WO1998044490A1 - Support d'enregistrement magnetique - Google Patents

Support d'enregistrement magnetique Download PDF

Info

Publication number
WO1998044490A1
WO1998044490A1 PCT/JP1997/001090 JP9701090W WO9844490A1 WO 1998044490 A1 WO1998044490 A1 WO 1998044490A1 JP 9701090 W JP9701090 W JP 9701090W WO 9844490 A1 WO9844490 A1 WO 9844490A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentration
metal layer
region
ferromagnetic metal
layer
Prior art date
Application number
PCT/JP1997/001090
Other languages
English (en)
French (fr)
Inventor
Migaku Takahashi
Junichi Nakai
Original Assignee
Migaku Takahashi
Junichi Nakai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Migaku Takahashi, Junichi Nakai filed Critical Migaku Takahashi
Priority to PCT/JP1997/001090 priority Critical patent/WO1998044490A1/ja
Priority to AT97908547T priority patent/ATE313145T1/de
Priority to US09/402,013 priority patent/US6555248B1/en
Priority to KR10-1999-7008859A priority patent/KR100514302B1/ko
Priority to DE69734895T priority patent/DE69734895T2/de
Priority to EP97908547A priority patent/EP0971340B1/en
Priority to JP54138498A priority patent/JP3724814B2/ja
Priority to TW086113760A priority patent/TW355793B/zh
Publication of WO1998044490A1 publication Critical patent/WO1998044490A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/64Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent
    • G11B5/65Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition
    • G11B5/656Record carriers characterised by the selection of the material comprising only the magnetic material without bonding agent characterised by its composition containing Co
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/736Non-magnetic layer under a soft magnetic layer, e.g. between a substrate and a soft magnetic underlayer [SUL] or a keeper layer
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/73Base layers, i.e. all non-magnetic layers lying under a lowermost magnetic recording layer, e.g. including any non-magnetic layer in between a first magnetic recording layer and either an underlying substrate or a soft magnetic underlayer
    • G11B5/7368Non-polymeric layer under the lowermost magnetic recording layer
    • G11B5/7373Non-magnetic single underlayer comprising chromium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/90Magnetic feature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12806Refractory [Group IVB, VB, or VIB] metal-base component
    • Y10T428/12826Group VIB metal-base component
    • Y10T428/12847Cr-base component
    • Y10T428/12854Next to Co-, Fe-, or Ni-base component

