WO1998042067A1 - Power converter, ac motor controller and their control method - Google Patents

Power converter, ac motor controller and their control method Download PDF

Info

Publication number
WO1998042067A1
WO1998042067A1 PCT/JP1997/000909 JP9700909W WO9842067A1 WO 1998042067 A1 WO1998042067 A1 WO 1998042067A1 JP 9700909 W JP9700909 W JP 9700909W WO 9842067 A1 WO9842067 A1 WO 9842067A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay
compensation value
delay compensation
motor
switching element
Prior art date
Application number
PCT/JP1997/000909
Other languages
French (fr)
Japanese (ja)
Inventor
Hironori Ohashi
Makoto Takase
Hiroyuki Tomita
Seiji Ishida
Masaki Sugiura
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to JP54032298A priority Critical patent/JP3329831B2/en
Priority to PCT/JP1997/000909 priority patent/WO1998042067A1/en
Publication of WO1998042067A1 publication Critical patent/WO1998042067A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53875Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with analogue control of three-phase output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/38Means for preventing simultaneous conduction of switches
    • H02M1/385Means for preventing simultaneous conduction of switches with means for correcting output voltage deviations introduced by the dead time

Definitions

  • the present invention relates to a power conversion device, an AC motor control device, and a control method thereof.
  • the present invention relates to an AC motor control device that drives an AC motor using a power converter using a switching element.
  • the present invention is applicable to all control devices using a power converter using a switching element, and can be used, for example, in a power converter such as a PWM converter.
  • a three-phase power converter 2 shown in FIG. 12 is generally used as a control device for converting the power to a variable frequency power supply using a switching element and controlling the speed of the AC motor 1.
  • reference numeral 3 denotes a control circuit
  • CT denotes a current detector for detecting an output current.
  • This power converter is characterized in that the upper and lower arms of the switching element are connected in series to a so-called three-phase bridge for each output phase, and are exclusively switched. Since a semiconductor switching element such as an IGBT is used as the switching element and the ON / OFF operation has a delay, the ON signal of the other switching signal is delayed with respect to the OFF signal of one of the upper and lower arms of each phase.
  • the control circuit 3 receives the voltage command V * from the control arithmetic unit 31 such as the motor current and outputs the PWM pattern.
  • An on-delay generator 34 which outputs the signal to the generator 3 and delays the on-signal only while the switching element is off, is required.
  • the on-delay When viewed from a control device such as a motor, the on-delay is non-linear with respect to the direction of the output current and the like, and as shown in FIG. 10, the output current (an example of the line current iu is shown. (The same applies to iv and iw), which degrades control characteristics and causes torque ripple and other factors. (Fig. 10 shows the output current fundamental wave Y1 and the fifth harmonic wave Y5 at the top. The middle stage shows the distorted output current iu, and the lower stage shows the id obtained by d-q conversion of the current and DC display as described later). For this reason, recently, in addition to the on-delay generator 34, an on-delay compensator 33 shown in FIG.
  • the on-delay compensator 33 considers the direction (polarity sgn (i)) of the output current i (iu, iv, iw) during the on-time T on of the signal input from the PWM pattern generator 32.
  • the ray compensation value Td is added to compensate for the on-delay component as follows.
  • this on-delay compensation value T d is the time from when an ON signal is input to the switching element to when it is actually turned on, t on, and the time from when an off signal is input to when it is actually turned off is t off.
  • the time during which the signals input from the PWM pattern generator 32 to the switching elements of the upper and lower arms are simultaneously off is defined as the on-delay time T dead
  • T dead, t on, and t off vary depending on the individual characteristics of hardware such as switching elements and control circuit components, so that T d also varies. Therefore, even if the on-delay compensation value T d is set to a specific value and the on-delay compensation is performed, compensation can be performed by the amount that T d varies. I can't.
  • the Td varies for each power converter due to the hardware, so the current is distorted when viewed as a motor control device, and the above-mentioned on-delay generator 34 and on-delay compensator 33 are still insufficient. Generates torque ripple. In order to prevent this as much as possible, conventionally, it was necessary to use a selected product for the hardware (such as a photo bra) for each term in equation (1) or manually adjust the power converter individually.
  • An object of the present invention is to provide an inexpensive control device in which a control device automatically adjusts an on-delay compensation value Td.
  • the second object is to provide a highly accurate control device by suppressing torque ripple and the like of the control device by this automatic adjustment. Disclosure of the invention
  • an on-delay compensation value calculator 35 that automatically inputs the current and voltage and adjusts the on-delay compensation value Td is provided. On-delay compensation value calculation is started by the calculation start signal.
  • the on-delay compensation value calculator 35 detects the current and the voltage, extracts the characteristic amount such as the current distortion by the on-delay compensation, and calculates the on-delay compensation value.
  • FIG. 1 is a control block diagram according to a first embodiment of the present invention.
  • FIG. 2 is a control flowchart of the first embodiment of the present invention.
  • FIG. 3 shows the relationship between the current controller and the carrier frequency for explaining the operation principle of the first embodiment of the present invention.
  • FIG. 4 is a control block diagram according to a second embodiment of the present invention.
  • Fig. 5 shows the current waveform when the on-delay is not compensated.
  • FIG. 6 shows a relationship between harmonics and an on-delay compensation value for explaining the operation principle of the second embodiment of the present invention.
  • FIG. 7 is an embodiment of a control port according to the second embodiment of the present invention.
  • FIG. 8 shows another embodiment of the control port according to the second embodiment of the present invention.
  • FIG. 9 is a control block diagram of the third embodiment of the present invention.
  • FIG. 10 is an example of a line current waveform when on-delay is not compensated.
  • FIG. 11 is a control flowchart of a third embodiment of the present invention.
  • FIG. 12 is a control block diagram of a conventional control device.
  • FIG. 1 shows a control block diagram of a device in which an AC motor 1 is driven by a power converter 2 and controlled by a control circuit 3.
  • the control circuit 3 controls speed control, current control, ratio control between output voltage and output frequency (hereinafter referred to as VZf control), and so-called vector control in which the excitation component and torque component are separated by vector.
  • Calculator 31 PWM pattern generator 32 for generating gate signals for power converter 2, on-delay compensator 33, on-delay generator 34, and on-delay compensation value calculator 3 according to the present invention 5a etc.
  • CT is a current detector that detects an output current.
  • the control calculator 31 gives a voltage command V * to the PWM pattern generator 32.
  • the PWM pattern generator 32 uses a well-known triangular wave comparison PWM or the like.
  • the switching element of the power converter 2 semiconductor such as IGBT
  • the on time T on of the element is output.
  • DC power V dc is converted into AC power, and AC motor 1 is rotationally driven.
  • the DC power supply V dc may be obtained by rectifying the AC.
  • the power converter 2 connects the U-phase, V-phase, and W-phase switching elements in series with the upper and lower arms. And switch exclusively. Also, the on-delay generator 34 is provided to prevent a short circuit of the switching element. Furthermore, an on-delay compensator 33 is provided for suppressing current distortion.
  • the variation in the on-delay compensation value Td, which cannot be compensated by the on-delay compensator 33, due to the hardware is automatically measured by the on-delay compensation value calculator 35a, and the variation is calculated by the hardware.
  • the purpose is to provide a low-cost, high-precision control device that eliminates variations.
  • the on-delay compensation value calculator 35a of this embodiment starts operation in a flow chart as shown in FIG. 2 when an on-delay compensation value calculation start signal Std is given from outside the control device (STEP 100). ⁇ STEP103).
  • the on-delay compensation value calculator 35 a is supplied to the current controller 3 1 1 in the control calculator 31 so that a DC current flows between the u and V phases.
  • the command I * is output, and the carrier frequency f 1 that determines the switching frequency of the switching element of the power converter 2 is output to the PWM pattern generator 32.
  • the current controller 311 is, for example, a well-known PI (proportional-integral) controller, which is sufficient (STEP OOa).
  • the on-delay compensation value calculator 35a observes that the current control output V * of the current controller 311 1 has become stable, and sets the current control output V * as a voltage command V between u and the V phase. (STEP OOb). Similarly, the carrier frequency The current is controlled with a frequency f 2 different from Equation 1 and a DC current command I * (STEP100c), and when the current control output V * is stabilized, the current control output V * is set to the u-V phase voltage command V 2 * uv (STEP100d).
  • V dc is the DC voltage of the power converter 2.
  • T duv, T dvw, and T dwu are used as the on-delay compensation values for each phase.
  • processing such as averaging may be performed as in Eq. (5) and compensation may be performed using T duvw for all three phases. It is.
  • the on-delay compensation value T d is independent of the switching frequency of the switching element as shown in Eq. (1). However, if the operating cycle of the switching element (the reciprocal of the carrier frequency) becomes longer, the on-delay compensation value T d becomes a percentage And the effect of the on-delay compensation value Td is reduced, and the current waveform distortion is also reduced. Conversely, if the operation cycle of the switching element is shortened, the ratio of the switching element to the cycle is increased, and the effect is also increased. Therefore, the difference between the current control outputs V * in these two operation cycles can be used as the on-delay compensation value T d. Fig. 3 illustrates this relationship.
  • Fig. 3 shows the carrier frequency fc on the horizontal axis and the current control output V * on the vertical axis. Is taking.
  • the DC current command is set to the DC current command I * so that the output current becomes DC, so if the carrier f2 is selected at a low frequency, only the voltage drop RI * of the resistance R of the AC motor 1 is reduced. It is possible to extract the frequency current control output V * that appears as an effect of on-delay.
  • the carrier frequency is gradually increased to f1
  • the current control output V * is the sum of the voltage drop RI * and the on-delay voltage drop. Therefore, if this difference is taken, the voltage drop RI * cancels out and becomes the voltage of the on-delay voltage drop.
  • the on-delay compensation value Td can be obtained by converting this to time at the frequency f1 as in Equations (2) to (4).
  • the switching element of power converter 2 is an IGBT, set f1 to 10 kHz or more and f2 to 5 kHz or less. In the case of bipolar drainage, set f1 to 2 kHz or more and f2 to 1 k. It is desirable to set it to Hz or less.
  • the on-delay compensation value Td is obtained by using a DC current, there is a possibility that the on-delay compensation value Td may be slightly deviated from the on-delay compensation value Td obtained by using an alternating current. It goes without saying that the obtained on-delay compensation value T d may be multiplied by a weighting factor.
  • FIG. 1 is provided with an AC voltage generator 312, and the on-delay compensation value calculator 35b is provided with a Fourier transformer (high-speed FFT) or a Waltz converter for obtaining harmonics.
  • the major difference is that the embodiment obtains the on-delay compensation value Td with direct current instead of the direct current.
  • a current such as Y13 in Fig. 5 flows as the output current.
  • FIG. 7 shows a flow chart of the second embodiment (STEP110 to STEP112).
  • C Excitation is first performed between u and v in the same manner as in the previous embodiment (STEP11 Oa).
  • a Fourier transformer (high-speed FFT) A3 uv is taken out by means of an Orsh converter or the like (STEPl l Ob), and the on-delay compensation value T d uv that minimizes the A3 uv is determined by the least square method or the like (STEPl l Oc) .
  • the on-delay compensation values Tduv, Tdvw, and Tdwu are obtained.
  • single-phase AC excitation is performed so as not to rotate the motor.
  • the on-delay compensation value may be adjusted using a flowchart as shown in FIG. Can be obtained (STEP120-STEP122).
  • the AC motor 1 is driven by V / f operation (STEP120), and the current waveform at this time is a waveform containing the fifth and seventh harmonics as shown in Fig. 10. That is.
  • at step 120a at least one of A5 or A7 is extracted by a Fourier transformer (high-speed FFT) or a ⁇ orsh converter, and driven by the least-squares method. Others are the same, and the description is omitted.
  • the on-delay compensation T d can be obtained for each phase, the method of averaging and multiplying the weighting factor can be similarly performed as shown in the first embodiment. Needless to say.
  • the current and the like differ depending on the frequency and voltage value for exciting the AC motor 1, when determining the on-delay compensation T d more precisely, as shown in the first embodiment, the individual parameters ( It is clear that the voltage and frequency can be determined and obtained.
  • the third embodiment is a method in which the motor may be rotated as in the second method of the second embodiment described above.Since the AC motor 1 is actually rotated, more accurate on-delay compensation is performed. T d can be determined.
  • the difference from the second embodiment in the configuration is that the Fourier transformer (fast FFT) or Walsh transform is included in the on-delay compensation value calculator 35c as shown in Fig. 9. A converter and the like become unnecessary, and i-o- becomes unnecessary.
  • a dq converter 314 is required in the control arithmetic unit 31.
  • the d-q converter 3 1 4 is an AC voltage generator 3 1 3 generated by the signal VZ f (output signal from the on-delay compensation value calculator 35 c to the AC voltage generator 3 13).
  • the currents id and iq on the d--q axes can be obtained by performing coordinate conversion on the three-phase line currents using the d-q converter 314.
  • the conversion equation is, for example, as shown in equation (6).
  • V Zf driving is performed in three phases, and if on-delay compensation is not performed, the waveform will be as shown by the line current i u in FIG.
  • the third harmonic has a three-phase waveform with a phase shift of 120 ° and a sixth harmonic, as shown in Fig. 5. Since they cannot be generated, the corresponding harmonics appear in the 5th and 7th order as a distorted waveform (Y157) as shown in the figure.
  • a DC current pulsating in the sixth order as shown in id in FIG. 10 is obtained. Therefore, an on-delay compensation value that minimizes the sixth-order component may be obtained.
  • the on-delay compensation value can be obtained by using a Fourier transformer (fast FFT) or a Walsh transformer in the on-delay compensation value calculator 35c as in the second embodiment.
  • the following shows that the on-delay compensation value can be obtained without using such a Fourier transformer (fast FFT) or a Walsh transformer.
  • FIG. 11 shows the mouthpiece of the third embodiment described above (STEP130 to STEP132).
  • a imean ⁇ ⁇ l d (j) ⁇ l dm in where i dmax: the maximum value of id and i dmin: the minimum value of id.
  • the on-delay compensation value is automatically calculated.
  • the on-delay compensation value calculated value may be an abnormal value due to a failure of the power converter or the like.
  • a mechanism to prevent abnormal operation should be provided by adding a limiter with the value of equation (1) as a typ. Value. I can judge.
  • the on-delay compensation value calculation start signal Std can be given at an arbitrary timing by providing a switch or the like from outside the control circuit 3. In this case, for example, it can be performed at the time of product shipment or at the time of maintenance after installation, if necessary. Or if you want to do it at power on The Std signal should be automatically generated when the power is turned on. In this case, the Std signal can be generated inside the control circuit 3.
  • all of the embodiments described above can coexist in the on-delay compensation value calculator 35, and if it is possible to select which method to obtain the on-delay compensation value from outside the control circuit 3, the application will be expanded and the AC motor The on-delay compensation value can be obtained irrespective of the load condition.
  • the on-delay compensation value calculator described in the present invention can be used for a PWM converter and other power converters. Industrial applicability
  • the deviation of the on-delay compensation value due to the variation of the individual power converters is automatically adjusted, torque ripple due to the deviation of the on-delay compensation value can be prevented, and a highly accurate control device can be realized.
  • the automatic adjustment increases the allowable range of hardware variation, which has the effect of realizing an inexpensive control device.

Abstract

An automatic on-delay compensation value regulator, and a low cost and high precision controller are provided. An on-delay compensation value calculator (35) is provided in a control circuit (3). The current of an AC motor (1) and the voltage of a power converter (2) are measured, and the carrier frequency is varied to calculate an on-delay compensation value. A Fourier converter is built in the on-delay compensation value calculator (35). The on-delay compensation value is varied so as to minimize the harmonics and ripples in the current to obtain a proper on-delay compensation value. As the deviation of the on-delay compensation value which is caused by the variation of the power converter itself can be controlled automatically, a torque ripple caused by the variation of the on-delay compensation value is prevented and a high precision controller is realized. Further, as the allowance of the variation of the hardware is increased, a low cost controller is realized.

Description

明 細  Details
電力変換装置、 交流モータ制御装置、 及びそれらの制御方法 技術分野 TECHNICAL FIELD The present invention relates to a power conversion device, an AC motor control device, and a control method thereof.
本発明はスィ ッチング素子を用いる電力変換器を用いて交流モータを 駆動する交流モータ制御装置に関する。  The present invention relates to an AC motor control device that drives an AC motor using a power converter using a switching element.
また、 本発明はスィツチング素子を用いる電力変換器を用いた全ての 制御装置に適用可能で、 例えば、 P W Mコンバータなどの電力変換器な どにも用いることもできる。 背景技術  In addition, the present invention is applicable to all control devices using a power converter using a switching element, and can be used, for example, in a power converter such as a PWM converter. Background art
説明の都合上、 以降は電力変換器の負荷としてモータを例に取り、 説 明する。  For convenience of explanation, the following description uses a motor as an example of the load of the power converter.
スイ ツチング素子を用いて可変周波数の電源に電力変換し、 交流モー 夕 1を速度制御する制御装置として第 1 2図に示す 3相の電力変換器 2 が一般的である。 第 1 2図において、 3は制御回路、 C Tは出力電流を 検出する電流検出器である。 この電力変換器は出力相毎にスィ ツチング 素子の上下アームを直列に、 いわゆる三相ブリ ッジに接続し、 排他的に スイッチングさせることを特徴としている。 スイツチング素子には I G B Tなどの半導体スィツチング素子が使用されオン Zオフの動作には遅 れがあるため、 各相の上下アームの一方のスイッチング素子のオフ信号 に対し他方のスィツチング信号のオン信号を遅らせるオンディ レイ期間 を付けてスイ ッチングさせないと、 上下アームのスイッチング素子がァ ーム短絡を起こし、 スイッチング素子が破壊する。 このため、 制御回路 3にはモータ電流などの制御演算器 3 1から電圧指令 V *を P W Mパタ —ン発生器 3 2に出力し、 スィツチング素子がオフする期間だけオン信 号を遅らせるオンディ レイ発生器 3 4が必要になる。 A three-phase power converter 2 shown in FIG. 12 is generally used as a control device for converting the power to a variable frequency power supply using a switching element and controlling the speed of the AC motor 1. In FIG. 12, reference numeral 3 denotes a control circuit, and CT denotes a current detector for detecting an output current. This power converter is characterized in that the upper and lower arms of the switching element are connected in series to a so-called three-phase bridge for each output phase, and are exclusively switched. Since a semiconductor switching element such as an IGBT is used as the switching element and the ON / OFF operation has a delay, the ON signal of the other switching signal is delayed with respect to the OFF signal of one of the upper and lower arms of each phase. If switching is not performed with an on-delay period, the switching elements in the upper and lower arms will cause an arm short, and the switching elements will be destroyed. For this reason, the control circuit 3 receives the voltage command V * from the control arithmetic unit 31 such as the motor current and outputs the PWM pattern. An on-delay generator 34, which outputs the signal to the generator 3 and delays the on-signal only while the switching element is off, is required.
このオンディ レイはモータなどの制御装置から見ると、 出力電流の方 向などに対して非線形なもので、 第 1 0図に示すように出力電流 (線電 流 iuの例を示しているが、 i v, i w も同様) を歪ませ、 制御特性を劣 化させ、 トルク リプルなどの発生要因となる (第 1 0図は、 上段に出力 電流の基本波 Y 1 と、 第 5次高調波 Y 5、 第 7次高調波 Y 7に分けて描 いてあり、 中段は歪んだ出力電流 i uを示し、 下段は後述のように電流 を d— q変換して直流表示した i dを示している) 。 このため、 最近で はオンディ レイ発生器 3 4に加え更に第 1 2図のオンディ レイ補償器 3 3を設け、 このオンディ レイによる影響を無くす手法が取られる。 この オンディ レイ補償器 3 3は、 P W Mパターン発生器 3 2から入力される 信号のオン時間 T on に出力電流 i ( iu, iv, iw ) の流れる方向 (極性 sgn( i ) )を考慮したオンディ レイ補償値 T dを加算し、次のようにオン ディ レイ分を補償するものである。  When viewed from a control device such as a motor, the on-delay is non-linear with respect to the direction of the output current and the like, and as shown in FIG. 10, the output current (an example of the line current iu is shown. (The same applies to iv and iw), which degrades control characteristics and causes torque ripple and other factors. (Fig. 10 shows the output current fundamental wave Y1 and the fifth harmonic wave Y5 at the top. The middle stage shows the distorted output current iu, and the lower stage shows the id obtained by d-q conversion of the current and DC display as described later). For this reason, recently, in addition to the on-delay generator 34, an on-delay compensator 33 shown in FIG. 12 is provided to eliminate the influence of the on-delay. The on-delay compensator 33 considers the direction (polarity sgn (i)) of the output current i (iu, iv, iw) during the on-time T on of the signal input from the PWM pattern generator 32. The ray compensation value Td is added to compensate for the on-delay component as follows.
T 'on— T on + sgru i ) · d  T 'on—T on + sgru i)
しかし、 このオンディ レイ補償値 T dは、 スイ ツチング素子にオン信 号を入力してから実際にオンするまでの時間を t on、オフ信号を入力し て実際にオフするまでの時間を t off, 上下アームのスィツチング素子 に P W Mパターン発生器 3 2から入力される信号が同時にオフしている 時間をオンディ レイ時間 T deadとすると  However, this on-delay compensation value T d is the time from when an ON signal is input to the switching element to when it is actually turned on, t on, and the time from when an off signal is input to when it is actually turned off is t off. The time during which the signals input from the PWM pattern generator 32 to the switching elements of the upper and lower arms are simultaneously off is defined as the on-delay time T dead
T d = T dead + t on - t off ( 1 )  T d = T dead + t on-t off (1)
となる。 これら T dead, t on, t off の時間はスィ ツチング素子、 制御回 路構成部品等のハ ー ドウエアの個々の特性によりバラッくため、 T dも バラツキを生じる。 従ってオンディ レイ補償値 T dを特定の値にしてォ ンディ レイ補償を行っても、 T dがバラッいた分だけ補償することがで きない。 Becomes The times T dead, t on, and t off vary depending on the individual characteristics of hardware such as switching elements and control circuit components, so that T d also varies. Therefore, even if the on-delay compensation value T d is set to a specific value and the on-delay compensation is performed, compensation can be performed by the amount that T d varies. I can't.
前述のようにハ一 ドウヱァにより T dが電力変換器毎にバラッくため、 モータ制御装置として見ると電流が歪み、 上記のオンディ レイ発生器 3 4、 オンディ レイ補償器 3 3だけではまだ不十分で、 トルク リプルを発 生する。 これを少しでも防止するため、 従来では ( 1 ) 式の各項に関す るハー ドウェア (フォ ト力ブラなど) に選定品を使ったり、 人手により 電力変換器個別に調整が必要であつた。  As described above, the Td varies for each power converter due to the hardware, so the current is distorted when viewed as a motor control device, and the above-mentioned on-delay generator 34 and on-delay compensator 33 are still insufficient. Generates torque ripple. In order to prevent this as much as possible, conventionally, it was necessary to use a selected product for the hardware (such as a photo bra) for each term in equation (1) or manually adjust the power converter individually.
本発明の目的はオンディ レイ補償値 T dを自動的に制御装置が調整し、 安価な制御装置を提供することにある。 また、 第 2の目的はこの自動調 整により、 制御装置のトルク リプルなどを抑え、 高精度な制御装置を提 供することにある。 発明の開示  An object of the present invention is to provide an inexpensive control device in which a control device automatically adjusts an on-delay compensation value Td. The second object is to provide a highly accurate control device by suppressing torque ripple and the like of the control device by this automatic adjustment. Disclosure of the invention
第 1、 2の目的のため、 電流、 電圧などを入力して、 自動的にオンデ ィ レイ補償値 T dを調整するオンディ レイ補償値演算器 3 5を設け、 外 部からのオンディ レイ補償値演算開始信号により、 オンディ レイ補償値 演算を開始するようにした。  For the first and second purposes, an on-delay compensation value calculator 35 that automatically inputs the current and voltage and adjusts the on-delay compensation value Td is provided. On-delay compensation value calculation is started by the calculation start signal.
オンディ レイ補償値演算器 3 5により、 電流、 電圧を検出し、 オンデ ィ レイ補償による電流歪みなどの特徴量を抽出し、 これによりオンディ レイ補償値を演算する。 図面の簡単な説明  The on-delay compensation value calculator 35 detects the current and the voltage, extracts the characteristic amount such as the current distortion by the on-delay compensation, and calculates the on-delay compensation value. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の第 1の実施例の制御プロック図である。  FIG. 1 is a control block diagram according to a first embodiment of the present invention.
第 2図は、 本発明の第 1の実施例の制御フローチヤ一 トである。  FIG. 2 is a control flowchart of the first embodiment of the present invention.
第 3図は、 本発明の第 1の実施例の動作原理を説明するための電流制 御器とキヤ リャ周波数の関係を示している。 第 4図は、 本発明の第 2の実施例の制御プロック図である。 第 5図は、 オンディ レイ未補償時の電流波形である。 FIG. 3 shows the relationship between the current controller and the carrier frequency for explaining the operation principle of the first embodiment of the present invention. FIG. 4 is a control block diagram according to a second embodiment of the present invention. Fig. 5 shows the current waveform when the on-delay is not compensated.
第 6図は、 本発明の第 2の実施例の動作原理を説明するための高調波 とオンディ レイ補償値の関係を示している。  FIG. 6 shows a relationship between harmonics and an on-delay compensation value for explaining the operation principle of the second embodiment of the present invention.
第 7図は、 本発明の第 2の実施例の制御フ口一チヤ一 卜の一実施例で ある。  FIG. 7 is an embodiment of a control port according to the second embodiment of the present invention.
第 8図は、 本発明の第 2の実施例の制御フ口一チヤ一 トの他の実施例 である。  FIG. 8 shows another embodiment of the control port according to the second embodiment of the present invention.
第 9図は、 本発明の第 3の実施例の制御プロック図である。  FIG. 9 is a control block diagram of the third embodiment of the present invention.
第 1 0図は、 オンディ レイ未補償時の線電流波形の例である。  FIG. 10 is an example of a line current waveform when on-delay is not compensated.
第 1 1図は、 本発明の第 3の実施例の制御フ口一チャー トである。 第 1 2図は、 従来の制御装置の制御ブロック図である 発明を実施するための最良の形態  FIG. 11 is a control flowchart of a third embodiment of the present invention. FIG. 12 is a control block diagram of a conventional control device.
以下、 本発明の第 1の実施例を第 1図により説明する。 第 1図は交流 モータ 1を電力変換器 2により駆動し、 制御回路 3で制御する装置の制 御ブロック図を示したものである。 制御回路 3は速度制御、 電流制御、 出力電圧と出力周波数の比率制御 (以下 V Z f 制御) 、 励磁成分と トル ク成分をべク トル分解して制御するいわゆるべク トル制御などを行う制 御演算器 3 1、 電力変換器 2のゲ一 ト信号を作るための P W Mパターン 発生器 3 2、 オンディ レイ補償器 3 3、 オンディ レイ発生器 3 4、 及び 本発明によるオンディ レイ補償値演算器 3 5 aなどから成っている。 C Tは出力電流を検出する電流検出器である。  Hereinafter, a first embodiment of the present invention will be described with reference to FIG. FIG. 1 shows a control block diagram of a device in which an AC motor 1 is driven by a power converter 2 and controlled by a control circuit 3. The control circuit 3 controls speed control, current control, ratio control between output voltage and output frequency (hereinafter referred to as VZf control), and so-called vector control in which the excitation component and torque component are separated by vector. Calculator 31 1, PWM pattern generator 32 for generating gate signals for power converter 2, on-delay compensator 33, on-delay generator 34, and on-delay compensation value calculator 3 according to the present invention 5a etc. CT is a current detector that detects an output current.
制御演算器 3 1は P W Mパターン発生器 3 2に電圧指令 V *を与え、 P W Mパターン発生器 3 2は良く知られた三角波比較 P W Mなどにより . 電力変換器 2のスィ ツチング素子 ( I G B Tなどの半導体スィツチング 素子) のオン時間 T onを出力する。 これにより、 直流電力 V d cは交流 電力に変換されて交流モータ 1が回転駆動される。 なお直流電源 V d c は交流を整流して得られるようにしても良いことは勿論である。 The control calculator 31 gives a voltage command V * to the PWM pattern generator 32. The PWM pattern generator 32 uses a well-known triangular wave comparison PWM or the like. The switching element of the power converter 2 (semiconductor such as IGBT) Switching The on time T on of the element is output. Thereby, DC power V dc is converted into AC power, and AC motor 1 is rotationally driven. Of course, the DC power supply V dc may be obtained by rectifying the AC.
第 1 2図で前述したのと同様に、 本実施例においても第 1図に示すよ うに電力変換器 2は U相、 V相、 W相の各スイ ッチング素子を上下ァー ム直列に接続し、 排他的にスィ ツチングさせる。 また、 オンディ レイ発 生器 3 4はスイツチング素子のアーム短絡を防ぐために備えられる。 更 にオンディ レイ補償器 3 3が、 電流の歪抑制のために設けられる。  As described above with reference to FIG. 12, in the present embodiment, as shown in FIG. 1, the power converter 2 connects the U-phase, V-phase, and W-phase switching elements in series with the upper and lower arms. And switch exclusively. Also, the on-delay generator 34 is provided to prevent a short circuit of the switching element. Furthermore, an on-delay compensator 33 is provided for suppressing current distortion.
本実施例は、 更にオンディ レイ補償器 3 3で補償できないォンディ レ ィ補償値 T dのハ一 ドウヱァによるバラツキを、 オンディ レイ補償値演 算器 3 5 aにより、 自動計測し、 ハ一 ドウヱァによるバラツキを解消し、 安価で高精度な制御装置を提供するものである。  In this embodiment, the variation in the on-delay compensation value Td, which cannot be compensated by the on-delay compensator 33, due to the hardware is automatically measured by the on-delay compensation value calculator 35a, and the variation is calculated by the hardware. The purpose is to provide a low-cost, high-precision control device that eliminates variations.
まず、 本実施例のオンディ レイ補償値演算器 3 5 aの動作を説明し、 その後にその原理について述べる。 本実施例のオンディ レイ補償値演算 器 3 5 aは制御装置の外部からオンディ レイ補償値演算開始信号 Stdが 与えられる と第 2図に示すよう なフ ローチ ヤ 一 卜で動作を開始する ( STEP100〜STEP103) 。 交流モータ 1を回転させないようにするため、 まず、 オンディ レイ補償値演算器 3 5 aは u — V相間に直流電流を流す ように制御演算器 3 1内の電流制御器 3 1 1 に直流電流指令 I *を出力 し、 P W Mパターン発生器 3 2に電力変換器 2のスイッチング素子のス ィツチング周波数を決めるキヤ リャ周波数 f 1を出力する。 電流制御器 3 1 1は例えば良く知られた P I (比例積分) 制御器のようなもので十 分である (STEPl OOa ) 。  First, the operation of the on-delay compensation value calculator 35a of this embodiment will be described, and then the principle will be described. The on-delay compensation value calculator 35a of this embodiment starts operation in a flow chart as shown in FIG. 2 when an on-delay compensation value calculation start signal Std is given from outside the control device (STEP 100). ~ STEP103). In order to prevent the AC motor 1 from rotating, first, the on-delay compensation value calculator 35 a is supplied to the current controller 3 1 1 in the control calculator 31 so that a DC current flows between the u and V phases. The command I * is output, and the carrier frequency f 1 that determines the switching frequency of the switching element of the power converter 2 is output to the PWM pattern generator 32. The current controller 311 is, for example, a well-known PI (proportional-integral) controller, which is sufficient (STEP OOa).
次にオンディ レイ補償値演算器 3 5 aはこの電流制御器 3 1 1の電流 制御出力 V *が安定したのを見計らい、この電流制御出力 V *を u — V相 間の電圧指令 V とする (STEPl OOb) 。 同様に前述したキヤ リャ周波 数 1 とは異なっ た周波数 f 2 、 直流電流指令 I *で電流制御し (STEP100c)、 電流制御出力 V *が安定したのを見計らい、 この電流制御 出力 V *を u — V相間の電圧指令 V 2 *uvとする (STEPlOOd) 。 Next, the on-delay compensation value calculator 35a observes that the current control output V * of the current controller 311 1 has become stable, and sets the current control output V * as a voltage command V between u and the V phase. (STEP OOb). Similarly, the carrier frequency The current is controlled with a frequency f 2 different from Equation 1 and a DC current command I * (STEP100c), and when the current control output V * is stabilized, the current control output V * is set to the u-V phase voltage command V 2 * uv (STEP100d).
このような一連の動作を V — w相間(STEP101)、 w— u相間(STEP102) を繰返し、 V uv、 v 2 *uv、 V i *vw、 v 2 *vw、 v i *wu、 v 2 *wuを得 る。 そして、 オンディ レイ補償値演算を ( 2 ) 式〜 ( 4 ) 式のように行 う (STEP103) 。 A series of such operations V - w phase-to-phase (STEP101), repeated wu phase-to-phase (STEP102), V uv, v 2 * uv, V i * vw, v 2 * vw, vi * wu, v 2 * Get wu . Then, the on-delay compensation value calculation is performed as shown in equations (2) to (4) (STEP 103).
= ν 1 κ ν - v 2 u v ( 2 ) = ν 1 κ ν- v 2 uv (2)
^ 2 V W ^ 2 VW
1 d vw ( 3 1 d vw (3
V d c i \ V dci \
Tj = y i n- » 一 V 2 W U ( 4 ) T j = y i n- »One V 2 WU (4)
dwu _ vdc . d wu _ v dc .
ここで、 V dcは電力変換器 2の直流電圧である。 これらの T duv、 T dvw, T dwuを各相のオンディ レイ補償値とする。 また、 各相個別にする と処理が煩雑になることが予想されるがその時は ( 5 ) 式のように平均 などの処理を取り、 3相一括の T duvwで補償しても良いことは明白であ る。  Here, V dc is the DC voltage of the power converter 2. These T duv, T dvw, and T dwu are used as the on-delay compensation values for each phase. In addition, it is expected that the processing will be complicated if each phase is individually set. In that case, it is clear that processing such as averaging may be performed as in Eq. (5) and compensation may be performed using T duvw for all three phases. It is.
一 ^ duv * dvw + ^ dwu · · ■ · · ^ ^  One ^ duv * dvw + ^ dwu · · · · ^ ^
1 duvw 一 ^ ノ 1 duvw one ^ no
次に動作原理について述べる。 オンディ レイ補償値 T dは ( 1 ) 式に 示したようにスイ ッチング素子のスィツチング周波数には無関係である が、 スィツチング素子の動作周期 (キヤ リャ周波数の逆数) が長くなれ ば、 周期に占める割合が少なくなりそのオンディ レイ補償値 T dの影響 は小さくなり、 電流波形歪みも小さ くなる。 逆にスィツチング素子の動 作周期が短くなれば、 周期に占める割合が大き くなりその影響も大き く なる。 従って、 この 2つの動作周期での電流制御出力 V *の差がオンデ ィ レイ補償値 T d として利用できる。 この関係を図示したのが第 3図で ある。  Next, the operation principle will be described. The on-delay compensation value T d is independent of the switching frequency of the switching element as shown in Eq. (1). However, if the operating cycle of the switching element (the reciprocal of the carrier frequency) becomes longer, the on-delay compensation value T d becomes a percentage And the effect of the on-delay compensation value Td is reduced, and the current waveform distortion is also reduced. Conversely, if the operation cycle of the switching element is shortened, the ratio of the switching element to the cycle is increased, and the effect is also increased. Therefore, the difference between the current control outputs V * in these two operation cycles can be used as the on-delay compensation value T d. Fig. 3 illustrates this relationship.
