WO1998044175A1 - Epitaxial growth furnace - Google Patents

Epitaxial growth furnace Download PDF

Info

Publication number
WO1998044175A1
WO1998044175A1 PCT/JP1998/000833 JP9800833W WO9844175A1 WO 1998044175 A1 WO1998044175 A1 WO 1998044175A1 JP 9800833 W JP9800833 W JP 9800833W WO 9844175 A1 WO9844175 A1 WO 9844175A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
injection
material gas
chamber
gas flow
Prior art date
Application number
PCT/JP1998/000833
Other languages
French (fr)
Japanese (ja)
Inventor
Kazutoshi Inoue
Masato Imai
Masanori Mayusumi
Shinji Nakahara
Original Assignee
Super Silicon Crystal Research Institute Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Super Silicon Crystal Research Institute Corp. filed Critical Super Silicon Crystal Research Institute Corp.
Publication of WO1998044175A1 publication Critical patent/WO1998044175A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/14Feed and outlet means for the gases; Modifying the flow of the reactive gases

Definitions

  • the present invention relates to an epitaxy growth furnace for performing an epitaxy growth process on a surface of a semiconductor wafer substrate.
  • H-Si-C1-based CVD Chemical vapor deposition
  • a silicon source gas is supplied to a silicon substrate heated to a high temperature by a hydrogen carrier, and a silicon single crystal is deposited and grown on the substrate through an H-Si-C1 system reaction.
  • SiCl 4 , SiHCh, SiH 2 Cl 2 , and SiH 4 are generally used.
  • a single-wafer apparatus is suitable as an epitaxial growth method for a large-diameter silicon wafer.
  • a wafer substrate is placed on a susceptor in a chamber in a state where the inside of a chamber is heated by a radiation heating method using an infrared lamp, and a reaction gas is sent into the inside of the chamber.
  • the reaction chamber itself can be made compact.
  • it is easy to design heating conditions, gas flow distribution, etc., and the uniformity of the properties of the epitaxial film can be improved.
  • the wafer substrate is heated in a reference gas atmosphere such as hydrogen while being placed at a fixed position in the chamber.
  • a reference gas atmosphere such as hydrogen
  • the material gas is newly released into the reference gas in the chamber 1 and supplied onto the wafer substrate.
  • the reaction gas in which the material gas is mixed with the reference gas is started.
  • the material gas is always kept flowing in a line different from the line leading to the inside of the chamber, and the line is switched to the line leading to the chamber at the start of the growth process.
  • the gas flow released by starting the growth process is kept constant.
  • the semiconductor is heated to a predetermined growth temperature in a furnace filled with a semiconductor wafer reference gas that has undergone a wafer preparation process including removal of a surface oxide film, cleaning and drying.
  • An epitaxy growth furnace that performs epitaxy growth processing on the surface of a semiconductor wafer substrate by maintaining the reaction gas containing a material gas in an atmosphere is provided.
  • Material gas supply means for supplying the material gas into the gas flow at an intermediate position of the gas flow in the chamber section
  • the gas flow forming means generates the gas flow in a cylindrical chamber portion formed in the furnace
  • the material gas supply means has an injection nozzle provided so that an injection port protrudes into a part of the chamber,
  • An epitaxy film is grown on a surface of a semiconductor wafer substrate while holding the wafer in a reaction gas atmosphere space formed downstream of the material gas supply position of the gas flow.
  • the wafer substrate preheated to the growth temperature in the reference gas atmosphere in the furnace is moved to the reaction gas atmosphere space in the furnace, so that the epitaxy film is formed on the wafer substrate surface.
  • the reference gas atmosphere space for heating and the reaction gas atmosphere space are formed as separate spaces in the same furnace, so that the atmosphere of the reaction gas atmosphere space can be regulated independently. it can. Therefore, only by moving the wafer substrate itself to the stable reaction gas atmosphere space in advance, the growth processing of the epitaxial film on the surface of the wafer substrate can be started.
  • the movement of the wafer substrate starts the growth processing of the epitaxial film in a stable reaction gas atmosphere state, so that the start of the growth processing can be clearly determined.
  • the processing time can be grasped more accurately, and the growth state Control becomes easy.
  • the epitaxy growth process can also be terminated by stopping the supply of the material gas, as in the conventional case.
  • the reaction gas atmosphere becomes non-uniform after stopping the supply of the material gas, it is difficult to clearly identify the end of the growth process, and the material gas is released until the next new growth process starts. After that, it takes time to obtain a stable reaction gas atmosphere again.
  • the epitaxy growth process does not proceed and the growth process can be terminated.
  • the reaction gas atmosphere space is maintained in a stable state, the time required for stabilization is not required until the start of the next new epitaxy growth process.
  • the epitaxial growth process ends at the same time as the movement of the substrate, the end of the epitaxial growth can be clearly determined, and the control of the growth state becomes easier.
  • a uniform epitaxy film growth state can be obtained immediately on the wafer substrate. From the start of the growth process, a stable and uniform epitaxial film can be grown.
  • the wafer substrate is moved from the reaction gas atmosphere space downstream of the material gas supply position where the epitaxial growth process is performed to the reference gas upstream of the supply position. What is necessary is just to move to an atmosphere space. In this case, since the wafer substrate is placed in a space where no material gas is present, the epitaxial growth process ends immediately.
  • the heating means in the reference gas atmosphere space may be used.
  • the wafer substrate heated to the growth temperature can be moved to the reaction gas atmosphere space by the transfer means. If the reaction gas atmosphere space has been prepared in advance in a stable manner, the movement of the wafer substrate by this transfer means immediately starts the growth of a uniform epitaxy film in a uniform state.
  • the reference gas atmosphere space does not contain a material gas. The epitaxy growth process ends immediately.
  • the epitaxy growth reactor of the present invention has a structure in which a reference gas atmosphere space and a reaction gas atmosphere space separate from the reference gas atmosphere space are formed in the furnace, and a gas flow is formed in a cylindrical chamber provided in the furnace.
  • the forming means forms a gas flow in a specific direction by the reference gas, and material gas supply means for supplying the material gas at a position in the middle of the gas flow is provided such that the ejection port projects in a part of the chamber. It is equipped with a spray nozzle.
  • the chamber of the injection nozzle is Since the material gas is ejected from the ejection port projecting inward from the wall, the material gas is supplied from the position protruding into the chamber without flowing along the chamber wall, and is uniformly distributed in the chamber at the downstream portion. Flow in distribution. Therefore, downstream of the supply position, the mixing of the reference gas and the material gas is not biased within the chamber, and the reaction gas tends to be uniform.
  • the epitaxy growth reactor comprises:
  • the injection nozzle may eject a material gas in a direction intersecting a flow direction of the gas flow.
  • the injection nozzle ejects the material gas in a direction intersecting the flow direction of the gas flow, the distribution of the material gas becomes more uniform within a part of the chamber.
  • the material gas may be injected downward or obliquely downward of the chamber. In this case, the material gas flows uniformly inside the chamber without flowing along the upper wall of the chamber.
  • the above-mentioned material gas is introduced into the reference gas flow. Desirably, the dispersion is more uniform.
  • the epitaxy growth reactor the epitaxy growth reactor
  • the injection nozzle injects the material gas toward a semiconductor wafer substrate held on a downstream side in a flow direction of the gas flow during execution of an epitaxy growth process.
  • the material gas directed from the injection position to the wafer substrate on the downstream side is uniformly dispersed in the reference gas by the injection nozzle, and when reaching the holding area of the wafer substrate, a uniform reaction gas atmosphere is formed. Become.
  • the injection nozzle faces the wafer substrate held on the downstream side in the gas flow direction during execution of the epitaxy growth process. It has an ejection surface, and this ejection surface is in front
  • the material gas is substantially equal to the outer shape of the surface of the semiconductor wafer substrate, and the material gas is injected from a plurality of injection holes provided on the injection surface.
  • the material gas injected from the injection surface substantially equal to the wafer substrate surface flows downstream together with the reference gas flow, and the reaction gas atmosphere is uniform in the surface region of the wafer substrate.
  • the injection hole provided in the injection surface may discharge the material gas obliquely downward toward the direction of the gas flow. It is a feature.
  • the material gas can be more reliably flowed toward the wafer substrate surface by the injection hole.
  • the epitaxy growth reactor is characterized in that the injection holes provided on the injection surface are uniformly distributed over substantially the entire injection surface. It is assumed that.
  • the material gas can be more uniformly dispersed from the beginning of the injection from the injection surface.
  • the wafer substrate is moved only from the reference gas atmosphere space formed in the epitaxial growth furnace to the reaction gas atmosphere space, and the wafer substrate is started from the beginning of the epitaxial growth process. This has the effect that a uniform epitaxial film grows.
  • FIG. 1 is a schematic diagram showing a schematic configuration of an epitaxial growth reactor according to one embodiment of the present invention.
  • FIG. 2A is a plan view showing the ejection surface of the ejection nozzle according to one embodiment of the present invention.
  • FIG. 2B is an enlarged cross-sectional view showing the injection surface and the injection hole of the injection nozzle according to one embodiment of the present invention.
  • the epitaxy growth reactor 1 of the present embodiment includes a cylindrical reaction chamber 22, a plurality of infrared lamps 3 for heating the inside of the reaction chamber 22, and an injection for injecting a material gas.
  • a nozzle 5 is provided, and a load lock chamber 12 for storing a plurality of semiconductor wafer substrates W is connected thereto.
  • a robot arm 8 for carrying a wafer in the load lock chamber 12 and the reaction chamber 122 is disposed inside the epitaxy growth reactor 1, and the wafer is mounted on the tip of the robot arm 8.
  • Robot hand 9 is equipped.
  • the load lock chamber 12 is provided with an elevator shaft 17 at the lower part, and the inside of the chamber 1 is purged with clean nitrogen. Elevator in the load lock chamber 2-At the end of the evening shaft 17, a multi-stage carrier 15 is detachably mounted.
  • the carrier 15 has a plurality of shelves 16 having a multi-tiered structure at the top and bottom.
  • the mouth chamber 12 is in communication with the reaction chamber 22 through a robot arm 8, a robot hand 9, and an opening through which the wafer W gripped by the hand 9 can pass.
  • Each shelf 16 is open on the front side facing this opening. In addition, each shelf 16 can be individually moved to the opening by the elevating operation of the elevator shaft 17.
  • the semiconductor wafer which has undergone the wafer preparation process including the removal, cleaning and drying of the surface oxide film is stored in each shelf 16 of the multi-stage carrier 15 before the epitaxial growth process.
  • the carrier 15 is exchangeably mounted on the elevator shaft 17 in the mouth chamber 12. Then, as described later, the wafers on each shelf 16 are taken out of the shelf 16 by the robot hand 9 and the robot arm 8 Is transported into the reaction chamber 122. In the empty shelf 16, processed wafers transported by the robot arm 8 from the inside of the reaction chamber 22 as described later are stored again.
  • the multi-stage carrier 15 is removed from the elevator shaft 17 and sent from the mouth and the drop chamber 12 to another location, for example, an inspection process. .
  • the multi-axis robot 18 takes in the wafer from the mouth lock chamber 2 by the robot hand 9 onto the robot arm 8 or transfers the wafer from the mouth arm 8 to the mouth lock chamber 2 by the robot hand 9 and transfers the wafer.
  • the robot arm 8 carries out each operation of transferring the wafer between the mouth drop chamber 12 and the wafer loading position in the reaction chamber 122.
  • the epitaxy growth reactor 1 is of a type in which a single large-diameter wafer is subjected to epitaxy growth processing in one epitaxy growth processing, but the present invention is limited to this type. It is not something to be done.
  • the epitaxial growth reactor 1 includes a quartz outer shell 13 having a front flange 11 a having an opening and a rear flange 11 b.
  • a gate 12 that can be opened and closed is attached to the opening of the front flange 11 a so as to demarcate the mouth and the drop chamber 2. That is, with the gate 12 open, the reaction chamber 122 of the epitaxy growth furnace 1 communicates with the mouth chamber 12 through its opening.
  • the rear flange 11b is closed by a removable lid 14.
  • the epitaxial growth reactor 1 is configured to perform an epitaxial growth process on the wafer inside the reaction chamber 122 in a state sealed by the rear flange lib and the gate 12.
  • a gas injection port 4 is provided on the front flange 11a and a gas vent port 19 is provided on the rear flange 11b, and an injector port is provided.
  • the hydrogen gas introduced from 4 flows through the reaction chamber 22 and is discharged from the gas vent boat 19. That is, inside the reaction chamber 22 A hydrogen gas flow is formed with the gas injector port 4 upstream and the gas vent port 19 downstream.
  • a hydrogen gas supply device (not shown) is connected to the injector port 4 and a vent control device (not shown) is connected to the gas vent port 19 by piping.
  • the flow of hydrogen gas is always constant in the reaction chamber 122.
  • the gas pressure, gas flow rate, etc. are adjusted by pipes so that the flow rate can be controlled.
  • An injection nozzle 5 is provided substantially at the center of the upper part of the chamber 122.
  • a silicon source gas supply device (not shown) is connected to the injection nozzle 5 by a pipe. The pressure and flow rate of the silicon source gas are adjusted by piping.
  • the injection nozzle 5 has an injection surface 6 protruding downward in the reaction chamber 122, and the diameter of the injection surface 6 is about 10 to 60 mm larger than the diameter of the wafer W.
  • the injection surface 6 is provided with a plurality of injection holes 7 for injecting a silicon source gas so as to be substantially uniformly dispersed over the entire surface of the injection surface 6.
  • the inner diameter of each of the injection holes 7 is about 0.3 to 3 mm.
  • the center axis of the injection hole 7 is inclined 10 to 85 degrees to the rear flange 11b side with respect to the injection surface 6, and the silicon source injected from the injection hole 7 The gas will flow diagonally downward on the rear flange 1 1b side.
  • the direction in which the silicon source gas is ejected is at the position where the wafer held by the robot hand 9 is positioned. Therefore, during the epitaxial growth process, the silicon source gas is ejected onto the surface of the loaded wafer. It is supposed to be.
  • a plurality of infrared lamps 3 are arranged above and below the reaction chamber 122, and the inside of the reaction chamber 122 is heated by the infrared lamp 3. I have.
  • a process for growing an epitaxial film on the surface of a semiconductor wafer using the epitaxial growth reactor 1 configured as described above will be described below.
  • a plurality of semiconductor wafers that have undergone a wafer preparation process including removal of a surface oxide film, cleaning and drying beforehand are placed in a multi-stage carrier 15 under room temperature conditions inside an epitaxy growth furnace 1 and a clean chamber 1 outside.
  • Each shelf 16 stores one after another.
  • the multi-stage carrier 15 is then attached to the end of the elevator shaft 17 in the mouth chamber 12, and a shelf that stores wafers to be processed by the lifting and lowering operation of the elevator shaft 17. 16 is lifted to the position level facing the opening.
  • hydrogen gas is introduced from the injector port 4 of the epitaxial growth reactor 1 to form a hydrogen gas flow at a constant flow rate in the reaction chamber 122.
  • a fixed amount of silicon source gas is supplied from the injection nozzle 5 into the reaction chamber 122.
  • the silicon source gas spouted obliquely downward from this silicon gas supply position, that is, from the installation position of the injection nozzle 5 to the rear flange 11 b side downstream of the hydrogen gas flow is generated. Reacted gas is generated while flowing downstream while being dispersed in the stream.
  • the reaction gas atmosphere on the downstream side becomes uniform, and a reaction gas atmosphere space 10 that maintains a stable state is formed on the downstream side.
  • the front flange 11a side from the silicon source gas supply position that is, the upstream side of the hydrogen gas flow
  • the inside of the reaction chamber 122 reaches a residual heat temperature of about 700 to 800 by heating from the infrared lamp 3.
  • the gate 12 of the growth furnace is opened while maintaining this state. Then, the hand 9 enters the mouth and drop chamber 12 through the opening by the robot arm 8, and the wafer on the pre-selected shelf 16 facing the opening is held by the hand 9. The wafer is transferred to the hydrogen gas atmosphere space 20 in the reaction chamber 22 by the robot arm 8 while being held by the hand 9. Gate 1 2 is then closed and reaction chamber 1 2 2 Sealed. Incidentally, the multi-stage carrier 15 is not moved until the wafer is subjected to the epitaxy growth processing as described later and returned to the same original shelf 16.
  • the inside of the reaction chamber 122 is gradually heated by the infrared lamp 3 to an epitaxy reaction temperature, for example, 900 to 2200.
  • the wafer waits while being held by the robot hand 9 in the hydrogen gas atmosphere space 20 upstream until the inside of the reaction chamber 122 reaches the epitaxial growth temperature.
  • the inside of the reaction chamber 122 reaches the epitaxy growth temperature, it is immediately transferred by the robot arm 8 to the loading position downstream of the reaction chamber 122.
  • a reaction gas atmosphere space 10 is previously formed by the silicon source gas injected from the injection nozzle 5, and is conveyed to the loading position.
  • the epitaxy film grows immediately on the surface of the wafer heated to a high temperature by reduction or thermal decomposition, and the epitaxy growth process starts.
  • the reaction gas atmosphere is previously maintained in a uniform and stable state, and the wafer is suddenly exposed to such a reaction gas atmosphere. Therefore, the wafer surface is exposed from the beginning of the epitaxial growth process.
  • the epitaxial film grows uniformly in a uniform state.
  • the transfer of the wafer W to the reaction gas atmosphere space 10 is the start of the epitaxial growth process, so that the start time of the growth process can be clearly determined, and the time in the epitaxial growth process There is an advantage that control can be easily performed.
  • the wafer When the epitaxial film has grown to the target thickness on the wafer surface, the wafer is transported to the upstream hydrogen gas atmosphere space 20 by the robot arm 8. This ends the epitaxial growth process. Then, the temperature inside the reaction chamber 122 is gradually lowered, and when the temperature is lowered to a sufficiently stable temperature, for example, near room temperature, the gate 122 is opened. Next, the wafer that has been epitaxially grown is
  • the (epitaxial wafer) is held by the hand 9, it is returned to the original shelf 16 which is the starting position in the load lock chamber 12 via the gate 12 opened from the reaction chamber 22.
  • the wafers accommodated in the other shelves 16 of the multi-stage cassette are similarly transported to the hydrogen gas atmosphere space 20 and heated, and transported to the reaction gas atmosphere space 10.
  • the process is started in order, starting the process, terminating the epitaxy growth process by transporting to the hydrogen gas atmosphere space 20, lowering the temperature in the reaction chamber 122, and storing it in the multi-stage cassette.
  • the epitaxy growth reactor 1 of this embodiment it is not necessary to readjust the reaction gas atmosphere every time a new epitaxy growth process is started for a new epitaxy. Continuous epitaxial growth processing can be performed on the wafer.
  • the multi-stage carrier 15 becomes an overnight. It is removed from the shaft 17 and transported to the next process, for example, the inspection process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

An epitaxial film formed on the surface of a wafer by the steps of supplying a material gas from an injection nozzle having an injection port protruding into a reaction chamber in which a reference gas flow is formed, defining a reference gas atmosphere space upstream of the supply position and a reaction gas atmosphere space downstream of the supply position and moving the wafer from the reference gas atmosphere space to the reaction gas atmosphere space.

Description

明 細 書  Specification
ェピタキシャル成長炉 技術分野  Epitaxial growth reactor technical field
本発明は、 半導体ウェハ基板の表面にェピタキシャル成長処理を実行するため のェピタキシャル成長炉に関するものである。 背景技術  The present invention relates to an epitaxy growth furnace for performing an epitaxy growth process on a surface of a semiconductor wafer substrate. Background art
現在、 シリコンウェハのェピタキシャル成長方法として最も広く研究、 応用さ れているのは、 H— S i — C 1系 CVD (Chemical vapor deposition)法である。 この方法は、 高温に加熱されたシリコン基板上に水素キヤリアによりシリコンソ —スガスを供給し、 基板上で H— S i -C 1系の反応を通じてシリコン単結晶を 堆積、 成長させるものである。 シリコンソースガスとしては、 SiCl4 , SiHCh, SiH2Cl2 , SiH4が一般的に用いられている。 Currently, the most widely studied and applied method for epitaxial growth of silicon wafers is the H-Si-C1-based CVD (Chemical vapor deposition) method. In this method, a silicon source gas is supplied to a silicon substrate heated to a high temperature by a hydrogen carrier, and a silicon single crystal is deposited and grown on the substrate through an H-Si-C1 system reaction. As a silicon source gas, SiCl 4 , SiHCh, SiH 2 Cl 2 , and SiH 4 are generally used.
このようなェピタキシャル成長処理を実行するェピタキシャル成長炉として、 従来から各種のものが用いられている。 例えば、 大径のシリコンウェハのェピタ キシャル成長法に適したものとして枚葉型装置が挙げられる。 この装置は、 赤外 線ランプによる輻射加熱方式によりチャンバ一内を加熱した状態で、 チヤンバー 内のサセプ夕上にウェハ基板を載置して、 反応ガスをチャンバ一内に送り込むも のである。 この装置では、 シリコンウェハ基板を一枚ごとに処理するため、 反応 室自体をコンパクトにすることができる。 また、 加熱条件、 ガス流分布等の設計 が容易でェピタキシャル膜特性の均一性を高くできる。  Various types of epitaxy growth reactors for performing such epitaxy growth processing have been conventionally used. For example, a single-wafer apparatus is suitable as an epitaxial growth method for a large-diameter silicon wafer. In this apparatus, a wafer substrate is placed on a susceptor in a chamber in a state where the inside of a chamber is heated by a radiation heating method using an infrared lamp, and a reaction gas is sent into the inside of the chamber. In this apparatus, since the silicon wafer substrates are processed one by one, the reaction chamber itself can be made compact. In addition, it is easy to design heating conditions, gas flow distribution, etc., and the uniformity of the properties of the epitaxial film can be improved.
上記のような従来のェピ夕キシャル成長方法や装置では、 ウェハ基板は、 チヤ ンバ一内の固定位置に載置された状態のまま、 水素等の基準ガス雰囲気中で加熱 される。 その後、 チャンバ一内の基準ガス中に材料ガスが新たに放出され、 ゥェ ハ基板上に供給される。 これによつて、 基準ガスに材料ガスが混ざった反応ガス が生じ、 ウェハ基板表面にェピタキシャル膜の成長が開始される。 ウェハ基板上に均一にェピタキシャル膜を成長させるためには、 ェピタキシャ ル成長処理の実行開始と共に反応ガス雰囲気をいきなり一定にする必要がある。 そこで、 従来のェピタキシャル成長方法や装置では、 材料ガスをチャンバ一内に 通じるラインとは別のラインで常時流し続けておき、 成長処理の実行開始時にチ ャンバー内へ通じるラインに切り換えて、 ェピタキシャル成長処理の実行開始に より放出されるガス流量が一定になるようにしている。 In the conventional epitaxial growth method and apparatus as described above, the wafer substrate is heated in a reference gas atmosphere such as hydrogen while being placed at a fixed position in the chamber. After that, the material gas is newly released into the reference gas in the chamber 1 and supplied onto the wafer substrate. As a result, the reaction gas in which the material gas is mixed with the reference gas Then, the growth of the epitaxial film on the surface of the wafer substrate is started. In order to uniformly grow an epitaxial film on a wafer substrate, it is necessary to keep the reaction gas atmosphere constant immediately after the start of the epitaxial growth process. Therefore, in the conventional epitaxy growth method and apparatus, the material gas is always kept flowing in a line different from the line leading to the inside of the chamber, and the line is switched to the line leading to the chamber at the start of the growth process. The gas flow released by starting the growth process is kept constant.
即ち、 単純にチャンバ一内へのコックを開けて材料ガスを放出するだけの方法 では、 放出の当初において、 ガス流出量が出だしから増加して安定するまでの不 均一な状態が存在する。  That is, in the method of simply opening the cock into the chamber and releasing the material gas, at the beginning of the discharge, there is an uneven state in which the gas outflow increases from the beginning to stabilizes.
又、 材料ガスを常時流し続けるベントラインを切り換えて一気に材料ガスをチ ヤンバ一内に噴出させたとしても、 それ以前の材料ガスがない状態から安定した 反応ガス雰囲気となるまでには時間がかかる。 このため、 その間にもェピ夕キシ ャル成長処理は進行してしまい、 シリコンウェハには、 不均一な雰囲気状態で不 均一なェピタキシャル膜が成長してしまう。 発明の開示  Also, even if the material gas is blown into the chamber at a stretch by switching the vent line that constantly flows the material gas, it takes time until a stable reaction gas atmosphere is reached from the state where there is no material gas before that. . As a result, the epitaxial growth process proceeds during that time, and a non-uniform epitaxy film grows on the silicon wafer in a non-uniform atmosphere. Disclosure of the invention
本発明は、 上記問題点に鑑み、 ウェハのェピタキシャル成長処理の実行開始時 からウェハ基板表面に均一なェピタキシャル膜を成長させることができるェピタ キシャル成長炉を得ることを主目的とする。  SUMMARY OF THE INVENTION In view of the above problems, it is a main object of the present invention to provide an epitaxy growth furnace capable of growing a uniform epitaxy film on the surface of a wafer substrate from the start of the epitaxy growth processing of a wafer.
本発明の一つの好適な態様によれば、 表面酸化膜の除去、 洗浄及び乾燥を含む ウェハ準備プロセスを経た半導体ウェハ基準ガスが充填された炉内で所定の成長 温度まで加熱した状態で、 半導体材料ガスを含んだ反応ガス棼囲気中に維持する ことにより、 半導体ウェハ基板の表面にェピタキシャル成長処理を施すェピタキ シャル成長炉が提供され、 このェピタキシャル成長炉は、  According to one preferred embodiment of the present invention, the semiconductor is heated to a predetermined growth temperature in a furnace filled with a semiconductor wafer reference gas that has undergone a wafer preparation process including removal of a surface oxide film, cleaning and drying. An epitaxy growth furnace that performs epitaxy growth processing on the surface of a semiconductor wafer substrate by maintaining the reaction gas containing a material gas in an atmosphere is provided.
筒形状のチャンバ一部と、 前記チャンバ一部内に前記材料ガスを含まない基準ガスの特定方向へのガス流 を生じさせるガス流形成手段と、 A cylindrical chamber part, Gas flow forming means for generating a gas flow in a specific direction of the reference gas not containing the material gas in a part of the chamber;
前記チヤンバー部内のガス流の途中位置において前記材料ガスを前記ガス流中 に供給する材料ガス供給手段と、 を備え、  Material gas supply means for supplying the material gas into the gas flow at an intermediate position of the gas flow in the chamber section;
前記ガス流形成手段は、 前記炉内に形成される筒状チヤンバー部内に前記ガス 流を生じさせるものであり、  The gas flow forming means generates the gas flow in a cylindrical chamber portion formed in the furnace,
前記材料ガス供給手段は、 前記チャンバ一部内に噴出口部が突出するように設 けられた噴射ノズルを有するものであり、  The material gas supply means has an injection nozzle provided so that an injection port protrudes into a part of the chamber,
前記ガス流の前記材料ガス供給位置より下流側に形成される反応ガス雰囲気空 間に前記ウェハを保持して半導体ウェハ基板の表面にェピタキシャル膜を成長さ せることを特徴とするものである。  An epitaxy film is grown on a surface of a semiconductor wafer substrate while holding the wafer in a reaction gas atmosphere space formed downstream of the material gas supply position of the gas flow.
本発明のェピタキシャル成長炉によれば、 炉内の基準ガス雰囲気中で予め成長 温度まで加熱されたウェハ基板を、 炉内の反応ガス雰囲気空間へ移動させること によって、 ウェハ基板表面にェピタキシャル膜を成長させることができる。 即ち、 同じ炉内に、 加熱のための基準ガス雰囲気空間と反応ガス雰囲気空間とを、 別空 間として形成することによって、 反応ガス雰囲気空間の雰囲気を単独で一定に調 節しておくことができる。 このため、 ウェハ基板自体をこの予め安定した反応ガ ス雰囲気空間へ移動させるだけで、 ウェハ基板の表面にェピタキシャル膜の成長 処理を開始させることができる。 従って、 ウェハ位置を固定して同一空間の雰囲 気を反応ガス雰囲気に変化させる従来の装置のように、 雰囲気が安定するまでの 不均一な状態が生じることはなく、 いきなり均一な雰囲気状態で、 半導体ウェハ に均一なェピタキシャル膜の成長処理を開始させることができる。  According to the epitaxy growth furnace of the present invention, the wafer substrate preheated to the growth temperature in the reference gas atmosphere in the furnace is moved to the reaction gas atmosphere space in the furnace, so that the epitaxy film is formed on the wafer substrate surface. Can grow. In other words, the reference gas atmosphere space for heating and the reaction gas atmosphere space are formed as separate spaces in the same furnace, so that the atmosphere of the reaction gas atmosphere space can be regulated independently. it can. Therefore, only by moving the wafer substrate itself to the stable reaction gas atmosphere space in advance, the growth processing of the epitaxial film on the surface of the wafer substrate can be started. Therefore, unlike the conventional apparatus in which the wafer position is fixed and the atmosphere in the same space is changed to the reaction gas atmosphere, a non-uniform state until the atmosphere becomes stable does not occur. The process of growing a uniform epitaxial film on the semiconductor wafer can be started.
また、 本発明のェピタキシャル成長炉では、 ウェハ基板の移動により、 安定し た反応ガス雰囲気状態でェピタキシャル膜の成長処理が開始するので、 成長処理 の開始時を明瞭に判断することができる。 また、 当初から一定状態でェピタキシ ャル膜の成長が進むので、 処理時間をより正確に把握することができ、 成長状態 の制御が容易となる。 Further, in the epitaxial growth reactor of the present invention, the movement of the wafer substrate starts the growth processing of the epitaxial film in a stable reaction gas atmosphere state, so that the start of the growth processing can be clearly determined. In addition, since the growth of the epitaxial film proceeds in a constant state from the beginning, the processing time can be grasped more accurately, and the growth state Control becomes easy.
なお、 ェピタキシャル成長処理の終了は、 従来と同様に材料ガスの供給停止に よっても行なえる。 しかし、 材料ガス供給停止後に反応ガス雰囲気の不均一状態 が生じる場合には、 成長処理終了時の明確な特定が困難であると共に、 次の新た な成長処理の開始まで、 即ち材料ガスを放出してから再度安定した反応ガス雰囲 気を得るまでに時間がかかってしまう。  The epitaxy growth process can also be terminated by stopping the supply of the material gas, as in the conventional case. However, if the reaction gas atmosphere becomes non-uniform after stopping the supply of the material gas, it is difficult to clearly identify the end of the growth process, and the material gas is released until the next new growth process starts. After that, it takes time to obtain a stable reaction gas atmosphere again.
そこで、 所定のェピタキシャル成長処理の実行後にウェハ基板を、 材料ガスが 存在しない基準ガス雰囲気空間に移動させれば、 ェピタキシャル成長処理は進行 せず、 成長処理を終了させることができる。 この終了方法では、 反応ガス雰囲気 空間は安定な状態を維持しているため、 次の新たなェピタキシャル成長処理の実 行を開始するまで安定化に要する時間は必要なくなる。 また、 ゥェ八基板の移動 と同時にェピタキシャル成長処理は終了するため、 ェピタキシャル成長の終了時 を明瞭に判断することができ、 成長状態の制御がより容易となる。  Therefore, if the wafer substrate is moved to a reference gas atmosphere space where no source gas is present after the predetermined epitaxy growth process is performed, the epitaxy growth process does not proceed and the growth process can be terminated. In this termination method, since the reaction gas atmosphere space is maintained in a stable state, the time required for stabilization is not required until the start of the next new epitaxy growth process. In addition, since the epitaxial growth process ends at the same time as the movement of the substrate, the end of the epitaxial growth can be clearly determined, and the control of the growth state becomes easier.
炉内で基準ガス雰囲気空間とは別空間の反応ガス雰囲気空間を得るには、 炉内 に基準ガスの特定方向へのガス流を生じさせると共に、 この基準ガス流の流れの 途中位置において材料ガスを一定量づっ供給しつづける。 このようにすれば、 材 料ガスの供給位置より下流の位置で、 安定した反応ガス雰囲気が得られ、 この雰 囲気は反応ガス雰囲気空間として一定に保たれる。 これに対して供給位置より上 流が基準ガス雰囲気空間となる。  In order to obtain a reaction gas atmosphere space different from the reference gas atmosphere space in the furnace, a gas flow in a specific direction of the reference gas is generated in the furnace, and a material gas is generated at a position halfway in the flow of the reference gas flow. Is supplied in a constant amount. In this way, a stable reaction gas atmosphere can be obtained at a position downstream of the material gas supply position, and this atmosphere is kept constant as a reaction gas atmosphere space. On the other hand, the upstream of the supply position becomes the reference gas atmosphere space.
従って、 このようにして得られた上流の基準ガス雰囲気空間から下流の安定し た反応ガス雰囲気空間へウェハ基板を移動させることにより、 ウェハ基板にいき なり均一なェピタキシャル膜の成長状態が得られ、 成長処理の開始時から安定で 均一なェピタキシャル膜の成長を行わせることができる。  Therefore, by moving the wafer substrate from the upstream reference gas atmosphere space thus obtained to the downstream stable reaction gas atmosphere space, a uniform epitaxy film growth state can be obtained immediately on the wafer substrate. From the start of the growth process, a stable and uniform epitaxial film can be grown.
さらに、 ェピタキシャル成長処理を終了させる場合には、 ウェハ基板を、 ェピ タキシャル成長処理を行う位置である材料ガスの供給位置より下流の反応ガス雰 囲気空間から、 前記供給位置より上流の基準ガス雰囲気空間へ移動させればよい。 この場合、 ウェハ基板は材料ガスの存在しない空間に置かれるため、 ェピ夕キシ ャル成長処理は速やかに終了する。 Further, when terminating the epitaxial growth process, the wafer substrate is moved from the reaction gas atmosphere space downstream of the material gas supply position where the epitaxial growth process is performed to the reference gas upstream of the supply position. What is necessary is just to move to an atmosphere space. In this case, since the wafer substrate is placed in a space where no material gas is present, the epitaxial growth process ends immediately.
また、 ウェハ基板を基準ガス雰囲気空間から反応ガス雰囲気空間へ移動させる 搬送手段と、 さらに、 ウェハ基板を炉内で加熱する加熱手段を備えておけば、 基 準ガス雰囲気空間において、 加熱手段で所定の成長温度まで加熱したウェハ基板 を、 搬送手段によって反応ガス雰囲気空間へ移動させることができる。 反応ガス 雰囲気空間が予め安定に調製されていれば、 この搬送手段によるウェハ基板の移 動により、 直ちに均一な状態における均一なェピタキシャル膜の成長が開始され る。  Further, if a transfer means for moving the wafer substrate from the reference gas atmosphere space to the reaction gas atmosphere space, and a heating means for heating the wafer substrate in the furnace are provided, the heating means in the reference gas atmosphere space may be used. The wafer substrate heated to the growth temperature can be moved to the reaction gas atmosphere space by the transfer means. If the reaction gas atmosphere space has been prepared in advance in a stable manner, the movement of the wafer substrate by this transfer means immediately starts the growth of a uniform epitaxy film in a uniform state.
ェピタキシャル成長処理の実行開始時とは逆に、 搬送手段によってウェハ基板 を反応ガス雰囲気空間から基準ガス雰囲気空間へ速やかに移動させる構成とすれ ば、 基準ガス雰囲気空間は材料ガスが存在しないため、 直ちにェピタキシャル成 長処理は終了する。  If the wafer substrate is quickly moved from the reaction gas atmosphere space to the reference gas atmosphere space by the transfer means, contrary to the start of the epitaxy growth process, the reference gas atmosphere space does not contain a material gas. The epitaxy growth process ends immediately.
本発明のェピタキシャル成長炉は、 炉内に基準ガス雰囲気空間とこれとは別空 間の反応ガス雰囲気空間を形成する構成として、 炉内に設けられた筒形状のチヤ ンバー部内に、 ガス流形成手段によって基準ガスによる特定方向へのガス流を形 成し、 このガス流の途中位置に材料ガスを供給するための材料ガス供給手段が、 チャンバ一部内に噴出口部が突出するように設けられた噴射ノズルを備えたもの である。  The epitaxy growth reactor of the present invention has a structure in which a reference gas atmosphere space and a reaction gas atmosphere space separate from the reference gas atmosphere space are formed in the furnace, and a gas flow is formed in a cylindrical chamber provided in the furnace. The forming means forms a gas flow in a specific direction by the reference gas, and material gas supply means for supplying the material gas at a position in the middle of the gas flow is provided such that the ejection port projects in a part of the chamber. It is equipped with a spray nozzle.
チャンバ一部内において材料ガス供給位置より上流に基準ガス雰囲気空間を、 下流に反応ガス雰囲気空間を形成するに際して、 材料ガス噴出口がチャンバ一壁 にあると、 その壁に沿って材料ガスが流れてしまい、 チャンバ一部内での材料ガ ス流は偏ってしまい、 基準ガスとの混合が良好に行なえない。 このため、 噴出口 近くでは、 均一な反応ガス雰囲気が得られず、 ある程度下流方向に離れなければ 雰囲気は安定しない。  When forming a reference gas atmosphere space upstream of the material gas supply position and a reaction gas atmosphere space downstream in a part of the chamber, if the material gas ejection port is located on one wall of the chamber, the material gas flows along the wall. As a result, the material gas flow in a part of the chamber is deviated, and mixing with the reference gas cannot be performed well. For this reason, a uniform reaction gas atmosphere cannot be obtained near the jet port, and the atmosphere is not stable unless it is separated to some extent in the downstream direction.
しかし、 本発明のェピタキシャル成長炉においては、 噴射ノズルのチャンバ一 壁より内部へ突出した噴出口部から材料ガスが噴出するため、 材料ガスは、 チヤ ンバー壁に沿うことなく、 チャンバ一内へ突出した位置から供給され、 その下流 部分ではチャンバ一内を均一な分布で流れる。 従って、 供給位置から下流では、 基準ガスと材料ガスとの混合もチャンバ一内で偏らず、 均一な反応ガスになり易 い。 However, in the epitaxial growth reactor of the present invention, the chamber of the injection nozzle is Since the material gas is ejected from the ejection port projecting inward from the wall, the material gas is supplied from the position protruding into the chamber without flowing along the chamber wall, and is uniformly distributed in the chamber at the downstream portion. Flow in distribution. Therefore, downstream of the supply position, the mixing of the reference gas and the material gas is not biased within the chamber, and the reaction gas tends to be uniform.
本発明の別の一つの態様によれば、 上記ェピタキシャル成長炉は、  According to another aspect of the present invention, the epitaxy growth reactor comprises:
前記噴射ノズルが、 前記ガス流の流れ方向の交差する方向に材料ガスを噴出す ることを特徴とするものである。  The injection nozzle may eject a material gas in a direction intersecting a flow direction of the gas flow.
本発明では、 噴射ノズルがガス流の流れ方向に交差する方向に材料ガスを噴出 するので、 材料ガスの分散はチャンバ一部内でより均一となる。 例えば、 チャン バーの上側に噴射ノズルを設ける場合は、 チャンバ一の下方へ、 あるいは斜め下 方に向かって材料ガスを噴出する構成とすればよい。 この場合には、 材料ガスは チヤンバーの上壁面に沿うことなく、 チヤンバ一内部を均一な分布で流れる。 ウェハ基板に均一なェピタキシャル膜を成長させるように、 ェピタキシャル成 長処理の実行時にウェハ基板上で均一な反応ガス雰囲気を得るためには、 上記の ような材料ガスの基準ガス流中への分散はより均一であることが望ましい。 本発明の好ましい態様によれば、 上記ェピタキシャル成長炉は、  In the present invention, since the injection nozzle ejects the material gas in a direction intersecting the flow direction of the gas flow, the distribution of the material gas becomes more uniform within a part of the chamber. For example, when the injection nozzle is provided above the chamber, the material gas may be injected downward or obliquely downward of the chamber. In this case, the material gas flows uniformly inside the chamber without flowing along the upper wall of the chamber. In order to obtain a uniform reaction gas atmosphere on the wafer substrate during the epitaxy growth process so as to grow a uniform epitaxy film on the wafer substrate, the above-mentioned material gas is introduced into the reference gas flow. Desirably, the dispersion is more uniform. According to a preferred embodiment of the present invention, the epitaxy growth reactor,
前記噴射ノズルが、 ェピタキシャル成長処理の実行時に前記ガス流の流れ方向 の下流側に保持される半導体ウェハ基板に向かって前記材料ガスを噴射すること を特徴とするものである。  The injection nozzle injects the material gas toward a semiconductor wafer substrate held on a downstream side in a flow direction of the gas flow during execution of an epitaxy growth process.
本発明によれば、 噴射ノズルによって、 噴射位置から下流側のウェハ基板に向 かう材料ガスが基準ガス中の均一に分散し、 ウェハ基板の保持領域に到達する際 には均一な反応ガス雰囲気となる。  According to the present invention, the material gas directed from the injection position to the wafer substrate on the downstream side is uniformly dispersed in the reference gas by the injection nozzle, and when reaching the holding area of the wafer substrate, a uniform reaction gas atmosphere is formed. Become.
本発明の更に別の好ましい態様によれば、 上記ェピタキシャル成長炉は、 前記噴射ノズルが、 ェピタキシャル成長処理の実行時に前記ガス流の流れ方向 の下流側に保持される前記ウェハ基板と対向する噴射面を有し、 この噴射面が前 記半導体ウェハ基板表面の外形とほぼ等しいものであり、 この噴射面に設けられ た複数の噴射孔から前記材料ガスを噴射させることを特徴とするものである。 このような噴射ノズルの構成によれば、 ウェハ基板表面とほぼ等しい噴射面か ら噴射された材料ガスは、 基準ガス流とともに下流側へ流れ、 ちょうど、 ウェハ 基板の表面領域において均一な反応ガス雰囲気を形成する。 According to still another preferred aspect of the present invention, in the epitaxy growth furnace, the injection nozzle faces the wafer substrate held on the downstream side in the gas flow direction during execution of the epitaxy growth process. It has an ejection surface, and this ejection surface is in front The material gas is substantially equal to the outer shape of the surface of the semiconductor wafer substrate, and the material gas is injected from a plurality of injection holes provided on the injection surface. According to such a configuration of the injection nozzle, the material gas injected from the injection surface substantially equal to the wafer substrate surface flows downstream together with the reference gas flow, and the reaction gas atmosphere is uniform in the surface region of the wafer substrate. To form
本発明の更に別の好ましい態様によれば、 上記ェピタキシャル成長炉は、 前記噴射面に設けられた噴射孔は、 前記ガス流の方向に向かうように斜め下方 に前記材料ガスを噴出させることを特徴とするものである。  According to still another preferred aspect of the present invention, in the epitaxy growth reactor, the injection hole provided in the injection surface may discharge the material gas obliquely downward toward the direction of the gas flow. It is a feature.
本発明によれば、 噴射孔によって、 より確実に材料ガスをウェハ基板表面に向 かって流すことができる。  According to the present invention, the material gas can be more reliably flowed toward the wafer substrate surface by the injection hole.
本発明の更に別の好ましい態様によれば、 上記ェピタキシャル成長炉は、 前記噴射面に設けられた噴射孔は、 前記噴射面のほぼ全面に均等に分散して配 設されていることを特徴とするものである。  According to still another preferred aspect of the present invention, the epitaxy growth reactor is characterized in that the injection holes provided on the injection surface are uniformly distributed over substantially the entire injection surface. It is assumed that.
本発明によれば、 噴射面からの噴射当初から材料ガスをより均一な分散状態と することができる。  According to the present invention, the material gas can be more uniformly dispersed from the beginning of the injection from the injection surface.
以上説明したとおり、 本発明は、 ェピタキシャル成長炉内に形成された基準ガ ス雰囲気空間から反応ガス雰囲気空間へウェハ基板を移動させるだけで、 ェピ夕 キシャル成長処理の開始時から、 ウェハ基板に均一なェピタキシャル膜が成長す るという効果がある。  As described above, according to the present invention, the wafer substrate is moved only from the reference gas atmosphere space formed in the epitaxial growth furnace to the reaction gas atmosphere space, and the wafer substrate is started from the beginning of the epitaxial growth process. This has the effect that a uniform epitaxial film grows.
本発明の上述およびそれ以外の特徴と利点は、 限定を意図しない単なる例示の ための添付図面を参照して以下の好適な実施例の説明を読むことにより一層明確 に理解されよう。 図面の簡単な説明  The above and other features and advantages of the present invention will be more clearly understood from the following description of the preferred embodiments thereof, taken in conjunction with the accompanying drawings, which are provided by way of non-limiting example only. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施例に係るェピタキシャル成長炉の概略構成を示す模式図 である。 図 2 aは、 本発明の一実施例による噴射ノズルの噴射面を示す平面図である。 図 2 bは、 本発明の一実施例による噴射ノズルの噴射面及び噴射孔を示す拡大断 面図である。 発明を実施するための最良の形態 FIG. 1 is a schematic diagram showing a schematic configuration of an epitaxial growth reactor according to one embodiment of the present invention. FIG. 2A is a plan view showing the ejection surface of the ejection nozzle according to one embodiment of the present invention. FIG. 2B is an enlarged cross-sectional view showing the injection surface and the injection hole of the injection nozzle according to one embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
本実施例のェピタキシャル成長炉 1は、 図 1に示すように、 筒形状の反応チヤ ンバー 2 2、 反応チャンバ一 2 2内部を加熱するための複数の赤外線ランプ 3、 材料ガスを噴射する噴射ノズル 5を備えており、 複数の半導体ウェハ基板 Wを格 納するロードロックチャンバ一 2が接続されている。 また、 ェピタキシャル成長 炉 1内部には、 ロードロックチャンバ一 2と反応チャンバ一 2 2内でウェハを搬 送するロボットアーム 8が配置されており、 ロボッ トアーム 8の先端にはウェハ を載置するためのロボットハンド 9が装備されている。  As shown in FIG. 1, the epitaxy growth reactor 1 of the present embodiment includes a cylindrical reaction chamber 22, a plurality of infrared lamps 3 for heating the inside of the reaction chamber 22, and an injection for injecting a material gas. A nozzle 5 is provided, and a load lock chamber 12 for storing a plurality of semiconductor wafer substrates W is connected thereto. Further, a robot arm 8 for carrying a wafer in the load lock chamber 12 and the reaction chamber 122 is disposed inside the epitaxy growth reactor 1, and the wafer is mounted on the tip of the robot arm 8. Robot hand 9 is equipped.
ロードロックチャンバ一 2は、 下部にエレべ一夕軸 1 7を備え、 チャンバ一内 の内部は清浄な窒素でパージされている。 ロードロツクチャンバー 2内でエレべ —夕軸 1 7の端部には多段キヤリァ 1 5が着脱可能に装着されている。 このキヤ リア 1 5は、 上下に多段構造をなす複数の棚 1 6を有している。 また、 口一ドロ ツクチャンバ一 2は、 ロボットアーム 8、 ロボッ トハンド 9及び該ハンド 9に掴 まれたウェハ Wが通過可能な開口を介して反応チヤンバ一 2 2と連通しており、 多段キャリア 1 5の各棚 1 6は、 この開口に向かい合う前面側が開かれている。 また、 各棚 1 6はエレベータ軸 1 7の昇降動作によって個々に前記開口に対畤可 能である。  The load lock chamber 12 is provided with an elevator shaft 17 at the lower part, and the inside of the chamber 1 is purged with clean nitrogen. Elevator in the load lock chamber 2-At the end of the evening shaft 17, a multi-stage carrier 15 is detachably mounted. The carrier 15 has a plurality of shelves 16 having a multi-tiered structure at the top and bottom. The mouth chamber 12 is in communication with the reaction chamber 22 through a robot arm 8, a robot hand 9, and an opening through which the wafer W gripped by the hand 9 can pass. Each shelf 16 is open on the front side facing this opening. In addition, each shelf 16 can be individually moved to the opening by the elevating operation of the elevator shaft 17.
本実施例において、 表面酸化膜の除去、 洗浄及び乾燥を含むゥェ八準備プロセ スを経た半導体ウェハは、 ェピタキシャル成長処理に先立ち、 多段キャリア 1 5 の各棚 1 6に収納され、 この多段キヤリア 1 5が口一ドロツクチャンバ一 2内の エレベータ軸 1 7に交換可能に装着される。 その後、 後述するように、 各棚 1 6 のウェハがロボッ トハンド 9によって棚 1 6から取り出され、 ロボッ トアーム 8 によって反応チャンバ一 2 2内に搬送される。 空になった棚 1 6には後述のよう に反応チャンバ一 2 2内からロボッ トアーム 8によって搬送されてきた、 処理済 のウェハが再び収容される。 全ての棚 1 6が処理済ウェハで埋まったら、 その多 段キャリア 1 5はエレべ一夕軸 1 7から外されて口一ドロツクチャンバ一 2から 別の場所、 例えば検査プロセス等へ送られる。 In this embodiment, the semiconductor wafer which has undergone the wafer preparation process including the removal, cleaning and drying of the surface oxide film is stored in each shelf 16 of the multi-stage carrier 15 before the epitaxial growth process. The carrier 15 is exchangeably mounted on the elevator shaft 17 in the mouth chamber 12. Then, as described later, the wafers on each shelf 16 are taken out of the shelf 16 by the robot hand 9 and the robot arm 8 Is transported into the reaction chamber 122. In the empty shelf 16, processed wafers transported by the robot arm 8 from the inside of the reaction chamber 22 as described later are stored again. When all the shelves 16 are filled with processed wafers, the multi-stage carrier 15 is removed from the elevator shaft 17 and sent from the mouth and the drop chamber 12 to another location, for example, an inspection process. .
多軸ロボッ ト 1 8は、 ゥェハをロボットハンド 9によって口一ドロツクチャン バー 2からロボッ トアーム 8上に取り込み、 またはロボッ トハンド 9によって口 ボットアーム 8上から口一ドロツクチャンバー 2へ渡し、 そしてウェハをロボッ トアーム 8によって口一ドロツクチャンバ一 2と反応チヤンバ一 2 2内のウェハ のローデイング位置との間を搬送するという各作業を実行する。  The multi-axis robot 18 takes in the wafer from the mouth lock chamber 2 by the robot hand 9 onto the robot arm 8 or transfers the wafer from the mouth arm 8 to the mouth lock chamber 2 by the robot hand 9 and transfers the wafer. The robot arm 8 carries out each operation of transferring the wafer between the mouth drop chamber 12 and the wafer loading position in the reaction chamber 122.
ェピタキシャル成長炉 1は、 本実施例では、 一回のェピタキシャル成長処理に 比較的大口径の一枚のウェハにェピタキシャル成長処理を施す形式のものである が、 本発明はこの形式に限定されるものではない。 ェピタキシャル成長炉 1は、 それぞれ開口を有するフロントフランジ 1 1 aと、 リアフランジ 1 1 bとを有す る石英製の筒状外殻 1 3を備えている。 フロントフランジ 1 1 aの開口には、 口 一ドロツクチャンバー 2との境目を画するように開放及び閉鎖可能なゲート 1 2 が取り付けられている。 即ち、 ゲート 1 2を開放した状態で、 ェピタキシャル成 長炉 1の反応チャンバ一 2 2と口一ドロツクチャンバ一 2がその開口を通じて連 通するように構成されている。 一方、 リアフランジ 1 1 bは着脱可能な蓋 1 4で 閉鎖されている。 そして、 ェピタキシャル成長炉 1は、 リアフランジ l i bとゲ —ト 1 2により密閉された状態で、 反応チャンバ一 2 2内部でウェハにェピタキ シャル成長処理を施すように構成されている。 反応チャンバ一 2 2内に水素ガス を流すために、 フロントフランジ 1 1 aにはガスインジェク夕一ポート 4が、 リ アフランジ 1 1 bにはガスベントポート 1 9がそれぞれ設けられ、 ィンジェクタ ーポ一ト 4から導入された水素ガスが反応チヤンバー 2 2内を流れてガスベント ボート 1 9から排出されるようになっている。 即ち、 反応チャンバ一 2 2内には、 ガスインジェクターポ一ト 4を上流とし、 ガスベントポート 1 9を下流とした水 素ガスの流れが形成される。 ィンジェクタ一ポート 4には図示しない水素ガス供 給装置が、 ガスベントポート 1 9には図示しないベント制御装置は配管によって それぞれ接続されており、 水素ガスの流れは、 反応チャンバ一 2 2内で常に一定 量となるように、 配管によってガス圧力や、 ガス流量等が調節される。 また、 反 応チャンバ一 2 2内に材料ガスとしてのシリコンソースガス、 例えば、 S i C , S iHC h , S iH2Cし , S iH4等を水素ガス流中に供給するために、 反応チャンバ一 2 2の上部ほぼ中央には、 噴射ノズル 5が設けられている。 この噴射ノズル 5には、 図示しないシリコンソースガス供給装置が配管によって接続されている。 そして、 シリコンソースガスの圧力や流量は配管によって調整される。 In this embodiment, the epitaxy growth reactor 1 is of a type in which a single large-diameter wafer is subjected to epitaxy growth processing in one epitaxy growth processing, but the present invention is limited to this type. It is not something to be done. The epitaxial growth reactor 1 includes a quartz outer shell 13 having a front flange 11 a having an opening and a rear flange 11 b. A gate 12 that can be opened and closed is attached to the opening of the front flange 11 a so as to demarcate the mouth and the drop chamber 2. That is, with the gate 12 open, the reaction chamber 122 of the epitaxy growth furnace 1 communicates with the mouth chamber 12 through its opening. On the other hand, the rear flange 11b is closed by a removable lid 14. The epitaxial growth reactor 1 is configured to perform an epitaxial growth process on the wafer inside the reaction chamber 122 in a state sealed by the rear flange lib and the gate 12. In order to supply hydrogen gas into the reaction chamber 122, a gas injection port 4 is provided on the front flange 11a and a gas vent port 19 is provided on the rear flange 11b, and an injector port is provided. The hydrogen gas introduced from 4 flows through the reaction chamber 22 and is discharged from the gas vent boat 19. That is, inside the reaction chamber 22 A hydrogen gas flow is formed with the gas injector port 4 upstream and the gas vent port 19 downstream. A hydrogen gas supply device (not shown) is connected to the injector port 4 and a vent control device (not shown) is connected to the gas vent port 19 by piping.The flow of hydrogen gas is always constant in the reaction chamber 122. The gas pressure, gas flow rate, etc. are adjusted by pipes so that the flow rate can be controlled. The silicon source gas as a material gas to the reaction chamber one 2 2, for example, S i C, S iHC h , and S iH 2 C, in order to supply the S iH 4 or the like the hydrogen gas stream, the reaction An injection nozzle 5 is provided substantially at the center of the upper part of the chamber 122. A silicon source gas supply device (not shown) is connected to the injection nozzle 5 by a pipe. The pressure and flow rate of the silicon source gas are adjusted by piping.
噴射ノズル 5は、 反応チャンバ一 2 2内の下方へ突出する噴射面 6を有し、 噴 射面 6の直径は、 ウェハ Wの直径より 1 0〜6 0 mm程度大きい外形となってい る。 図 2 aに示すように、 噴射面 6には、 シリコンソースガスを噴射する複数の 噴射孔 7が噴射面 6の全面に亘りほぼ均一に分散するように設けられている。 こ の噴射孔 7の内径は、 それぞれ約 0 . 3〜 3 mmである。 図 2 bに示すように、 噴 射孔 7の中心軸は、 噴射面 6に対して 1 0〜8 5度リアフランジ 1 1 b側に傾斜 しており、 噴射孔 7から噴出されるシリコンソースガスはリアフランジ 1 1 b側 斜め下方に向かうことになる。 このシリコンソースガスの噴出方向は、 ロボッ ト ハンド 9で保持されたウェハの口一ディング位置となっており、 このため、 ェピ タキシャル成長処理時には、 シリコンソースガスはローディングされたウェハ表 面に噴射されるようになっている。  The injection nozzle 5 has an injection surface 6 protruding downward in the reaction chamber 122, and the diameter of the injection surface 6 is about 10 to 60 mm larger than the diameter of the wafer W. As shown in FIG. 2A, the injection surface 6 is provided with a plurality of injection holes 7 for injecting a silicon source gas so as to be substantially uniformly dispersed over the entire surface of the injection surface 6. The inner diameter of each of the injection holes 7 is about 0.3 to 3 mm. As shown in Fig. 2b, the center axis of the injection hole 7 is inclined 10 to 85 degrees to the rear flange 11b side with respect to the injection surface 6, and the silicon source injected from the injection hole 7 The gas will flow diagonally downward on the rear flange 1 1b side. The direction in which the silicon source gas is ejected is at the position where the wafer held by the robot hand 9 is positioned. Therefore, during the epitaxial growth process, the silicon source gas is ejected onto the surface of the loaded wafer. It is supposed to be.
また、 ェピタキシャル成長炉 1には、 その反応チャンバ一 2 2の上下に複数の 赤外線ランプ 3が配置されており、 この赤外線ランプ 3により反応チャンバ一 2 2の内部が加熱されるようになっている。  In addition, in the epitaxial growth reactor 1, a plurality of infrared lamps 3 are arranged above and below the reaction chamber 122, and the inside of the reaction chamber 122 is heated by the infrared lamp 3. I have.
以上のように構成されたェピタキシャル成長炉 1を利用して、 半導体ウェハの 表面にェピタキシャル膜を成長させる処理について以下に説明する。 まず、 事前に表面酸化膜の除去、 洗浄及び乾燥を含むウェハ準備工程を経た複 数の半導体ウェハは、 ェピタキシャル成長炉 1外部のクリーンチャンバ一内の室 温状況下で、 多段キャリア 1 5の各棚 1 6に次々に格納される。 この多段キヤリ ァ 1 5は次いで口一ド口ツクチャンバ一 2内のエレべ一夕軸 1 7の端部に装着さ れ、 エレべ一夕軸 1 7の昇降動作によって処理するウェハを格納した棚 1 6が開 口に対峙する位置レベルまでリフトされる。 A process for growing an epitaxial film on the surface of a semiconductor wafer using the epitaxial growth reactor 1 configured as described above will be described below. First, a plurality of semiconductor wafers that have undergone a wafer preparation process including removal of a surface oxide film, cleaning and drying beforehand are placed in a multi-stage carrier 15 under room temperature conditions inside an epitaxy growth furnace 1 and a clean chamber 1 outside. Each shelf 16 stores one after another. The multi-stage carrier 15 is then attached to the end of the elevator shaft 17 in the mouth chamber 12, and a shelf that stores wafers to be processed by the lifting and lowering operation of the elevator shaft 17. 16 is lifted to the position level facing the opening.
次に、 ェピタキシャル成長炉 1のィンジェクタ一ポ一ト 4から水素ガスを導入 し、 反応チャンバ一 2 2内に一定流量の水素ガス流を形成する。 その後、 この状 態で、 噴射ノズル 5から一定量のシリコンソースガスを反応チヤンバ一 2 2内へ 供給する。 シリコンソースガスの供給を続けると、 このシリコンガス供給位置、 即ち噴射ノズル 5の設置位置から水素ガス流の下流であるリアフランジ 1 1 b側 に斜め下方向に噴出されたシリコンソースガスが水素ガス流中に分散されながら 下流へ流れ、 反応ガスが生成する。 水素ガス流とシリコンソースガスの導入を一 定流量に保持し続けると、 下流側の反応ガス雰囲気は均一となり、 安定状態を維 持した反応ガス雰囲気空間 1 0が下流側に形成される。 これに対して、 シリコン ソースガス供給位置からフロントフランジ 1 1 a側、 即ち水素ガス流の上流側は 水素ガスのみからなる水素ガス雰囲気空間 (基準ガス雰囲気空間) 2 0となる。 これと同時に、 反応チャンバ一 2 2内は、 赤外線ランプ 3からの加熱によって約 7 0 0で〜 8 0 0で程度の余熱温度に達している。  Next, hydrogen gas is introduced from the injector port 4 of the epitaxial growth reactor 1 to form a hydrogen gas flow at a constant flow rate in the reaction chamber 122. Thereafter, in this state, a fixed amount of silicon source gas is supplied from the injection nozzle 5 into the reaction chamber 122. When the supply of the silicon source gas is continued, the silicon source gas spouted obliquely downward from this silicon gas supply position, that is, from the installation position of the injection nozzle 5 to the rear flange 11 b side downstream of the hydrogen gas flow is generated. Reacted gas is generated while flowing downstream while being dispersed in the stream. If the introduction of the hydrogen gas flow and the silicon source gas is maintained at a constant flow rate, the reaction gas atmosphere on the downstream side becomes uniform, and a reaction gas atmosphere space 10 that maintains a stable state is formed on the downstream side. In contrast, the front flange 11a side from the silicon source gas supply position, that is, the upstream side of the hydrogen gas flow, is a hydrogen gas atmosphere space (reference gas atmosphere space) 20 consisting of only hydrogen gas. At the same time, the inside of the reaction chamber 122 reaches a residual heat temperature of about 700 to 800 by heating from the infrared lamp 3.
このように、 反応チャンバ一 2 2内に均一で安定した水素ガス雰囲気空間 2 0 と反応ガス雰囲気空間 1 0が形成されたら、 この状況を維持したまま、 成長炉の ゲート 1 2を開放する。 そして、 ロボッ トアーム 8によってハンド 9が開口を介 して口一ドロツクチャンバ一 2内に進入され、 開口に対峙している予め選ばれた 棚 1 6のウェハがハンド 9によって保持される。 ウェハは、 ハンド 9により保持 されたまま、 ロボッ トアーム 8によって反応チヤンバー 2 2内の水素ガス雰囲気 空間 2 0に搬送される。 次いで、 ゲート 1 2が閉鎖され、 反応チャンバ一 2 2は 密閉される。 尚、 多段キャリア 1 5は、 ウェハが後述のようにェピタキシャル成 長処理を受けて元の同じ棚 1 6に戻されるまで動かされることはない。 When the uniform and stable hydrogen gas atmosphere space 20 and the reaction gas atmosphere space 10 are thus formed in the reaction chamber 122, the gate 12 of the growth furnace is opened while maintaining this state. Then, the hand 9 enters the mouth and drop chamber 12 through the opening by the robot arm 8, and the wafer on the pre-selected shelf 16 facing the opening is held by the hand 9. The wafer is transferred to the hydrogen gas atmosphere space 20 in the reaction chamber 22 by the robot arm 8 while being held by the hand 9. Gate 1 2 is then closed and reaction chamber 1 2 2 Sealed. Incidentally, the multi-stage carrier 15 is not moved until the wafer is subjected to the epitaxy growth processing as described later and returned to the same original shelf 16.
次に、 赤外線ランプ 3によって、 反応チャンバ一 2 2内をェピタキシャル反応 温度、 例えば 9 0 0で〜 1 2 0 0 まで徐々に加熱する。 反応チャンバ一 2 2内 がェピタキシャル成長温度に達するまで、 ウェハは、 上流の水素ガス雰囲気空間 2 0でロボッ トハンド 9に保持されたまま待機する。 反応チャンバ一 2 2内が、 ェピタキシャル成長温度に達したら、 ロボッ トアーム 8によって反応チャンバ一 2 2下流のローディング位置まで速やかに搬送される。 この口一ディング位置に は、 噴射ノズル 5から噴射されたシリコンソースガスにより、 予め反応ガス雰囲 気空間 1 0が形成されているため、 ローデイング位置に搬送され、 約 9 0 0で以 上の高温に加熱されたウェハの表面に、 還元又は熱分解によって直ちにェピタキ シャル膜が成長し、 ェピタキシャル成長処理が開始する。 また、 反応ガス雰囲気 は、 予め均一で安定状態に維持されており、 ウェハはこのような反応ガス雰囲気 にいきなり曝されることになるため、 ウェハ表面には、 ェピタキシャル成長処理 の開始時からェピタキシャル膜が均一な状態で均一に成長する。 更に、 本実施例 では、 ウェハ Wの反応ガス雰囲気空間 1 0への搬送時がェピタキシャル成長処理 の開始時となるので、 成長処理の開始時点を明確に判断でき、 ェピタキシャル成 長処理における時間制御を容易に実行することができるという利点がある。 ウェハ表面にェピタキシャル膜が目標厚さにまで成長したら、 ロボッ トアーム 8によってウェハを上流の水素ガス雰囲気空間 2 0に搬送する。 これにより、 ェ ピタキシャル成長処理が終了する。 そして、 反応チャンバ一 2 2内が徐々に降温 され、 充分に安定な温度、 例えば室温近くまで降温されたときにゲート 1 2が開 放される。 次いで、 ロボッ トアーム 8により、 ェピタキシャル成長済のウェハ Next, the inside of the reaction chamber 122 is gradually heated by the infrared lamp 3 to an epitaxy reaction temperature, for example, 900 to 2200. The wafer waits while being held by the robot hand 9 in the hydrogen gas atmosphere space 20 upstream until the inside of the reaction chamber 122 reaches the epitaxial growth temperature. When the inside of the reaction chamber 122 reaches the epitaxy growth temperature, it is immediately transferred by the robot arm 8 to the loading position downstream of the reaction chamber 122. At this mouthing position, a reaction gas atmosphere space 10 is previously formed by the silicon source gas injected from the injection nozzle 5, and is conveyed to the loading position. The epitaxy film grows immediately on the surface of the wafer heated to a high temperature by reduction or thermal decomposition, and the epitaxy growth process starts. In addition, the reaction gas atmosphere is previously maintained in a uniform and stable state, and the wafer is suddenly exposed to such a reaction gas atmosphere. Therefore, the wafer surface is exposed from the beginning of the epitaxial growth process. The epitaxial film grows uniformly in a uniform state. Further, in the present embodiment, the transfer of the wafer W to the reaction gas atmosphere space 10 is the start of the epitaxial growth process, so that the start time of the growth process can be clearly determined, and the time in the epitaxial growth process There is an advantage that control can be easily performed. When the epitaxial film has grown to the target thickness on the wafer surface, the wafer is transported to the upstream hydrogen gas atmosphere space 20 by the robot arm 8. This ends the epitaxial growth process. Then, the temperature inside the reaction chamber 122 is gradually lowered, and when the temperature is lowered to a sufficiently stable temperature, for example, near room temperature, the gate 122 is opened. Next, the wafer that has been epitaxially grown is
(ェピタキシャルウェハ) がハンド 9によって保持された状態のまま、 反応チヤ ンバー 2 2から開放したゲート 1 2を介してロードロックチャンバ一 2内の出発 位置である元の棚 1 6まで戻される。 次に、 多段カセッ 卜の他の棚 1 6に収容されているウェハについても同様に、 水素ガス雰囲気空間 2 0への搬送及び加熱、 反応ガス雰囲気空間 1 0.への搬送に よるェピタキシャル成長処理の開始、 水素ガス雰囲気空間 2 0への搬送によるェ ピ夕キシャル成長処理の終了、 反応チャンバ一 2 2内の降温、 多段カセッ トへの 収容と順次実行する。 本実施例のェピタキシャル成長炉 1によれば、 新たなゥェ 八に対して新たにェピタキシャル成長処理を開始する度に、 反応ガス雰囲気の調 整をし直す必要がないため、 効率よく、 連続してェピタキシャル成長処理をゥェ 八に施すことができる。 While the (epitaxial wafer) is held by the hand 9, it is returned to the original shelf 16 which is the starting position in the load lock chamber 12 via the gate 12 opened from the reaction chamber 22. Next, the wafers accommodated in the other shelves 16 of the multi-stage cassette are similarly transported to the hydrogen gas atmosphere space 20 and heated, and transported to the reaction gas atmosphere space 10. The process is started in order, starting the process, terminating the epitaxy growth process by transporting to the hydrogen gas atmosphere space 20, lowering the temperature in the reaction chamber 122, and storing it in the multi-stage cassette. According to the epitaxy growth reactor 1 of this embodiment, it is not necessary to readjust the reaction gas atmosphere every time a new epitaxy growth process is started for a new epitaxy. Continuous epitaxial growth processing can be performed on the wafer.
このようにして、 各棚 1 6のウェハに対するェピタキシャル成長処理が行われ て多段キヤリア 1 5の複数の棚 1 6のウェハが全てェピタキシャルウェハとなつ たら、 多段キャリア 1 5はエレべ一夕軸 1 7から外され、 次の工程、 例えば検査 工程まで搬送される。  In this way, when the epitaxy growth process is performed on the wafers on each shelf 16 and all the wafers on the multiple shelves 16 of the multi-stage carrier 15 become epitaxy wafers, the multi-stage carrier 15 becomes an overnight. It is removed from the shaft 17 and transported to the next process, for example, the inspection process.

Claims

請求の範囲 The scope of the claims
1 . 筒形状のチャンバ一部と、  1. A cylindrical chamber part,
前記チャンバ一部内に前記材料ガスを含まない基準ガスの特定方向へのガス流 を生じさせるガス流形成手段と、  Gas flow forming means for generating a gas flow in a specific direction of the reference gas not containing the material gas in a part of the chamber;
前記チャンバ一部内のガス流の途中位置において前記材料ガスを前記ガス流中 に供給する材料ガス供給手段と、 を備え、  Material gas supply means for supplying the material gas into the gas flow at an intermediate position of the gas flow in the chamber part;
前記ガス流形成手段は、 前記炉内に形成される筒状チヤンバー部内に前記ガス 流を生じさせるものであり、  The gas flow forming means generates the gas flow in a cylindrical chamber portion formed in the furnace,
前記材料ガス供給手段は、 前記チャンバ一部内に噴出口部が突出するように設 けられた噴射ノズルを有するものであり、  The material gas supply means has an injection nozzle provided so that an injection port protrudes into a part of the chamber,
前記ガス流の前記材料ガス供給位置より下流側に形成される反応ガス雰囲気空 間に前記ウェハを保持して半導体ウェハ基板の表面にェピタキシャル膜を成長さ せることを特徴とするェピタキシャル成長炉。  An epitaxy growth furnace, wherein an epitaxy film is grown on a surface of a semiconductor wafer substrate while holding the wafer in a reaction gas atmosphere space formed downstream of the material gas supply position of the gas flow. .
2 . 前記噴射ノズルが、 前記ガス流の流れ方向の交差する方向に材料ガスを噴 出することを特徴とする請求項 1に記載のェピタキシャル成長炉。  2. The epitaxy growth furnace according to claim 1, wherein the injection nozzle ejects a material gas in a direction intersecting a flow direction of the gas flow.
3 . 前記噴射ノズルが、 ェピタキシャル成長処理の実行時に前記ガス流の流れ 方向の下流側に保持される半導体ウェハ基板に向かって前記材料ガスを噴射する ことを特徴とする請求項 1又は請求項 2に記載のェピタキシャル成長炉。  3. The injection nozzle injects the material gas toward a semiconductor wafer substrate held on a downstream side in a flow direction of the gas flow when an epitaxy growth process is performed. 3. The epitaxy growth reactor according to 2.
4 . ェピタキシャル成長炉において、 前記噴射ノズルが、 ェピタキシャル成長 処理の実行時に前記ガス流の流れ方向の下流側に保持される前記ウェハ基板と対 向する噴射面を有し、 この噴射面が前記半導体ウェハ基板表面の外形とほぼ等し いものであり、 この噴射面に設けられた複数の噴射孔から前記材料ガスを噴射さ せることを特徴とする請求項 1〜 3のいずれか 1項に記載のェピタキシャル成長 炉。  4. In the epitaxial growth furnace, the injection nozzle has an injection surface facing the wafer substrate held downstream in the flow direction of the gas flow during execution of the epitaxial growth process, and the injection surface is The material gas is substantially equal to the outer shape of the surface of the semiconductor wafer substrate, and the material gas is injected from a plurality of injection holes provided on the injection surface. The epitaxy growth reactor described.
5 . 前記噴射面に設けられた噴射孔は、 前記ガス流の方向に向かうように斜め 下方に前記材料ガスを噴出させることを特徴とする請求項 4に記載のェピタキシ ャル成長炉。 5. The epitaxy according to claim 4, wherein the injection holes provided in the injection surface eject the material gas obliquely downward so as to be directed to the direction of the gas flow. Growth reactor.
6 . 前記噴射面に設けられた噴射孔は、 前記噴射面のほぼ全面に均等に分散し て配設されていることを特徴とする請求項 4又は請求項 5によるェピタキシャル 成長炉。  6. The epitaxy growth furnace according to claim 4, wherein the injection holes provided in the injection surface are uniformly distributed over substantially the entire injection surface.
PCT/JP1998/000833 1997-03-28 1998-02-27 Epitaxial growth furnace WO1998044175A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/92757 1997-03-28
JP9275797 1997-03-28

Publications (1)

Publication Number Publication Date
WO1998044175A1 true WO1998044175A1 (en) 1998-10-08

Family

ID=14063309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/000833 WO1998044175A1 (en) 1997-03-28 1998-02-27 Epitaxial growth furnace

Country Status (1)

Country Link
WO (1) WO1998044175A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920478A1 (en) * 1999-05-04 2000-11-16 Windmoeller & Hoelscher Assembly to make, fill and seal bags made of thermoplastic material has blower jets preventing flutter during welding and cutting
JP2012524416A (en) * 2009-04-20 2012-10-11 アプライド マテリアルズ インコーポレイテッド Quartz window having gas supply mechanism and processing apparatus including the quartz window

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181139U (en) * 1984-10-31 1986-05-29

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6181139U (en) * 1984-10-31 1986-05-29

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19920478A1 (en) * 1999-05-04 2000-11-16 Windmoeller & Hoelscher Assembly to make, fill and seal bags made of thermoplastic material has blower jets preventing flutter during welding and cutting
DE19920478C2 (en) * 1999-05-04 2001-05-03 Windmoeller & Hoelscher Device for producing and preferably also for filling and closing bags made of thermoplastic material
JP2012524416A (en) * 2009-04-20 2012-10-11 アプライド マテリアルズ インコーポレイテッド Quartz window having gas supply mechanism and processing apparatus including the quartz window

Similar Documents

Publication Publication Date Title
TWI806986B (en) Substrate processing apparatus and method
CN102543689B (en) The manufacture method of lining processor, substrate and the manufacture method of semiconductor device
EP1386981B1 (en) A thin film-forming apparatus
KR950012910B1 (en) Vapor phase growth apparatus
KR100802212B1 (en) Substrate processing apparatus
JP2763222B2 (en) Chemical vapor deposition method, chemical vapor deposition processing system and chemical vapor deposition apparatus therefor
US8887650B2 (en) Temperature-controlled purge gate valve for chemical vapor deposition chamber
KR100998831B1 (en) Raw material feeding device and film formation system
US20120034788A1 (en) Substrate processing apparatus and producing method of semiconductor device
US9481943B2 (en) Gallium trichloride injection scheme
GB2282825A (en) Chemical vapour deposition apparatus
JP4600820B2 (en) Epitaxial growth equipment
WO1998044175A1 (en) Epitaxial growth furnace
JP4777173B2 (en) Substrate processing apparatus and semiconductor device manufacturing method
JP5257424B2 (en) Epitaxial growth equipment
JP2012136743A (en) Substrate treatment device
KR101123828B1 (en) Atomic layer depositon apparatus used in manufacturing semiconductor device
JP2805589B2 (en) Low pressure chemical vapor deposition equipment
JP2015156418A (en) vapor phase growth method
JP2006066557A (en) Substrate processing device
JPH10275777A (en) Epitaxial growth method and growth oven
JPH10275776A (en) Semiconductor wafer manufacturing equipment
JP2013044043A (en) Substrate processing device
JP2005064538A (en) Substrate processing device and method of manufacturing semiconductor device
KR20240069619A (en) Hybrid depositing apparatus for gallium oxide and method for hyprid depositing using thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase