WO1998042169A2 - Anordnung zur abführung von wärme einer in einem gehäuse angeordneten wärmequelle - Google Patents

Anordnung zur abführung von wärme einer in einem gehäuse angeordneten wärmequelle Download PDF

Info

Publication number
WO1998042169A2
WO1998042169A2 PCT/DE1998/000670 DE9800670W WO9842169A2 WO 1998042169 A2 WO1998042169 A2 WO 1998042169A2 DE 9800670 W DE9800670 W DE 9800670W WO 9842169 A2 WO9842169 A2 WO 9842169A2
Authority
WO
WIPO (PCT)
Prior art keywords
heat
housing
heat conduction
arrangement according
conduction element
Prior art date
Application number
PCT/DE1998/000670
Other languages
English (en)
French (fr)
Other versions
WO1998042169A3 (de
Inventor
Gottfried Rieger
Michael Tirpitz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP98919048A priority Critical patent/EP0968632A2/de
Publication of WO1998042169A2 publication Critical patent/WO1998042169A2/de
Publication of WO1998042169A3 publication Critical patent/WO1998042169A3/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • H01L23/427Cooling by change of state, e.g. use of heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • heat dissipation of the heat generated by heat sources from the housing is generally necessary. This is particularly true for heat generated by electronic, optical or mechanical loss of performance.
  • air circulation and thus heat dissipation can be brought about by one or more fans or fans on the housing or directly on a component to be cooled.
  • So-called 'heat pipes' are known from the document "Competence for your benefit - Innovations 1995" from the company ALUTRONIC. These are used to dissipate the heat lost from electronic components Heat is extracted and released again at the other end via condensation of the liquid, which means that the heat generated by electronic components can be dissipated to a heat sink.
  • a device for cooling power resistors is also known from document DE 37 01 477 AI.
  • an electrically insulated heat conduction tube arranged on a power resistor is used to transport heat from a thermally critical area to a non-critical area. The heat pipe is firmly connected to the power resistor or the heat sink both in the area of the evaporation zone and in the area of the condensation zone.
  • the elongated heat pipe referred to as the 'heat pipe'
  • the 'heat pipe' is relatively rigid and can cause hairline cracks due to vibrations.
  • the 'heat pipe' is relatively rigid and can cause hairline cracks due to vibrations.
  • Such cracks could lead to the penetration of air into the heat pipe under vacuum or even loss of the liquid contained. This would cause a drastic deterioration in the heat conduction properties of the heat conduction pipe and could therefore lead to overheating and destruction of the components to be cooled.
  • the problem of vibrations and vibrations increases in particular when the components to be cooled and the heat sink are not arranged on the same carrier, but on different carriers that are movable in terms of vibration technology.
  • the object of the invention is to provide an improved arrangement for the dissipation of heat, which is particularly suitable for operation in industrial ambient conditions.
  • the object is achieved with the arrangement specified in claim 1 for dissipating heat from a heat source from a housing.
  • the advantage of the arrangement for dissipating heat according to the invention is that it enables maintenance-free heat dissipation even in housings which are industrial conditions such as vibrations and vibrations.
  • housings without openings, such as fan slots can be used, so that increased protection and improved electromagnetic shielding of electronic components is made possible.
  • the use of completely sealed housings therefore also enables use in potentially explosive environments.
  • a double mechanical decoupling from the heat source and the secondary cooling element can be achieved.
  • the primary cooling element can additionally be mechanically decoupled from the heat source, for example via a leaf spring connection.
  • the heat source is, for example, a mechanically highly sensitive electronic component, for example a microprocessor. Due to the mechanical decoupling according to the invention, the heat source and the heat sink can advantageously be arranged on different carriers.
  • the carriers can thus be present, for example, in the form of a relatively flexible printed circuit board and a relatively rigid housing wall, which as a rule have different vibration movements in the event of vibrations.
  • 1 shows an example of an arrangement according to the invention for dissipating heat from a heat source from a housing
  • 2 shows an example of the elongated heat conduction element with primary and secondary cooling element in an exploded view.
  • the arrangement for dissipating heat in this case has at least one elongated heat conduction element P with a first end Pl for receiving heat inside the housing G and a second end P2 for dissipating heat outside the housing G.
  • the heat conduction element P penetrates this in particular at an opening 0 in the housing wall A of the housing G.
  • the opening 0 penetrated by the heat conduction element P can be sealed, for example, with a rubber seal, so that the housing G is completely self-contained. This is particularly advantageous in the case of housings which are intended for use in explosion-proof rooms and / or are intended to have complete electromagnetic shielding.
  • the heat conduction element P is in particular in the form of a heat conduction channel, preferably in the form of a heat conduction pipe, such as a so-called 'heat pipe'.
  • the primary cooling element Kl is connected to the heat source B in the housing G.
  • the heat source B is, for example, one or more electronic components, such as power components that produce waste heat or a microprocessor, with the housing of which the primary cooling element Kl can be connected.
  • the primary cooling element K1 can be mechanically decoupled from it, for example via a conventional spring leaf connection F for microprocessor housing attachments, ie in particular not rigidly.
  • the primary cooling element K 1 has first connecting means H 1 for connecting the first end Pl of the heat conducting element P.
  • the arrangement according to the invention further comprises a secondary cooling element K2 arranged outside the housing G.
  • This has second connection means H2 for connecting the second end P2 of the heat-conducting element P.
  • the secondary cooling element K2 is preferably arranged on an outer side of the housing wall A of the housing G. If the housing G itself is thermally conductive, as is the case, for example, with metallic housings, heat dissipation via the housing G is also advantageously effected.
  • the secondary cooling element K2 can have cooling fins R for increasing the surface area.
  • the primary and secondary cooling elements K1 and K2 are preferably made of metallic or another heat-conducting material, such as copper or aluminum.
  • the first and / or the second connection means H1 or H2 are designed such that the first end P1 and / or the second end P2 of the heat-conducting element P is connected to the primary and / or the secondary cooling element K1 or K2 so as to be thermally conductive and mechanically movable is.
  • the arrangement thus leads to the dissipation of the heat of the heat source B arranged inside the housing G to the outside to the secondary cooling element K2.
  • the heat conduction element P has at least one bend L between the first and the second end P2.
  • the bend L is in particular L-shaped and preferably has an angle in the range of 90 °.
  • the bend L is designed such that the first end Pl of the heat-conducting element P within the housing G extends approximately perpendicular to the housing wall A penetrated by the heat-conducting element P.
  • the bend L can advantageously be designed such that the second end P2 of the heat-conducting element P extends outside the housing G approximately parallel to the housing wall A penetrated by the heat-conducting element P.
  • a reversed configuration of the bend L is possible, so that the first end P1 runs approximately parallel inside the housing and the second end P2 outside the housing G runs approximately perpendicular to the housing wall A.
  • FIG. 2 also shows, by way of example, the elongated heat conduction element P with an angle L, and the primary and secondary cooling elements K 1 and K 2 of an embodiment of the arrangement according to the invention for dissipating heat in the unassembled state and without a housing.
  • the primary and secondary cooling elements K1 and K2 are each constructed in two parts from an upper and a lower cooling segment, which are identified in FIG. 2 by the reference symbols K1, K12, K21 and K22.
  • the first connection element H1 is present on the primary cooling element K1, for example in the form of a half-shell H1l or H12 respectively introduced into the upper and lower cooling segments K1 and K12.
  • the cooling segments K1 and K12 are put together, for example by screwing or jamming, they encompass the first end P1 of the heat-conducting element P in a heat-conducting manner the upper and lower cooling segments K21 and K22 each introduced half-shell H21 or H22, which, when the cooling segments K21 and K22 are assembled, comprise the second end P2 of the heat-conducting element P in a heat-conducting manner.
  • the diameters D1 and D2 of the half-shells H11, H12 and H21, H22 of the primary and secondary cooling elements K1 and K2 are dimensioned such that the first and / or the second end P1, P2 are mechanically movable therewith connected is.
  • a mechanically movable connection is preferably made by dimensioning the diameter D1 or D2 such that it is at least slightly larger than the diameter D of the heat conduction element P.
  • the diameter D1 of the primary cooling element Kl is approximately the same size as the diameter D of the primary cooling element Kl
  • Heat conduction element P so that a firm connection is effected.
  • the diameter D2 of the secondary cooling element K2 is dimensioned larger than the diameter D of the heat-conducting element P in such a way that a mechanically movable connection and a heat-conducting connection are produced on the one hand.
  • the heat conduction element P with a permanently connected primary cooling element K 1 can be rotated radially with respect to the secondary cooling element K 2 via its second end P2.
  • the heat transfer between heat conduction element P and cooling elements K1 and K2 can advantageously be optimized by means of thermal paste.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