Definitions

  • the present invention relates to a magnetic recording medium and a method for manufacturing the same. More specifically, the present invention relates to a magnetic recording medium having a high coercive force Hc, an anisotropic magnetic field Hk gI " ain , and a normalized coercive force (Hc / Hk gl " ain ) of a ferromagnetic metal layer.
  • the magnetic recording medium of the present invention is suitably applied to hard disks, floppy disks, magnetic tapes and the like.
  • FIG. 17 is a schematic diagram illustrating a hard disk as an example of a magnetic recording medium.
  • FIG. 17 (a) is a perspective view of the entire magnetic recording medium
  • FIG. 17 (b) is a cross-sectional view taken along a line AA ′ of FIG. 17 (a).
  • a substrate in which a non-magnetic (Ni—P) layer 3 is provided on the surface of an A 1 substrate 2 is used.
  • a Cr underlayer 4, a ferromagnetic metal layer 5, and a protective layer 6 are laminated.
  • the non-magnetic (N i -P) layer 3 is formed by plating or sputtering a disk-shaped A 1 substrate 2 with a diameter of 89 mm (3.5 inch) and a thickness of 1.27 mm (50 mi 1). It is formed on the surface and forms the substrate 1. Also non-magnetic
  • the surface of the (Ni-P) layer 3 is provided with concentric flaws (hereinafter referred to as textures) by mechanical polishing.
  • textures concentric flaws
  • the surface roughness of the nonmagnetic (Ni-P) layer 3, that is, the average center line roughness Ra measured in the radial direction is 5 nm to 15 nm.
  • the Cr underlayer 4 and the ferromagnetic metal layer 5 are formed on the surface of the substrate 1 by a sputtering method.
  • a protective layer made of carbon or the like is provided by a 6-force sputtering method.
  • Typical thickness of each layer is 5 ⁇ m to 5 ⁇ m for non-magnetic (N i-P) layer 3 and Cr underlayer.
  • Layer 4 has a thickness of 50 nm to 150 nm
  • ferromagnetic metal layer 5 has a thickness of 30 nm to 100 nm
  • protective layer 6 has a thickness of 20 nm to 50 nm.
  • the back pressure of the film forming chamber before sputter film formation is on the order of 10 to 7 Torr, and the impurity concentration of the Ar gas used for film formation is 1 ppm or more. It was produced under the condition of.
  • the crystal grains forming the ferromagnetic metal layer Nakai et al. Reported that a grain boundary layer having an amorphous structure exists and that the grain boundary layer has a nonmagnetic alloy composition (J. Nakai, E. Kusumoto, M. KuwaDara, T. Miyamoto, MR Visokay, K. Yoshikawa and K.
  • the normalized coercive force of the above-described ferromagnetic metal layer (HcZHk g r ain), the coercive force H e, is divided by the anisotropic field Hk g r ain grain, magnetic isolation of the crystal grains It indicates the degree to which sex is increasing. That is, a high normalized coercive force of the ferromagnetic metal layer means that the magnetic interaction of the individual crystal grains constituting the ferromagnetic metal layer is reduced, and a high coercive force can be realized.
  • International Application PCT / JP 94/0 1 184 discloses an inexpensive high-density recording medium having an increased coercive force without using an expensive ferromagnetic metal layer and a method for manufacturing the same.
  • a ferromagnetic metal layer is formed on the surface of the substrate via a metal underlayer, and the impurity concentration of Ar gas used for film formation is 10 ppb or less in a magnetic recording medium using magnetization reversal. Accordingly, a technique is disclosed in which the oxygen concentration of the metal underlayer or Z and the ferromagnetic metal layer is reduced to 10 O wtppm or less. Further, before forming the metal base layer, the surface of the base is cleaned by a high frequency sputtering method using an Ar gas having an impurity concentration of 1 O ppb or less. It has also been reported that coercivity is further increased by removing 2 nm to 1 nm.
  • the normalized coercive force of a magnetic recording medium should be 0.3 or more and less than 0.5. Is described.
  • An object of the present invention is to provide a magnetic recording medium having a high coercive force, an anisotropic magnetic field, and / or a standardized coercive force of a ferromagnetic metal layer and capable of coping with high recording density. Disclosure of the invention
  • the magnetic recording medium of the present invention is a magnetic recording medium comprising a substrate and a ferromagnetic metal layer containing at least C0 and Cr provided on a base via a metal underlayer containing Cr as a main component. Between the crystal grains constituting the ferromagnetic metal layer, there is a region 1 where Cr is deflected penetrating the ferromagnetic metal layer, and the region 1 is in the thickness direction of the ferromagnetic metal layer. To It is characterized that the Cr concentration is lower near the middle than near the surface and near the metal underlayer.
  • a magnetic recording medium was formed by forming a ferromagnetic metal layer containing at least C0 and Cr on a substrate via a metal underlayer mainly composed of Cr by film formation in an ultra-clean atmosphere.
  • a region 1 in which Cr is segregated penetrating the ferromagnetic metal layer there is a region 1 in which Cr is segregated penetrating the ferromagnetic metal layer, and the region 1 has a thickness of the ferromagnetic metal layer.
  • the C concentration is lower in the vicinity of the middle than in the vicinity of the surface and in the vicinity of the metal underlayer, so that the coercive force and anisotropy are independent of the thickness of the metal underlayer mainly composed of Cr.
  • a magnetic recording medium having a magnetic field and / or a normalized coercive force is obtained.
  • the thickness of the metal underlayer is 1 O nm or less, this effect can be maintained, so that the surface roughness is small and the magnetic recording medium can cope with a low flying height of the head. Construction becomes possible.
  • the crystal grains of the ferromagnetic metal layer are divided into a region 2 where the Cr concentration increases as approaching the grain boundary, and a region 3 where the Cr concentration is lower in the center of the crystal grain than near the grain boundary. Since the maximum value of the Cr concentration in the region 3 is smaller than the maximum value of the Cr concentration in the region 2, the magnetic recording medium has a higher coercive force than the conventional magnetic recording medium without the region 3. Can be obtained.
  • all the magnetic characteristics, that is, the preservation of the magnetic properties, that is, the maximum value of the Cr concentration in the region 3 is 0.75 times or less the maximum value of the Cr concentration in the region 2.
  • a high value can be stably obtained in the magnetic force, the anisotropic magnetic field, and the normalized coercive force, and a magnetic recording medium having the same effect can be obtained even with a Cr underlayer as thin as 2.5 nm.
  • FIG. 1 is a transmission electron microscope (TEM) photograph of the ferromagnetic metal layer of the magnetic recording medium according to the present invention.
  • Fig. 1 (a) shows the result from the film surface direction
  • Fig. 1 (b) shows the result from the film cross section.
  • FIG. 2 is a schematic perspective view in which the ferromagnetic metal layer shown in FIG. 1 is partially broken. The results of examining the Cr concentration in the intergranular region in the film thickness direction (graph a) and the intragranular The results are shown together with the results (graph b) in which the Cr concentration was examined in the film surface direction in the region.
  • FIG. 3 is a transmission electron microscope (TEM) photograph of a ferromagnetic metal layer of a magnetic recording medium according to a conventional example. Fig.
  • FIG. 3 (a) shows the result from the film surface direction
  • Fig. 3 (b) shows the result from the film cross-sectional direction
  • FIG. 4 is a schematic perspective view in which the ferromagnetic metal layer shown in FIG. 3 is partially broken, and the Cr concentration in the intergranular region in the film thickness direction (graph c) and the intragranular results are shown. The results are shown together with the results (graph d) in which the Cr concentration was examined in the film surface direction in the region.
  • the layer structure of the magnetic recording medium according to the present invention has the same force as the layer structure of the conventional medium shown in FIG. 17.
  • the ferromagnetic metal layer forming the magnetic recording medium according to the present invention has the following two points. This is very different from conventional media.
  • the crystal grains of the ferromagnetic metal layer are composed of a region 2 where the Cr concentration increases as it approaches the grain boundary, and a region 3 where the Cr concentration is lower at the center of the crystal grain than near the grain boundary. Therefore, the maximum value of the Cr concentration in the region 3 is smaller than the maximum value of the Cr concentration in the region 2.
  • Examples of the substrate in the present invention include aluminum, titanium and alloys thereof, silicon, glass, carbon, ceramics, plastics, resins and composites thereof, and non-magnetic films of different materials formed on the surfaces thereof by sputtering, Surface-treated by a plating method or a plating method.
  • the nonmagnetic film provided on the surface of the substrate preferably does not magnetize at a high temperature, has conductivity, and has a moderate surface hardness, though it is difficult to machine.
  • a (Ni-P) film formed by a sputtering method is particularly preferable.
  • a donut disk shape is used as the shape of the substrate.
  • a substrate provided with a magnetic layer or the like described later that is, a magnetic recording medium, is used by rotating at a speed of, for example, 360 rpm around the center of the disk during magnetic recording and reproduction.
  • the magnetic head flies above the magnetic recording medium at a height of about 0.1 am. Therefore, as a substrate, the flatness of the surface, the parallelism of both sides, Swell and surface roughness need to be properly controlled.
  • Examples of the metal underlayer in the present invention include Cr and alloys thereof.
  • alloying for example, combinations with V, Nb, Ta, and the like have been proposed.
  • Cr is preferable because it causes a segregation effect on a ferromagnetic metal layer described later. Further, they are frequently used in mass production, and a sputtering method, a vapor deposition method, or the like is used as a film forming method.
  • this metal underlayer is such that when a ferromagnetic metal layer composed of a Co group is provided thereon, the axis of easy magnetization of the ferromagnetic metal layer is directed in the in-plane direction of the substrate, that is, in the in-plane direction of the substrate. To promote the crystal growth of the ferromagnetic metal layer so that the magnetic force is increased.
  • the crystallinity is controlled.
  • the film formation factors include the surface shape, surface condition, or surface temperature of the substrate, gas pressure during film formation, and application to the substrate. Bias, and a film thickness to be formed.
  • a Cr film thickness in the range of 50 nm to 150 nm was used.
  • the conventional film forming conditions [film forming conditions of the present invention] are as follows: the back pressure of the film forming chamber is 10 _ 'Torr level [10 _ 9 Torr level level] A r gas force norma 1-A r (impurity concentration of 1 ppm or more) [uc-Ar (impurity concentration of 100 ppb or less, preferably 10 ppb or less)].
  • the target used for forming the metal base layer and the ferromagnetic metal layer preferably has an impurity concentration of 150 ppm or less.
  • ferromagnetic metal layer As the ferromagnetic metal layer in the present invention, a material in which Cr skew occurs between crystal grains of the ferromagnetic metal layer is preferable. That is, a ferromagnetic metal layer containing at least Co and Cr is frequently used. Specific examples include CoNiCr, CoCrTa, CoCrPt, CoNiPt, CoNiCrTa, and CoCrPtTa.
  • the following two configurations have been realized by fabricating a metal underlayer and a ferromagnetic metal layer in an atmosphere that is ultra-clean than conventional film forming conditions.
  • the crystal grains of the ferromagnetic metal layer are composed of a region 2 where the Cr concentration increases as approaching the grain boundary, and a region 3 where the Cr concentration is lower at the center of the crystal grain than near the grain boundary. Therefore, the maximum value of the Cr concentration in the region 3 is smaller than the maximum value of the Cr concentration in the region 2.
  • the film formation conditions under ultra clean atmosphere according to the present invention (conventional film-forming conditions), the back pressure of the film forming chamber 10- 9 (10- ') To rr stand, and, in the film forming
  • the impurity concentration of Ar gas used is 100 ppt or less, preferably 10 ppb or less (1 ppm or more).
  • the target used for forming the ferromagnetic metal layer preferably has an impurity concentration of 30 ppm or less.
  • CoNiCr is inexpensive and is not easily affected by the film formation atmosphere.
  • CoCrTa has low medium noise. It is suitably used to achieve a coercive force of 1800 ⁇ e or more, which is difficult to produce with Cr and CoCrTa.
  • the problem with the above-mentioned materials is to develop materials and manufacturing methods that can achieve low recording costs, low media noise, and high coercive force in order to increase recording density and reduce manufacturing costs.
  • the magnetic recording medium in the present invention refers to a medium (in-plane magnetic recording medium) that forms recording magnetization in parallel to the film surface of the ferromagnetic metal layer described above.
  • a medium in-plane magnetic recording medium
  • This small Modeling reduces the read signal output from the magnetic head in order to reduce the leakage flux of each recording magnetization. Therefore, it is desired to further reduce the noise of the medium which is considered to be affected by the adjacent recording magnetization.
  • the “coercive force of the ferromagnetic metal layer: H c” in the present invention is the coercive force of the medium obtained from a magnetization curve measured using a vibrating sample type magnetometer (referred to as Variable Sample Magnetometer. VSM). .
  • “Anisotropic magnetic field of crystal grains: Hk gnnn ” is an applied magnetic field that completely eliminates the rotational hysteresis loss measured using a high-sensitivity torque magnetometer. In the case of a magnetic recording medium in which a ferromagnetic metal layer is formed on the surface of a base via a metal underlayer, both the coercive force and the anisotropic magnetic field are measured in the thin film plane.
  • the “normalized coercive force of the ferromagnetic metal layer: HcZHg g a in ” is a value obtained by dividing the coercive force He by the anisotropic magnetic field Hk gnun of the crystal grains. Isolation 'The degree to which sexual strength increases is indicated by "Magnetization Reversal Mechanism Evaluated by Rotational Hysteresis Loss Analys is is the Thin Film Media" Migaku Takahashi, ⁇ . Shimatsu, M. Suekane, M. Miyamura, K. Yamaguchi and H Yamasaki: It is shown in IEEE TRANSACTI ONS ON MAGUNETICS, VOL. 28, 1992, pp. 3285.
  • the normalized coercive force of the ferromagnetic metal layer produced by the conventional sputtering method was smaller than 0.35 as long as the ferromagnetic metal layer was a Co group. According to Stoner-Wohlfarth theory, if the crystal grains are completely magnetically isolated, it takes 0.5, which is the upper limit of the normalized coercive force.
  • J.-G. Zhu and HN Bertram Journal of Applied Physics, VOL. 63, 1988, pp. 3248 states that the high normalized coercivity of a ferromagnetic metal layer It is described that the magnetic interaction between the individual crystal grains constituting the material is reduced and a high coercive force can be realized.
  • the sputtering method of the present invention includes, for example, a transfer type in which a thin film is formed while the substrate moves in front of the target, and a thin film formed by fixing the substrate in front of the target.
  • the stationary type is used.
  • the former is advantageous in producing low-cost media because of its high mass productivity, and the latter is capable of producing media with excellent recording / reproducing characteristics because the incident angle of sputtered particles to the substrate is stable.
  • the term “sequential formation of a metal underlayer and a ferromagnetic metal layer” in the present invention means “from the time a metal underlayer is formed on the surface of a substrate until the ferromagnetic metal layer is formed on the surface”. In this case, the film is not exposed to an atmosphere at a pressure higher than the gas pressure during film formation. " If a ferromagnetic metal layer is formed on the surface of the metal underlayer after exposing it to the atmosphere, the coercive force of the medium will be significantly reduced (eg, no exposure: 150 000 e ⁇ Exposure: 500 000 e or less) is known.
  • the "impurity A r gas used for film formation" in the present invention for example, H 0 0, 0 2, C 0 o, H 2, N 2, C x H y, H, C, ⁇ , CO and the like can give.
  • impurities that affect the amount of oxygen taken into the film is estimated to H 2 0, 0 2, C 0 2, 0, CO. Therefore, the impurity concentration of the present invention, H 2 0 contained in A r gas used for film formation, 0 9 C 0 2, ⁇ , will be expressed by the sum of CO.
  • the cleaning treatment by the high frequency sputtering method for example, an AC voltage is applied from a RF (radio frequency, 13.56 MHz) power supply to a substrate placed in a dischargeable gas pressure space.
  • RF radio frequency, 13.56 MHz
  • the feature of this method is that it can be applied even when the substrate is not conductive.
  • the effect of the cleaning treatment is to improve the adhesion of the thin film to the substrate.
  • impurity of Cr target used when forming metal underlayer and its concentration examples include Fe, S i, A, C, 0, N, H, etc.
  • impurities affecting the amount of oxygen taken into the film are estimated to be zero. Therefore, the impurity concentration of the present invention is included in the Cr target used when forming the metal underlayer. Indicates the oxygen that is being used.
  • the impurities of the Co-based target used when forming the ferromagnetic metal layer include: , Fe, Si, Al, C, 0, N, and the like.
  • impurities affecting the amount of oxygen taken into the film are estimated to be zero. Therefore, the impurity concentration of the present invention indicates the oxygen contained in the target used for forming the ferromagnetic metal layer.
  • “application of a negative bias to the substrate” refers to applying a DC bias voltage to the substrate when forming a Cr underlayer or a magnetic film as a magnetic recording medium. It has been found that applying an appropriate bias voltage increases the coercivity of the medium. It is known that the effect of the above-described bias application is greater when two layers are applied than when only one of the films is manufactured.
  • the above-described bias application often acts on an object near the base, that is, the base support member / the base holder. As a result, gas and dust are generated in the space near the base, are taken in by the thin film being formed, and various film characteristics become unstable.
  • applying a bias to the substrate also has the following problems.
  • the “achieved vacuum degree of the film formation chamber for forming the metal underlayer and the metal layer or ferromagnetic metal layer” is:
  • a Co-based material containing Ta in a ferromagnetic metal layer has an effect when the above-mentioned ultimate vacuum is low (for example, 5 x 10— D Tor or more). Has been considered large.
  • the grain boundaries having an amorphous (amorphous) structure between crystal grains are also used. From the viewpoint of whether or not a layer can be formed, it was found that the ultimate vacuum degree of the film formation chamber was effective.
  • the “surface temperature of the substrate when forming the metal underlayer and Z or ferromagnetic metal layer” in the present invention refers to ferromagnetic metal. This is one of the film formation factors that determines the value of coercivity regardless of the material of the layer. As long as the substrate is not damaged, higher coercive force can be realized by forming the film at a high surface temperature.
  • Substrate damage refers to external changes such as warpage, swelling, and cracking, and internal changes such as the occurrence of magnetization and an increase in gas generation.
  • the high substrate surface temperature has the following problems.
  • Examples of the surface roughness of the substrate in the present invention include an average center line roughness Ra when the surface of the substrate having a disk shape is measured in a radial direction.
  • TALYSTEP manufactured by RANKTAYL0RH0BS0N was used as a measuring device.
  • Ra is preferably smaller.
  • the flying height of the magnetic head (the distance at which the magnetic head is separated from the surface of the magnetic recording medium during the recording / reproducing operation) must be increased. Need to be smaller. To meet this demand, it is important to make the surface of the magnetic recording medium flatter. For this reason, the surface roughness of the substrate is preferably smaller.
  • Examples of the texture treatment in the present invention include a method using mechanical polishing, a method using chemical etching, and a method using a physical uneven film.
  • a method of mechanical polishing is adopted. For example, against a (Ni-P) film provided on the surface of an aluminum alloy substrate, a tape having grinding coating particles adhered to the surface is pressed against a rotating substrate to form a concentric circle. There is a method to give minor scratches to the surface. In this method, the grinding particles may be separated from the tape and used.
  • an oxidation passivation using chromium oxide as a product is performed on an inner wall of a vacuum chamber used for forming a magnetic film or the like.
  • a treatment for providing a membrane for example, SUS316L is preferable.
  • the magnetron sputtering apparatus (model number ILC301: load lock type stationary facing type) manufactured by ANELVA used in the present invention is the inner wall of all vacuum chambers (loading / unloading chamber, film forming chamber, cleaning chamber). Performs the above-described processing.
  • FIG. 1 is a Cr element distribution image of a cross section of a thin film in a UC process medium. The figure also shows a schematic diagram of the form of the r-segregation layer.
  • FIG. 2 is a graph showing the Cr concentration distribution in the thickness direction of the Cr segregation layer in the UC process medium.
  • FIG. 3 is a Cr element distribution image of a cross section of a thin film in an n process medium. The figure also shows a schematic diagram of the form of the Cr segregation layer.
  • FIG. 4 is a graph showing the Cr concentration distribution in the thickness direction of the Cr segregation layer in the n process medium.
  • FIG. 5 is a graph showing the dependence of the coercive force on the thickness of the underlying Cr film in the UC process medium and the n process medium.
  • FIG. 6 is a graph showing the underlayer Cr film thickness dependence of the anisotropic magnetic field in the UC process medium and the n process medium.
  • FIG. 7 is a graph showing the dependence of the normalized coercivity on the thickness of the underlying Cr film in the UC process medium and the n process medium.
  • FIG. 8 is a Cr element distribution image of the thin film surface in the UC process medium.
  • FIG. 9 is a Cr element distribution image of the thin film surface in the n process medium.
  • FIG. 10 is a graph showing the Cr concentration distribution on the thin film surface in the UC process medium.
  • FIG. 11 is a graph showing the Cr concentration distribution on the surface of the thin film in the n process medium.
  • FIG. 12 is a graph showing changes in the average Cr concentration and concentration distribution in grains in the UC process medium and the n process medium.
  • FIG. 13 is a graph showing the change in the Cr concentration gradient near the interface between the crystal grains and the Cr grain boundary segregation layer in the UC process medium and the n process medium.
  • FIG. 14 is a graph showing the relationship between the coercive force and the ultimate vacuum of the film formation chamber in the UC process medium. The figure also shows the results for n process media.
  • FIG. 15 is a graph showing the relationship between the anisotropic magnetic field and the ultimate vacuum of the film forming chamber in the UC process medium. The figure also shows the results for n process media.
  • FIG. 16 is a graph showing the relationship between the normalized coercive force and the ultimate vacuum of the film formation chamber in the UC process medium. The figure also shows the results for n process media.
  • FIG. 17 is a schematic cross-sectional view showing the layer configuration of the magnetic recording medium.
  • the ferromagnetic metal layer has, between crystal grains constituting the ferromagnetic metal layer, a region 1 where Cr is deflected and penetrates the ferromagnetic metal layer, and the region 1 is in the thickness direction of the ferromagnetic metal layer.
  • Cr concentration is lower near the middle than near the surface and near the metal underlayer.
  • Ultimate vacuum deposition chamber for forming the metal base layer and the ferromagnetic metallic layer was 1 0 9 To rr stand and two types of 1 0- 7 To rr stand.
  • the ultimate vacuum is 10_
  • the sputtering apparatus used for the production of the medium was a magnetron spack apparatus (Model No. ILC3013: load lock type stationary facing type) manufactured by ANELVA, and all vacuum chambers (loading chamber (also cleaning chamber)) were used. ), The inner walls of film forming chamber 1 (forming a metal underlayer), film forming chamber 2 (forming a ferromagnetic metal layer), and film forming chamber 3 (forming a protective layer) is there.
  • Table 1 shows the film forming conditions for producing the magnetic recording medium of this example.
  • a disk-shaped aluminum alloy substrate with an inner / outer diameter of 25 mm / 89 mm and a thickness of 1.27 mm was used as the substrate.
  • a (Ni—P) film having a thickness of 10 ⁇ m was provided by a plating method.
  • the surface of the (Ni-P) film has concentric minor scratches (texture) by a mechanical method.
  • the surface roughness of the substrate when scanned in the disk radial direction is the average center line roughness.
  • the one with & was smaller than 1 nm.
  • the substrate after the drying treatment was set in a substrate holder made of aluminum and placed in a preparation chamber of a sputtering apparatus. After evacuating the inside of the preparation chamber to a final vacuum degree of 3 x 10 " 9 Torr using a vacuum evacuation device, the substrate was heated at 250 ° C for 30 minutes using an infrared lamp. Processed.
  • the substrate holder 1 was moved from the preparation chamber to the deposition chamber 1 for producing a Cr film. After moving, the substrate was heated and held at 250 ° C. by an infrared lamp. However, the film forming chamber 1 was used by exhausting the ultimate vacuum degree to 3 X 1 (T 9 To rr [1 x 10 'To rr]) beforehand. Between the film deposition chamber 1 Door valve closed. The impurity concentration of the Cr target used was 120 ppm.
  • Ar gas was introduced into the film forming chamber 1, and the gas pressure in the film forming chamber 1 was set to 2 mTorr.
  • the impurity concentration in the Ar gas used was 1 ppb or less [about 1 pm].
  • the substrate holder was moved from the film forming chamber 1 to the film forming chamber 2 for producing a CoCrTa film. Even after moving, the substrate is
  • the temperature was kept at 250 ° C. However, the ultimate vacuum degree in the film formation chamber 2 was changed under different conditions. Of its set condition, and if you have evacuated to 3 X 10- 9 To rr, a 2 condition when you have evacuated to 1 X 1 0- 7 To rr. Further, after the substrate holder was moved once, the door valve between the film forming chamber 1 and the film forming chamber 2 was closed.
  • the target composition used was 78 at% Co, 17 at Cr, 5 at% Ta, and the impurity concentration of the target was 20 ppm.
  • Ar gas was introduced into the film forming chamber 2, and the gas pressure in the film forming chamber 2 was set to 3 mT orr.
  • the impurity concentration in the Ar gas used was 1 ppb or less [about 1 pm].
  • the target used was one in which impurities were suppressed as much as possible.
  • the target impurities for Cr formation are Fe: 88, Si: 34, Al: 10, C: 60, and O: 120, N: 60, H: 1.1 (wt p pm).
  • the impurities in the target for forming the ferromagnetic metal layer are Fe: 27, S i 10, A 1 ⁇ 10, C: 30, O: 20, N> 10 (wt ppm).
  • the cross section of the ferromagnetic metal layer of the medium manufactured by the above steps was examined using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIGS. 1 and 3 are Cr element distribution images of the cross section of the ferromagnetic metal layer of the manufactured medium. Each figure shows a cross-sectional TEM image of the same field of view. Also in these figures, the Cr concentration is indicated by black and white contrast. In addition, in this figure, the diagram schematically showing the Cr segregation region having a high Cr concentration is also shown.
  • Table 2 shows the preparation method of the TEM sample and the observation conditions.
  • the sample thickness was reduced to 5 nm or less.
  • the main processing conditions are
  • T EM used manufactured by Hitachi, HF-2000
  • the Cr concentration distribution in the film of the fabricated sample was determined by electron energy loss spectroscopy. (Electron Energy Loss Spectroscopy; EELS).
  • EELS Electrode Loss Spectroscopy
  • an energy filter type TEM combining an energy filter with a Hitachi FE-TEM (HITACHI HF-2000) was used.
  • the surface resolution of this device is about 0.55 nm. It is determined by EELS.
  • the element distribution image is a qualitative distribution image. Therefore, in this example, the partial scattering cross-sectional area ratios of Cr and Co were determined from the average concentration obtained by the energy dispersive X-ray spectroscopy (EDS) measurement for the same sample.
  • EDS energy dispersive X-ray spectroscopy
  • FIG. 2 and FIG. 4 are the results of the Cr concentration quantified above.
  • Fig. 2 shows the results for sample 1 (UC process) shown in Fig. 1
  • Fig. 4 shows the results for sample 2 (n process) shown in Fig. 3.
  • the origin in the interface between the underlayer Cr and the magnetic layer is shown, and the position in the film thickness direction is shown on the horizontal axis.
  • the Cr segregation region exists in the region corresponding to the grain boundary layer on the TEM image, and a clear Cr segregation layer is formed. It became clear. It was also found that such a Cr segregation layer was formed uniformly from the initial growth layer of the magnetic layer immediately above the Cr underlayer to the upper part of the magnetic layer. Furthermore, no Cr segregation region was observed in the region inside the magnetic crystal grains, and very uniform Cr segregation occurred.
  • Fig. 3 shows that the Cr segregation region does not always correspond to the grain boundary layer in the medium manufactured using the n process (n process medium), and the Cr segregation region is formed even in the magnetic crystal grains. I knew it was.
  • a Cr segregation region in the grains is considered to correspond to a region exhibiting an amorphous structure in the grains, and is a factor that greatly reduces the crystallinity of the crystal grains.
  • a uniform Cr segregation region was not formed in the thickness direction of the magnetic layer, and in particular, the Cr segregation region was hardly formed in the initial growth layer of the magnetic layer. It became clear.
  • the formation of the Cr segregation structure was non-uniform, and the formation of the Cr segregation layer was inhibited particularly in the initial layer of the magnetic layer.
  • the formation of the Cr segregation structure was promoted by the cleaning of the film formation atmosphere (that is, the UC process), and the Cr segregation region in the grain was reduced and the initial layer of the magnetic layer was formed. It is clear that a uniform Cr segregation layer can be formed.
  • FIGS. 5 to 7 show the results of the magnetic characteristics when the medium was manufactured by changing the thickness of the Cr underlayer from 2.5 to 50 nm. At this time, the thickness of the magnetic layer was fixed at 28 nm.
  • Fig. 5 is a graph summarizing the coercive force (He)
  • Fig. 6 is a graph summarizing the anisotropic magnetic field ( HkgI " ain )
  • Fig. 7 is a graph summarizing the normalized coercive force ( HcZHkgnnnn ).
  • the results for the UC process medium are shown, and the hats indicate the results for the n process media From Figs.
  • the Cr film thickness of the UC process medium is larger than that of the n process medium. It was found that high values were obtained for all magnetic properties, that is, coercive force, anisotropic magnetic field, and normalized coercive force, independent of UC process media. It has been clarified that excellent magnetic properties can be maintained even in the underlayer ..
  • a medium using such an ultra-thin Cr underlayer uses a Cr underlayer with a film thickness of about 50 nm. The surface roughness of the media to less than half It was also found that the surface roughness could be suppressed, and the surface roughness almost reflected the surface roughness of the substrate.
  • the UC process medium is excellent in various magnetic properties, that is, coercive force, anisotropic magnetic field, and normalized coercive force, and can sufficiently cope with the emergence of a head required for increasing the recording density. Became clear.
  • the crystal grains of the ferromagnetic metal layer have two regions: a region 2 in which the Cr concentration increases as approaching the grain boundary, and a region 3 in the center of the crystal grain, in which the Cr concentration is lower than near the grain boundary. The effect when the maximum value of the Cr concentration in the region 3 is smaller than the maximum value of the Cr concentration in the region 2 is described.
  • Example 1 the ultimate vacuum of the film forming chamber for forming the metal base layer and the ferromagnetic metallic layers 1 0 in the range one 6 T orr stand ⁇ 1 0_ 9 T orr
  • the media were fabricated by changing them, and the two-dimensional images of the Cr element distribution of these media were observed using EELS.
  • uc—Ar impurity concentration was 1 ppb or less
  • the n process medium shown in Example 1 was examined.
  • FIGS. 8 and 9 show the results of examining the Cr element distribution image on the film surface of the ferromagnetic metal layer.
  • Figure 9 shows the results for the n process medium.
  • the bright region of the image contrast indicates a region with a high Cr concentration.
  • the figure also shows a TEM image in the same field of view.
  • the surface resolution of the EELS measurement in this example is about 0.55 nm, which corresponds to one pixel of the Cr element distribution image, and the composition analysis of a very fine region is possible.
  • Figure 11 n process media
  • the horizontal axes of the graphs shown in FIGS. 10 and 11 show the relative positions of the analysis points with respect to point A.
  • a region corresponding to a crystal grain is indicated by a shaded portion in the figure. It was found that both the UC process medium and the n process medium had an average amount and a fluctuation amount of the Cr concentration in the grains.
  • a difference was observed in the Cr concentration gradient in the 2-3 nm region from the grain boundary to the intragranular region.
  • the maximum value of the Cr concentration in region 3 (the region where the Cr concentration is lower than the vicinity of the grain boundary at the center of the crystal grain of the ferromagnetic metal layer) is as follows in region 2 ( In the crystal grains of the ferromagnetic metal layer, it was found that the value was smaller than the maximum value of the Cr concentration in the region where the Cr concentration increased as it approached the grain boundary.
  • FIG. 12 is a graph showing the average amount and the fluctuation amount of the intra-granular Cr concentration in the UC process medium and the n process medium.
  • the evaluated crystal grains were numbered and shown on the horizontal axis in alphabetical order. The points in the figure indicate the average Cr concentration of the grains, and the error bars indicate the fluctuation range.
  • the average Cr concentration in the grains was found to be about 13 at% in the UC process medium, but about 15 at% in the n process medium. This indicates that in the UC process medium, the discharge of Cr from inside the grains is promoted. In the UC process medium, the fluctuation range of the Cr concentration tended to be relatively small, indicating that a more uniform discharge force was generated.
  • FIG. 13 is a graph showing the Cr concentration gradient near the grain-grain boundary layer interface in the UC process medium and the n process medium.
  • the crystal grains evaluated are numbered and shown on the horizontal axis in alphabetical order.
  • the analysis of the Cr concentration gradient was performed for the region where the Cr concentration rapidly changed in the surface layer of the crystal grains of 2 to 3 nm.
  • the Cr concentration gradient of the UC process medium showed a value of about 5 at% nm, while the n process medium showed a value of about 3 at% nm. This indicates that in the UC process medium, the discharge of Cr from the inside of the grain to the grain boundary is further promoted.
  • Figures 14 to 16 show the ultimate vacuum degree of the deposition chamber for forming the metal underlayer and the ferromagnetic metal layer in the UC process in the range of 10- D Torr to 10 "Torr.
  • Fig. 5 shows the coercive force (He)
  • Fig. 6 shows the anisotropic magnetic field (Hk gnnn )
  • Fig. 7 shows the normalized coercive force (HcZHk gl " ain ).
  • represents the results for the medium with a Cr underlayer thickness of 5 O nm
  • represents the results for the medium with a Cr underlayer thickness of 2.5 nm. Show. At this time, the thickness of the magnetic layer was fixed at 28 nm.
  • n process UC process media can obtain higher values in all magnetic properties, that is, coercive force, anisotropic magnetic field, and normalized coercive force, regardless of the Cr film thickness, as compared to the media. Do you get it.
  • the maximum value of the Cr concentration in region 3 (the region with a higher Cr concentration than the vicinity of the grain boundary at the center of the crystal grain of the ferromagnetic metal layer) is larger than that in region 2 ( It is clear that the maximum value of the Cr concentration in the crystal grains of the ferromagnetic metal layer is 0.75 times or less in the region where the Cr concentration increases as it approaches the grain boundary.
  • a magnetic recording medium having a high coercive force, an anisotropic magnetic field, and / or a standardized coercive force of a ferromagnetic metal layer and capable of coping with a high recording density can be obtained.
  • the magnetic characteristics described above can be obtained even with an extremely thin Cr underlayer, it is possible to keep the surface roughness of the medium at the same level as the surface roughness of the substrate, and to reduce the flying height of the head.
  • a sufficiently compatible magnetic recording medium can be provided.

Landscapes

  • Magnetic Record Carriers (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Paints Or Removers (AREA)
  • Thin Magnetic Films (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Description

明細書 磁気記録媒体 技術分野
本発明は、 磁気記録媒体及びその製造方法に係る。 より詳細には、 強磁性金属 層の保磁力 Hc、 異方性磁界 HkgI"ain、 及び規格化保磁力 (Hc/Hkgl"ain) が高 い磁気記録媒体に関する。 本発明の磁気記録媒体は、 ハードディスク、 フロッ ピーディスク、 磁気テープ等に好適に適用される。 背景技術
従来の磁気記録媒体及びその製造方法としては、 次の技術が知られている。 図 17は、 磁気記録媒体の一例として、 ハードディスクを説明する概略図であ る。 図 17において、 図 17 (a) は磁気記録媒体全体の斜視図、 図 17 (b) は図 17 (a) の A— A' 部分の断面図である。
基体 1としては、 A 1基板 2の表面上に、 非磁性 (N i— P) 層 3が設けてあ るものを用いている。 そして、 この基体 1の上には、 C r下地層 4、 強磁性金属 層 5、 保護層 6が積層されている。
非磁性 (N i - P) 層 3は、 めっき法もしくはスパッタ法によって、 直径 89 mm (3. 5 i n c h) /厚さ 1. 27 mm ( 50 m i 1 ) のディスク形状 をした A 1基板 2の表面上に形成され、 基体 1をなしている。 また、 非磁性
(N i -P) 層 3の表面には、 機械的な研磨処理にて同心円状のキズ (以後、 テ クスチヤ一と呼ぶ) 力設けてある。 一般的に、 非磁性 (N i— P) 層 3の表面粗 さ、 すなわち半径方向に測定したときの平均中心線粗さ R aは、 5 nm〜 15 nmである。
また、 C r下地層 4と強磁性金属層 5 (—般には Co合金系磁性膜) は、 スパ ッ夕法によって上記の基体 1の表面上に形成し、 最後に強磁性金属層 5の表面を 保護するために炭素などからなる保護層 6力 スパッタ法によって設けられる。 典型的な各層の厚さは、 非磁性 (N i— P) 層 3が 5〃m〜l 5〃m、 C r下地 層 4が 50 nm〜 1 50 nm、 強磁性金属層 5が 30 nm〜 1 00 nm、 保護層 6力 20 nm〜50 nmである。
上記層構成を有する従来の磁気記録媒体は、 スパッタ成膜前の成膜室の背圧が 1 0—7Torr台であり、 かつ、 成膜に用いる A rガスの不純物濃度が 1 p pm以上 という条件下で作製されていた。
上述した製法で得られた磁気記録媒体において、 特に、 T a元素を含む強磁性 金属層 5 (例えば、 C oC rT a合金磁性膜) の場合には、 強磁性金属層を形成 する結晶粒子間に、 非晶質 (アモルファス) 構造からなる粒界層が存在するこ と、 及び、 この粒界層が非磁性合金組成からなること、 が中井らによって報告さ れている (J. Nakai, E. Kusumoto, M. KuwaDara, T. Miyamoto, M. R. Visokay, K. Yoshikawa and K. I tayama, 'Relation Between Microstructure of Grain Boundary and the Intergranular Exchange in CoCrTa Thin Film for Longitudinal Recording Media", IEEE Trans. Magn. , vol.30, No.6, pp.3969, 1994.) 。 し力、し、 T a元素を含まない強磁性金属層 (例えば、 C oN i C r又 は C o C r P t合金磁性膜) の場合には上記粒界層は確認されなかった。 また本 報告には、 強磁性金属層が T a元素を含む場合、 磁気記録媒体の規格化保磁力 (Hc/Hkgl'ainと表記する) は 0. 3以上の大きな値をもつのに対して、 Ta 元素を含まない場合、 その値が 0. 3より小さな値をとることが記載されてい る。
上述した強磁性金属層の規格化保磁力 (HcZHkgrain) とは、 保磁力 H e を、 結晶粒の異方性磁界 Hkgrainで割った値であり、 結晶粒の磁気的孤立性が高 まる度合いを表している。 すなわち、 強磁性金属層の規格化保磁力が高いという ことは、 強磁性金属層を構成する個々の結晶粒の磁気的な相互作用が低下し、 高 い保磁力が実現できることを意味する。
また、 国際出願 P CT/ J P 94/0 1 1 84号公報には、 高価な強磁性金属 層を使用せずに、 保磁力を増大した安価な高密度記録媒体とその製造方法とし て、
基体の表面上に金属下地層を介して強磁性金属層が形成され、 磁化反転を利用し た磁気記録媒体において、 成膜に用いる A rガスの不純物濃度を 1 0 p p b以下 とすることによって、 金属下地層又は Z及び強磁性金属層の酸素濃度を 1 0 O w t p p m以下とする技術が開示されている。 また、 前記金属下地層を形 成する前に、 不純物濃度が 1 O p p b以下である A rガスを用いて、 前記基体の 表面を高周波スパッタ法によるクリーニング処理をおこない、 前記基体の表面を 0 . 2 n m〜l n m除去することによって、 保磁力がさらに増大することも報告 されている。 さらに、 この報告では、 磁気記録媒体の規格化保磁力と媒体ノイズ とは相関があり、 低ノイズ媒体をえるには、 規格化保磁力を 0 . 3以上 0 . 5未 満とすべきであることが記述されている。
さらに、 国際出願 P C T Z J P 9 5 / 0 0 3 8 0号公報には、 C o N i C r又 は C o C r P tからなる強磁性金属層の酸素濃度を 1 0 0 w t p p m以下とした 場合、 強磁性金属層を形成する結晶粒子間に、 非晶質 (アモルファス) 構造から なる粒界層が形成でき、 その結果、 電磁変換特性の S /N比が高く、 かつ、 量産 時に保磁力が安定して得られる磁気記録媒体及びその製造方法が開示されてい る。
しかしながら、 強磁性金属層の各種磁気特性 (保磁力: H c、 異方性磁界: Hkgn n、 規格化保磁力: HcZHkgl"ain) と、 強磁性金属層を形成する結晶粒 子の内部における組成分布、 又は、 強磁性金属層を形成する結晶粒子間に存在す る非晶質 (アモルファス) 構造からなる粒界層における組成分布、 との関係は不 明確なままであった。 これらの関係を解明することにより、 強磁性金属層の保磁 力、 異方性磁界及び規格化保磁力が全て高い数値を有し、 高記録密度化に対応可 能な磁気記録媒体の開発が望まれていた。
本発明は、 強磁性金属層の保磁力、 異方性磁界又は/及び規格化保磁力が高い 高記録密度化に対応可能な磁気記録媒体を提供することを目的とする。 発明の開示
本発明の磁気記録媒体は、 基体上に、 C rを主成分とする金属下地層を介し て、 少なくとも C 0と C rとを含む強磁性金属層を設けてなる磁気記録媒体にお いて、 該強磁性金属層を構成する結晶粒子間には、 該強磁性金属層を貫通する C rの偏折した領域 1を有し、 かつ、 該領域 1は、 該強磁性金属層の厚さ方向に おいて、 中間付近が表面近傍および金属下地層近傍より C r濃度が低いことを特 徴とする。 発明の実施の形態
超清浄雰囲気下における成膜により、 基体上に、 C rを主成分とする金属下地 層を介して、 少なくとも C 0と C rとを含む強磁性金属層を設けてなる磁気記録 媒体を形成した場合、 該強磁性金属層を構成する結晶粒子間には、 該強磁性金属 層を貫通する C rの偏析した領域 1を有し、 かつ、 該領域 1は、 該強磁性金属層 の厚さ方向において、 中間付近が表面近傍および金属下地層近傍より C 濃度が 低くなる構成とすることにより、 C rを主成分とする金属下地層の膜厚に依存せ ず、 高い保磁力、 異方性磁界又は/及び規格化保磁力を有する磁気記録媒体がえ られる。 特に、 金属下地層の膜厚を 1 O n m以下とした場合でも、 この作用を維 持することができるため、 表面粗さが小さく、 へッドの低浮上化にも対応できる 磁気記録媒体の構築が可能となる。
また上記特徴において、 強磁性金属層の結晶粒子は、 粒界に近づくほど C r濃 度が増加する領域 2と、 結晶粒子の中央部には粒界近傍より C r濃度が低い領域 3とから構成されており、 領域 3における C r濃度の最大値が、 領域 2における C r濃度の最大値より小さいため、 領域 3を持たない従来の磁気記録媒体より高 し、保磁力を有する磁気記録媒体がえられる。
さらに上記特徴において、 前記領域 3における C r濃度の最大値が、 前記領域 2における C r濃度の最大値の 0 . 7 5倍以下となる媒体とすることにより、 全 ての磁気特性、 すなわち保磁力、 異方性磁界および規格化保磁力、 において高い 値が安定して得られると共に、 2 . 5 n mという極薄の C r下地層においてもそ の効果を有する磁気記録媒体が得られる。
図 1は、 本発明に係る磁気記録媒体の強磁性金属層の透過型電子顕微鏡 ( T E M) 写真である。 図 1 ( a ) は膜面方向から、 図 1 ( b ) は膜断面方向か ら写した結果である。 図 2は、 図 1に示した強磁性金属層を一部破断した模式的 な斜視図であり、 粒間領域で膜厚方向に C r濃度を調べた結果 (グラフ a ) およ び粒内領域で膜面方向に C r濃度を調べた結果 (グラフ b ) とともに示した。 図 3は、 従来例に係る磁気記録媒体の強磁性金属層の透過型電子顕微鏡 (T E M) 写真である。 図 3 ( a ) は膜面方向から、 図 3 ( b ) は膜断面方向か ら写した結果である。 図 4は、 図 3に示した強磁性金属層を一部破断した模式的 な斜視図であり、 粒間領域で膜厚方向に C r濃度を調べた結果 (グラフ c ) およ び粒内領域で膜面方向に C r濃度を調べた結果 (グラフ d ) とともに示した。 本発明に係る磁気記録媒体の層構成は、 図 1 7に示した従来媒体の層構成と同 一である力 本発明に係る磁気記録媒体を構成する強磁性金属層は次の 2点にお いて従来媒体と大きく異なる。
( 1 ) 強磁性金属層を構成する結晶粒子間には、 強磁性金属層を貫通する C rの 偏折した領域 1を有し、 かつ、 領域 1は、 強磁性金属層の厚さ方向において、 中 間付近が表面近傍および金属下地層近傍より C r濃度が低い。
( 2 ) 強磁性金属層の結晶粒子は、 粒界に近づくほど C r濃度カ増加する領域 2 と、 結晶粒子の中央部には粒界近傍より C r濃度が低い領域 3とから構成されて おり、 領域 3における C r濃度の最大値が、 領域 2における C r濃度の最大値よ り小さい。
以下、 図面を参照して本発明の実施態様例を説明する。
(基体)
本発明における基体としては、 例えば、 アルミニウム、 チタン及びその合金、 シリコン、 ガラス、 カーボン、 セラミ ック、 プラスチック、 樹脂及びその複合 体、 及びそれらの表面に異種材質の非磁性膜をスパッタ法、 蒸着法、 めっき法等 により表面コーティング処理を行ったものがあげられる。 この基体表面に設けた 非磁性膜は、 高温で磁化せず、 導電性を有し、 機械加工などがしゃすい反面、 適 度な表面硬度をもっていることが好ましい。 このような条件を満たす非磁性膜と しては、 特にスパッタ法により作製された (N i—P ) 膜が好ましい。
基体の形状としては、 ディスク用途の場合、 ドーナツ円盤状のものが使われ る。 後述する磁性層等を設けた基体、 即ち磁気記録媒体は、 磁気記録および再生 時、 円盤の中心を軸として、 例えば 3 6 0 0 r p mの速度で回転させて使用す る。 この時、 磁気記録媒体の上空を磁気へッ ドが 0 . 1 a m程度の高さを飛行す る。 従って、 基体としては、 表面の平坦性、 表裏両面の平行性、 基体円周方向の うねり、 および表面の粗さが適切に制御される必要がある。
また、 基体が回転 z停止する場合には、 磁気記録媒体と磁気へッドの表面同士 が接触及び摺動する (Contact Start Stop, CSSと呼ぶ) 。 この対策として、 基 体の表面には、 同心円状の軽微なキズ (テクスチャ一) を設ける場合もある。
(金属下地層)
本発明における金属下地層としては、 例えば C r及びその合金が挙げられる。 合金とする場合は、 例えば、 V、 N b、 T a等との組み合わせが提案されてい る。 特に、 C rは、 後述する強磁性金属層に対して偏析作用を起こすことから好 ましい。 また、 量産的にも多用されており、 成膜方法としては、 スパッタ法、 蒸 着法等が用いられる。
この金属下地層の役割は、 その上に C o基からなる強磁性金属層を設けたと き、 強磁性金属層の磁化容易軸が基体面内方向を取るように、 すなわち基体面内 方向の保磁力が高くなるように、 強磁性金属層の結晶成長を促すことである。
C rからなる金属下地層をスパッタ法で作製する場合、 その結晶性を制御する 成膜因子としては、 基体の表面形状、 表面状態、 若しくは表面温度、 成膜時のガ ス圧、 基体に印加するバイアス、 及び形成する膜厚等が挙げられる。 特に、 強磁 性金属層の保磁力は、 C r膜厚に比例して高くなる傾向があるため、 従来は、 例 えば C r膜厚としては 5 0 n m〜 1 5 0 n mの範囲で用いられる。
ここで、 従来の成膜条件 [本発明の成膜条件] とは、 成膜室の背圧が 1 0 _ ' T o r r台 [ 1 0 _ 9 T o r r台] 、 及び、 成膜に用いた A rガス力 n o r m a 1 - A r (不純物濃度が 1 p p m以上) [uc- Ar (不純物濃度が 1 0 0 p p t以下、 好適には 1 0 p p b以下) ] を意味する。 また、 金属下地層 および強磁性金属層を形成する際に用いるターゲッ トは、 不純物濃度が 1 5 0 p p m以下のものが好ましい。
記録密度を向上するためには、 磁気へッ ドの媒体表面からの浮上量を小さくす る必要がある。 一方、 上記 C r膜厚が大きいと、 媒体の表面粗さも大きくなる傾 向がある。 従って、 薄い C r膜厚で、 高い保磁力を実現することが望まれてい る。
(強磁性金属層) 本発明における強磁性金属層としては、 強磁性金属層の結晶粒間に C r偏折が 生じる材料が好適である。 すなわち、 少なくとも Coと C rとを含む強磁性金属 層が多用される。 具体的には、 C o N i C r, C oC rTa, C o C r P t , C oN i P t, CoN i C rTa, C o C r P t T a等が挙げられる。
本発明では、 従来の成膜条件より超清浄な雰囲気下において金属下地層と強磁 性金属層とを作製することにより、 次の 2つの構成を実現した。
(1) 強磁性金属層を構成する結晶粒子間には、 強磁性金属層を貫通する C rの 偏折した領域 1を有し、 かつ、 領域 1は、 強磁性金属層の厚さ方向において、 中 間付近が表面近傍および金属下地層近傍より C r濃度が低い。
(2) 強磁性金属層の結晶粒子は、 粒界に近づくほど C r濃度が増加する領域 2 と、 結晶粒子の中央部には粒界近傍より C r濃度が低い領域 3とから構成されて おり、 領域 3における C r濃度の最大値が、 領域 2における C r濃度の最大値よ り小さい。
ここで、 本発明に係る超清浄な雰囲気下における成膜条件 (従来の成膜条件) とは、 成膜室の背圧が 10— 9 (10— ') To r r台、 及び、 成膜に用いる A rガ スの不純物濃度が 100 p p t以下、 好適には 10 p p b以下 ( 1 p pm以上) を意味する。 また、 強磁性金属層を形成する際に用いるターゲッ トは、 不純物濃 度が 30 p pm以下のものが好ましい。
上述した材料のうち、 C o N i C rは、 安価で、 成膜雰囲気の影響を受けづら いため、 C 0 C r T aは、 媒体ノイズが低いため、 C o P t系は、 CoN i C r や C o C r T aでは作製が難しい 1800〇 e以上の保磁力を実現するために好 適に用いられている。
上述した材料における課題は、 記録密度を向上し、 製造コストを下げるため に、 材料コストが安価で、 媒体ノイズが低く、 高い保磁力が実現できる材料およ び製造方法の開発にある。
(磁気記録媒体における高記録密度ィ匕)
本発明における磁気記録媒体は、 上述した強磁性金属層の膜面に対し、 平行に 記録磁化を形成する媒体 (面内磁気記録媒体) を指す。 このような媒体では、 記 録密度を向上するために、 記録磁化のさらなる小型化を図る必要がある。 この小 型化は、 各記録磁化の漏れ磁束を減少させるため、 磁気へッ ドにおける再生信号 出力を小さくする。 従って、 隣接する記録磁化の影響と考えられている媒体ノィ ズは、 さらに低減することが望まれている。
(強磁性金属層の保磁力: Hc、 異方性磁界: Hkgrain、 規格化保磁力: He/ Hkgra in)
本発明の 「強磁性金属層の保磁力 : H c」 とは、 振動試料型の磁力計 (Variable Sample Magnetometer. V S Mと呼ぶ) を用いて測定した磁化曲線か ら求めた媒体の抗磁力である。 「結晶粒の異方性磁界: Hkgnnn」 とは、 高感度 トルク磁力計を用いて測定した回転ヒステリシス損失が完全に消失する印加磁界 である。 保磁力および異方性磁界とも、 基体の表面上に金属下地層を介して強磁 性金属層が形成される磁気記録媒体の場合は、 薄膜面内で測定した値である。 また本発明における 「強磁性金属層の規格化保磁力: HcZHkgra in」 とは、 保磁力 Heを、 結晶粒の異方性磁界 Hkgnunで割った値であり、 結晶粒の磁気的 孤立 '性力高まる度合いを表すことが、 "Magnetization Reversal Mechanism Evaluated by Rotat ional Hysteresis Loss Analys is for the Thin Fi lm Media" Migaku Takahashi, Γ. Shimatsu, M. Suekane, M. Miyamura, K. Yamaguchi and H. Yamasaki : IEEE TRANSACTI ONS ON MAGUNETICS, VOL. 28, 1992, pp. 3285 に示されている。
従来のスパッタ法で作製した強磁性金属層の規格化保磁力は、 強磁性金属層が C o基である限り、 0 . 3 5より小さな値であった。 Stoner- Wohlfarth 理論に よれば、 結晶粒が完全に磁気的に孤立した場合、 0 . 5をとることが示されてお り、 この値が規格化保磁力の上限値である。
また、 J. - G. Zhu and H. N. Bertram: Journal of Appl ied Physics, VOL. 63, 1988, pp. 3248 には、 強磁性金属層の規格化保磁力が高いということは、 強磁性 金属層を構成する個々の結晶粒の磁気的な相互作用が低下し、 高い保磁力が実現 できることが記載されている。
(スパッ夕法)
本発明におけるスパッタ法としては、 例えば、 基体がターゲッ 卜の前を移動し ながら薄膜が形成される搬送型と、 基体をタ一ゲッ 卜の前に固定して薄膜が形成 される静止型があげられる。 前者は量産性が高いため低コストな媒体の製造に有 利であり、 後者は基体に対するスパッタ粒子の入射角度が安定なため記録再生特 性に優れる媒体の製造が可能とされている。
(金属下地層と強磁性金属層とを順次形成)
本発明における 「金属下地層と強磁性金属層とを順次形成」 とは、 「基体の表 面上に金属下地層が形成された後、 その表面に強磁性金属層が形成されるまでの 間には、 成膜時のガス圧以上に高い圧力雰囲気に曝されることはない」 ことを意 味する。 金属下地層の表面を大気中に曝した後、 その上に強磁性金属層を形成す ると、 媒体の保磁力は、 著しく低下してしまう (例えば、 暴露なし : 1 5 0 0 0 e→暴露あり : 5 0 0 0 e以下) ことは公知である。
(成膜に用いる A rガスの不純物およびその濃度)
本発明における 「成膜に用いる A rガスの不純物」 としては、 例えば、 H00、 02、 C 0o、 H2、 N2、 CxHy, H, C, ◦, C O等があげられる。 特 に、 膜中に取り込まれる酸素量に影響する不純物は、 H20、 02、 C 02, 0, C Oと推定される。 従って、 本発明の不純物濃度は、 成膜に用いる A rガス中に 含まれている H20、 09 C 02, 〇, C Oの和で表すことにする。
(高周波スパッ夕法によるクリ一二ング処理)
本発明における 「高周波スパッタ法によるクリーニング処理」 としては、 例え ば、 放電可能なガス圧空間内に置かれた基体に対して、 R F (radi o frequency, 13. 56MHz) 電源から交流電圧を印加する手法があげられる。 この手 法の特長は、 基体が導電性でない場合にも適用可能な点である。 一般に、 クリー ニング処理の効果としては、 基体への薄膜の密着性向上があげられる。 しかし、 クリーニング処理後、 基体の表面上に形成される薄膜自体の膜質に及ぼす影響に ついては不明な点が多い。
(金属下地層を形成する際に用いた C rターゲッ 卜の不純物およびその濃度) 本発明における 「金属下地層を形成する際に用いた C rターゲッ卜の不純物」 としては、 例えば、 F e、 S i, Aし C、 0、 N、 H等があげられる。 特に、 膜中に取り込まれる酸素量に影響する不純物は、 0と推定される。 従って、 本発 明の不純物濃度とは、 金属下地層を形成する際に用いた C rターゲッ ト中に含ま れている酸素を示す。
(強磁性金属層を形成する際に用いたターゲッ卜の不純物およびその濃度) 本発明における 「強磁性金属層を形成する際に用いた C o基タ一ゲッ 卜の不純 物」 としては、 例えば、 F e、 S i, A l、 C、 0、 N等があげられる。 特に、 膜中に取り込まれる酸素量に影響する不純物は、 0と推定される。 従って、 本発 明の不純物濃度とは、 強磁性金属層を形成する際に用いたターゲッ ト中に含まれ ている酸素を示す。
(基体に負のバイアス印加)
本発明における 「基体に負のバイアス印加」 とは、 磁気記録媒体として C r下 地膜や磁性膜を形成する際、 基体に対して直流のバイアス電圧を印加することを 指す。 適切なバイアス電圧を印加すると、 媒体の保磁力が増大することが分かつ ている。 上述したバイアス印加の効果は、 どちらか一方の膜を作製するときだけ 印加した場合よりも、 2層とも印加した場合のほうがより大きいことが公知であ る。
しかし、 上記バイアス印加は、 基体近傍の物体、 すなわち基体支持部材ゃ基体 ホルダーにも作用する場合が多い。 この結果、 基体近傍の空間中にガスやダスト が発生し、 成膜中の薄膜に取り込まれ、 各種の膜特性が不安定になるという不都 合な状態が生じ易くなる。
また、 基体へのバイアス印加は、 以下の問題点もある。
①ガラスなどの非導電性基体には、 適用できない。
②成膜された磁性膜の飽和磁束密度 (M s ) が低下する。
③成膜室内に、 複雑な機構部を設ける必要がある。
④基体へのバイアス印加度合いの変化が生じやすく、 その結果磁気特性にバラ ツキが発生しやすい。
したがって、 上記バイアス印加を行わなくても、 目標とする各種の膜特性を得 られる作製方法が望まれている。
(金属下地層及び Zまたは強磁性金属層を形成する成膜室の到達真空度) 本発明における 「金属下地層及びノまたは強磁性金属層を形成する成膜室の到 達真空度」 は、 強磁性金属層の材料によっては、 保磁力の値を左右する成膜因子 の 1つである。 特に、 従来は、 強磁性金属層の中に T aを含む C o基の材料で は、 上記の到達真空度が低い場合 (例えば、 5 x 1 0— D T o r r以上の場合) に は影響が大きいと考えられてきた。 しかし、 本発明では、 T aを含まない C o基 の材料である C o N i C rや C o C r P tにおいても、 結晶粒子間に非晶質 (ァ モルファス) 構造からなる粒界層を形成できるか否かという観点において、 成膜 室の到達真空度が効 、ていることが分かつた。
(金属下地層及びノまたは強磁性金属層を形成する際の基体の表面温度) 本発明における 「金属下地層及び Zまたは強磁性金属層を形成する際の基体の 表面温度」 は、 強磁性金属層の材料に依存せず、 保磁力の値を左右する成膜因子 の 1つである。 基体が損傷しない範囲であれば、 高い表面温度で成膜をした方が より高い保磁力を実現できる。 基体の損傷とは、 そり、 膨れ、 割れ等の外的変化 や、 磁化の発生、 発ガス量の増加等の内的変化を意味する。
し力、し、 高い基体の表面温度を実現するためには、 一般的に何らかの加熱処理 を、 成膜室又はその前室で行う必要がある。 この加熱処理は、 基体近傍の空間中 にガスやダス卜が発生し、 成膜中の薄膜に取り込まれ、 各種の膜特性が不安定に なるという不都合な面をもっている。
また、 高い基体の表面温度は、 以下の問題点もある。
① N i P /A 1基体における非磁性 N i P層力 化発生する。
②基体において歪が発生する。
③ガラスなどの熱伝導率が低い基体では、 基体温度を上げたり、 保持すること が難しい。
したがって、 上記加熱処理を行わないか、 若しくは、 より低温加熱処理でも、 目標とする各種の膜特性を得られる作製方法が望まれている。
(基体の表面粗さ, R a )
本発明における基体の表面粗さとしては、 例えば、 ディスク形状からなる基体 表面を、 半径方向に測定した場合の、 平均中心線粗さ R aがあげられる。 測定器 としては、 RANKTAYL0RH0BS0N社製 TALYSTEP を用いた。
基体が停止状態から回転を開始した場合や、 その逆の場合には、 磁気記録媒体 と磁気へッ ドの表面同士が接触及び摺動する (Contact Start Stop, CSSと呼 ぶ) 。 この時、 磁気へッ ドの吸着や摩擦係数の上昇を抑えるため、 R aは大きい 方が好ましい。 一方、 基体が最大の回転数に達した場合には、 磁気記録媒体と磁 気へッ ドとの間隔、 すなわち磁気へッ ドの浮上量を確保する必要があるので、
R aは小さい方力望ましい。
従って、 基体の表面粗さ, R aの最大値と最小値は、 上述した理由と、 磁気記 録媒体に対する要求スペックから適宜決定される。 例えば、 磁気へッ ドの浮上量 、 2 i n c hの場合は、 R a = 6 n m〜8 n mである。
し力、し、 さらに高記録密度化を図るためには、 磁気へッ ドの浮上量 (記録再生 動作をする際、 磁気へッ ドが磁気記録媒体の表面上から離れている距離) をより 小さくする必要がある。 この要望に答えるためには、 磁気記録媒体の表面をより 平坦化することが大切となる。 この理由から、 基体の表面粗さは、 より小さなも のが望ましい。
したがって、 基体の表面粗さがより小さな場合でも、 目標とする各種の膜特性 を得られる作製方法が望まれている。
(テクスチャ処理)
本発明におけるテクスチャ処理としては、 例えば、 機械的な研磨による方法、 化学的なエッチングによる方法、 物理的な凹凸膜の付与による方法などがあげら れる。 特に、 磁気記録媒体の基体として、 最も広く使われているアルミニウム合 金基体の場合は、 機械的な研磨による方法が採用されている。 例えば、 アルミ二 ゥム合金基体の表面に設けた (N i— P ) 膜に対して、 研削用の塗粒が表面に接 着してあるテープを、 回転する基体に押しつけることにより、 同心円状に軽微な キズを付与する方法がある。 この方法では、 研削用の塗粒を、 テープから遊離さ せて用いる場合もある。
し力、し、 上記 「基体の表面粗さ」 の項で述べた理由から、 上記テクスチャ処理 を行わないか、 若しくは、 より軽微なテクスチャ形状でも、 目標とする各種の膜 特性を得られる作製方法が望まれている。
(複合電解研磨処理)
本発明における複合電解研磨処理としては、 例えば、 磁性膜などを形成する際 に用いる真空チャンバ一の内壁に対して、 クロム酸化物を生成物とする酸化不動 態膜を設ける処理があげられる。 この場合、 真空チャンバ一の内壁をなす材料と しては、 例えば S U S 3 1 6 L等が好ましい。 この処理によって、 真空チャン バーの内壁からの 02, H20の放出量を低減できるため、 作製した薄膜中への酸 素取り込み量をより一層低減することが可能である。
本発明で使用した、 ァネルバ製のマグネ トロンスパッタ装置 (型番 I L C 3 0 1 3 : ロードロック式静止対向型) は、 全ての真空チャンバ一 (仕込 /取り出し室, 成膜室, クリーニング室) の内壁が上述の処理を行っている。 図面の簡単な説明
図 1は、 U Cプロセス媒体における薄膜断面の C r元素分布像である。 図中に はじ r偏析層の形態の模式図も合わせて示した。
図 2は、 U Cプロセス媒体における C r偏析層の膜厚方向の C r濃度分布を示 すグラフである。
図 3は、 nプロセス媒体における薄膜断面の C r元素分布像である。 図中には C r偏析層の形態の模式図も合わせて示した。
図 4は、 nプロセス媒体における C r偏析層の膜厚方向の C r濃度分布を示す グラフである。
図 5は、 U Cプロセス媒体及び nプロセス媒体における、 保磁力の下地 C r膜 厚依存性を示すグラフである。
図 6は、 U Cプロセス媒体及び nプロセス媒体における、 異方性磁界の下地 C r膜厚依存性を示すグラフである。
図 7は、 U Cプロセス媒体及び nプロセス媒体における、 規格化保磁力の下地 C r膜厚依存性を示すグラフである。
図 8は、 U Cプロセス媒体における薄膜表面の C r元素分布像である。
図 9は、 nプロセス媒体における薄膜表面の C r元素分布像である。
図 1 0は、 U Cプロセス媒体における薄膜表面の C r濃度分布を示すグラフで ある。
図 1 1は、 nプロセス媒体における薄膜表面の C r濃度分布を示すグラフであ る。 図 1 2は、 U Cプロセス媒体及び nプロセス媒体における、 粒内の平均 C r濃 度及び濃度分布の変化を示すグラフである。
図 1 3は、 U Cプロセス媒体及び nプロセス媒体における、 結晶粒と C r粒界 偏析層の界面近傍での C r濃度勾配の変化を示すグラフである。
図 1 4は、 U Cプロセス媒体における、 保磁力と成膜室の到達真空度との関係 を示すグラフである。 図中には、 nプロセス媒体の結果も示した。
図 1 5は、 U Cプロセス媒体における、 異方性磁界と成膜室の到達真空度との 関係を示すグラフである。 図中には、 nプロセス媒体の結果も示した。
図 1 6は、 U Cプロセス媒体における、 規格化保磁力と成膜室の到達真空度と の関係を示すグラフである。 図中には、 nプロセス媒体の結果も示した。
図 1 7は、 磁気記録媒体の層構成を示す模式的な断面図である。
(符号の説明)
1 基体、
2 基板、
3 非磁性層、
4 下地層、
5 強磁性金属強層、
6 保護層。 発明を実施するための最良の形態
以下に実施例をあげて本発明をより詳細に説明するが、 本発明がこれら実施例 に限定されることはない。
(実施例 1 )
本例では、 「強磁性金属層を構成する結晶粒子間に、 強磁性金属層を貫通する C rの偏折した領域 1を有し、 かつ、 領域 1は、 強磁性金属層の厚さ方向におい て、 中間付近が表面近傍および金属下地層近傍より C r濃度が低い」 ときの効果 について示す。
この効果を確認するため、 金属下地層及び強磁性金属層を形成する成膜室の到 達真空度と、 これらを成膜する際に用いる A rガスに含まれる不純物濃度と、 を 変化させた。
金属下地層及び強磁性金属層を形成する成膜室の到達真空度は、 1 0 9To r r台と 1 0— 7To r r台の 2通りとした。
強磁性金属層と金属下地層を形成する A rガスとしては、 到達真空度が 1 0_
9 To r r台のとき u c - A r (不純物濃度が 1 p p b以下) を、 到達真空度が l O— 'To r r台のとき n o rma l— Ar (不純物濃度が 1 p p m程度) を 用いた。
以下では、 到達真空度が 1 0— 9To r r台で u c— A rガスを用いる場合を U Cプロセスと呼ぶ。 また到達真空度が 1 0 ' To r r台で n o rma l— A rガスを用いる場合を nプロセスと呼ぶ。
本例で媒体作製に用いたスパッタ装置は、 ァネルバ製のマグネトロンスパック 装置 (型番 I LC 30 1 3 : ロードロック式静止対向型) であり、 全ての真空チ ヤンバー (仕込ノ取り出し室 (兼クリーニング室) , 成膜室 1 (金属下地層を形 成) , 成膜室 2 (強磁性金属層を形成) , 成膜室 3 (保護層を形成) ) の内壁 は、 複合電解研磨処理がしてある。 表 1は、 本例の磁気記録媒体を作製する時の 成膜条件である。
(表 1) 項 目 設 定 値
①基体の材質 A 1一 Mg合金 (膜厚 10 m
の (N i - P) めっき膜付き)
②基体の直径および形状 89mm、 ディスク形状
③基体の表面形状 テクスチャ付き、 Raく l nm
④到達真空度 (Torr) 10_9又は 10一7
(全室とも同じ)
⑤ A rガス中の不純物濃度 lppb以下又は lppm程度
(全室とも同じ)
⑥ A rガス圧 (mTorr) 2 (Cr) , 3 (CoCrTa)
⑦基体表面の保持温度 (°c) 250 (全室とも同じ)
⑧夕一ゲッ 卜の材料 (at%) Cr,
Figure imgf000017_0001
⑨ターゲッ 卜の直径 (inch) 6 ⑩タ一ゲッ ト中の不純物濃度 1 20 (Cr) , 20 (CoCrTa)
(ppm)
⑪ターゲッ 卜と基体との間隔 35 (Cr, Coし rTa
⑫タ—ゲッ 卜への投入パワー 直流 200 (Cr, CoCrTa)
(W)
⑬成膜時に基体へ印加した 0 (Cr, CoCrTa)
直流バイアス (-Volt)
⑭作製した膜厚 (nm) 50 (Cr) , 28 (CoCrTa)
以下に、 本例の磁気記録媒体の作製方法について、 手順を追って説明する。 以 下の括弧付き番号は、 その手順を表す。 また各手順において [ ] で示した数値 は、 金属下地層及び強磁性金属層を形成する成膜室の到達真空度を 1 0_
7To r r台とした場合の各設定値である。
( 1 ) 基体としては、 内 /外径が 25 mm/ 89 mm、 厚さが 1. 27 mmのデ イスク形状をしたアルミニウム合金基板を用いた。 アルミニウム合金基板の表面 上には、 めっき法により厚さ 1 0〃mの (N i— P) 膜を設けた。 (N i— P) 膜の表面には、 機械的な手法で同心円状の軽微なキズ (テクスチャー) が付いて おり、 ディスク半径方向に走査したときの基体の表面粗さは、 平均中心線粗さ &が1 nmより小さなものを用いた。
(2) 上記基体は、 後述する成膜の前に、 機械的および化学的な手法による洗浄 処理と、 熱風などによる乾燥処理がなされた。
(3) 上記の乾燥処理を終えた基体を、 スパッタ装置の仕込室に配置された材質 がアルミからなる基体ホルダーにセッ 卜した。 仕込室の内部を、 真空排気装置に よって、 到達真空度が 3 X 1 0"9To r rまで排気した後、 基体に対して、 赤外 線ランプを用いて、 250°C、 30分間の加熱処理をした。
(4) 仕込室から C r膜作製用の成膜室 1に、 前記の基体ホルダ一を移動した。 移動した後も基体は、 赤外線ランプにて、 250°Cに加熱保持した。 但し、 成膜 室 1は、 事前に到達真空度を 3 X 1 (T9To r r [1 x 10 'To r r] まで排 気して用いた。 また、 前記の基体ホルダー移動後は、 仕込室と成膜室 1の間にあ るドアバルブは閉じた。 使用した C rターゲッ 卜の不純物濃度は 120 p pmと した。
(5) 成膜室 1の中に A rガスを導入し、 成膜室 1のガス圧を 2mTo r rとし た。 使用した A rガスに含まれる不純物濃度は 1 p p b以下 [1 p pm程度] と した。
(6) C rターゲッ 卜に直流電源から電圧 200Wを印加してプラズマを発生さ せる。 その結果、 C rターゲッ トはスパックされ、 ターゲッ 卜と平行して対向す る位置にある基体の表面上に、 膜厚 50 nmの C r層を形成した。
(7) C r層を形成した後、 成膜室 1から C oC rTa膜作製用の成膜室 2に、 前記の基体ホルダーを移動した。 移動した後も基体は、 赤外線ランプにて、
250°Cに加熱保持した。 但し、 成膜室 2の事前の到達真空度は、 条件を変更し て行った。 その設定条件とは、 3 X 10—9To r rまで排気してある場合と、 1 X 1 0— 7To r rまで排気してある場合の 2条件である。 また、 前記の基体ホル ダ一移動後は、 成膜室 1と成膜室 2の間にあるドアバルブは閉じた。 使用した ターゲッ ト組成は、 78 a t %C o, 1 7 a t C r , 5 a t %T aであり、 ターゲッ 卜の不純物濃度は 20 p pmとした。
(8) 成膜室 2の中に A rガスを導入し、 成膜室 2のガス圧を 3 mT o r rとし た。 使用した A rガスに含まれる不純物濃度は 1 p p b以下 [1 p pm程度] と した。
(9) CoC r Taターゲットに直流電源から電圧 200Wを印加してプラズマ を発生させる。 その結果、 CoC rTaターゲッ トはスパックされ、 ターゲッ ト と平行して対向する位置にある C r層付き基体の表面上に、 膜厚 28 nmの C o C r T a層を形成した。
(10) CoC rTa層を形成した後、 成膜室 2から取り出し室に、 前記の基体ホ ルダーを移動した。 その後、 取り出し室に N9ガスを導入して大気圧としてから 基体を取りだした。 上記 (1) 〜 (9) の工程により、 層構成が Co C rTaZ C r/N i P/A 1である磁気記録媒体を作製した。
尚、 ターゲッ 卜には、 不純物を極力抑えたものを用いた。 C r形成用のターゲ ッ トの不純物は、 F e : 88, S i : 3 4, A l : 1 0, C : 6 0, O : 120, N: 60, H: 1. 1 (wt p pm) である。 また、 強磁性金属層形成 用のターゲッ 卜の不純物は、 F e : 27, S iく 10, A 1 < 10, C : 30, O : 20, N> 10 (wt ppm) である。
上記工程により作製した媒体の強磁性金属層の断面を、 透過電子顕微鏡 (TEM) を用いて調べた。
図 1及び図 3は、 作製した媒体の強磁性金属層の膜断面の C r元素分布像であ る。 各図の中には、 同視野における断面 TEM像を示した。 これらの図において も C r濃度は白黒のコントラストで示している。 尚、 本図においては、 C r濃度 の高い C r偏析領域について、 模式的に示した図を合わせて示している。
図 1及び図 3は、 成膜室 2及び 3における成膜前の到達真空度が異なる場合を 示しており、 図 1は UCプロセス (試料 1、 到達真空度 = 3 X 10—9T o r r、 使用した Arガスに含まれる不純物濃度は 1 ppb以下) の場合、 図 3は nプロ セス (試料 2、 到達真空度 = 1 X 10_7To r r、 使用した A rガスに含まれる 不純物濃度は 1 ppm程度) の場合である。
表 2は、 T EM試料の作製方法およびその観察条件である。
(表 2)
<試料の作製方法 >
①試料の非成膜面から機械的に研磨処理を行い、 試料厚みを
10〃m以下にした。
②さらに、 試料の非成膜面からイオンミリング処理を行い、
試料厚みを 5 nm以下にした。 主な処理条件は、
A rイオンビーム、 4. 5 k Vx 5mA、 入射角 15度、
である。
<TEM観察の条件 >
①使用した T EM: 日立製作所製、 H F - 2000
②加速電圧 : 200 k V
また、 作製した試料における膜中の C r濃度分布は、 電子エネルギー損失分光 (Electron Energy Loss Spectroscopy; EELS) により評価した。 測定には日立 製作所製 F E— T E M (HITACHI HF-2000) にエネルギーフィルタを組み合わせ たエネルギーフィルタ型 T E Mを用いた。 本装置の面分解能は約 0 . 5 5 n mで ある。 なお、 E E L Sにより求められる。 元素分布像は定性的な分布像である。 そこで、 本例では、 同一試料に対するエネルギー分散型 X線分光計 ( nergy Dispersive X-ray Spectroscopy; EDS) の測定で得られた平均的濃度から C r及 び C oの部分散乱断面積比を求め、 その値を用いて C r元素分布像の定量化を行 つた。
図 2及び図 4に示したグラフは、 上記定量化を行った C r濃度の結果である。 但し、 図 2は図 1に示した試料 1 (U Cプロセス) の結果であり、 図 4は図 3に 示した試料 2 ( nプロセス) の結果である。 図 2及び図 4のグラフでは、 C r下 地層 -磁性層界面を原点とし、 膜厚方向の位置を横軸に示した。
図 1から、 U Cプロセスで作製した媒体 (U Cプロセス媒体) においては T E M像上の粒界層に相当する領域に C r偏析領域が存在しており、 明瞭な C r 偏析層が形成されていることが明らかとなった。 またこのような C r偏析層は、 C r下地層直上の磁性層初期成長層から磁性層上部まで、 均一に形成されている ことも分かった。 さらに、 磁性結晶粒内部の領域においては C r偏析領域は認め られず、 非常に均一な C r偏折が生じていた。
一方、 図 3から、 nプロセスを用いて作製した媒体 (nプロセス媒体) におい ては C r偏析領域が必ずしも粒界層に対応せず、 磁性結晶粒内においても C r偏 析領域が形成されていることが分かった。 このような粒内の C r偏析領域は、 粒 内のァモルファス状の構造を示す領域に対応すると考えられ、 結晶粒の結晶性を 大きく低下させる要因となっている。 また、 粒界層における C r偏析に関して、 磁性層膜厚方向に均一な C r偏析領域を形成しておらず、 特に磁性層初期成長層 においては C r偏析領域がほとんど形成されていないことが明らかとなった。 こ のように nプロセス媒体においては、 C r偏析構造の形成が不均一で、 特に磁性 層初期層において、 C r偏析層の形成が阻害されることが分かった。
以上の結果から、 成膜雰囲気の清浄化 (すなわち U Cプロセス) により、 C r 偏析構造の形成が促進され、 粒内の C r偏析領域の低減並びに磁性層初期層にお ける均一な C r偏析層の形成が可能であることが明らかとなつた。
また図 2のグラフから、 U Cプロセス媒体においては、 C r下地層から約 6 n mの領域及び磁性層表面から約 6 n mの領域に、 C r偏析層の中においても 特に C r濃度の高い領域が存在することが分かった。 このような C r偏析層中に おける C r濃度分布について、 C r下地層から約 6 II mの領域は C r下地層から のじ rの粒界拡散を示していると考えられる。 従って U Cプロセス媒体において は、 粒内から粒界への C rの吐き出しに加え、 C r下地層からの C r粒界拡散 が、 C r偏析層の形成に大きく寄与していることが明らかとなった。 また磁性層 表層部における高 C r濃度領域については、 成膜時の C r吐き出しにより表層部 に C rが滞留し易いことを示していると考えられる。
一方、 図 4のグラフからは、 nプロセス媒体においても、 磁性層の表層部には 高 C r濃度領域が認められる。 しかしながら、 U Cプロセス媒体において認めら れた C r下地層直上の高 C r濃度領域が認められないことが分かった。 これは n プロセス媒体においては、 C r下地層からの C r粒界拡散が阻害されていること を示している。
以上の結果から、 成膜雰囲気の清浄化 (すなわち U Cプロセス) により、 C r 下地層からの C r拡散が促進され、 C r偏析層の形成に寄与することが明らかと なつた。
図 5〜7は、 C r下地層の膜厚を 2. 5〜5 0 n mまで変えて媒体を作製した 場合の磁気特性の結果である。 このとき、 磁性層の膜厚は 2 8 n mに固定した。 図 5は保磁力 (He) を、 図 6は異方性磁界 (HkgI"ain) を、 図 7は規格化保磁 力 (HcZHkgnnn) を、 それぞれ纏めたグラフである。 図 5〜7のグラフにお いて、 〇印は U Cプロセス媒体の結果を、 秦印は nプロセス媒体の結果を示す。 図 5〜7から、 nプロセス媒体に比べて U Cプロセス媒体の方が、 C r膜厚に 依存せず、 全ての磁気特性、 すなわち保磁力、 異方性磁界および規格化保磁力、 において高い値が得られることが分かった。 また U Cプロセス媒体では、 1 0 n m以下という極薄の C r下地層においても優れた磁気特性が維持できるこ とが明らかとなった。 このような極薄の C r下地層を用いた媒体は、 膜厚が 5 0 n m程度の C r下地層を用いた媒体に比べて、 媒体の表面粗さを半減以下に 抑えることができ、 ほぼ基体の表面粗さを反映した程度の表面粗さであることも 分かった。
従って、 UCプロセス媒体は、 各種磁気特性、 すなわち保磁力、 異方性磁界及 び規格化保磁力において優れると共に、 記録密度を向上させる際に必要となるへ ッ ドの浮上化にも十分対応できることが明らかとなった。
(実施例 2)
本例では、 「強磁性金属層の結晶粒子は、 粒界に近づくほど C r濃度が増加す る領域 2と、 結晶粒子の中央部には粒界近傍より C r濃度が低い領域 3とから構 成されており、 該領域 3における C r濃度の最大値が、 該領域 2における C r濃 度の最大値より小さい」 ときの効果について示す。
この効果を確認するため、 実施例 1の UCプロセスにおいて、 金属下地層及び 強磁性金属層を形成する成膜室の到達真空度を 1 0一6 T o r r台〜 1 0_ 9T o r rの範囲で変化させて媒体を作製し、 これらの媒体について、 EELS を用いて C r元素分布の 2次元像を観察した。 その際、 強磁性金属層と金属下地 層を形成する Arガスとしては、 実施例 1と同様に u c— Ar (不純物濃度が 1 ppb以下) を用いた。 また比較のために、 実施例 1に示した nプロセス媒体 に対しても調べた。
他の点は、 実施例 1と同様とした。
図 8及び図 9は、 強磁性金属層の膜面に対して C r元素分布像を調べた結果で ある。 図 8は UCプロセス媒体 (到達真空度 = 1 X 10"8To r rの場合) の結 果であり、 図 9は nプロセス媒体の結果である。
図 8及び図 9の C r元素分布像において、 像コントラス卜の明るい領域は高 C r濃度の領域を示している。 また図中には、 同視野における TEM像も合わせ て示す。 尚、 本例における EELS測定の面分解能は、 C r元素分布像の 1画素 に相当する約 0. 55 nmで、 非常に微細な領域の組成分析が可能となってい る。
図 8から、 UCプロセス媒体においては、 粒界部に高 C r濃度の C r偏析層が 形成されており、 個々の結晶粒を均一に分離していることが明らかとなった。 ま た、 C r偏析層における C r濃度は 30〜40 a t %であることが分かった。 一方、 図 9に示した nプロセス媒体においても粒界部に C r偏析が生じている 領域と、 隣接する結晶粒間に高 C r偏折が生じていない領域があることが分かつ た。 しかしながら、 nプロセス媒体では C r偏析層が不均一であり、 C r濃度コ ントラストからは、 U Cプロセス媒体と比較して、 C r偏析層における C r濃度 が低いことが明らかとなった。
以上の結果から、 U Cプロセス媒体においては、 ηプロセス媒体と比較して、 C r偏析層における C r濃度が高く、 さらに均一に偏折が生じていることが分か つた。
図 8及び図 9に示した C r元素分布像より、 C r濃度の詳細なラインプロファ ィルを求めた結果を図 1 0 ( U Cプロセス媒体、 到達真空度 = 1 X 1 0一 8T o r rの場合) 及び図 1 1 ( nプロセス媒体) に示した。 C r濃度のライン プロフアイルにっ 、ては、 図中に示した線分 A Bに沿つて求めた結果を示した。 図 1 0及び図 1 1に示したグラフの横軸には点 Aを基準として、 分析点の相対位 置を示した。 また、 T EM像において結晶粒に相当する領域を、 図中に網掛け部 で示した。 U Cプロセス媒体、 nプロセス媒体の何れの媒体においても、 粒内に おける C r濃度の平均量及び変動量があることが分かった。 また U Cプロセス媒 体と nプロセス媒体において、 粒界部から粒内にかけての 2〜3 n mの領域での C rの濃度勾配に差が認められた。
図 1 0力、ら、 U Cプロセス媒体では、 領域 3 (強磁性金属層の結晶粒子の中央 部にある粒界近傍より C r濃度が低い領域) における C r濃度の最大値が、 領域 2 (強磁性金属層の結晶粒子において粒界に近づくほど C r濃度が増加する領 域) における C r濃度の最大値より小さいことが分かった。
一方、 図 1 1に示した nプロセス媒体では、 領域 3における C r濃度の最大値 カ^ 領域 2における C r濃度の最大値より大きい粒子が点在していることが認め られた。
以下では、 これらの媒体について、 (1 ) 粒内 C r濃度の平均量及び変動量、 及び (2 ) 結晶粒一粒界層界面近傍における C r濃度勾配、 について詳細に述べ る。
( 1 ) 粒内 C r濃度の平均量及び変動量 図 1 2は、 UCプロセス媒体及び nプロセス媒体における粒内 C r濃度の平均 量及び変動量を示すグラフである。 評価した結晶粒に番号付けを行い、 アルファ べッ 卜で横軸に示した。 図中の点は粒の平均 C r濃度、 エラ一バーは変動幅を示 している。 粒内の平均 C r濃度について、 UCプロセス媒体では約 1 3 a t %を 示すのに対し、 nプロセス媒体では約 1 5 a t %を示すことが分かった。 これ は、 UCプロセス媒体において、 粒内からの C rの吐き出しが促進されているこ とを示している。 また UCプロセス媒体では、 相対的に C r濃度の変動幅が小さ 、傾向にあり、 より均一な吐き出し力生じていることが明らかとなった。
(2) 結晶粒 -粒界層界面近傍における C r濃度勾配
図 1 3は、 UCプロセス媒体及び nプロセス媒体における結晶粒-粒界層界面 近傍における C r濃度勾配を示すグラフである。 本図では評価した結晶粒に番号 付けを行い、 アルファべッ 卜で横軸に示した。 また C r濃度勾配の解析は、 図中 に示すように、 結晶粒表層 2〜3 nmの C r濃度が急激な変化を示す領域につい て行った。 UCプロセス媒体における C r濃度勾配は約 5 a t%nmの値を示す のに対し、 nプロセス媒体においては約 3 a t %nmの値を示した。 これは UC プロセス媒体において、 粒内から粒界への C rの吐き出しが、 より促進されてい ることを示している。
以上の結果は何れも、 UCプロセス媒体において、 粒内から粒界への C rの吐 き出しが促進されることを示している。 これらの結果から、 成膜雰囲気の清浄化 (すなわち UCプロセス) により、 C rの拡散の移動度が向上していると考え た。
図 1 4〜1 6は、 UCプロセスにおいて、 金属下地層及び強磁性金属層を形成 する成膜室の到達真空度を 1 0— DTo r r台〜 1 0 "To r rの範囲で変化させ て作製した媒体の磁気特性の結果である。 図 5は保磁力 (He) を、 図 6は異方 性磁界 (Hkgnnn) を、 図 7は規格化保磁力 (HcZHkgl"ain) を、 それぞれ纏 めたグラフである。 図 5〜7のグラフにおいて、 〇印は C r下地層の膜厚が 5 O nmとした媒体の結果を、 ·印は C r下地層の膜厚が 2. 5 nmとした媒体 の結果を示す。 このとき、 磁性層の膜厚は 28 nmに固定した。
図 1 4〜1 6力、ら、 到達真空度を 1 0— 7To r r台以下としたとき、 nプロセ ス媒体に比べて U Cプロセス媒体の方が、 C r膜厚に依存せず、 全ての磁気特 性、 すなわち保磁力、 異方性磁界および規格化保磁力、 において高い値が得られ ることが分かった。 またこの条件を満たす U Cプロセス媒体では、 領域 3 (強磁 性金属層の結晶粒子の中央部にある粒界近傍より C r濃度力 氏い領域) における C r濃度の最大値が、 領域 2 (強磁性金属層の結晶粒子において粒界に近づくほ ど C r濃度が増加する領域) における C r濃度の最大値の 0 . 7 5倍以下である ことが明らかとなった。
従って、 領域 3における C r濃度の最大値が、 領域 2における C r濃度の最大 値の 0 . 7 5倍以下となる媒体とすることにより、 全ての磁気特性、 すなわち保 磁力、 異方性磁界および規格化保磁力、 において高い値が安定して得られると共 に、 2 . 5 n mという極薄の C r下地層においてもその効果を有する磁気記録媒 体が得られることが分かった。 産業上の利用可能性
以上説明したように、 本発明によれば、 強磁性金属層の保磁力、 異方性磁界又 は/及び規格化保磁力が高く、 高記録密度化に対応可能な磁気記録媒体がえられ る。 また上述した磁気特性は、 極薄の C r下地層においても得られることから、 媒体の表面粗さを基体の表面粗さと同レベルに抑えることも可能となり、 へッ ド の低浮上化にも十分対応できる磁気記録媒体の提供が可能となる。

Claims

/44490 25 請求の範囲
1 . 基体上に、 C rからなる金属下地層を介して、 少なくとも C oと C rとを 含む強磁性金属層を設けてなる磁化反転を利用した磁気記録媒体において、 該強磁性金属層を構成する結晶粒子間には、 該強磁性金属層を貫通する C rの偏 析した領域 1を有し、 力、つ、
該領域 1は、 該強磁性金属層の厚さ方向において、 中間付近が表面近傍および金 属下地層近傍より C r濃度が低いことを特徴とする磁気記録媒体。
2 . 前記強磁性金属層の結晶粒子は、
粒界に近づくほど C r濃度が増加する領域 2と、 結晶粒子の中央部には粒界近傍 より C r濃度が低 、領域 3とから構成されており、
該領域 3における C r濃度の最大値が、 該領域 2における C r濃度の最大値より 小さいことを特徴とする請求項 1に記載の磁気記録媒体。
3 . 前記領域 3における C r濃度の最大値が、 前記領域 2における C r濃度の 最大値の 0 . 7 5倍以下であることを特徴とする請求項 2に記載の磁気記録媒 体。
PCT/JP1997/001090 1997-03-28 1997-03-28 Support d'enregistrement magnetique WO1998044490A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PCT/JP1997/001090 WO1998044490A1 (fr) 1997-03-28 1997-03-28 Support d'enregistrement magnetique
AT97908547T ATE313145T1 (de) 1997-03-28 1997-03-28 Magnetisches aufzeichnungsmedium
US09/402,013 US6555248B1 (en) 1997-03-28 1997-03-28 Magnetic recording medium
KR10-1999-7008859A KR100514302B1 (ko) 1997-03-28 1997-03-28 자기기록매체
DE69734895T DE69734895T2 (de) 1997-03-28 1997-03-28 Magnetisches aufzeichnungsmedium
EP97908547A EP0971340B1 (en) 1997-03-28 1997-03-28 Magnetic recording medium
JP54138498A JP3724814B2 (ja) 1997-03-28 1997-03-28 磁気記録媒体
TW086113760A TW355793B (en) 1997-03-28 1997-09-22 Magnetic recording media

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/001090 WO1998044490A1 (fr) 1997-03-28 1997-03-28 Support d'enregistrement magnetique

Publications (1)

Publication Number Publication Date
WO1998044490A1 true WO1998044490A1 (fr) 1998-10-08

Family

ID=14180342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/001090 WO1998044490A1 (fr) 1997-03-28 1997-03-28 Support d'enregistrement magnetique

Country Status (8)

Country Link
US (1) US6555248B1 (ja)
EP (1) EP0971340B1 (ja)
JP (1) JP3724814B2 (ja)
KR (1) KR100514302B1 (ja)
AT (1) ATE313145T1 (ja)
DE (1) DE69734895T2 (ja)
TW (1) TW355793B (ja)
WO (1) WO1998044490A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596341B1 (en) * 2000-07-25 2003-07-22 Seagate Technology Llc Method of manufacturing magnetic recording media with high SNR and high thermal stability
US7273666B2 (en) * 2001-06-29 2007-09-25 Fujitsu Limited Magnetic recording medium and magnetic recording medium driving apparatus
JP2003178423A (ja) * 2001-12-12 2003-06-27 Fuji Electric Co Ltd 長手記録用磁気記録媒体およびその製造方法
JP2008123626A (ja) * 2006-11-14 2008-05-29 Hitachi Global Storage Technologies Netherlands Bv 垂直磁気記録媒体及びこれを用いた磁気記憶装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003603A1 (fr) * 1993-07-21 1995-02-02 Migaku Takahashi Support d'enregistrement magnetique et sa fabrication

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082750A (en) * 1988-10-21 1992-01-21 Kubota Ltd. Magnetic recording medium of thin metal film type
US5625576A (en) 1993-10-01 1997-04-29 Massachusetts Institute Of Technology Force reflecting haptic interface

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995003603A1 (fr) * 1993-07-21 1995-02-02 Migaku Takahashi Support d'enregistrement magnetique et sa fabrication

Also Published As

Publication number Publication date
DE69734895D1 (de) 2006-01-19
DE69734895T2 (de) 2006-08-03
KR100514302B1 (ko) 2005-09-13
TW355793B (en) 1999-04-11
JP3724814B2 (ja) 2005-12-07
EP0971340A4 (en) 2000-03-22
ATE313145T1 (de) 2005-12-15
EP0971340A1 (en) 2000-01-12
US6555248B1 (en) 2003-04-29
KR20010005787A (ko) 2001-01-15
EP0971340B1 (en) 2005-12-14

Similar Documents

Publication Publication Date Title
WO2002039433A1 (fr) Support d&#39;enregistrement magnetique et appareil d&#39;enregistrement magnetique
KR100418640B1 (ko) 자기기록매체및그의제조방법
US5939202A (en) Magnetic recording medium and method for manufacturing the same
JP3481252B2 (ja) 磁気記録媒体及びその製造方法
JP3423907B2 (ja) 磁気記録媒体及びその製造方法並びに磁気記録装置
WO1996027877A1 (fr) Support d&#39;enregistrement magnetique et son procede de fabrication
US20080037407A1 (en) Method for Manufacturing Perpendicular Magnetic Recording Medium, Perpendicular Magnetic Recording Medium, and Magnetic Recording/Reproducing Apparatus
WO1998044490A1 (fr) Support d&#39;enregistrement magnetique
JP2697227B2 (ja) 磁気記録媒体およびその製造方法
JP4123806B2 (ja) 磁気記録媒体、その製造方法および磁気記録装置
JP2004110941A (ja) 磁気記録媒体および磁気記憶装置
JP5981564B2 (ja) 磁気記録媒体及びその製造方法
JP3649416B2 (ja) 磁気記録媒体の製造方法
JP2806443B2 (ja) 磁気記録媒体及びその製造方法
JPH0268716A (ja) 磁気ディスク媒体の製造方法
WO1998044491A1 (fr) Support d&#39;enregistrement magnetique
JP2005093040A (ja) 垂直磁気記録媒体およびその製造方法
JP2006040410A (ja) 磁気記録媒体の製造方法
JP2000030234A (ja) 磁気記録媒体
JPH11232630A (ja) 磁気記録媒体
JPH1011733A (ja) 磁気記録媒体及びその製造方法
JPS62183024A (ja) 垂直磁気記録媒体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97182078.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019997008859

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1997908547

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09402013

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1997908547

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008859

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1019997008859

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1997908547

Country of ref document: EP