第 3図は横軸にキヤ リャ周波数 f c を取り、 縦軸に電流制御出力 V * を取っている。 電流制御は直流の電流指令を出力電流が直流となるよう に直流電流指令 I *としているため、 キヤ リャ f 2を低い周波数に選べ ば、 交流モータ 1の抵抗 Rの電圧降下分 R I *のみがオンディ レイの影 響としてでるような周波数電流制御出力 V *を抽出できる。 一方、 キヤ リャ周波数を次第に大き く し、 f 1 とすると、 電流制御出力 V *は電圧 降下分 R I *とオンディ レイの電圧降下分の和となる。 従って、 この差 を取れば電圧降下分 R I *は相殺し、 オンディ レイの電圧降下分の電圧 となる。 これを ( 2 ) 式〜 ( 4 ) 式のように周波数 f 1で時間換算すれ ばオンディ レイ補償値 T dを求めることができる。 Fig. 3 shows the carrier frequency fc on the horizontal axis and the current control output V * on the vertical axis. Is taking. In the current control, the DC current command is set to the DC current command I * so that the output current becomes DC, so if the carrier f2 is selected at a low frequency, only the voltage drop RI * of the resistance R of the AC motor 1 is reduced. It is possible to extract the frequency current control output V * that appears as an effect of on-delay. On the other hand, if the carrier frequency is gradually increased to f1, the current control output V * is the sum of the voltage drop RI * and the on-delay voltage drop. Therefore, if this difference is taken, the voltage drop RI * cancels out and becomes the voltage of the on-delay voltage drop. The on-delay compensation value Td can be obtained by converting this to time at the frequency f1 as in Equations (2) to (4).
従って、 精度良くオンディ レイ補償値 T dを求めるには f 2をオンデ ィ レイの影響の小さいキヤ リャ周波数に選定し、 f 1をオンディ レイの 影響の大きいキヤ リャ周波数とすることが肝要になる。 電力変換器 2の スイッチング素子が I G B Tなら f 1を 1 0 k H z以上、 f 2を 5 k H z以下とし、 バイポーラ ドランジス夕の場合は f 1を 2 k H z以上、 f 2を 1 k H z以下とすることが望ましい。 また、 本発明では直流電流で オンディ レイ補償値 T dを求めるため、交流でのオンディ レイ補償値 T d とは若干ずれる可能性が有るが、 このときは ( 2 ) 式〜 ( 4 ) 式で求め たオンディ レイ補償値 T dに重み係数を掛ければ良いことは言うまでも ない。  Therefore, in order to accurately obtain the on-delay compensation value T d, it is important to select f2 as the carrier frequency with a small on-delay effect and set f1 as the carrier frequency with a large on-delay effect. . If the switching element of power converter 2 is an IGBT, set f1 to 10 kHz or more and f2 to 5 kHz or less.In the case of bipolar drainage, set f1 to 2 kHz or more and f2 to 1 k. It is desirable to set it to Hz or less. In addition, in the present invention, since the on-delay compensation value Td is obtained by using a DC current, there is a possibility that the on-delay compensation value Td may be slightly deviated from the on-delay compensation value Td obtained by using an alternating current. It goes without saying that the obtained on-delay compensation value T d may be multiplied by a weighting factor.
また、 前記のように直流電流 I *とした力 ( 2 ) 式〜 ( 4 ) 式に示し たように t on、 t off がスイッチング素子に流れる電流で異なった値と なるため、 直流電流指令 I *を変化させ、 前述のようなオンディ レイ補 償値演算をすることでさらに高精度なオンディ レイ補償値 T dを求める ことが可能である。  In addition, as described above, as the DC current I *, t on and t off have different values depending on the current flowing through the switching element, as shown in equations (2) to (4), the DC current command I By changing * and performing the on-delay compensation value calculation as described above, it is possible to obtain a more accurate on-delay compensation value Td.
次に本発明の第 2の実施例について説明する。 第 1の実施例と異なる ところは第 4図に示すように電流制御器 3 1 1 に代わり、 制御演算器 3 1 に交流電圧発生器 3 1 2を設け、 オンディ レイ補償値演算器 3 5 bに 高調波を求めるためのフーリエ変換器 (高速 F F T ) あるいはゥォルツ シュ変換器などを設ける点であり、 第 1の実施例が直流でオンディ レイ 補償値 T dを求めるところを交流で求めるところが大きな違いである。 交流モータ 1を回転させないため、 2相の正弦波状の交流励磁を行い、 オンディ レイ補償を外すと出力電流として第 5図の Y 1 3のような電流 が流れる。 これはオンディ レイにより、 正弦波状の交流電圧を加えてい るにも関わらず、 0電流付近で電圧が落ち込むために、 0クロス付近で 電流が歪むものである。 この電流歪みを最小にするようにオンディ レイ 補償値 T dを変化させていけばォンディ レイ補償値 T dを求めることが できる。 Next, a second embodiment of the present invention will be described. The difference from the first embodiment is that as shown in FIG. 1 is provided with an AC voltage generator 312, and the on-delay compensation value calculator 35b is provided with a Fourier transformer (high-speed FFT) or a Waltz converter for obtaining harmonics. The major difference is that the embodiment obtains the on-delay compensation value Td with direct current instead of the direct current. In order to keep the AC motor 1 from rotating, two-phase sinusoidal AC excitation is performed, and if on-delay compensation is removed, a current such as Y13 in Fig. 5 flows as the output current. This is due to the fact that the voltage drops near the zero current, but the current is distorted near the zero cross, even though a sinusoidal AC voltage is applied due to on-delay. By changing the on-delay compensation value Td so as to minimize this current distortion, the on-delay compensation value Td can be obtained.
オンディ レイにより歪んだ電流波形 (第 5図の Y 1 3 ) は第 5図に示 したように 3次の高調波 Y 3を含んでいるため、 これをオンディ レイ補 償値演算器 3 5 b内のフ一リェ変換器 (高速 F F T ) あるいはゥォルツ シュ変換器で 3次の高調波出力 A 3を求め、 最小二乗法などで A 3を最 小にするようにオンディ レイ補償値 T dを求める。 第 6図はその様子を 描いたもので、 横軸をオンディ レイ補償値 T d とし、 縦軸に波高値 A 3 を取っている。 第 5図の関係より、 A 3が第 6図のように極小点を持つ のは明らかである。 例えば最初、 T d = 0 ( A点) から始め、 徐々に T d を増やしていく と ( 点→8点→〇点) 、 D点で逆に A 3が大きくな る。 ここで、 今度は少し T dを減らし、 最終的に E点で最適なオンディ レイ補償値を求めることができる。 これらの追い込みはまさに最小二乗 法などの数値解析法で、 これらの手法を用いれば容易に実現できる。 第 2の実施例のフローチヤ一 トを第 7図に示す (STEP110〜STEP112 ) c 前述の実施例と同様にまず u— v間で交流励磁を行う (STEPl l Oa ) 。 電 流波形が安定した所で前述したようにフーリエ変換器 (高速 F F T ) あ るいはゥオルシュ変換器などにより、 A 3 uvを取り出し (STEPl l Ob) 、 オンディ レイ補償値を最小二乗法などで A 3 uv を最小にするオンディ レイ補償値 T d uvを求める (STEPl l Oc) 。 これと同様に V—w相間、 w - u相間について繰り返し (STEP111、 STEP112 ) 、 オンディ レイ補償値 T d uv、 T d vw、 T d wuを求める。 Since the current waveform distorted by the on-delay (Y13 in Fig. 5) contains the third harmonic Y3 as shown in Fig. 5, this is calculated by the on-delay compensation value calculator 35b Find the third-order harmonic output A3 with a Fourier transformer (Fast FFT) or a Waltz converter inside, and find the on-delay compensation value Td so as to minimize A3 by the least square method. . Figure 6 illustrates this situation, where the horizontal axis is the on-delay compensation value T d and the vertical axis is the peak value A 3. From the relationship in Fig. 5, it is clear that A3 has a local minimum as shown in Fig. 6. For example, at first, starting from T d = 0 (point A) and gradually increasing T d (point → 8 → 点), at point D, A 3 increases. Here, we can reduce Td a little, and finally find the optimal on-delay compensation value at point E. These runs are exactly numerical analysis methods such as the least squares method, and can be easily realized by using these methods. FIG. 7 shows a flow chart of the second embodiment (STEP110 to STEP112). C Excitation is first performed between u and v in the same manner as in the previous embodiment (STEP11 Oa). When the current waveform is stable, a Fourier transformer (high-speed FFT) A3 uv is taken out by means of an Orsh converter or the like (STEPl l Ob), and the on-delay compensation value T d uv that minimizes the A3 uv is determined by the least square method or the like (STEPl l Oc) . Similarly, between the V-w phases and between the w-u phases (STEP111, STEP112), the on-delay compensation values Tduv, Tdvw, and Tdwu are obtained.
上記第 2の実施例ではモータを回転しないように単相交流励磁とした が、 交流モータ 1を回転しても良い場合は、 第 8図に示すようなフロー チヤ — 卜でオンディ レイ補償値を求めるこ とができる ( STEP120〜 STEP122 ) 。 ここで、 前述と異なるのは V / f 運転で交流モータ 1を駆動 することと (STEP120 ) 、 この時の電流波形が第 1 0図のように 5、 7次 調波を含んだ波形となることである。 このため、 STEP120aでフ一リェ変 換器 (高速 F F T ) あるいはゥオルシュ変換器などにより、 A 5 もしく は A 7の少なく とも一方を取り出し、 これを最小最小二乗法などで追い 込むことである。 他は同一なので説明は省略する。  In the above-described second embodiment, single-phase AC excitation is performed so as not to rotate the motor. However, if the AC motor 1 may be rotated, the on-delay compensation value may be adjusted using a flowchart as shown in FIG. Can be obtained (STEP120-STEP122). Here, what is different from the above is that the AC motor 1 is driven by V / f operation (STEP120), and the current waveform at this time is a waveform containing the fifth and seventh harmonics as shown in Fig. 10. That is. For this reason, at step 120a, at least one of A5 or A7 is extracted by a Fourier transformer (high-speed FFT) or a ゥ orsh converter, and driven by the least-squares method. Others are the same, and the description is omitted.
以上、 第 2の実施例では各相ごとにオンディ レイ補償 T dを求めるこ とができるので平均をとつたり、 重み係数を掛けるなどの手法は第 1の 実施例に示すように同様に行えることは言うまでもない。 また、 交流モ 一夕 1を励磁する周波数や電圧値で電流などが異なるため、 さらに精密 にオンディ レイ補償 T dを求めるときは、 第 1の実施例に示したように 個別にパラメ一タ (電圧、 周波数) を振り、 求めれば良いことは明らか である。  As described above, in the second embodiment, since the on-delay compensation T d can be obtained for each phase, the method of averaging and multiplying the weighting factor can be similarly performed as shown in the first embodiment. Needless to say. In addition, since the current and the like differ depending on the frequency and voltage value for exciting the AC motor 1, when determining the on-delay compensation T d more precisely, as shown in the first embodiment, the individual parameters ( It is clear that the voltage and frequency can be determined and obtained.
第 3の実施例は前述した第 2の実施例の 2番目の方法のようにモータ を回転させても良い場合の方法で、 実際に交流モータ 1を回転させるた め、 さらに正確なオンディ レイ補償 T dを求めることができる。 第 2の 実施例との構成上での違いは第 9図に示したようにオンディ レイ補償値 演算器 3 5 c内にフーリェ変換器 (高速 F F T ) あるいはウオルシュ変 換器などが^, i -o-不要となり、 逆に制御演算器 3 1 内に d— q変換器 3 1 4が 必要になる。 ここで、 d— q変換器 3 1 4 とは信号 V Z f (オンディ レ ィ補償値演算器 3 5 c から交流電圧発生器 3 1 3への出力信号)により 発生する交流電圧発生器 3 1 3の周波数で回転する直行座標系に変換す る変換器のことである。 交流モータ 1、 特に誘導モータがべク トル制御 される場合に必要で、 通常はこの制御演算器 3 1 内に用意されている。 この d - q変換器 3 1 4により、 3相の線電流を座標変換すれば d— q 軸上の電流 i d、 i qを求めることができる。 変換式は例えば ( 6 ) 式 のようになる。 The third embodiment is a method in which the motor may be rotated as in the second method of the second embodiment described above.Since the AC motor 1 is actually rotated, more accurate on-delay compensation is performed. T d can be determined. The difference from the second embodiment in the configuration is that the Fourier transformer (fast FFT) or Walsh transform is included in the on-delay compensation value calculator 35c as shown in Fig. 9. A converter and the like become unnecessary, and i-o- becomes unnecessary. Conversely, a dq converter 314 is required in the control arithmetic unit 31. Here, the d-q converter 3 1 4 is an AC voltage generator 3 1 3 generated by the signal VZ f (output signal from the on-delay compensation value calculator 35 c to the AC voltage generator 3 13). This is a converter that converts to a rectangular coordinate system rotating at a frequency of. Necessary when vector control is performed on the AC motor 1, especially the induction motor, and is usually provided in the control calculator 31. The currents id and iq on the d--q axes can be obtained by performing coordinate conversion on the three-phase line currents using the d-q converter 314. The conversion equation is, for example, as shown in equation (6).
(iu (i u
( 6 )
Figure imgf000012_0001
(6)
Figure imgf000012_0001
この場合のように 3相で V Z f 駆動され、 オンディ レイ補償を行わな いと第 1 0図の線電流 i uに示すような波形となる。 これは単相時には 第 5図に示したように 3次の高調波が 3相で位相が 1 2 0 ° づっずれた 波形となり、 6次の高調波となるが 3相結線のため 6次が発生できない ので、 その分の高調波が 5、 7次に表れ図のような歪んだ波形 (Y 1 5 7 ) となる。 このような 5、 7次調波の混じった電流波形を d— q変換 すると例えば、 第 1 0図の i dのように 6次の脈動をする直流電流とな る。 従って、 この 6次の成分を最小にするようなオンディ レイ補償値を 求めれば良い。  As in this case, V Zf driving is performed in three phases, and if on-delay compensation is not performed, the waveform will be as shown by the line current i u in FIG. In single-phase, as shown in Fig. 5, the third harmonic has a three-phase waveform with a phase shift of 120 ° and a sixth harmonic, as shown in Fig. 5. Since they cannot be generated, the corresponding harmonics appear in the 5th and 7th order as a distorted waveform (Y157) as shown in the figure. When the current waveform in which the fifth and seventh harmonics are mixed is subjected to dq conversion, for example, a DC current pulsating in the sixth order as shown in id in FIG. 10 is obtained. Therefore, an on-delay compensation value that minimizes the sixth-order component may be obtained.
ここで、 第 2の実施例のようにオンディ レイ補償値演算器 3 5 c内に フーリェ変換器 (高速 F F T ) あるいはウオルシュ変換器などを用いて、 オンディ レイ補償値を求められることは明らかである。 しかし、 このよ うなフーリエ変換器 (高速 F F T ) あるいはウオルシュ変換器などを用 いずともオンディ レイ補償値を求められることを以下に示す。  Here, it is apparent that the on-delay compensation value can be obtained by using a Fourier transformer (fast FFT) or a Walsh transformer in the on-delay compensation value calculator 35c as in the second embodiment. . However, the following shows that the on-delay compensation value can be obtained without using such a Fourier transformer (fast FFT) or a Walsh transformer.
前述したように i dの脈動を小さ くすれば良く、 例えば ( 7 ) 式のよ うに最小、 最大値から Δ i dを求めたり、 ( 8 ) 式もしくは ( 9 ) 式の ように平均値を取り、最小、最大値の差を取り出せばフーリェ変換器(高 速 F F T) あるいはウオルシュ変換器など複雑な処理は不要となり、 こ れらを第 1 1図に示すフローチヤ一 トのように最小にするようにオンデ ィ レイ補償値を求めれば良い。 以上述べた、 第 3の実施例のフ口一チヤ — トを第 1 1図に示す (STEP130〜STEP132) 。 As described above, it is only necessary to reduce the pulsation of id. For example, as shown in (7) To find the Δid from the minimum and maximum values, take the average value as shown in equation (8) or (9), and extract the difference between the minimum and maximum values, to obtain the Fourier transformer (high-speed FFT) or Walsh transformer Such complicated processing becomes unnecessary, and the on-delay compensation value may be obtained so as to minimize these as shown in the flowchart of FIG. FIG. 11 shows the mouthpiece of the third embodiment described above (STEP130 to STEP132).
ld max― ld mm ( 7 ) L d max― l d mm (7)
7 = W  7 = W
Δ , 1 d m in ( 8 ) Δ, 1 dm in (8)
N  N
A im ean = ~ ∑ ld (j) ~ ld m in リ ただし、 i dmax: i dの最大値、 i dmin: i dの最小値とする。 A imean = ~ ∑ l d (j) ~ l dm in where i dmax: the maximum value of id and i dmin: the minimum value of id.
また、 説明の都合上 i dを用いたが i qを使っても同様で行え、 第 2の 実施例で述べたような平均をとつたり、 重み係数を掛けるなどの手法は 第 1の実施例に示すように同様に行えることは言うまでもない。 また、 交流モータ 1を励磁する周波数や電圧値で電流などが異なるため、 さ ら に精密にオンディ レイ補償 T dを求めるときは、 第 1の実施例に示した ように個別にパラメータ (電圧、 周波数) を振り、 求めれば良いことは 明らかである。 Although id is used for the sake of explanation, the same can be done using iq, and the method of taking an average and multiplying by a weighting factor as described in the second embodiment is the same as that of the first embodiment. It goes without saying that the same can be done as shown. In addition, since the current and the like differ depending on the frequency and voltage value for exciting the AC motor 1, when obtaining the on-delay compensation Td more precisely, the parameters (voltage, It is clear that it is only necessary to determine the frequency.
以上述べた実施例においては、 オンディ レイ補償値を自動的に演算す るが、 その際、 電力変換器などの故障でオンディ レイ補償値演算値が異 常な値になる場合がある。 その時には ( 1 ) 式の値を typ. 値としてリ ミ ッタを付けてやることにより、 異常な動作を防止する機構を付ければ 良いことは明らかであり、 逆にこの状態を利用して故障判断できる。  In the embodiment described above, the on-delay compensation value is automatically calculated. At this time, the on-delay compensation value calculated value may be an abnormal value due to a failure of the power converter or the like. At that time, it is clear that a mechanism to prevent abnormal operation should be provided by adding a limiter with the value of equation (1) as a typ. Value. I can judge.
またオンディ レイ補償値演算開始信号 Stdは制御回路 3の外部からス ィツチなどを設けて任意のタイ ミ ングで与えることができる。 この場合 は例えば製品出荷に際して行う とか据え付け後のメ ンテナンス時に必要 に応じて行うことできる。 あるいは電源投入時に行うようにしたい場合 は、 電源投入に合わせてこの Std信号を自動的に発生するようにしてお けばよい。 この場合は制御回路 3の内部で Std信号を発生することもで きる。 また以上述べた実施例はオンディ レイ補償値演算器 3 5に全て共 存でき、 制御回路 3の外部からどの手法でオンディ レイ補償値を求める か選択できるようにすると、 その用途は広がり、 交流モータの負荷状態 によらずオンディ レイ補償値を求めることができるようになる。 さらに 本発明で述べたオンディ レイ補償値演算器は P W Mコンバータゃ他の電 力変換器にも用いることができるのは言うまでもない。 産業上の利用可能性 The on-delay compensation value calculation start signal Std can be given at an arbitrary timing by providing a switch or the like from outside the control circuit 3. In this case, for example, it can be performed at the time of product shipment or at the time of maintenance after installation, if necessary. Or if you want to do it at power on The Std signal should be automatically generated when the power is turned on. In this case, the Std signal can be generated inside the control circuit 3. In addition, all of the embodiments described above can coexist in the on-delay compensation value calculator 35, and if it is possible to select which method to obtain the on-delay compensation value from outside the control circuit 3, the application will be expanded and the AC motor The on-delay compensation value can be obtained irrespective of the load condition. Furthermore, it goes without saying that the on-delay compensation value calculator described in the present invention can be used for a PWM converter and other power converters. Industrial applicability
本発明によれば電力変換器個体のバラツキによるオンディ レイ補償値 のずれを自動調整するので、 オンディ レイ補償値のずれによる トルク リ プルを防止でき、 高精度な制御装置を実現できる。 また、 自動調整によ り、 ハ一 ドウエアのバラツキの許容範囲が増えるため、 安価な制御装置 を実現できる効果もある。  According to the present invention, since the deviation of the on-delay compensation value due to the variation of the individual power converters is automatically adjusted, torque ripple due to the deviation of the on-delay compensation value can be prevented, and a highly accurate control device can be realized. In addition, the automatic adjustment increases the allowable range of hardware variation, which has the effect of realizing an inexpensive control device.

Claims

請求の範囲 . 交流モータと、 前記交流モータに供給する交流電力をスイ ッチング 素子により発生する電力変換器と、 前記スィツチング素子のオンディ レイを補償するオンディ レイ補償器を備えた交流モ一夕制御装置にお いて、 前記スイ ツチング素子をォンディ レイの影響の多い第 1 のスィ ツチング周波数とオンディ レイの影響の少ない第 2のスィ ツチング周 波数の少なく とも 2つのスィ ッチング周波数で一定の直流電流を流す ように制御する手段と、 少なく とも上記 2つの周波数での電圧制御出 力の差に基づき前記オンディ レイ補償値を求める手段を有するオンデ ィ レイ補償値演算手段を備えたことを特徴とした交流モータ制御装置 ( 2 . 前記請求 1 の交流モータ制御装置において、 前記スイ ッチング素子 は I G B Tであり、 前記第 1の周波数を 1 0 k H z以上、 前記第 2の 周波数を 5 k H z以下とした前記請求項 1記載の交流モータ制御装置 ( 3 . 前記請求 1の交流モータ制御装置において、 前記スイッチング素子 はバイポーラ トランジスタであり、 前記第 1の周波数を 2 k H z以上、 前記第 2の周波数を 1 k H z以下とした前記請求項 1記載の交流モ一 夕制御装置。 4 . 交流モータと、 前記交流モータに供給する交流電力をスイ ッチング 素子により発生する電力変換器と、 前記スイ ッチング素子のオンディ レイを補償するオンディ レイ補償器を備えた交流モータ制御装置にお いて、 前記交流モータを正弦波状の単相交流で励磁する手段と、 前記 単相交流励磁手段で励磁しながら前記オンディ レイ補償器のオンディ レイ補償値を変化させる手段と、 前記オンディ レイ補償値を変化させ ることにより前記交流モータに流れる電流の零クロス部分の歪みがほ ぼ最小になるオンディ レイ補償値を求める手段を備えたことを特徴と した交流モータ制御装置。 . 交流モータと、 前記交流モータに供給する交流電力をスイ ッチング 素子により発生する電力変換器と、 前記スィツチング素子のオンディ レイを補償するオンディ レイ補償器を備えた交流モ一夕制御装置にお いて、 前記交流モータを正弦波状の単相交流で励磁して流れた電流を フ一リェ変換あるいはゥォルツシュ変換する手段と、 前記フーリエ変 換あるいはゥォルツシュ変換で求められた高調波分を最小にするよう に前記オンディ レイ補償器のオンディ レイ補償値変化させてオンディ レイ補償値を求める手段を備え、 該求めたオンディ レイ補償値に基づ き前記オンディ レイ補償器を動作させることを特徴とした交流モータ 制御装置。. 交流モータと、 前記交流モータに供給する交流電力をスイッチング 素子により発生する電力変換器と、 前記スイッチング素子のオンディ レイを補償するオンディ レイ補償器を備えた交流モータ制御装置にお いて、 前記交流モータを正弦波状の交流電圧で励磁して流れた電流を 該交流電圧の周波数で回転する 2軸の直行座標系の電流に変換する手 段と、 前記直行座標系に変換された電流のうち少なく とも 1軸の脈動 を最小にするように前記オンディ レイ補償器のオンディ レイ補償値変 化させてオンディ レイ補償値を求める手段を備え、 該求めたオンディ レイ補償値に基づき前記オンディ レイ補償器を動作させることを特徴 とした交流モータ制御装置。 . 交流モータと、 前記交流モータに供給する交流電力をスイッチング 素子により発生する電力変換器と、 前記スィツチング素子のオンディ レイを補償するオンディ レイ補償器を備えた交流モータ制御装置にお いて、 前記交流モータを正弦波状の交流電圧で励磁して流れた電流を フーリェ変換あるいはゥォルッシュ変換する手段と、 前記フーリエ変 換あるいはゥォルツシュ変換で求められた高調波分を最小にするよう に前記オンディ レイ補償器のオンディ レイ補償値変化させてオンディ レイ補償値を求める手段を備え、 該求めたオンディ レイ補償値に基づ き前記オンディ レイ補償器を動作させることを特徴とした交流モータ 制御装置。. 前記請求 1から 7記載の交流モータ制御装置において、 前記オンデ ィ レイ補償値の演算機能の開始を指示できるようにした交流モータ制 御装置。 . 交流モータと、 前記交流モータに供給する交流電力をスイ ッチング 素子により発生する電力変換器と、 前記スイッチング素子のオンディ レイを補償するオンディ レイ補償器を備えた交流モータ制御装置にお いて、 前記オンディ レイ補償器は、 前記スィ ッチング素子をォンディ レイの影響の多い第 1のスィ ッチン グ周波数とォンディ レイの影響の少ない第 2のスィ ッチング周波数の 少なく とも 2つのスィッチング周波数で一定の直流電流を流すように 制御する手段と少なく とも上記 2つの周波数での電圧制御出力の差に 基づき前記オンディ レイ補償値を求める手段を有する第 1のオンディ レイ補償器と、 前記交流モータを正弦波状の単相交流で励磁する手段と前記単相交流 励磁手段で励磁しながら前記オンディ レイ補償器のオンディ レイ補償 値を変化させる手段と前記オンディ レイ補償値を変化させることによ り前記交流モータに流れる電流の零クロス部分の歪みがほぼ最小にな るオンディ レイ補償値を求める手段を有する第 2のオンディ レイ補償 器と、 前記交流モータを正弦波状の単相交流で励磁して流れた電流をフ一リ ェ変換あるいはゥォルツシュ変換する手段と前記フ一リエ変換あるい はゥオルッシュ変換で求められた高調波分を最小にするように前記ォ ンディ レイ補償器のオンディ レイ補償値変化させてオンディ レイ補償 値を求める手段を有する第 3のオンディ レイ補償器と、 前記交流モータを正弦波状の交流電圧で励磁して流れた電流を該交流 電圧の周波数で回転する 2軸の直行座標系の電流に変換する手段と前 記直行座標系に変換された電流のうち少なく とも 1軸の脈動を最小に するように前記オンディ レイ補償器のオンディ レイ補償値変化させて オンディ レイ補償値を求める手段を有する第 4のオンディ レイ補償器 と、 前記交流モータを正弦波状の交流電圧で励磁して流れた電流をフ一リ ェ変換あるいはゥォルツシュ変換する手段と前記フーリェ変換あるい はゥオルッシュ変換で求められた高調波分を最小にするように前記ォ ンディ レイ補償器のオンディ レイ補償値変化させてオンディ レイ補償 値を求める手段を有する第 5のオンディ レイ補償器を備え、 前記第 1乃至第 5のオンディ レイ補償器の選択を可能にした交流モー タ制御装置。 0 . スィ ツチング素子を用いて電力を変換し負荷に電力を供給する電 力変換手段と、 前記電力変換器のスィッチングを制御する制御手段を 備えた電力変換装置において、 前記制御手段は前記スイッチング素子 のオンディ レイ補償値を求めるオンディ レイ補償手段を備え、 該オン ディ レイ補償手段により前記スィツチング素子のオンディ レイ補償を 行う電力変換装置。 An AC motor control device comprising: an AC motor; a power converter that generates AC power to be supplied to the AC motor by a switching element; and an on-delay compensator that compensates for on-delay of the switching element. A constant DC current is passed through the switching element at at least two switching frequencies, the first switching frequency having a large influence of on-delay and the second switching frequency having little influence of on-delay. Motor control means for calculating the on-delay compensation value based on the difference between the voltage control outputs at least at the two frequencies. The control device (2. In the AC motor control device according to claim 1, wherein the switching element is an IGBT, The AC motor control device according to claim 1, wherein the frequency of (1) is 10 kHz or more and the second frequency is 5 kHz or less. (3.The AC motor control device of claim 1, wherein the switching element 2. An AC motor control device according to claim 1, wherein the first frequency is 2 kHz or more and the second frequency is 1 kHz or less. In an AC motor control device including a power converter that generates AC power to be supplied to the AC motor by a switching element and an on-delay compensator that compensates for the on-delay of the switching element, the AC motor has a sine wave. Means for exciting with a wavy single-phase alternating current, means for changing the on-delay compensation value of the on-delay compensator while exciting with the single-phase alternating current exciting means, and the on-delay compensation value An AC motor control device characterized by comprising means for obtaining an on-delay compensation value by which the distortion of the zero-cross portion of the current flowing in the AC motor is substantially minimized by changing the AC motor. In an AC motor control device including a power converter that generates AC power to be supplied to an AC motor by a switching element and an on-delay compensator that compensates for the on-delay of the switching element, the AC motor has a sine wave. Means for performing a Fourier transform or a Waltz transform on a current excited by a wavy single-phase alternating current, and an on-delay compensator for minimizing a harmonic component obtained by the Fourier transform or the Waltz transform. Means for determining an on-delay compensation value by changing the on-delay compensation value, and based on the determined on-delay compensation value. AC motor control apparatus characterized by operating the can the Ondi ray compensator. An AC motor control apparatus including an AC motor, a power converter that generates AC power supplied to the AC motor by a switching element, and an on-delay compensator that compensates for on-delay of the switching element. Means for converting a current flowing by exciting the motor with a sine-wave AC voltage into a current of a two-axis orthogonal coordinate system rotating at the frequency of the AC voltage; and at least one of the currents converted to the orthogonal coordinate system. And means for obtaining an on-delay compensation value by changing an on-delay compensation value of the on-delay compensator so as to minimize pulsation of one axis. Based on the obtained on-delay compensation value, the on-delay compensator is provided. An AC motor control device characterized by operating. An AC motor control apparatus comprising: an AC motor; a power converter that generates AC power supplied to the AC motor by a switching element; and an on-delay compensator that compensates for an on-delay of the switching element. Means for Fourier-transforming or Walsh-transforming the current flowing by exciting the motor with a sine-wave AC voltage; and the on-delay compensator so as to minimize the harmonic component obtained by the Fourier-transforming or Waltz-transforming. An AC motor control device comprising means for obtaining an on-delay compensation value by changing an on-delay compensation value, and operating the on-delay compensator based on the obtained on-delay compensation value. The AC motor control device according to any one of claims 1 to 7, wherein an instruction to start a function of calculating the on-delay compensation value can be given. An AC motor control device including an AC motor, a power converter that generates AC power to be supplied to the AC motor by a switching element, and an on-delay compensator that compensates for on-delay of the switching element. The on-delay compensator controls the switching element to generate a constant DC current at at least two switching frequencies, a first switching frequency having a large influence of an on-delay and a second switching frequency having a small influence of an on-delay. A first on-delay compensator having means for controlling the flow so as to flow, and means for obtaining the on-delay compensation value based on a difference between the voltage control outputs at least at the two frequencies; and a sinusoidal single-phase AC exciting means and the on-delay compensator while energizing by the single-phase AC exciting means. A second means for changing an on-delay compensation value and a means for obtaining an on-delay compensation value by which the distortion of the zero-cross portion of the current flowing through the AC motor is substantially minimized by changing the on-delay compensation value. An on-delay compensator, a means for performing a Fourier transform or a Walsh transform on a current flowing by exciting the AC motor with a sinusoidal single-phase AC, and the Fourier transform or a Walsh transform. A third on-delay compensator having a means for obtaining an on-delay compensation value by changing an on-delay compensation value of the on-delay compensator so as to minimize a harmonic component; Means for converting the current excited and flowing into the two-axis orthogonal coordinate system rotating at the frequency of the AC voltage, and the current converted to the orthogonal coordinate system A fourth on-delay compensator having means for obtaining an on-delay compensation value by changing an on-delay compensation value of the on-delay compensator so as to minimize at least one-axis pulsation; and Means for Fourier-transform or Waltz-transform the current excited by the AC voltage, and the on-lay compensator for minimizing the harmonic component obtained by the Fourier transform or the Walsh transform. An AC motor control device, comprising: a fifth on-delay compensator having means for obtaining an on-delay compensation value by changing an on-delay compensation value, wherein the first to fifth on-delay compensators can be selected. 0. A power conversion device comprising: power conversion means for converting power using a switching element to supply power to a load; and control means for controlling switching of the power converter, wherein the control means includes the switching element. A power conversion device, comprising: an on-delay compensating means for obtaining an on-delay compensation value of the above, wherein the on-delay compensating means performs on-delay compensation of the switching element.
1 . スイ ツチング素子により交流電力を得て交流モータに供給する電 力変換器と、 前記電力変換器のスイッチングを制御する制御手段を備 えた電力変換装置において、 前記制御手段の外部からの信号に応答し て前記スイツチング素子のオンディ レイ補償値を求めるオンディ レイ 補償手段を備え、 該オンディ レイ補償手段で求めたオンディ レイ補償 値に基づいてオンディ レイ補償を行うことを特徴とした電力変換装置, 1. In a power converter including a power converter that obtains AC power by a switching element and supplies the AC power to an AC motor, and a control unit that controls switching of the power converter, a signal from the outside of the control unit is used. Respond An on-delay compensation means for obtaining an on-delay compensation value of the switching element, and performing on-delay compensation based on the on-delay compensation value obtained by the on-delay compensation means.
2 . 交流モータと、 交流電力を受けスィツチング素子により任意の周 波数の交流電力に変換し前記交流モータに供給する電力変換器と、 前 記スィ ツチング素子のオンディ レイを補償するオンディ レイ補償器を 有する制御回路を備えた交流モータ制御装置において、 前記スィ ッチ ング素子を動作させて検出したオンディ レイによりオンディ レイ補償 値を演算するオンディ レイ補償値演算手段と、 前記オンディ レイ補償 値演算手段の演算を開始させる手段と、 前記オンディ レイ補償値演算 手段の演算結果により前記スィ ツチング素子のオンディ レイを補償す る手段を備えた交流モータ制御装置。2. An AC motor, a power converter that receives the AC power, converts it into AC power of an arbitrary frequency by a switching element, and supplies the AC power to the AC motor, and an on-delay compensator that compensates for the on-delay of the switching element. An AC motor control device provided with a control circuit having an on-delay compensation value calculating means for calculating an on-delay compensation value based on an on-delay detected by operating the switching element, and an on-delay compensation value calculating means. An AC motor control device comprising: means for starting a calculation; and means for compensating for the on-delay of the switching element based on the calculation result of the on-delay compensation value calculation means.
3 . 交流モータと、 直流電力を受けスィッチング素子により交流電力 に変換し前記交流モータに供給する電力変換器と、 前記スィ ッチング 素子のオンディ レイを補償するオンディ レイ補償器を有する制御回路 を備えた交流モータ制御装置において、 電圧、 電流、 周波数の少なく とも 1つに対応する値に基づいて自動的にオンディ レイ補償値を調整 するオンディ レイ補償値調整手段と、 前記制御回路の外部からオンデ ィ レイ補償値の調整を開始させる信号を入力する手段とを備え、 前記 オンディ レイ補償値調整開始信号の入力に応答して前記オンディ レイ 補償値の調整を開始する手段を備えた交流モータ制御装置。  3. An AC motor, a power converter that receives DC power, converts the DC power into AC power by a switching element, and supplies the AC power to the AC motor, and a control circuit including an on-delay compensator that compensates for the on-delay of the switching element. In an AC motor control device, an on-delay compensation value adjusting means for automatically adjusting an on-delay compensation value based on at least one of a voltage, a current, and a frequency; and an on-delay from outside the control circuit. Means for inputting a signal to start adjustment of the compensation value, and means for starting adjustment of the on-delay compensation value in response to the input of the on-delay compensation value adjustment start signal.
4 . スィツチング素子を用いて電力を変換し負荷に電力を供給する電 力変換手段と、 前記電力変換器のスィッチングを制御する制御手段を 備えた電力変換装置の制御方法において、 前記スィ ッチング素子のォ ンディ レイ補償値を前記スィッチング素子を動作させることにより求 め、 該求められたオンディ レイ補償値により前記スィツチング素子の オンディ レイ補償を行う電力変換装置の制御方法。4. A control method for a power conversion device, comprising: power conversion means for converting power using a switching element to supply power to a load; and control means for controlling switching of the power converter. An on-delay compensation value is obtained by operating the switching element, and the on-delay compensation value is used to calculate the on-delay compensation value of the switching element. A control method for a power converter that performs on-delay compensation.
5 . スィ ッチング素子により交流電力を得て交流モータに供給する電 力変換器と、 前記電力変換器のスィ ッチングを制御する制御手段を備 えた電力変換装置の制御方法において、 前記制御手段の外部からの信 号に応答して前記スイッチング素子を動作させ、 次いでこのスィ ッチ ング素子の動作に基づくオンディ レイ補償値を求め、 該求めたオンデ ィ レイ補償値に基づいてオンディ レイ補償を行うことを特徴とした電 力変換装置の制御方法。5. A method of controlling a power converter, comprising: a power converter that obtains AC power by a switching element and supplies the AC power to an AC motor; and a control unit that controls switching of the power converter. Operating the switching element in response to a signal from the switching element, then obtaining an on-delay compensation value based on the operation of the switching element, and performing on-delay compensation based on the obtained on-delay compensation value. A control method for an electric power conversion device characterized by the following.
6 . 交流モータと、 交流電力を受けスィ ッチング素子により任意の周 波数の交流電力に変換し前記交流モータに供給する電力変換器と、 前 記スイツチング素子のオンディ レイを補償するオンディ レイ補償手段 を有する制御回路を備えた交流モータ制御装置の制御方法において、 所定タイ ミ ングで前記オンディ レイ補償値演算手段の演算を開始させ て前記オンディ レイ補償値を求め、 この求められたオンディ レイ補償 値により前記スィツチング素子のオンディ レイを補償する交流モータ 制御装置の制御方法。 6. An AC motor, a power converter that receives the AC power, converts the AC power into an AC power of an arbitrary frequency by a switching element, and supplies the AC power to the AC motor, and an on-delay compensation unit that compensates for the on-delay of the switching element. In the control method of the AC motor control device provided with the control circuit having the control circuit, the on-delay compensation value calculation means is started at a predetermined timing to obtain the on-delay compensation value, and the obtained on-delay compensation value is calculated based on the obtained on-delay compensation value. A control method of an AC motor control device for compensating on-delay of the switching element.
7 . 交流モータと、 直流電力を受けスィ ッチング素子により交流電力 に変換し前記交流モータに供給する電力変換器と、 前記スィ ツチング 素子のオンディ レイを補償するオンディ レイ補償器を有する制御回路 を備えた交流モータ制御装置の制御方法において、 電圧、 電流、 周波 数の少なく とも 1つに対応する値に基づいて自動的にオンディ レイ補 償値を演算するオンディ レイ補償値演算器と、 前記制御回路の外部か らオンディ レイ補償値演算を開始させる信号を入力する手段とを備え 前記オンディ レイ補償値演算開始信号の入力に応答して前記オンディ レイ補償値演算を開始する手段を備えた交流モータ制御装置の制御方 法。  7. An AC motor, a power converter that receives DC power, converts it into AC power by a switching element and supplies the AC power to the AC motor, and a control circuit having an on-delay compensator that compensates for the on-delay of the switching element. An on-delay compensation value calculator for automatically calculating an on-delay compensation value based on values corresponding to at least one of voltage, current, and frequency; and the control circuit. Means for inputting a signal for starting an on-delay compensation value calculation from outside the AC motor control means for starting the on-delay compensation value calculation in response to the input of the on-delay compensation value calculation start signal How to control the device.
PCT/JP1997/000909 1997-03-19 1997-03-19 Power converter, ac motor controller and their control method WO1998042067A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP54032298A JP3329831B2 (en) 1997-03-19 1997-03-19 Power conversion device, AC motor control device, and control method thereof
PCT/JP1997/000909 WO1998042067A1 (en) 1997-03-19 1997-03-19 Power converter, ac motor controller and their control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1997/000909 WO1998042067A1 (en) 1997-03-19 1997-03-19 Power converter, ac motor controller and their control method

Publications (1)

Publication Number Publication Date
WO1998042067A1 true WO1998042067A1 (en) 1998-09-24

Family

ID=14180263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000909 WO1998042067A1 (en) 1997-03-19 1997-03-19 Power converter, ac motor controller and their control method

Country Status (2)

Country Link
JP (1) JP3329831B2 (en)
WO (1) WO1998042067A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362069B2 (en) 2003-08-18 2008-04-22 Kabushiki Kaisha Yaskawa Denki Voltage source inverter control method
JP2010228701A (en) * 2009-03-30 2010-10-14 Jtekt Corp Dead time setting method, motor control device and electric power steering device
US10910984B2 (en) 2015-05-20 2021-02-02 Mitsubishi Electric Corporation Power conversion device and vehicle drive system to which same is applied

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101076216B1 (en) 2011-09-07 2011-10-26 (주)스페이스원 Precision machining control apparatus using an igbt circuit, and the control method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143287A (en) * 1989-10-27 1991-06-18 Hitachi Ltd Controlling method for voltage type inverter
JPH08126335A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Method and device for controlling power converter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03143287A (en) * 1989-10-27 1991-06-18 Hitachi Ltd Controlling method for voltage type inverter
JPH08126335A (en) * 1994-10-20 1996-05-17 Hitachi Ltd Method and device for controlling power converter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7362069B2 (en) 2003-08-18 2008-04-22 Kabushiki Kaisha Yaskawa Denki Voltage source inverter control method
JP2010228701A (en) * 2009-03-30 2010-10-14 Jtekt Corp Dead time setting method, motor control device and electric power steering device
US10910984B2 (en) 2015-05-20 2021-02-02 Mitsubishi Electric Corporation Power conversion device and vehicle drive system to which same is applied

Also Published As

Publication number Publication date
JP3329831B2 (en) 2002-09-30

Similar Documents

Publication Publication Date Title
EP1396927B1 (en) Inverter control method and its device
US6229719B1 (en) Method of inverter control and apparatus of the same
US7541769B2 (en) Electric power converter and motor driving system
KR101046042B1 (en) Vector control device of induction motor, vector control method of induction motor and drive control device of induction motor
JP4918483B2 (en) Inverter device
KR20140002736A (en) Power conversion device
JP2003134898A (en) Sensorless controller and control method for synchronous generator
JP5813934B2 (en) Power converter
JP3586078B2 (en) Power converter
JP4253156B2 (en) Inverter control method and apparatus
JP5351390B2 (en) Power converter
US8749184B2 (en) Control apparatus for electric motor
JP7318727B2 (en) POWER CONVERSION DEVICE, POWER CONVERSION METHOD AND SYSTEM
JP2010268629A (en) Inverter device
WO1998042067A1 (en) Power converter, ac motor controller and their control method
WO2018016070A1 (en) Motor control device
JP6515532B2 (en) Power converter
JP5838554B2 (en) Power converter
JP2004173496A (en) Controller for induction motor
JP4581508B2 (en) Control device for voltage source inverter
JPH03253291A (en) Driving device for motor
JP2008161027A (en) Drive unit of synchronous motor
JP2914997B2 (en) Inverter control device
JP2007006660A (en) Control unit for polyphase motor
JP2004254429A (en) Pwm converter with input filter taken into consideration, control method and harmonic-suppressing apparatus

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase