 0 0 mL、 1. 1 1 mo 1 ) 、 α, α' —ジブ口モー ρ—キシレン (5. 8 9 g、 2 2. 2 mmo l ) 、 臭化第一銅 ( 3. 1 8 g、 2 2. 2 mm 0 1 ) 、 2, 2 ' —ビビリジル ( 1 0. 4 g、 6 6. 7mmo l ) 、 ァセトニトリノレ (2 0 mL) 、 及び、 酢酸ェチル (8 0 mL) を仕込み、 窒素ガスを 1 0分間吹き込んで溶存酸素を除去した後、 封管した。 この混合物を 1 3 0°Cまで昇温し、 更に 3 0分間加熱した。 室温まで 冷却後、 反応混合物を酢酸ェチルで希釈し、 生成した不溶固体をろ過した後、 濾 液を希塩酸で 2回、 ブラインで 1回洗浄した。 有機層を無水硫酸ナ ト リウムで乾 燥し、 揮発分を減圧下留去し、 実施例 1で示したような両末端に臭素を有するポ リ (ァクリル酸メチル) を 9 0. 1 g得た。 GP C測定 (ポリスチレン換算) の 結果、 重合体の数平均分子量 (Mn) は 5 0 0 0、 分子量分布 (MwZMn) は 1. 3 1であった。 また、 オリゴマー 1分子当たりに導入された臭素は、
NMR分析より、 1. 7 8個であった。
次に、 5 0 mLの三つ口丸底フラスコにァリルマロン酸ェチル ( 0. l mL、 0. 5 1 mmo l ) 、 カリウム一 t e r t—ブトキシド (8 0 mg、 0. 7 2 m mo 1 ) 、 及び、 テトラヒ ドロフラン ( 1. 0 mL) を仕込み、 窒素雰囲気下、 還流温度で 1時間反応させた。 上で合成されたポリ (アクリル酸メチル) ( 1. 0 g) のテトラヒ ドロフラン (2 mL) 溶液を添加して還流温度で 3時間攪拌し た。 反応混合物を酢酸ェチルで約 5 O mLに希釈し、 2 %塩酸で 2回、 ブライン で 1回洗浄した。 有機層を無水硫酸ナ ト リウムで乾燥した後、 溶媒を減圧下留去 し生成物を単離した。 生成物を少量の酢酸ェチルに溶解し、 へキサンから再沈殿 することにより重合体を精製した。 ォリゴマ一 1分子当たりに導入されたァルケ ニル基は、 'Η NMR分析より、 0. 6 2個であった。 実施例 9
5 0 mLの三つ口丸底フラスコに油性水素化ナ ト リウム ( 1 0 6 mg、 2. 6 4 mm 0 1 ) を仕込み、 窒素雰囲気下、 乾燥へキサンで水素化ナトリゥムを数回 洗浄した後、 ジメチルァセトアミ ド (3. OmL) を加えた。 さらにァリルマロ ノニ ト リノレ (2 9 2 mg、 2. 7 6 mmo l ) のジメチルァセ トアミ ド ( 1. 0 mL) 溶液を 0°Cで滴下して、 同温で 1時間攪拌した。 実施例 8で合成された末 端にハロゲンを有するポリ (アクリル酸メチル) ( 1. 08) の01 八じ (2. OmL) 溶液を添加して室温で 1時間攪拌した。 反応混合物を氷水一希塩酸で中 和したのち、 酢酸ェチル (3 OmL) で抽出し、 有機層を 2 %塩酸で 2回、 ブラ インで 1回洗浄した。 有機層を無水硫酸ナ トリウムで乾燥した後、 溶媒を減圧下 留去し生成物を単離した。 生成物を少量の酢酸ェチルに溶解し、 へキサンから再 沈殿することにより重合体を精製した (Fn (ァルケニル) = 1. 6 8) 。
得られたアルケニル基を末端に有する重合体に、 多価ヒ ドロシリル化合物と白 金錯体を混合し、 加熱すると、 ゴム状の硬化物が得られた。 実施例 1 0
実施例 9で得られたアルケニル基を末端に有する重合体に、 ジメ トキシメチル シランを白金錯体を用いて反応させ、 架橋性シリルを末端に有するポリマ一を得 た 得られた架橋性シリルを末端に有するポリマーにスズ系の縮合硬化触媒と水を 混合すると、 ゴム状の硬化物が得られた。 産業上の利用可能性
本発明によれば、 これまで製造するのが困難であった、 主鎖末端にアルケニル 基又は架橋性シリル基を高い比率で有するビニル系重合体、 及び、 これらの簡便 な製造方法が提供される。 本発明のビニル系重合体は、 これらの架橋性官能基が 確実に主鎖末端に導入されているので、 硬化特性の優れた硬化物を得ることがで きる。

Claims

請求の範囲
1. 下記一般式 (1 ) で表されるアルケニル基を、 少なくとも 1つの主鎖末端 に有することを特徴とするビニル系重合体。
一 CH2 - C (R1 ) (R2 ) 一〇一 R3 - C (IT ) =CH2 (1 )
(式中、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 R3 は、 1 個以上のエーテル結合又はエステル結合を含んでいてもよい炭素数 1〜 2 0の 2 価の有機基を表す。 R4 は、 水素、 炭素数 1〜 1 0のアルキル基、 炭素数 6〜 1 0のァリール基又は炭素数?〜 1 0のァラルキル基を表す。 )
2. 一般式 ( 1 ) において、 R3 が、 下記一般式 (2) で表される 2価の有機 基である請求項 1記載の重合体。
-C6 H4 ― (CH2 ) „ - (2)
(式中、 C6 H4 は、 フエ二レン基を表す。 nは、 0〜 1 4の整数を表す。 )
3. 一般式 ( 1 ) において、 R3 が、 下記一般式 (3) で表される 2価の有機 基である請求項 1記載の重合体。
一 C (0) 一 R5 - (3)
(式中、 R5 は、 直接結合、 又は、 1個以上のエーテル結合若しくはエステル結 合を含んでいてもよい炭素数 1 ~ 1 9の 2価の有機基を表す。 )
4. 一般式 (3) において、 R5 が、 直接結合、 又は、 下記一般式 (4) で表 される 2価の有機基である請求項 3記載の重合体。
一 (CH2 ) „ 一 (4)
(式中、 nは、 1〜1 9の整数を表す。 )
5. 主鎖は、 (メタ) アクリル酸系モノマーが重合してなるものである請求項 1、 2、 3又は 4記載の重合体。
6. (メタ) アクリル酸系モノマーは、 アクリル酸エステルモノマーである請 求項 5記載の重合体。
7. (メ タ) アク リル酸系モノマ一は、 メタク リル酸エステルモノマーである 請求項 5記載の重合体。
8. アクリル酸エステルモノマ一は、 アクリル酸ブチルである請求項 6記載の 重合体。
9. 主鎖は、 スチレン系モノマーが重合してなるものである請求項 1、 2、 3 又は 4記載の重合体。
1 0. ゲルパーミエーシヨ ンクロマ トグラフィーで測定した重量平均分子量 (Mw) と数平均分子量 (Mn) の比 (MwZMn) が、 1. 8以下の値である 請求項 1〜 9のいずれか 1項に記載の重合体。
1 1. 数平均分子量は、 5 0 0〜 1 0 0 0 0 0の範囲にある請求項 1〜 1 0の いずれか 1項に記載の重合体。
1 2. 請求項 1〜 1 1のいずれか 1項に記載の重合体に、 架橋性シリル基を有 するヒ ドロシラン化合物を付加させてなることを特徴とする、 少なく とも 1つの 主鎖末端に架橋性シリル基を有するビニル系重合体。
1 3. 下記一般式 (5) で表されるアルケニル基を、 少なく とも 1つの主鎖末 端に有することを特徴とするビニル系重合体。
-CH2 — C (R1 )(R2 ) —C (R6 )(R7 ) — R8 — C (R9 ) =CH2
(5)
(式中、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 R6 及び R 7 は、 共に、 同一若しくは異なって、 電子吸引性置換基を表すか、 又は、 一方が 電子吸引性置換基を表し、 他方が水素、 炭素数 1〜 1 0のアルキル基若しくはフ ェニル基を表す。 R8 は、 直接結合、 又は、 1個以上のエーテル結合を含んでい てもよい炭素数 1〜 1 0の 2価の有機基を表す。 R9 は、 水素、 炭素数 1〜 1 0 のアルキル基、 炭素数 6〜 1 0のァリール基又は炭素数?〜 1 0のァラルキル基 を表す。 )
1 4. 電子吸引性置換基は、 一 C02 R (式中、 Rは、 炭素数 1〜2 0のアル キル基、 炭素数 6〜2 0のァリール基又は炭素数 7〜 2 0のァラルキル基を表す c ) 、 — C (0) R (Rは前記に同じ。 ) 、 及び、 一 CNからなる群より選択され る基である請求項 1 3記載の重合体。
1 5. 主鎖は、 (メタ) アクリル酸系モノマーが重合してなるものである請求 項 1 3又は 1 4記載の重合体。
1 6. (メタ) アクリル酸系モノマーは、 アクリル酸エステルモノマーである 請求項 1 5記載の重合体。
1 7. (メタ) ァクリル酸系モノマ一は、 メタクリル酸エステルモノマ一であ る請求項 1 5記載の重合体。
1 8. アクリル酸エステルモノマーは、 アクリル酸ブチルである請求項 1 6記 載の重合体。
1 9. 主鎖は、 スチレン系モノマーが重合してなるものである請求項 1 3又は 1 4記載の重合体。
2 0. ゲルパ一ミエ一シヨ ンクロマ トグラフィ一で測定した重量平均分子量 (Mw) と数平均分子量 (Mn) の比 (Mw/Mn) 、 1. 8以下の値である 請求項 1 3〜 1 9のいずれか 1項に記載の重合体。
2 1. 数平均分子量は、 5 0 0〜 1 0 0 0 0 0の範囲にある請求項 1 3〜2 0 のいずれか 1項に記載の重合体。
2 2. 下記一般式 ( 6 ) で表される架橋性シリル基を、 少なく とも 1つの主鎖 末端に有することを特徴とするビニル系重合体。
- CH2 -C (R1 )(R2 ) — C (R6 )(R7 ) -R8 一 CH (R9 ) 一 CH2
― [S i (R'。) (Y) 0] m — S i (R") (Y) (6)
〔式中、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 R6 及び R 7 は、 共に、 同一若しくは異なって、 電子吸引性置換基を表すか、 又は、 一方が 電子吸引性置換基を表し、 他方が水素、 炭素数 1〜1 0のアルキル基若しくはフ ェニル基を表す。 R8 は、 直接結合、 又は、 1個以上のエーテル結合を含んでい てもよい炭素数 1〜 1 0の 2価の有機基を表す。 R9 は、 水素、 炭素数 1〜 1 0 のアルキル基、 炭素数 6〜 1 0のァリール基又は炭素数?〜 1 0のァラルキル基 を表す。 R '。及び R1'は、 同一若しくは異なって、 炭素数 1〜 2 0のアルキル基、 炭素数 6〜2 0のァリール基、 炭素数 7〜2 0のァラルキル基、 又は、 (R' )
3 S i 0— (式中、 R ' は、 炭素数 1〜 2 0の 1価の炭化水素基を表し、 3個の は同一であってもよく、 異なっていてもよい。 ) で表される トリオルガノシ 口キシ基を表す。 R1 D又は R11が 2個以上存在するとき、 それらは同一であって もよく、 異なっていてもよい。 Yは、 水酸基又は加水分解性基を表し、 2個以上 存在するとき、 それらは同一であってもよく、 異なっていてもよい。 aは、 0、 1、 2又は 3を表す。 bは、 0、 1又は 2を表す。 mは、 0〜 1 9の整数である c ただし、 a +mb≥ 1であることを満足するものとする。 〕
2 3. 電子吸引性置換基は、 一 C〇2 R (式中、 Rは、 炭素数 1〜2 0のアル キル基、 炭素数 6〜 2 0のァリール基又は炭素数 7〜 2 0のァラルキル基を表す ) 、 - C (0) R (Rは前記に同じ。 ) 、 及び、 一 C Nからなる群より選択され る基である請求項 2 2記載の重合体。
2 4. 主鎖は、 (メタ) アクリル酸系モノマーが重合してなるものである請求 項 2 2又は 2 3記載の重合体。
2 5. (メタ) ァクリル酸系モノマーは、 ァクリル酸エステルモノマーである 請求項 2 4記載の重合体。
2 6. (メタ) ァクリル酸系モノマ一は、 メタクリル酸エステルモノマ一であ る請求項 2 4記載の重合体。
2 7. アクリル酸エステルモノマ一は、 アクリル酸ブチルである請求項 2 5記 載の重合体。
2 8. 主鎖は、 スチレン系モノマーが重合してなるものである請求項 2 2又は 2 3記載の重合体。
2 9. ゲルパ一ミエ一ションクロマトグラフィ一で測定した重量平均分子量 (Mw) と数平均分子量 (Mn) の比 (Mw/Mn) が、 1. 8以下の値である 請求項 2 2〜 2 8のいずれか 1項に記載の重合体。
3 0. 数平均分子量は、 5 0 0〜 1 0 0 0 0 0の範囲にある請求項 2 2〜2 9 のいずれか 1項に記載の重合体。
3 1. ビニル系モノマーを重合して、 下記一般式 (7) で表される基を少なく とも 1つの主鎖末端に有するビニル系重合体を製造し、 次いで、 前記重合体の末 端ハロゲンを、 下記一般式 (8) で表されるアルケニル基含有ォキシァニオンで 置換することを特徴とする、 請求項 1〜 1 1のいずれか 1項に記載のアルケニル 基を主鎖末端に有するビニル系重合体の製造方法。
- CH2 — C (R1 ) (R2 ) (X) (7)
(式中、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 Xは、 塩素、 臭素又はヨウ素を表す。 )
M+ 〇 -R3 - C (R4 ) =CH2 (8)
(式中、 R3 は、 1個以上のエーテル結合又はエステル結合を含んでいてもよい 炭素数 1〜 2 0の 2価の有機基を表す。 R4 は、 水素、 炭素数 1〜 1 0のアルキ ル基、 炭素数 6〜 1 0のァリール基又は炭素数?〜 1 0のァラルキル基を表す。 M+ は、 アルカリ金属イオン又は 4級アンモニゥムイオンを表す。 )
3 2. M+ は、 ナトリウムイオン又はカリウムイオンである請求項 3 1記載の 製造方法。
3 3. 開始剤として、 有機ハロゲン化物又はハロゲン化スルホニル化合物を用 い、 触媒として、 遷移金属錯体を用いてビニル系モノマーを重合する請求項 3 1 又は 3 2記載の製造方法。
3 4. 遷移金属錯体は、 銅、 ニッケル、 ルテニウム及び鉄からなる群より選択 される金属の錯体である請求項 3 3記載の製造方法。
3 5. 遷移金属錯体は、 銅錯体である請求項 3 4記載の製造方法。
3 6. 連鎖移動剤を用いてビニル系モノマーを重合する請求項 3 1又は 3 2記 載の製造方法。
3 7. 請求項 1〜 1 1のいずれか 1項に記載のアルケニル基を主鎖末端に有す るビニル系重合体に、 下記一般式 (9) で表される架橋性シリル基を有するヒ ド ロシラン化合物を付加させることを特徴とする、 請求項 1 2記載の架橋性シリル 基を主鎖末端に有するビニル系重合体の製造方法。
H-[ S i (R10) 2b (Y) b 0] m - S i (R11) s-a (Y) a (9)
〔式中、 尺 及び!^ ま、 同一若しくは異なって、 炭素数 1〜2 0のアルキル基、 炭素数 6〜 2 0のァリール基、 炭素数 7〜 2 0のァラルキル基、 又は、 (R' ) S i 0— (式中、 R ' は、 炭素数 1〜 2 0の 1価の炭化水素基を表し、 3個の R' は同一であってもよく、 異なっていてもよい。 ) で表される トリオルガノシ 口キシ基を表す。 R1 D又は R11が 2個以上存在するとき、 それらは同一であって もよく、 異なっていてもよい。 Yは、 水酸基又は加水分解性基を表し、 2個以上 存在するとき、 それらは同一であってもよく、 異なっていてもよい。 aは、 0、 1、 2又は 3を表す。 bは、 0、 1又は 2を表す。 mは、 0〜 1 9の整数である c ただし、 a +mb≥ 1であることを満足するものとする。 〕
3 8. ビニル系モノマーを重合して、 下記一般式 (7) で表される基を少なく とも 1つの主鎖末端に有するビニル系重合体を製造し、 次いで、 前記重合体の末 端ハロゲンを下記一般式 (1 0) で表されるアルケニル基含有カルボア二オンで 置換することを特徴とする、 請求項 1 3〜2 1のいずれか 1項に記載のアルケニ ル基を主鎖末端に有するビニル系重合体の製造方法。
-CH2 -C (R' ) (R2 ) (X) (7)
(式中、 R' 及び R2 は、 同一又は異なって、 1価の有機基を表す。 Xは、 塩素、 臭素又はヨウ素を表す。 )
M- C- (R6 ) (R7 ) 一 R8 - C (R9 ) =CH2 ( 1 0)
(式中、 R6 及び R7 は、 共に、 同一若しくは異なって、 電子吸引性置換基を表 すか、 又は、 一方が電子吸引性置換基を表し、 他方が水素、 炭素数 1〜 1 0のァ ルキル基若しくはフヱニル基を表す。 R8 は、 直接結合、 又は、 1個以上のエー テル結合を含んでいてもよい炭素数 1〜 1 0の 2価の有機基を表す。 R9 は、 水 素、 炭素数 1〜 1 0のアルキル基、 炭素数 6〜 1 0のァリール基又は炭素数 7〜 1 0のァラルキル基を表す。 M+ は、 アルカリ金属イオン又は 4級アンモニゥム イオンを表す。 )
3 9. M十 は、 ナトリゥムイオン又は力リゥムイオンである請求項 3 8記載の 製造方法。
4 0. 開始剤として、 有機ハロゲン化物又はハロゲン化スルホニル化合物を用 い、 触媒として、 遷移金属錯体を用いてビニル系モノマ一を重合する請求項 3 8 又は 3 9記載の製造方法。
4 1. 遷移金属錯体は、 銅、 ニッケル、 ルテニウム及び鉄からなる群より選択 される金属の錯体である請求項 4 0記載の製造方法。
4 2. 遷移金属錯体は、 銅錯体である請求項 4 1記載の製造方法。
4 3. 連鎖移動剤を用いてビニル系モノマーを重合する請求項 3 8又は 3 9記 載の製造方法。
4 4. ビニル系モノマ一を重合して、 下記一般式 (7) で表される基を少なく とも 1つの主鎖末端に有するビニル系重合体を製造し、 次いで、 前記重合体の末 端ハロゲンを下記一般式 ( 1 1 ) で表される架橋性シリル基含有カルボア二オン で置換することを特徴とする、 請求項 2 2〜3 0のいずれか 1項に記載の架橋性 シリル基を主鎖末端に有するビニル系重合体の製造方法。
一 CH2 - C (R1 ) (R2 ) (X) (7)
(式中、 R1 及び R2 は、 同一又は異なって、 1価の有機基を表す。 Xは、 塩素、 臭素又はヨウ素を表す。 )
M+ C (R6 )(R7 ) -R8 - CH (R9 ) - CH2 — [ S i (R'。) 2b
(Y) b 0] m - S i (R") 3 (Y) ( 1 1 )
〔式中、 R6 及び R7 は、 共に、 同一若しくは異なって、 電子吸引性置換基を表 すか、 又は、 一方が電子吸引性置換基を表し、 他方が水素、 炭素数 1〜 1 0のァ ルキル基若しくはフニ二ル基を表す。 R8 は、 直接結合、 又は、 1個以上のェ一 テル結合を含んでいてもよい炭素数 1〜 1 0の 2価の有機基を表す。 R9 は、 水 素、 炭素数 1〜 1 0のアルキル基、 炭素数 6〜 1 0のァリ一ル基又は炭素数 7〜 1 0のァラルキル基を表す。 R 1 (1及び R 11は、 同一若しくは異なって、 炭素数 1 〜2 0のアルキル基、 炭素数 6〜 2 0のァリール基、 炭素数 7〜 2 0のァラルキ ル基、 又は、 (R' ) 3 S i 0— (式中、 R' は、 炭素数 1〜2 0の 1価の炭化 水素基を表し、 3個の R' は同一であってもよく、 異なっていてもよい。 ) で表 される トリオルガノシロキシ基を表す。 R '°又は R 1 1が 2個以上存在するとき、 それらは同一であってもよく、 異なっていてもよい。 Yは、 水酸基又は加水分解 性基を表し、 2個以上存在するとき、 それらは同一であってもよく、 異なってい てもよい。 aは、 0、 1、 2又は 3を表す。 bは、 0、 1又は 2を表す。 mは、 0〜 1 9の整数である。 ただし、 a + mb≥ 1であることを満足するものとする c M+ は、 アルカリ金属イオン又は 4級アンモニゥムイオンを表す。 〕
4 5. は、 ナトリゥムイオン又は力リゥムイオンである請求項 4 4記載の 製造方法。
4 6. 開始剤として、 有機ハロゲン化物又はハロゲン化スルホニル化合物を用 い、 触媒として、 遷移金属錯体を用いてビニル系モノマ一を重合する請求項 4 4 又は 4 5記載の製造方法。
4 7. 遷移金属錯体は、 銅、 ニッケル、 ルテニウム及び鉄からなる群より選択 される金属の錯体である請求項 4 6記載の製造方法。
4 8. 遷移金属錯体は、 銅錯体である請求項 4 7記載の製造方法。
4 9. 連鎖移動剤を用いてビニル系モノマーを重合する請求項 4 4又は 4 5記 載の製造方法。
5 0. 請求項 1 3〜 2 1のいずれか 1項に記載のアルケニル基を主鎖末端に有 するビニル系重合体に、 下記一般式 (9) で表される架橋性シリル基を有するヒ ドロシラン化合物を付加させることを特徴とする、 請求項 2 2〜3 0のいずれか 1項に記載の架橋性シリル基を主鎖末端に有するビニル系重合体の製造方法。
H— [ S i (R10) 2b (Y) b 0] m -S i (R11) 3a (Y) a (9) 〔式中、 R1 Q及び R1 1は、 同一若しくは異なって、 炭素数 1〜2 0のアルキル基、 炭素数 6〜 2 0のァリール基、 炭素数 7〜 2 0のァラルキル基、 又は、 (R' ) 3 S i 0— (式中、 R ' は、 炭素数 1〜 2 0の 1価の炭化水素基を表し、 3個の R' は同一であってもよく、 異なっていてもよい。 ) で表される トリオルガノシ 口キシ基を表す。 R1 D又は R'1が 2個以上存在するとき、 それらは同一であって もよく、 異なっていてもよい。 Yは、 水酸基又は加水分解性基を表し、 2個以上 存在するとき、 それらは同一であってもよく、 異なっていてもよい。 aは、 0、 1、 2又は 3を表す。 bは、 0、 1又は 2を表す。 mは、 0〜 1 9の整数である c ただし、 a +mb≥ 1であることを満足するものとする。 〕
5 1. (a) 請求項 1〜 1 1のいずれか 1項に記載のアルケニル基を主鎖末端 に有するビニル系重合体、 及び、 (b) ヒ ドロシリル基含有化合物を含有するこ とを特徴とする硬化性組成物。
5 2. 請求項 1 2記載の架橋性シリル基を主鎖末端に有するビニル系重合体を 主成分とすることを特徴とする硬化性組成物。
5 3. (a) 請求項 1 3〜2 1のいずれか 1項に記載のアルケニル基を主鎖末 端に有するビニル系重合体、 及び、 (b) ヒ ドロシリル基含有化合物を含有する ことを特徴とする硬化性組成物。
5 4. 請求項 2 2〜3 0のいずれか 1項に記載の架橋性シリル基を主鎖末端に 有するビニル系重合体を主成分とすることを特徴とする硬化性組成物。
PCT/JP1998/001759 1997-04-18 1998-04-17 Polymeres, leurs procedes de production et compositions durcissables produites a partir de ces polymeres WO1998047931A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE69833747T DE69833747T2 (de) 1997-04-18 1998-04-17 Polymere, verfahren zu deren herstellung und daraus hergestellte härtbare zusammensetzungen
US09/403,272 US6423787B1 (en) 1997-04-18 1998-04-17 Polymers, processes for producing the same, and curable compositions produced therefrom
EP98914060A EP0976766B1 (en) 1997-04-18 1998-04-17 Polymers, processes for producing the same, and curable compositions produced therefrom
US10/763,268 US7202310B2 (en) 1997-04-18 2004-01-26 Polymers, processes for producing the same, and curable compositions produced therefrom

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP10213697 1997-04-18
JP9/102136 1997-04-18
JP10186697 1997-04-18
JP9/101866 1997-04-18

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US09/403,272 A-371-Of-International US6423787B1 (en) 1997-04-18 1998-04-17 Polymers, processes for producing the same, and curable compositions produced therefrom
US09403272 A-371-Of-International 1998-04-17
US10/163,002 Division US20020161133A1 (en) 1997-04-18 2002-06-06 Polymers, processes for producing the same, and curable compositions produced therefrom

Publications (1)

Publication Number Publication Date
WO1998047931A1 true WO1998047931A1 (fr) 1998-10-29

Family

ID=26442643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001759 WO1998047931A1 (fr) 1997-04-18 1998-04-17 Polymeres, leurs procedes de production et compositions durcissables produites a partir de ces polymeres

Country Status (4)

Country Link
US (3) US6423787B1 (ja)
EP (2) EP1637544A3 (ja)
DE (1) DE69833747T2 (ja)
WO (1) WO1998047931A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000015683A1 (fr) * 1998-09-14 2000-03-23 Kaneka Corporation Compositions durcissables
EP1197498A1 (en) * 1999-04-02 2002-04-17 Kaneka Corporation Method of treating polymer
US6964999B1 (en) 1998-02-27 2005-11-15 Kaneka Corporation Polymer and curable composition

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1160266B1 (en) * 1998-06-19 2007-02-21 Kaneka Corporation Process for producing branched polymer and polymer
CN1272380C (zh) * 1998-10-08 2006-08-30 钟渊化学工业株式会社 可固化的组合物
EP1179545B1 (en) * 1998-10-08 2005-06-01 Kaneka Corporation Polymers and curable compositions
WO2000044796A1 (fr) * 1999-01-28 2000-08-03 Kaneka Corporation Polymere, procede de preparation du polymere, et composition durcissable contenant le polymere
EP1406932B1 (en) * 2001-06-21 2007-12-12 Kaneka Corporation Quick curing composition
JP4024669B2 (ja) * 2002-12-24 2007-12-19 株式会社カネカ 末端に重合性炭素―炭素二重結合を持つ基を有するビニル系重合体の安定化方法
JP4301821B2 (ja) * 2003-01-22 2009-07-22 株式会社カネカ 貯蔵安定性が改善された硬化性組成物
CA2513410A1 (en) 2003-01-22 2004-08-19 Kaneka Corporation Polymer and curable compositions improved in storage stability
US20060024331A1 (en) * 2004-08-02 2006-02-02 Ester Fernandez-Salas Toxin compounds with enhanced membrane translocation characteristics
US9381279B2 (en) 2005-03-24 2016-07-05 Abbott Cardiovascular Systems Inc. Implantable devices formed on non-fouling methacrylate or acrylate polymers
US7700659B2 (en) * 2005-03-24 2010-04-20 Advanced Cardiovascular Systems, Inc. Implantable devices formed of non-fouling methacrylate or acrylate polymers
US20090234072A1 (en) * 2005-09-08 2009-09-17 Kaneka Corporation Curable composition
DE102006048154A1 (de) * 2006-10-10 2008-04-17 Evonik Röhm Gmbh Verfahren zur Herstellung von silyltelechelen Polymeren
US7906671B2 (en) * 2006-11-03 2011-03-15 Exxonmobil Chemical Patents Inc. Fluids having silicone groups and organic groups containing esters
GB0707176D0 (en) 2007-04-16 2007-05-23 Dow Corning Hydrosilylation curable compositions
DE102008002016A1 (de) 2008-05-28 2009-12-03 Evonik Röhm Gmbh Verfahren zur Herstellung von silyl-funktionalisierten ABA-Triblockcopolymeren auf (Meth)acrylatbasis
US8138297B2 (en) 2009-02-09 2012-03-20 Momentive Performance Materials Inc. Moisture-curable silylated polymer possessing improved storage stability
US9156981B2 (en) 2013-07-24 2015-10-13 Momentive Performance Materials Inc. Moisture curable compositions with enhanced elongation and tear strength properties

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440893A (en) * 1977-09-06 1979-03-31 Kanegafuchi Chem Ind Co Ltd Novel copolymer, its preparation, and coating compound consisting of the copolymer
JPH07165817A (ja) * 1993-12-14 1995-06-27 Kanegafuchi Chem Ind Co Ltd 官能基含有重合体の製造方法
JPH08259624A (ja) * 1995-03-20 1996-10-08 Daicel Chem Ind Ltd 不飽和基含有硬化性樹脂およびそれを用いた硬化性樹脂組成物

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB561337A (en) * 1942-07-29 1944-05-16 Eastman Kodak Company 71 Willi Improvements relating to synthetic resins and their uses
DE1947109C3 (de) * 1968-09-17 1978-03-23 Mitsui Petrochemical Industries Ltd., Tokio Verfahren zur Herstellung von a- Olefin-Mischpolymeren
FR2412572A1 (fr) * 1977-12-23 1979-07-20 Poudres & Explosifs Ste Nale Prepolymeres acryliques thermoplastiques reactifs et leur procede d'obtention
US4334036A (en) * 1978-08-24 1982-06-08 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Process for producing curable vinyl polymer having silyl group
JPH0682265B2 (ja) 1987-08-07 1994-10-19 株式会社日立製作所 液晶駆動電圧補正回路びこれを用いた液晶表示装置
FR2651779B1 (fr) 1989-09-08 1991-12-06 Norsolor Sa Procede de fabrication de macromonomeres (meth)acryliques fonctionnalises et macromonomeres obtenues.
US5104952A (en) * 1990-11-15 1992-04-14 Minnesota Mining And Manufacturing Company Macromolecular monomers from living polymers
JPH0699500B2 (ja) 1991-03-18 1994-12-07 工業技術院長 両末端反応性高分子化合物及びその製造方法
JP2894134B2 (ja) 1993-01-14 1999-05-24 ダイソー株式会社 光学活性エピクロルヒドリンの製造法
JPH06211922A (ja) * 1993-01-20 1994-08-02 Nippon Shokubai Co Ltd 硬化性組成物
CA2180839C (en) * 1994-04-20 2000-08-08 Toyoaki Yamauchi Aqueous silicone-modified acrylate polymer emulsion
US5763548A (en) 1995-03-31 1998-06-09 Carnegie-Mellon University (Co)polymers and a novel polymerization process based on atom (or group) transfer radical polymerization
US5807937A (en) 1995-11-15 1998-09-15 Carnegie Mellon University Processes based on atom (or group) transfer radical polymerization and novel (co) polymers having useful structures and properties
JP3806475B2 (ja) * 1996-02-08 2006-08-09 株式会社カネカ 末端に官能基を有する(メタ)アクリル系重合体の 製造方法
US5789487A (en) 1996-07-10 1998-08-04 Carnegie-Mellon University Preparation of novel homo- and copolymers using atom transfer radical polymerization
DE69729843T2 (de) * 1996-11-28 2005-08-25 Kaneka Corp. Verfahren zur Herstellung eines (Meth)acrylpolymers mit endständiger Hydroxylgruppe und dieses Polymer
US6274688B1 (en) * 1997-07-28 2001-08-14 Kaneka Corporation Functional groups-terminated vinyl polymers

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5440893A (en) * 1977-09-06 1979-03-31 Kanegafuchi Chem Ind Co Ltd Novel copolymer, its preparation, and coating compound consisting of the copolymer
JPH07165817A (ja) * 1993-12-14 1995-06-27 Kanegafuchi Chem Ind Co Ltd 官能基含有重合体の製造方法
JPH08259624A (ja) * 1995-03-20 1996-10-08 Daicel Chem Ind Ltd 不飽和基含有硬化性樹脂およびそれを用いた硬化性樹脂組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0976766A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6964999B1 (en) 1998-02-27 2005-11-15 Kaneka Corporation Polymer and curable composition
WO2000015683A1 (fr) * 1998-09-14 2000-03-23 Kaneka Corporation Compositions durcissables
EP1197498A1 (en) * 1999-04-02 2002-04-17 Kaneka Corporation Method of treating polymer
EP1197498A4 (en) * 1999-04-02 2004-10-20 Kaneka Corp METHOD FOR TREATING POLYMER RESIN
US7030194B1 (en) 1999-04-02 2006-04-18 Kaneka Corporation Method of treating polymer

Also Published As

Publication number Publication date
EP0976766A1 (en) 2000-02-02
US20040152846A1 (en) 2004-08-05
US20020161133A1 (en) 2002-10-31
DE69833747T2 (de) 2006-11-16
EP0976766A4 (en) 2003-01-29
US6423787B1 (en) 2002-07-23
EP0976766B1 (en) 2006-03-08
EP1637544A3 (en) 2006-05-17
US7202310B2 (en) 2007-04-10
DE69833747D1 (de) 2006-05-04
EP1637544A2 (en) 2006-03-22

Similar Documents

Publication Publication Date Title
WO1998047931A1 (fr) Polymeres, leurs procedes de production et compositions durcissables produites a partir de ces polymeres
US5986014A (en) Processes for preparing (meth)acrylic polymers having functional groups at the chain ends
US6274688B1 (en) Functional groups-terminated vinyl polymers
JP4101366B2 (ja) 硬化性組成物
JP3688897B2 (ja) 接着性硬化性組成物
WO1999005215A1 (fr) Composition adhesive polymerisable
WO1999005216A1 (fr) Composition polymerisable
WO2000011056A1 (fr) Composition de resine, polymere et procede de production du polymere
JP3842445B2 (ja) 硬化性組成物
JP3895460B2 (ja) 重合体、該重合体の製造方法、及び、該重合体を用いた硬化性組成物
JP3808622B2 (ja) 重合体、該重合体の製造方法、及び、該重合体を用いた硬化性組成物
JP4098890B2 (ja) 重合体及び用途
WO2000059960A1 (fr) Procédé de traitement de polymères
JP3806481B2 (ja) 末端にアルケニル基を有する(メタ)アクリル系重合体およびその製造方法
JP2000044626A (ja) 重合体、該重合体の製造方法、ならびに該重合体を用いた硬化性組成物
JPH1180571A (ja) 硬化性組成物
JP4044177B2 (ja) 末端に架橋性シリル基を有する(メタ)アクリル系重合 体の製造方法
JP3857431B2 (ja) 重合体の精製方法および硬化性組成物
JP3751753B2 (ja) 末端にアルケニル基を有する重合体の製造方法及び該重合体を用いた硬化性組成物
JP2004244528A (ja) 硬化性組成物
JP3048586B2 (ja) 硬化性組成物
JP2000119527A (ja) 電気、電子部品材料用組成物および電気、電子部品材料
JP2000128924A (ja) 末端にアルケニル基を有する重合体の製造方法及び該重合体を用いた硬化性組成物
WO1999062965A1 (fr) Procede de production de polymere, polymere et composition durcissable comprenant le polymere
JP3962184B2 (ja) 樹脂組成物、重合体及び重合体の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998914060

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09403272

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998914060

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1998914060

Country of ref document: EP