Die Anordnung weist ein innerhalb eines Gehäuses (G) angeordnetes primäres und ein außerhalb eines Gehäuses (G) angeordnetes sekundäres Kühlelement (K1, K2) auf, welche zur Abführung von Wärme aus dem Gehäuse (G) über ein Wärmeleitungselement (P) wärmeleitend und mechanisch beweglich verbunden sind. Vorteil der Anordnung zur Abführung von Wärme gemäß der Erfindung ist es, daß diese insbesondere die Gefahr von durch Vibrationen hervorgerufenen Haarrißbildungen am Wärmeleitungselement (P) drastisch verringert. Hierdurch wird vorteilhaft eine Verwendung mit industriellen Umgebungsbedingungen ermöglicht.

Description

Beschreibung
Anordnung zur Abführung von Wärme einer in einem Gehäuse angeordneten Wärmequelle
Bei in Gehäusen angeordneten elektronischen Vorrichtungen ist in der Regel eine ausreichende Wärmeabfuhr der durch Wärmequellen erzeugten Wärme aus dem Gehäuse notwendig. Dies trifft insbesondere für durch elektronische, optische oder mechanische Leistungsverluste erzeugte Wärme zu. Beispielsweise kann durch einen oder mehrere Gebläse bzw. Lüfter am Gehäuse oder direkt an einem zu kühlenden Bauelement eine Luftzirkulation und damit eine Wärmeableitung bewirkt werden.
Insbesondere bei Anwendungen im industriellen Bereich, liegen einerseits in der Regel besonders harte Umgebungsbedingungen vor, andererseits ist ein möglichst hoher Grad an Wartungsfreiheit erwünscht. Beispielsweise können das Gehäuse umgebender Staub, Fette, Hitze, korrosive Abgase o.a. den Ge- brauch von Lüftern am Gehäuse unerwünscht werden lassen oder zu einer unverhältnismäßigen Herabsetzung der Lebensdauer der im Gehäuse angeordneten Elemente führen. Des weiteren sind zur Überwachung der Funktionstüchtigkeit von Lüftern in der Regel zusätzliche Mechanismen bzw. elektronische Überwa- chungsschaltungen erforderlich.
Aus dem Dokument „Kompetenz zu Ihrem Nutzen - Neuheiten 1995" der Firma ALUTRONIC sind sogenannte 'Heatpipes' bekannt. Diese dienen der Wärmeableitung der Verlustwärme von elektroni- sehen Bauelementen. In einem nach außen abgeschlossenen, länglichen Wärmeleitungsrohr wird am einen Ende über Verdunstung einer Flüssigkeit Wärme entzogen und am anderen Ende über Kondensation der Flüssigkeit wieder abgegeben. Somit ist eine Wärmeableitung der von elektronischen Bauelementen pro- duzierten Wärme zu einem Kühlkörper bewirkbar. Aus dem Dokument DE 37 01 477 AI ist des weiteren eine Einrichtung zur Kühlung von Leistungswiderständen bekannt. Dabei dient ein elektrisch isoliert an einem Leistungswiderstand angeordnetes Wärmeleitungsrohr zum Wärmetransport aus einem wärmetechnisch kritischen Bereich in einen unkritischen Bereich. Das Wärmeleitungsrohr ist sowohl im Bereich der Ver- dampfungszone, als auch im Bereich der Kondensationszone fest mit dem Leistungswiderstand bzw. dem Kühlkörper verbunden.
Nachteilig ist es, daß das als 'Heatpipe' bezeichnete, länglich gestreckte Wärmeleitungsrohr relativ starr ist und durch Vibrationen Haarrisse bekommen kann. Insbesondere bei Anschluß des Wärmeleitungsrohrs an große, relativ gewichtige Kühlkörper, besteht das Problem, daß durch Vibrationen und Schwingungen Risse provoziert werden. Derartige Risse könnten zum Eindringen von Luft in das unter Unterdruck stehende Wärmeleitungsrohr oder sogar zum Verlust der enthaltenen Flüssigkeit führen. Dies würde eine drastische Verschlechterung der Wärmeleitungseigenschaften des Wärmeleitungsrohrs verur- Sachen und könnte somit zur Überhitzung und Zerstörung der zu kühlenden Bauelemente führen. Die Problematik von Vibrationen und Schwingungen verstärkt sich insbesondere dann, wenn die zu kühlenden Bauelemente und der Kühlkörper nicht auf demselben Träger, sondern auf unterschiedlichen, schwingungstech- nisch gegeneinander beweglichen Trägern angeordnet sind.
Aufgabe der Erfindung ist es, eine verbesserte Anordnung zur Abführung von Wärme anzugeben, welche insbesondere für den Betrieb bei industriellen Umgebungsbedingungen geeignet ist.
Die Aufgabe wird gelöst mit der im Anspruch 1 angegebenen Anordnung zur Abführung von Wärme einer Wärmequelle aus einem Gehäuse .
Vorteil der Anordnung zur Abführung von Wärme gemäß der Erfindung ist es, daß diese eine wartungsfreie Wärmeableitung auch bei Gehäusen ermöglicht, welche industriellen Umgebungs- bedingungen, wie insbesondere Vibrationen und Schwingungen ausgesetzt sind. Somit sind Gehäuse ohne Öffnungen, wie beispielsweise Lüfterschlitze verwendbar, so daß ein erhöhter Schutz und eine verbesserte elektromagnetische Abschirmung elektronischer Komponenten ermöglicht wird. Die Verwendung vollständig abgeschlossener Gehäuse ermöglicht somit insbesondere auch eine Verwendung bei explosionsgefährdeten Umgebungen .
Vorteilhaft ist es, daß gemäß der Erfindung insbesondere eine doppelt mechanische Entkopplung von der Wärmequelle und dem sekundären Kühlelement bewirkbar ist. Zum einen besteht über das Wärmeleitungselement eine wärmeleitende und mechanisch bewegliche, entkoppelte Verbindung zwischen primärem und se- kundärem Kühlelement. Des weiteren ist das primäre Kühlelement beispielsweise über eine Blattfederverbindung zusätzlich mechanisch entkoppelt an der Wärmequelle anklemmbar. Die Wärmequelle ist beispielsweise ein mechanisch hochempfindliches elektronisches Bauelement, beispielsweise ein Mikroprozessor. Durch die erfindungsgemäße mechanische Entkopplung sind Wärmequelle und Kühlkörper vorteilhaft an unterschiedlichen Trägern anordenbar. Die Träger können somit beispielsweise in Form einer relativ flexiblen Leiterplatte und einer demgegenüber relativ starren Gehäusewand vorliegen, welche bei Vibra- tionen in der Regel unterschiedliche Vibrationsbewegungen aufweisen.
Weitere vorteilhafte Ausführungsformen der Erfindung sind in den entsprechenden Unteransprüchen angegeben.
Die Erfindung wird des weiteren anhand des in den nachfolgend kurz angeführten Figuren dargestellten Ausführungsbeispiels weiter erläutert. Dabei zeigt:
FIG 1 beispielhaft eine Anordnung gemäß der Erfindung zur Abführung von Wärme einer Wärmequelle aus einem Gehäuse, und FIG 2 beispielhaft das länglich gestreckte Wärmeleitungselement mit primärem und sekundärem Kühlelement in Explosionsdarstellung .
In der Figur 1 ist beispielhaft eine Anordnung gemäß der Erfindung zur Abführung von Wärme einer Wärmequelle B aus einem Gehäuse G dargestellt. Die Anordnung zur Abführung von Wärme weist dabei wenigstens ein länglich gestrecktes Wärmeleitungselement P mit einem ersten Ende Pl zur Aufnahme von Wärme innerhalb des Gehäuses G und einem zweiten Ende P2 zur Abgabe von Wärme außerhalb des Gehäuses G auf. Das Wärmeleitungselement P durchdringt dieses dabei insbesondere an einer Öffnung 0 der Gehäusewand A des Gehäuses G. Die von dem Wärmeleitungselement P durchdrungene Öffnung 0 ist beispielsweise mit ei- ner Gummidichtung abdichtbar, so daß das Gehäuse G vollständig in sich geschlossen ist. Dies ist insbesondere vorteilhaft bei Gehäusen, welche zur Verwendung in explosionsgeschützten Räumen vorgesehen sind und/oder eine vollständige elektromagnetische Abschirmung aufweisen sollen. Das Wärme- leitungselement P ist insbesondere in Form eines Wärmeleitungskanals ausgebildet, vorzugsweise in Form eines Wärmeleitungsrohrs, wie beispielsweise einer sogenannten 'Heatpipe' .
Des weiteren ist in Figur 1 die Sicht auf ein innerhalb des Gehäuses G angeordnetes primäres Kühlelement Kl der Anordnung freigegeben. Das primäre Kühlelement Kl ist dabei mit der Wärmequelle B im Gehäuse G verbunden. Die Wärmequelle B ist beispielsweise ein oder sind mehrere elektronische Bauelemente, wie Abwärme produzierende Leistungsbauelemente oder ein Mikroprozessor, mit dessen Gehäuse das primäre Kühlelement Kl verbindbar ist. Insbesondere bei einem Mikroprozessorgehäuse als Wärmequelle B ist das primäre Kühlelement Kl an diesem, beispielsweise über eine übliche Federblattverbindung F für Mikroprozessorgehäuseaufsätze mechanisch entkoppelt, d.h. insbesondere nicht starr, anklemmbar. Des weiteren weist das primäre Kühlelement Kl erste Anschlußmittel Hl zum Anschluß des ersten Endes Pl des Wärmeleitungselements P auf . Die Anordnung gemäß der Erfindung umfaßt des weiteren ein außerhalb des Gehäuses G angeordnetes sekundäres Kühlelement K2. Dieses weist zweite Anschlußmittel H2 zum Anschluß des zweiten Endes P2 des Wärmeleitungselements P auf . Vorzugswei- se ist das sekundäre Kühlelement K2 dabei auf einer Außenseite der Gehäusewand A des Gehäuses G angeordnet. Ist das Gehäuse G selbst wärmeleitend, wie beispielsweise bei metallischen Gehäusen, so wird vorteilhaft auch eine Wärmeabführung über das Gehäuse G bewirkt . Insbesondere kann das sekundäre Kühlelement K2 zur Oberflächenvergrößerung Kühlrippen R aufweisen. Primäres und sekundäres Kühlelement Kl und K2 sind vorzugsweise aus metallischem oder einem anderen wärmeleitenden Material, wie beispielsweise Kupfer oder Aluminium hergestellt.
Erfindungsgemäß sind die ersten und/oder die zweiten Anschlußmittel Hl bzw. H2 derartig ausgebildet, daß das erste Ende Pl und/oder das zweite Ende P2 des Wärmeleitungselements P wärmeleitend und mechanisch beweglich mit dem primären und/oder dem sekundären Kühlelement Kl bzw. K2 verbunden ist. Die Anordnung bewirkt somit die Ableitung der Wärme der innerhalb des Gehäuses G angeordneten Wärmequelle B nach außen zum sekundären Kühlelement K2. Erfindungsgemäß sind dabei die Verbindung oder die Verbindungen zwischen Wärmeleitungsele- ment P und primärem und/oder sekundärem Kühlelement Kl bzw.
K2 mechanisch beweglich und somit mechanisch entkoppelt. Eine derartige mechanische Entkopplung ermöglicht vorteilhaft den ausfallfreien Einsatz der erfindungsgemäßen Anordnung auch bei starken Vibrationen und Schwingungen, wodurch vorteilhaft das Auftreten von Haarrißbildungen am Wärmeleitungselement P drastisch verringert wird. Insbesondere für die Verwendung eines Gehäuses G in industrieller Umgebung ist die Wartungsfreiheit und die erfindungsgemäß hohe Ausfallsicherheit der Anordnung zur Ableitung von Wärme von Vorteil. Eine weitere Beschreibung der ersten und zweiten Anschlußmittel Hl und H2 zur mechanischen Entkopplung gemäß der Erfindung erfolgt weiter unten im Rahmen der Beschreibung der Figur 2. In einer in der Figur 1 dargestellten Ausführungsform der erfindungsgemäßen Anordnung weist das Wärmeleitungselement P zwischen dem ersten und dem zweiten Ende P2 wenigstens eine Abwinkelung L auf. Die Abwinkelung L ist insbesondere L- förmig und weist vorzugsweise einen Winkel im Bereich von 90° auf. Insbesondere ist in einer Ausführungsform der Anordnung die Abwinkelung L derartig ausgebildet, daß das erste Ende Pl des Wärmeleitungselements P innerhalb des Gehäuses G annähernd senkrecht zu der von dem Wärmeleitungselement P durch- drungenen Gehäusewand A verläuft. Des weiteren kann die Abwinkelung L vorteilhaft derartig ausgebildet sein, daß das zweite Ende P2 des Wärmeleitungselements P außerhalb des Gehäuses G annähernd parallel zu der von dem Wärmeleitungselement P durchdrungenen Gehäusewand A verläuft. Ebenso ist bei- spielsweise eine umgekehrte Ausbildung der Abwinkelung L möglich, so daß das erste Ende Pl innerhalb des Gehäuses annähernd parallel und das zweite Ende P2 außerhalb des Gehäuses G annähernd senkrecht zu der Gehäusewand A verläuft.
In der Figur 2 ist des weiteren beispielhaft das länglich gestreckte Wärmeleitungselement P mit einer Abwinkelung L, sowie das primäre und sekundäre Kühlelement Kl und K2 einer Ausführungsform der erfindungsgemäßen Anordnung zur Abführung von Wärme im nicht montierten Zustand und ohne Gehäuse darge- stellt. Primäres und sekundäres Kühlelement Kl und K2 sind dabei jeweils zweiteilig aus einem oberen und einem unteren Kühlsegment aufgebaut, welche in der Figur 2 mit den Bezugszeichen Kll, K12 , K21 und K22 bezeichnet sind.
Am primären Kühlelement Kl liegt das erste Anschlußmittel Hl beispielsweise in Form einer in das obere und das untere Kühlsegment Kll und K12 jeweils eingebrachten Halbschale Hll bzw. H12 vor. Beim Zusammensetzen der Kühlsegmente Kll und K12, beispielsweise durch Verschraubung oder Verklemmung, um- fassen diese wärmeleitend das erste Ende Pl des Wärmeleitungselements P. Entsprechend liegt am sekundären Kühlelement K2 das zweite Anschlußmittel H2 beispielsweise in Form einer in das obere und das untere Kühlsegment K21 und K22 jeweils eingebrachten Halbschale H21 bzw. H22 vor, welche beim Zusammensetzen der Kühlsegmente K21 und K22 wärmeleitend das zweite Ende P2 des Wärmeleitungselements P umfassen.
Gemäß der Erfindung sind die Durchmesser Dl bzw. D2 der Halbschalen Hll, H12 bzw. H21, H22 des primären bzw. des sekundären Kühlelements Kl bzw. K2 derartig dimensioniert, daß das erste und/oder das zweite Ende Pl, P2 mechanisch beweglich mit diesem verbunden ist. Eine mechanisch bewegliche Verbindung erfolgt vorzugsweise durch eine derartige Dimensionierung des Durchmessers Dl bzw. D2 , daß dieser zumindest geringfügig größer ist als der Durchmesser D des Wärmeleitungs- elements P. Dadurch liegt das Wärmeleitungselement P, d.h. dessen erstes bzw. zweites Ende Pl, P2 beweglich schwimmend und somit mechanisch entkoppelt, insbesondere drehbar zwischen den Halbschalen Hll, H12 bzw. H21, H22.
Beispielsweise ist der Durchmesser Dl des primären Kühlele- ments Kl annähernd gleich groß, wie der Durchmesser D des
Wärmeleitungselements P, so daß eine feste Verbindung bewirkt wird. Der Durchmesser D2 des sekundären Kühlelements K2 hingegen ist derartig gegenüber dem Durchmesser D des Wärmeleitungselements P größer dimensioniert, daß einerseits eine me- chanisch bewegliche und andererseits eine wärmeleitende Verbindung bewirkt wird. Das Wärmeleitungselement P mit fest angeschlossenem primären Kühlelement Kl ist bei diesem Beispiel über dessen zweites Ende P2 gegenüber dem sekundären Kühlelement K2 radial drehbar. Der Wärmeleitübergang zwischen Wärme- 1eitungselement P und Kühlelementen Kl und K2 ist vorteilhaft durch Wärmeleitpaste optimierbar.

Claims

Patentansprüche
1. Anordnung zur Abführung von Wärme einer in einem Gehäuse (G) angeordneten Wärmequelle (B) , mit
a) wenigstens einem starren, gestreckten Wärmeleitungselement (P) , welches ein erstes Ende (Pl) zur Aufnahme und ein zweites Ende (P2) zur Abgabe von Wärme aufweist,
b) einem primären Kühlelement (Kl) , welches
bl) innerhalb des Gehäuses (G) mit der Wärmequelle (B) verbunden ist, und
b2) erste Anschlußmittel (Hl) zum Anschluß des ersten Endes (Pl) des Wärmeleitungselements (P) aufweist, und
c) einem sekundären Kühlelement (K2), welches
cl) außerhalb des Gehäuses (G) angebracht ist, und
c2) zweite Anschlußmittel (H2) zum Anschluß des zweiten Endes (P2) des Wärmeleitungselements (P) aufweist, wobei
d) die ersten und/oder die zweiten Anschlußmittel (Hl, H2 ) derartig ausgebildet sind, daß das erste Ende (Pl) und/oder das zweite Ende (P2) des Wärmeleitungselements (P) wärmeleitend und mechanisch beweglich mit dem primären und/oder sekundären Kühlelement (Kl, K2) verbunden ist.
2. Anordnung nach Anspruch 1, wobei das Wärmeleitungselement
(P) zwischen dem ersten und dem zweiten Ende (P2) wenigstens eine, insbesondere L-förmige, Abwinkelung (L) aufweist.
3. Anordnung nach Anspruch 2 , wobei
a) das Gehäuse (G) eine Gehäusewand (A) mit einer Öffnung (0) aufweist, welche zur Durchführung des Wärmeleitungselements (P) dient, und
b) die Abwinkelung (L) derartig ausgebildet ist, daß das erste Ende (Pl) des Wärmeleitungselements (P) innerhalb des Gehäuses (G) annähernd senkrecht zu der Gehäusewand (A) verläuft.
4. Anordnung nach einem der Ansprüche 2 oder 3 , wobei
a) das Gehäuse (G) eine Gehäusewand (A) mit einer Öffnung
(0) aufweist, welche zur Durchführung des Wärmeleitungselements (P) dient, und
b) die Abwinkelung (L) derartig ausgebildet ist, daß das zweite Ende (P2) außerhalb des Gehäuses (G) annähernd parallel zu der von dem Wärmeleitungselement (P) durchdrungenen (0) Gehäusewand (A) verläuft.
5. Anordnung nach einem der vorangegangenen Ansprüche, wobei das Wärmeleitungselement (P) in Form eines Wärmeleitungskanals ausgebildet ist.
6. Anordnung nach einem der Ansprüche 1 bis 4 , wobei der Wärmeleitungskanal in Form eines Wärmeleitungsrohrs ausgebildet ist.
7. Anordnung nach einem der vorangegangenen Ansprüche, wobei die Wärmequelle (B) ein Mikroprozessorgehäuse ist.
8. Anordnung nach einem der vorangegangenen Ansprüche, wobei das sekundäre Kühlelement (K2) auf der Außenseite (A) des Gehäuses (G) angebracht ist.
PCT/DE1998/000670 1997-03-19 1998-03-06 Anordnung zur abführung von wärme einer in einem gehäuse angeordneten wärmequelle WO1998042169A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98919048A EP0968632A2 (de) 1997-03-19 1998-03-06 Anordnung zur abführung von wärme einer in einem gehäuse angeordneten wärmequelle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE29704885U DE29704885U1 (de) 1997-03-19 1997-03-19 Anordnung zur Abführung von Wärme einer in einem Gehäuse angeordneten Wärmequelle
DE29704885.6 1997-03-19

Publications (2)

Publication Number Publication Date
WO1998042169A2 true WO1998042169A2 (de) 1998-09-24
WO1998042169A3 WO1998042169A3 (de) 1999-02-25

Family

ID=8037653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000670 WO1998042169A2 (de) 1997-03-19 1998-03-06 Anordnung zur abführung von wärme einer in einem gehäuse angeordneten wärmequelle

Country Status (3)

Country Link
EP (1) EP0968632A2 (de)
DE (1) DE29704885U1 (de)
WO (1) WO1998042169A2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011349A2 (de) * 2003-07-17 2005-02-03 Electrovac Ag Kühlvorrichtung zum abführen von verlustwärme von einem elektrischen oder elektronischen bauelement oder baugruppen

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1419430B1 (de) * 2001-03-21 2010-12-29 Hush Technologies Investments Ltd. Computergehäuse
DE102004030675A1 (de) * 2004-06-24 2005-11-10 Nft Nanofiltertechnik Gmbh Kühleinrichtung für elektronische Bauelemente
DE102005019437A1 (de) * 2005-01-25 2006-08-03 Axel Benner Computer
DE102013010867B4 (de) * 2013-06-28 2015-11-12 Protonet GmbH Anordnung zum Kühlen von in einem Gehäuse anordnenbaren elektrischen und/oder elektronischen Bauteilen und Rechner mit einer solchen

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852804A (en) * 1973-05-02 1974-12-03 Gen Electric Double-sided heat-pipe cooled power semiconductor device assembly
US4917173A (en) * 1988-11-15 1990-04-17 The United States Of America As Represented By The National Aeronautics And Space Administration Monogroove liquid heat exchanger
EP0401743A1 (de) * 1989-06-08 1990-12-12 The Furukawa Electric Co., Ltd. Kühlvorrichtung mit elektrisch isoliertem Wärmerohr für Halbleiter
EP0441572A2 (de) * 1990-02-07 1991-08-14 Ngk Insulators, Ltd. Leistungshalbleiter mit wärmeableitenden Eigenschaften
FR2687464A1 (fr) * 1992-02-19 1993-08-20 Bernier Jacques Caloducs a melange zeotropique de fluides.
WO1996028005A1 (en) * 1995-03-06 1996-09-12 Ast Research, Inc. A movable heat pipe apparatus for reducing heat build up in electronic devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3226602A (en) * 1962-10-29 1965-12-28 Thore M Elfving Heat transferring mounting panels for electric components and circuits
JPS568238Y2 (de) * 1976-02-14 1981-02-23
DE2801660C2 (de) * 1978-01-16 1986-01-30 kabelmetal electro GmbH, 3000 Hannover Vorrichtung zum Abführen der Verlustwärme von elektronischen Bauelementen
DE3701477A1 (de) * 1987-01-16 1988-07-28 Licentia Gmbh Einrichtung zur kuehlung von leistungswiderstaenden
JP3067399B2 (ja) * 1992-07-03 2000-07-17 株式会社日立製作所 半導体冷却装置
US5343940A (en) * 1992-10-29 1994-09-06 Amigo Jean Flexible heat transfer device
US5339214A (en) * 1993-02-12 1994-08-16 Intel Corporation Multiple-fan microprocessor cooling through a finned heat pipe
DE4312830A1 (de) * 1993-04-20 1994-10-27 Privates Inst Fuer Luft Und Ka Vorrichtung zur Kühlung von hochtemperatursupraleitenden, mikroelektronischen Bauelementen, vorzugsweise Sensoren
DE9312138U1 (de) * 1993-08-13 1993-10-21 Kunze Burkhard Dipl Ing Kühlvorrichtung
US5606341A (en) * 1995-10-02 1997-02-25 Ncr Corporation Passive CPU cooling and LCD heating for a laptop computer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3852804A (en) * 1973-05-02 1974-12-03 Gen Electric Double-sided heat-pipe cooled power semiconductor device assembly
US4917173A (en) * 1988-11-15 1990-04-17 The United States Of America As Represented By The National Aeronautics And Space Administration Monogroove liquid heat exchanger
EP0401743A1 (de) * 1989-06-08 1990-12-12 The Furukawa Electric Co., Ltd. Kühlvorrichtung mit elektrisch isoliertem Wärmerohr für Halbleiter
EP0441572A2 (de) * 1990-02-07 1991-08-14 Ngk Insulators, Ltd. Leistungshalbleiter mit wärmeableitenden Eigenschaften
FR2687464A1 (fr) * 1992-02-19 1993-08-20 Bernier Jacques Caloducs a melange zeotropique de fluides.
WO1996028005A1 (en) * 1995-03-06 1996-09-12 Ast Research, Inc. A movable heat pipe apparatus for reducing heat build up in electronic devices

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005011349A2 (de) * 2003-07-17 2005-02-03 Electrovac Ag Kühlvorrichtung zum abführen von verlustwärme von einem elektrischen oder elektronischen bauelement oder baugruppen
WO2005011349A3 (de) * 2003-07-17 2005-07-07 Juergen Schulz-Harder Kühlvorrichtung zum abführen von verlustwärme von einem elektrischen oder elektronischen bauelement oder baugruppen

Also Published As

Publication number Publication date
WO1998042169A3 (de) 1999-02-25
EP0968632A2 (de) 2000-01-05
DE29704885U1 (de) 1998-04-30

Similar Documents

Publication Publication Date Title
DE602004005126T2 (de) Elektronisches Leistungssystem mit passiver Kühlung
EP0213426A1 (de) Gehäuse mit Bodenwanne und Aussendeckel für ein elektrisches Schaltungsbauteil
EP2247172B1 (de) Kühlsystem, Kühlplatte und Baugruppe mit Kühlsystem
DE102015103096B4 (de) Kühleinrichtung und Kühlanordnung mit der Kühleinrichtung
DE112016000457T5 (de) Kondensator-Struktur
DE202010014106U1 (de) Wärmeverteiler mit flexibel gelagertem Wärmerohr
DE102015202142A1 (de) Elektrische Einrichtung
DE102011109594A1 (de) Vorrichtung mit einem Gehäuse, zumindest zwei Leiterplatten und zumindest einem Wärmeableitelement
EP0968632A2 (de) Anordnung zur abführung von wärme einer in einem gehäuse angeordneten wärmequelle
DE19836229C1 (de) Anordnung zur Wärmeableitung, insbesondere für Ultraschallwandler mit hoher Leistung
EP2439775B1 (de) Wärmeverteiler mit mechanisch gesichertem Wärmekopplungselement
DE202013002411U1 (de) Wärmeverteiler mit Flachrohrkühlelement
DE202010017443U1 (de) Elektrische Baugruppe
DE102017104699A1 (de) Laseroszillator
DE102018124186B4 (de) Elektronisches Gerät und Anordnung eines solchen an einer Tragschiene
DE102012013741A1 (de) Anordnung zum Kühlen, Elektrogerät und Verwendung einer Anordnung zum Kühlen
DE102021202654A1 (de) Wärmeableitvorrichtung und Steuergeräteanordnung
DE102018222748B4 (de) Kühlvorrichtung
DE202013011743U1 (de) Hochstromstecker
DE102008034068B4 (de) Leistungshalbleitermodul
EP1161127A2 (de) Elektronische Baugruppe
EP0652694A1 (de) Steuergerät, insbesondere für ein Kraftfahrzeug
DE3326478C2 (de) Kühlvorrichtung zur Wärmeableitung der von einem elektrischen Bauelement erzeugten Wärme
DE202005004277U1 (de) Halbleiterbauelementanordnung
DE2931052A1 (de) Einrichtung zur waermeuebertragung von einer waermequelle auf ein waermeabfuehrendes mittel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998919048

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998919048

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998540014

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1998919048

Country of ref document: EP