WO1998041661A1 - Steel band heat-treating apparatus by gas jet stream - Google Patents

Steel band heat-treating apparatus by gas jet stream Download PDF

Info

Publication number
WO1998041661A1
WO1998041661A1 PCT/JP1998/001072 JP9801072W WO9841661A1 WO 1998041661 A1 WO1998041661 A1 WO 1998041661A1 JP 9801072 W JP9801072 W JP 9801072W WO 9841661 A1 WO9841661 A1 WO 9841661A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
steel strip
nozzle
heat treatment
jet
Prior art date
Application number
PCT/JP1998/001072
Other languages
French (fr)
Japanese (ja)
Inventor
Hirohisa Kawamura
Norichika Nagira
Mutsuo Shiraga
Jyunichi Hayashi
Yoshihiro Serizawa
Masanori Shimada
Kouichi Waki
Hisamoto Wakabayashi
Keiji Oogushi
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to EP98907225A priority Critical patent/EP0911418B1/en
Priority to DE69833424T priority patent/DE69833424T2/en
Priority to BR9804782A priority patent/BR9804782A/en
Priority to KR1019980709182A priority patent/KR100293139B1/en
Publication of WO1998041661A1 publication Critical patent/WO1998041661A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire

Definitions

  • the present invention relates to a heat treatment apparatus for heating, cooling, or drying a steel strip by spraying a gas jet onto the steel strip.
  • Conventional technology for heating, cooling, or drying a steel strip by spraying a gas jet onto the steel strip.
  • the heat treatment apparatus using a gas jet of a steel strip according to the present invention has the following features (1) to (4) in order to achieve the object.
  • a resistive plate is attached to the tip of the nozzle that discharges the gas jet, and the projected cross-sectional area of the steel plate is compared to the nozzle cross-sectional area
  • a heat treatment system using a gas jet of steel strip characterized in that it is installed so that the plate length in the nozzle axis direction within the nozzle is less than 50% of the nozzle diameter.
  • the nozzle has a nozzle that discharges a gas jet, and a plurality of nozzles, and supplies gas to the nozzle. And a gas distribution header for distributing gas to a plurality of gas blowing headers, and an opening or gap as a gas exhaust port between the gas blowing headers. An opening having an area of 5 times or more and 17 times or less of the opening area of the nozzle is provided. Heat treatment equipment by gas jet of steel strip.
  • the tip of the gas blowing header is characterized in that the cross section of the gas flow path is gradually reduced in the gas blowing direction, and the tip of the nozzle does not protrude from the tip of the gas blowing header.
  • the distance Z between the steel strip and the tip of the nozzle is set to 70 mm or less, and the header from the header that supplies gas to the nozzle Heat treatment of steel strip by gas jet, characterized by satisfying the relationship of WZ 4 ⁇ h between nozzle protrusion height h mm and blowing gas volume per unit area (air volume density) W m 3 / min m 2 apparatus.
  • a heat treatment device that heats, cools, or dries the steel strip by spraying a gas jet onto the steel strip, and the direction of travel of the steel strip between the gas-spraying spaces where the nozzles that discharge the gas jet are arranged
  • the heat treatment equipment which has a roll insertion space in which the presser rolls are arranged alternately at a certain interval along the strip to prevent fluttering of the steel strip
  • a heat treatment device using a gas jet of a steel strip characterized in that a nozzle for discharging a gas jet is arranged in the roll inlet space on the opposite side of the roll so as to extend the gas spray space.
  • a heat treatment device that heats, cools, or dries the steel strip by spraying a gas jet onto the steel strip, and the traveling direction of the steel strip between the gas spraying space where the nozzles that discharge the gas jet are arranged With a certain interval along
  • a cooling roll that cools down the presser roll is used.
  • the heating roll is a heated roll of the presser roll.
  • At least a heat exchanger for gas cooling is installed at the downstream side of the gas compressor such as a blower. Heat treatment equipment using gas jet of steel strip.
  • FIG. 1 is a diagram showing the air flow density, the heat transfer coefficient, and the test range in the present invention.
  • FIGS. 2 (a), (b), (c), and (d) are diagrams showing nozzles of the gas jet heat treatment apparatus of the present invention.
  • Figures 3 (a) and 3 (b) show the flow of the gas jet at the nozzle tip.
  • Figure 4 shows the heat transfer characteristics of the nozzle.
  • FIG. 5 is a diagram showing the relationship between the ratio of the projected area of the resistor to the nozzle cross section and the heat transfer coefficient just below the nozzle.
  • FIG. 6 is a diagram showing the plate length Z of the resistance plate and the nozzle diameter and the heat transfer immediately below the nozzle.
  • FIG. 7 is a diagram showing the positional relationship between the nozzle and the steel strip.
  • FIGS. 8 (a) and 8 (b) are diagrams showing a conventional nozzle.
  • FIG. 9 is a diagram showing an example of a heat treatment apparatus having an opening for releasing gas on the back surface of the present invention.
  • FIGS. 10 (a), (b) and (c) show the nozzle arrangement of the heat treatment apparatus of the present invention.
  • FIG. 6 is a diagram illustrating an example of a location.
  • FIG. 11 is a diagram showing the relationship between the opening area S 1 and the nozzle opening area S 2 in the heat treatment apparatus using a gas jet.
  • FIG. 12 is a diagram showing the relationship between the ratio of the opening area of the nozzle and the opening area of the nozzle and the ratio of the heat transfer coefficient in the heat treatment apparatus using a gas jet.
  • FIGS. 13 (a) and 13 (b) are diagrams showing gas flows in a heat treatment apparatus using gas jets.
  • FIG. 14 is a diagram showing a portion where a rising flow is generated between cooling nozzles of a cooling device by a gas jet.
  • FIGS. 15A and 15B are diagrams showing examples of the structure around the nozzle of the heat treatment apparatus of the present invention.
  • Fig. 16 is a diagram showing the effect of the ratio of the projecting length h of the nozzle to the inner diameter D of the nozzle on the heat transfer coefficient in the heat treatment apparatus using a gas jet.
  • FIG. 17 is a diagram showing a relationship between a gas blowing header having no opening and a nozzle in a heat treatment apparatus using a gas jet.
  • FIG. 18 is a diagram showing the relationship between the air flow density and the heat transfer coefficient ratio when the nozzle protrusion height h is changed in the heat treatment apparatus using a gas jet.
  • FIG. 19 is a diagram showing an arrangement of a press roll and a gas spraying device in a conventional heat treatment apparatus using a gas jet.
  • FIG. 20 is a diagram showing an arrangement of a press roll and a gas blowing device in a heat treatment apparatus using a gas jet according to the present invention.
  • FIG. 21 is a cross-sectional view showing a press roll advance / retreat mechanism and a heating / cooling mechanism in a heat treatment apparatus using a gas jet.
  • FIG. 22 (a) is a diagram showing the arrangement of a conventional heat exchanger in a heat treatment apparatus using a gas jet
  • Fig. 22 (b) is a diagram showing the arrangement of the heat exchanger of the present invention in a heat treatment apparatus using a gas jet. is there.
  • FIG. 23 is a diagram showing a relationship between a blower-to-power ratio and a gas blowing temperature when cooling a steel strip in a heat treatment apparatus using a gas jet.
  • nozzle diameter and the nozzle pitch defined in Japanese Patent Publication No. 2-16375 previously proposed by the present inventors were the most efficient even when the gas blowing velocity was increased.
  • Fig. 1 shows the test range in the present invention and the test range in the Japanese Patent Publication No. 2-16375. If there is no problem with gas exhaust described later, the heat transfer coefficient is 400 kcal Zm 2 Hr ° C or more. It can be seen that the relationship between the air flow density and the heat transfer coefficient is almost on an extended line even in the region.
  • the turbulence intensity is weak at the center of the gas flow.
  • Increasing the turbulence in the center of the spill effectively increases the heat transfer coefficient.
  • a resistor 2 or a resistance plate 3 is installed at the center of the tip of the nozzle 1.
  • a turbulent flow 5 in which a vortex street develops is formed behind the resistor 2 and the resistor plate 3 as shown in FIGS. 3 (a) and 3 (b), disturbing the central region of the gas flow 4.
  • the cross-sectional shape of the resistor 2 may be polygonal or the like in addition to circular.
  • the gas jet discharged from the nozzle collides with the gas jet discharged from the adjacent nozzle and has an area sufficient to form an upward flow.
  • An opening for gas exhaust was installed or a gap was secured.
  • Na us as shown in FIG. 13 (a) showing the relationship between the opening area S 2 of Roh nozzle in Figure 1 1 the opening area S, and the gas jet discharged from Roh nozzle 1 after colliding with the steel strip 7 Then, it flows over the steel strip 7 and collides with a gas jet from an adjacent nozzle and rises. As shown in Fig. 13 (a), this ascending flow, if not forcedly exhausted, flows to the end in the width direction of the steel strip and is not sufficiently exhausted.
  • the temperature of the gas jet from the nozzle 1 increases during cooling, and decreases during heating, and the predetermined performance cannot be obtained.
  • the plate-like gas flow flowing over the steel strip 7 is slowed down, and the cooling capacity in the vicinity of the gas jet collision from the nozzle 1 is also reduced. I do.
  • an opening 10 is provided between the gas blowing headers 18 as shown in FIG. 13 (b), and the upward flow exits through the opening 10. Therefore, the gas jet discharged from the nozzle 1 reaches the surface of the steel strip 7 almost without being affected by the gas that has been turned upside down, and the steel strip 7 can be cooled or heated. In addition, since gas does not stay between the steel strip 7 and the gas blowing header 8, the gas flow along the steel strip 7 is smooth, and the phenomenon that the gas cooling or heating capacity is reduced can be reduced.
  • FIG. 15 shows an example of the structure around the nozzle of the heat treatment equipment of the present invention.
  • the nozzle 1 shown in FIG. 1A is a protruding nozzle whose tip protrudes from the tip of the gas blowing header 8, and the gas jet discharged from the nozzle 1 when exhausting gas from the opening 10. Part of the gas is prevented from being exhausted directly without colliding with the steel strip.
  • the tip of the nozzle 1 is flush with the tip of the gas-blasting head 8, but the shape of the tip of the gas-blasting header 8 is broken in the gas flow path.
  • Area The exhaust gas inlet between the gas blowing headers 8 is tapered, and the narrowest part of this exhaust gas flow path is regarded as the opening in the case of (a) in the figure. Therefore, the same effect as that shown in FIG.
  • the second smooth gas exhaust method In the first exhaust method, gas was evacuated to the so-called rear side of the nozzle through the opening between the gas blowing headers.However, the gas blowing header was divided into several parts due to the space of the opening. However, although it is an ideal exhaust method, it has a disadvantage that the equipment cost is high. Therefore, as a second exhaust method, we decided to eliminate the opening on the back side and take an appropriate nozzle protrusion height. In other words, by securing the nozzle protrusion height h shown in Fig. 17, interference with the spray gas is eliminated, and a space is provided to allow the gas to escape in the direction parallel to the steel strip instead of the back of the nozzle. This prevents gas from stagnating.
  • the heat transfer coefficient ratio indicates the ratio of the heat transfer coefficient based on a certain heat transfer coefficient.
  • This function Figure 18 shows the relationship. According to Fig. 18, when the nozzle protrusion height h is 200 mm, the heat transfer coefficient ratio increases almost in proportion to the increase in the air flow density, and the discharged gas is discharged without stagnation. I understand. When the nozzle protrusion height is low, the rise in the heat transfer coefficient ratio becomes slower from a certain air flow density, and it can be seen that the discharged gas stays and interferes with the gas newly discharged from the nozzle.
  • the airflow density W is calculated using the maximum airflow density that can be achieved by the equipment so that the function can be effectively performed in all equipment performance areas.
  • the minimum height of the nozzle protruding height h can be obtained based on the above grounds.However, if it is longer than necessary, it is necessary because nozzle pressure loss increases and equipment manufacturing cost increases. It is desirable to select near the minimum height.
  • the cooling rate is defined as ⁇ t ZT ° C / sec based on the temperature difference ⁇ t ° C of cooling and the time Tsec required for the cooling.
  • the heating rate is similarly defined.
  • the cooling rate and heating rate we have devised equipment to increase these.
  • the spacing between the nozzle and the steel strip was reduced to increase the heating or cooling rate, and the decay of the gas velocity discharged from the nozzle was prevented as much as possible. For this reason, as shown in Fig.
  • press rolls 16 and 17 are brought into contact with the steel strip 7 at certain intervals in order to suppress the warpage and fluttering of the steel strip, and these are straightened.
  • the interval was narrow.
  • the press rolls 16 and 17 are provided with roll press devices 18 and 19 in order to be able to move forward and backward with respect to the steel strip for operational reasons. Gas could not be sprayed on this part, which was a wasteful area for heat treatment.
  • the presence of these spaces partially reduced the heating and cooling rates, which was disadvantageous in metallurgy.
  • the heating rate and cooling rate which are important in metallurgy, generally mean the average heating rate or average cooling rate.In order to increase these values, it is necessary to increase the efficiency in the gas spraying space and the space for the presser roll as much as possible Is effective.
  • the ratio of the length of the gas that is actually blown out of the length L1 from the start to the end of the gas spraying is called the effective gas spraying length ratio, but in the conventional case, in the continuous annealing equipment for steel strip, The effective cooling length ratio was around 80%. Therefore, in the present invention, heating or cooling in the holding roll insertion space was studied.
  • the press roll insertion space shown in FIG. 19 is roughly divided into a side into which the roll is inserted and a side without a hole facing the steel strip 7. On the side without a roll, a gas blowing space can be provided by arranging a gas blowing device extension 22 as shown in FIG.
  • the point at which the power of the blower is minimum is approximately in the range of 60 ° C to 200 ° C.
  • the required heat transfer coefficient, the inlet and outlet steel strip temperatures of the heat treatment equipment It was found that it fluctuated according to the temperature of the refrigerant. In particular, this time, as a result of a detailed investigation of the region with a high heat transfer coefficient, it was found that the optimum point was shifted toward the lower spray gas temperature compared to the conventional region with a low heat transfer coefficient, and that the spray gas temperature was lower. It was found that the effect on blower power was large. (Fig. 23)
  • a method for efficiently reducing the spray gas temperature was studied.
  • a heat exchanger using water as a refrigerant is generally used as a method of cooling the atmosphere gas.
  • the heat exchanger was installed on the inlet side of the blower in consideration of the temperature protection of the blower.
  • it is sufficient to increase the capacity of the heat exchanger.However, if the temperature difference between the refrigerant temperature and the gas temperature decreases, the heat exchange efficiency deteriorates, and The blown gas temperature does not decrease even though the pressure loss when the gas passes increases, and as a result, as can be seen from Fig.
  • Figs. 2 (a) and (b) the heat transfer characteristics of a gas jet from a single nozzle equipped with a resistor 2 and a resistor plate 3 were investigated by cooling a hot plate. Air was used as the cooling medium. The nozzle diameter was 10.5 mm, the air velocity discharged from the nozzle was 150 / s, and the distance between the tip of the nozzle and the object to be cooled was 50 mm.
  • Figure 5 shows the ratio of the projected area of the resistor to the nozzle cross-sectional area under the cooling conditions described above. It can be seen that if the projected area is 3% or more of the nozzle cross-sectional area, there is an effect of improving the heat transfer coefficient. Further, when the projected area is 12% or more, the pressure loss at the tip of the nozzle due to the installation of the resistor increases, and the power for the blower increases, which is economically disadvantageous. Therefore, the projected area of the resistor is set to 3 to 12% of the nozzle cross-sectional area.
  • FIG. 9 is a cross-sectional view of the heat treatment apparatus of the present invention.
  • the nozzle 1 is protruded so as to face the steel strip 7 running in the direction of the arrow, and a gas jet is blown from the nozzle 1 onto the steel strip 1 to perform heat treatment.
  • the blowing gas is heated, it becomes a heating device, and when it is cooled, it becomes a cooling device.
  • the inside of the heat treatment chamber 12 is often set to a non-oxidizing atmosphere in which hydrogen is mixed with nitrogen in order to prevent oxidation of the steel strip, but the same effect is obtained even when gas such as air is used.
  • the arrows in Fig. 1 indicate the gas flow.
  • the gas continuously supplied from the blower 9 is sent to a divided gas blowing header 8 via a gas distribution header (not shown), from which it is branched and supplied to each nozzle 1.
  • the gas jet discharged from the nozzle 1 and collided with the steel strip 7 takes heat from the steel strip 1, reverses and is exhausted from the opening 10. That is, the gas is exhausted from the steel strip 7 to the back side of the nozzle 1.
  • the exhausted gas is sent again to the blower 9 via the suction gas header 11 and is reused after the pressure is increased.
  • equipment for heating or cooling the gas is provided before or after the blower 9.
  • the gas that has passed through the opening 10 via the suction gas header 11 is recirculated, and the gas is supplied from a part of the heat treatment chamber without the suction gas header 11. May be sucked.
  • the gas discharged from the nozzle 1 collides with the steel strip 7 and can pass through the opening only by the reversing upward flow force.
  • the cross-sectional shape of the gas blowing header 18 is rectangular, but the cross-sectional shape may be circular, elliptical, polygonal, or a combination thereof for reasons of manufacturing convenience and the like.
  • Fig. 10 shows the arrangement of nozzle 1 and gas spray header 18 as viewed from the steel strip side.
  • the nozzles 1 can be arranged in a staggered manner, as shown in Fig. 10 (b), and can also be arranged in a staggered manner for every three to seven rows as shown in Fig. 10 (b). is there.
  • installing one gas blowing header per row of nozzles increases the equipment cost.
  • gas blowing headers are provided for every two or more rows of nozzles. It is also possible to reduce the number of openings by combining the die. However, in this case, since exhaust may be incomplete, it may be necessary to adjust the protrusion height h of the nozzle according to the area of the opening.
  • FIGS. 9 and 10 cooling was performed with a gas jet of steel strip 1 having a thickness of 1.0 mm using a mixed gas of nitrogen and hydrogen as a cooling medium.
  • the projection length h of the cooling nozzle at this time was 20 mm.
  • Figure 12 shows the ratio of the heat transfer coefficient when the ratio of the opening to the nozzle opening area is changed with a constant blower power, and Table 1 shows the nozzle diameter and nozzle pitch.
  • the cooling capacity of the steel strip by gas jet is evaluated based on the average heat transfer coefficient in the steel strip width direction.
  • the ratios of the opening area of the nozzle and the opening area of the nozzle of 0, 3.4 and 17.3 show the results of the comparative example.
  • an area ratio of 0 means that the opening is completely closed.
  • the ratio of the opening area of the nozzle to the opening area of the nozzle is from 5.8 to 15.7, indicating the results of the example. It can be seen that the ratio of the opening area to the opening area of the nozzle is larger than that of the comparative example in the range of 5 to 17. That is, when the ratio of the opening to the nozzle opening area is 5 to 17, the cooling capacity of the steel strip by the gas jet is improved. ⁇ table 1 ⁇
  • the protruding length h of the nozzle 1 is not more than 5 times the inner diameter D of the nozzle 1. If the protruding length h of the nozzle 1 exceeds five times the inner diameter D of the nozzle 1, the heat transfer coefficient is significantly reduced as shown in FIG. This is considered to be because if the protruding length h of the nozzle is long, the gas flow velocity is attenuated by the time the ascending flow of gas reaches the opening 10 between the gas blowing headers 8, making it difficult to exhaust the gas.
  • FIG. 17 shows an embodiment, in which the gas blowing header 8 has no opening between the nozzles 1 and has a common large box-shaped gas blowing header for each nozzle.
  • the distance Z between the tip of the nozzle and the steel strip 7 is generally set to 70 mm or less as discharged from the nozzle as specified in Japanese Patent Publication No. 2-163675.
  • the gas discharged from the nozzle 1 collides with the steel strip 7 and then flows along the steel strip 1, but then collides with the gas discharged from the adjacent nozzle, and in the opposite direction to the gas protruding from the nozzle, i.e., steel. It flows from zone 1 to gas spray header 18. After that, this gas collides with the gas blowing header and blows the gas. The gas flows in the direction along the header, and is eventually discharged through the area between the gas blowing header 18 and the steel strip 7.
  • the gas flow along the gas blowing header flows in the region of the nozzle protrusion height h, but if the gas flow density increases, the steel flow is insufficient in this region.
  • the gas after the collision with the steel sheet is filled up to the area between zone 7 and the tip of nozzle 1.
  • the gas that once collides with the steel sheet is engulfed again by the gas that has protruded from the nozzle.
  • the discharge gas is cooled, but the high-temperature gas that has already collided with the steel sheet causes the temperature of the gas colliding with the steel sheet to rise, resulting in a decrease in cooling efficiency. I will.
  • the gas spray header can be evacuated properly.
  • the gas spray header may be appropriately divided and opened between them to further promote the exhaust.
  • the size of the gas blowing header is large, such as when the strip width of the steel strip is large or the length of the gas blowing header in the longitudinal direction is large, dividing the gas blowing header is effective.
  • Figure 19 shows a conventional steel strip heat treatment system using a gas jet.
  • the steel strip 7 and the nozzle 1 are brought close to each other to increase the gas jet efficiency.
  • the left holding roll 16 and right holding roll 17 are used. It is held down alternately.
  • cooling or heating is performed in the section L1. Despite this, there were portions ineffective in heating and cooling, and as a result, high cooling or heating rates could not be obtained.
  • FIG. 20 An embodiment of the present invention will be described with reference to FIG.
  • a gas blowing device extension 22 is provided on the opposite side to the steel strip 7 of the holding roll, and the length L 2 from the start to the end of gas blowing is shortened.
  • Figures 19 and 20 show the same length of gas spraying, but comparing L1 and L2 shows that the length of L2 is shorter and the effective gas spraying ratio is higher. Assuming that the moving speed of the steel strip 7 is V m / sec, the time required for heating or cooling is
  • (L1-L2) Z V seconds are short, and the heating rate or cooling rate can be increased accordingly.
  • the effective gas spray length ratio increased from 82% to 90%.
  • the heating and cooling capacity is increased, and the heating rate or the cooling rate is further improved.
  • equipment for heating or cooling by contacting the rolls as described above generally has a drawback in that it is difficult to uniformly contact the rolls and the steel strip, so that the temperature of the steel strip tends to be uneven.
  • the diameter of the holding roll is usually ⁇ .
  • the surface pressure against which the steel strip is pressed against the roll is large compared to the roll diameter of 0.1000 mm, which is generally used as a heating or cooling roll. There was no problem with uneven heating and cooling.
  • FIG. 21 is a cross-sectional view of the right pressing roll portion.
  • the holding roll is a water-cooled roll.
  • the right pressing roll 17 is rotatably supported by bearings 26 slidably provided on both side walls of the heat treatment chamber wall 13 in the front-rear direction.
  • gas blowing headers, nozzles, etc. are placed in the gap on the left side of steel strip 7, but they are omitted for simplicity.
  • One end of a right holding roll 17 having a jacket structure inside is connected to a holding roll rotating motor 27.
  • the bearing 26 on the opposite side has a rotary joint structure, and a water supply pipe 28 and a drain pipe 29 are connected.
  • the bearing 26 is slidable, and can be moved forward and backward by the transmission shaft 31, the distributor 32, and the press roll advance / retreat motor.
  • the cooling water can be supplied to the right holding roll 17 through the water supply pipe 28, and the used water can be discharged through the drain pipe 29.
  • a heated fluid it can be used as a heating roll.
  • a fluid other than water it is also possible to use a fluid other than water.
  • an electric heating roll instead of using a fluid, an electric heating roll can be used by supplying power to the roll.
  • the amount of heating or cooling can be controlled by controlling the temperature, volume, or electrical current of the fluid used.
  • FIG. 22 (a) shows a conventional example of a heat treatment apparatus for cooling a steel strip by circulating a non-oxidizing atmosphere gas and blowing a jet.
  • reference numeral 7 denotes a steel strip as an object to be cooled, which is cooled in a non-oxidizing gas (not shown) atmosphere inside the heat treatment chamber wall of Fig. 13.
  • Reference numeral 9 denotes a blower for sucking the non-oxidizing gas in the heat treatment chamber and increasing the pressure, and sucks the atmosphere gas in the heat treatment chamber through the duct.
  • a heat exchanger 35 for cooling the atmospheric gas is installed in the middle of the duct, and the cooled gas is pressurized by the blower 19.
  • the pressurized atmosphere gas is again introduced into the heat treatment chamber by the duct 34, and is blown to the steel strip 7 through the gas spraying head 18 and the nozzle 1, whereby the steel strip is rapidly cooled.
  • it is the position of the heat exchanger.
  • the atmosphere gas in the heat treatment room was cooled in a heat exchanger to protect it from heat, and then suctioned by a blower. In other words, a heat exchanger was located upstream of the blower.
  • the present invention provides a heat treatment apparatus that heats, cools, or dries a steel strip by spraying a gas jet onto the steel strip, and can improve a heat transfer coefficient by promoting turbulence at the center of the gas jet.
  • the gas blown to the steel strip can be smoothly exhausted, and interference with new blown gas can be prevented, so that the heat transfer coefficient can be improved.
  • a heat treatment apparatus for heating, cooling, or drying a steel strip by spraying a gas jet onto the steel strip
  • the left and right rolls The length of the free running portion in the insertion space, that is, the portion that does not contribute to heating, cooling, or drying the steel strip can be reduced, so that the equipment length of the heat treatment apparatus can be shortened.
  • a heat exchanger for gas cooling on the outlet side of the gas makes it possible to lower the spray gas temperature efficiently, resulting in increased cooling efficiency and the power required for gas compressors such as blowers. Can be reduced.
  • the heating rate or cooling rate required for metallurgical or other processes can be easily secured without providing an excessive blower duct.
  • the equipment length can be shortened, the equipment becomes more compact and the required propulsion power can be significantly reduced compared to the conventional equipment, and a great advantage can be obtained in terms of running cost.
  • the conventional cooling method in the range of heat transfer coefficient ⁇ 400 kcal / m 2 Hr ° C, such as the problem of uneven temperature and shape deterioration of steel strip seen in roll cooling, Since there is no problem with surface oxidation, the quality of the steel strip can be improved, and the pickling equipment for removing the oxide film is not required, which simplifies the equipment configuration.

Abstract

A heat-treating apparatus for heating, cooling or drying a steel band by blowing a jet streams of a gas to the steel band, including a resistance body provided at the distal end of a nozzle for jetting a gas jet stream in such a manner that the projection area of the resistance body is not more than 3 to 12 % of the sectional area of the nozzle, or a resistance plate provided at the distal end of a nozzle for jetting a gas jet stream in such a manner that the projection sectional area of the resistance plate is less than 3 % of the sectional area of the nozzle and the plate length in a nozzle axial direction inside the nozzle is at least 50 % of the nozzle diameter.

Description

明 細 書 鋼帯のガス噴流による熱処理装置 技術分野  Description Heat treatment equipment by gas jet of steel strip
本発明は、 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 ま たは乾燥する熱処理装置に関する。 従来の技術  The present invention relates to a heat treatment apparatus for heating, cooling, or drying a steel strip by spraying a gas jet onto the steel strip. Conventional technology
従来から、 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却する 熱処理設備は存在したが、 ガスを熱媒体と して熱伝達を行うため熱 伝達率 αが低く 、 冶金学からの要求による高い加熱速度、 冷却速度 に対して必ずしも満足のいく性能が得られていなかつた。 例えば、 本発明者らは先に、 特公平 2 -16375号公報において、 ガス噴流によ る鋼帯の冷却装置を提案しているが、 熱伝達率の想定領域を α ≤ 40 Okcal /m 2 Hr°Cと している。 この熱伝達率では、 鋼帯の厚みが 0 .6mmの場合において冷却速度 100°CZsec が達成できる ものの、 板 厚が 1.0mmの場合には実質 60°C/sec 程度の冷却速度しか得られな い。 このため、 さ らに高い領域の熱伝達率が必要な場合は水冷口一 ルとの固体接触によるロール冷却法やガスと水を混合した気水冷却 法などの方法が用いられている。 しかしながら、 ロール冷却の場合 には固体接触となるため均一な接触が難しく 、 鋼帯に温度むらを生 じ、 鋼帯の形状を悪化させるという問題があった。 また一方で、 気 水冷却についても水を使用するため溶存酸素により鋼帯表面が酸化 するという問題があり、 熱処理後に再度酸洗する必要があつた。 発明の開示 ガスの噴流を吹き付けて鋼帯を加熱、 冷却する熱処理設備におい て熱伝達率を上げるためには、 鋼帯に吹き付けるガスの流速を上げ れば良い。 実験の結果によるとガス流速にほぼ比例して熱伝達率が 上昇することが判明した。 しかしながら、 ガス流速の上昇とと もに ノズル、 配管等の圧損が急激に増大し、 所要の熱伝達率を得るため には、 非常に大きなブロワ一動力が必要なことが明らかとなった。 本発明の目的は、 かかる鋼帯のガス噴流による熱処理装置において 、 高い加熱速度または冷却速度を維持した設備において、 所要動力 を低減させることにある。 Conventionally, there was a heat treatment facility that heats and cools the steel strip by spraying a gas jet onto the steel strip.However, since heat transfer is performed using gas as a heat medium, the heat transfer coefficient α is low, which is a requirement from metallurgy. However, satisfactory performance has not been obtained for high heating and cooling rates. For example, the present inventors have previously proposed a cooling device for a steel strip using a gas jet in Japanese Patent Publication No. 2-16375, but the assumed region of the heat transfer coefficient is α ≤ 40 Okcal / m 2. Hr ° C. With this heat transfer coefficient, a cooling rate of 100 ° CZsec can be achieved when the thickness of the steel strip is 0.6 mm, but a cooling rate of substantially 60 ° C / sec can be obtained when the thickness of the steel strip is 1.0 mm. No. For this reason, when a higher heat transfer coefficient is required, a method such as a roll cooling method using solid contact with a water cooling port or a gas-water cooling method using a mixture of gas and water is used. However, in the case of roll cooling, uniform contact is difficult due to solid contact, and there is a problem that the temperature of the steel strip is uneven and the shape of the steel strip is deteriorated. On the other hand, in the case of steam-water cooling, there is a problem that the surface of the steel strip is oxidized by dissolved oxygen because of the use of water. Disclosure of the invention In a heat treatment facility that heats and cools a steel strip by spraying a gas jet, the heat transfer rate can be increased by increasing the flow rate of the gas blown to the steel strip. The experimental results showed that the heat transfer coefficient increased almost in proportion to the gas flow velocity. However, as the gas flow rate increased, the pressure loss of the nozzles and pipes increased rapidly, and it became clear that a very large blower power was required to obtain the required heat transfer coefficient. It is an object of the present invention to reduce the required power in equipment that maintains a high heating or cooling rate in a heat treatment apparatus using a gas jet of a steel strip.
本発明の鋼帯のガス噴流による熱処理装置は、 その目的を達成す るために以下①〜⑩を特徴と している。  The heat treatment apparatus using a gas jet of a steel strip according to the present invention has the following features (1) to (4) in order to achieve the object.
① 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾燥 する熱処理装置において、 ガスの噴流を吐出するノズルの先端に抵 抗体をその投影面積がノ ズル断面積に対して 3〜 1 2 %となるように 設置したことを特徴とする鋼帯のガス噴流による熱処理装置。  ① In a heat treatment system that heats, cools, or dries a steel strip by spraying a gas jet onto the steel strip, an antibody is applied to the tip of the nozzle that discharges the gas jet, and the projected area is 3 to A heat treatment system using a gas jet of a steel strip, which is installed so as to have a concentration of 12%.
② 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾燥 する熱処理装置において、 ガスの噴流を吐出するノズルの先端に抵 抗板をその投影断面積がノ ズル断面積に対して 3 %未満、 ノ ズル内 でのノ ズル軸方向の板長がノ ズル径の 50 %以上となるように設置し たことを特徴とする鋼帯のガス噴流による熱処理装置。  ② In a heat treatment system that heats, cools, or dries a steel strip by spraying a gas jet onto the steel strip, a resistive plate is attached to the tip of the nozzle that discharges the gas jet, and the projected cross-sectional area of the steel plate is compared to the nozzle cross-sectional area A heat treatment system using a gas jet of steel strip, characterized in that it is installed so that the plate length in the nozzle axis direction within the nozzle is less than 50% of the nozzle diameter.
③ 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾燥 する熱処理装置において、 ガスの噴流を吐出するノ ズルと、 複数の ノ ズルを有し、 かつ該ノ ズルにガスを供給するガス吹付ヘッダーと 、 複数のガス吹付ヘッダーにガスを分配するガス分配へッダ一を配 設するとともに、 前記ガス吹付へッダ一間にガスの排気口と しての 開口部または間隙であって、 該開口部の面積が前記ノズルの開口面 積の 5倍以上、 17倍以下である開口部を配設したことを特徴とする 鋼帯のガス噴流による熱処理装置。 (3) In a heat treatment device that heats, cools, or dries a steel strip by blowing a gas jet onto the steel strip, the nozzle has a nozzle that discharges a gas jet, and a plurality of nozzles, and supplies gas to the nozzle. And a gas distribution header for distributing gas to a plurality of gas blowing headers, and an opening or gap as a gas exhaust port between the gas blowing headers. An opening having an area of 5 times or more and 17 times or less of the opening area of the nozzle is provided. Heat treatment equipment by gas jet of steel strip.
④ 前記ノズルが、 前記ガス吹付ヘッダー先端部より吐出した突起 状ノズルであることを特徴とする③に記載の鋼帯のガス噴流による 熱処理装置。  (4) The heat treatment apparatus according to (3), wherein the nozzle is a protruding nozzle discharged from the tip of the gas blowing header.
⑤ 前記ノ ズルの突出長さ力く、 該ノ ズルの内径の 5倍以下であるこ とを特徴とする③に記載の鋼帯のガス噴流による熱処理装置。  (4) The heat treatment apparatus using a gas jet of a steel strip as described in (3), wherein the projecting length of the nozzle is large and is not more than 5 times the inner diameter of the nozzle.
⑥ 前記ガス吹付ヘッダー先端部の形状が、 ガス流路の断面がガス 吹付方向で漸減する形状であり、 前記ノ ズルの先端がガス吹付へッ ダ一先端面より突出していないこ とを特徴とする③に記載の鋼帯の ガス噴流による熱処理装置。  ガ ス The tip of the gas blowing header is characterized in that the cross section of the gas flow path is gradually reduced in the gas blowing direction, and the tip of the nozzle does not protrude from the tip of the gas blowing header. Heat treatment equipment using gas jet of steel strip described in (3).
⑦ 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾燥 する熱処理装置において、 鋼帯とノズル先端との距離 Zを 70mm以下 と し、 ノ ズルへガスを供給するヘッダ一からのノ ズル突出高さ h mm と、 単位面積あたりの吹き付けガス量 (風量密度) W m 3 / m i n m 2 の間に、 W Z 4 ≤ hの関係を満たすことを特徴とする鋼帯のガス 噴流による熱処理装置。 に お い て In a heat treatment system that heats, cools, or dries the steel strip by blowing a jet of gas onto the steel strip, the distance Z between the steel strip and the tip of the nozzle is set to 70 mm or less, and the header from the header that supplies gas to the nozzle Heat treatment of steel strip by gas jet, characterized by satisfying the relationship of WZ 4 ≤ h between nozzle protrusion height h mm and blowing gas volume per unit area (air volume density) W m 3 / min m 2 apparatus.
⑧ 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾燥 する熱処理装置であって、 ガスの噴流を吐出するノ ズルが配設され たガス吹付空間の間に鋼帯の進行方向に沿つたある間隔をもって交 互に押さえロールを配設したロール挿入空間を設け、 鋼帯のフ ラ ッ タ リ ングを防止するようにした熱処理装置において、 鋼帯に対し口 一ル揷入側と反対側のロール揷入空間にガスの噴流を吐出するノ ズ ルを配設し、 ガス吹付空間を延長するようにしたことを特徴とする 鋼帯のガス噴流による熱処理装置。  熱処理 A heat treatment device that heats, cools, or dries the steel strip by spraying a gas jet onto the steel strip, and the direction of travel of the steel strip between the gas-spraying spaces where the nozzles that discharge the gas jet are arranged In the heat treatment equipment, which has a roll insertion space in which the presser rolls are arranged alternately at a certain interval along the strip to prevent fluttering of the steel strip, A heat treatment device using a gas jet of a steel strip, characterized in that a nozzle for discharging a gas jet is arranged in the roll inlet space on the opposite side of the roll so as to extend the gas spray space.
⑨ 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾燥 する熱処理装置であつて、 ガスの噴流を吐出するノ ズルが配設され たガス吹付空間の間に鋼帯の進行方向に沿つたある間隔をもつて交 互に押さえロールを配設したロール挿入空間を設け、 鋼帯のフ ラ ッ タ リ ングを防止するようにした熱処理装置において、 鋼帯を冷却す る場合は、 押さえロールを冷却した冷却ロールと し、 鋼帯を加熱ま たは乾燥させる場合は、 押さえロールを加熱した加熱ロールと した ことを特徴とする鋼帯のガス噴流による熱処理装置。 熱処理 A heat treatment device that heats, cools, or dries the steel strip by spraying a gas jet onto the steel strip, and the traveling direction of the steel strip between the gas spraying space where the nozzles that discharge the gas jet are arranged With a certain interval along When a steel strip is cooled in a heat treatment device that has a roll insertion space in which presser rolls are provided to prevent fluttering of the steel strip, a cooling roll that cools down the presser roll is used. When the steel strip is heated or dried, the heating roll is a heated roll of the presser roll.
⑩ 鋼帯に非酸化性の雰囲気ガスを循環し噴流を吹き付けて冷却す る熱処理装置において、 少なく ともブロワ一等のガス圧縮装置の下 流側にガス冷却用の熱交換器を配設したことを特徴とする鋼帯のガ ス噴流による熱処理装置。 図面の簡単な説明 熱処理 In a heat treatment system that cools a steel strip by circulating a non-oxidizing atmosphere gas and spraying a jet, at least a heat exchanger for gas cooling is installed at the downstream side of the gas compressor such as a blower. Heat treatment equipment using gas jet of steel strip. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 風量密度と熱伝達率及び本発明における試験範囲を示し た図である。  FIG. 1 is a diagram showing the air flow density, the heat transfer coefficient, and the test range in the present invention.
図 2 ( a ) , ( b ) , ( c ) , ( d ) は、 本発明のガス噴流熱処 理装置のノ ズルを示す図である。  FIGS. 2 (a), (b), (c), and (d) are diagrams showing nozzles of the gas jet heat treatment apparatus of the present invention.
図 3 ( a ) , ( b ) は、 ノズル先端でのガス噴流の流れ状況を示 す図である。  Figures 3 (a) and 3 (b) show the flow of the gas jet at the nozzle tip.
図 4 は、 ノ ズルの熱伝達特性を示す図である。  Figure 4 shows the heat transfer characteristics of the nozzle.
図 5 は、 抵抗体の投影面積のノズル断面に対する割合とノ ズル直 下での熱伝達率との関係を示す図である。  FIG. 5 is a diagram showing the relationship between the ratio of the projected area of the resistor to the nozzle cross section and the heat transfer coefficient just below the nozzle.
図 6 は、 抵抗板の板長 Zノ ズル径とノズル直下での熱伝達を示す 図である。  FIG. 6 is a diagram showing the plate length Z of the resistance plate and the nozzle diameter and the heat transfer immediately below the nozzle.
図 7 は、 ノズルと鋼帯との位置関係を示す図である。  FIG. 7 is a diagram showing the positional relationship between the nozzle and the steel strip.
図 8 ( a ) , ( b ) は、 従来のノズルを示す図である。  FIGS. 8 (a) and 8 (b) are diagrams showing a conventional nozzle.
図 9 は、 本発明の背面にガスを抜く ための開口部を設けた熱処理 装置の例を示す図である。  FIG. 9 is a diagram showing an example of a heat treatment apparatus having an opening for releasing gas on the back surface of the present invention.
図 10 ( a ) , ( b ) , ( c ) は、 本発明の熱処理装置のノズル配 置の例を示す図である。 FIGS. 10 (a), (b) and (c) show the nozzle arrangement of the heat treatment apparatus of the present invention. FIG. 6 is a diagram illustrating an example of a location.
図 11は、 ガス噴流による熱処理装置において、 開口部面積 S 1 と ノ ズルの開口面積 S 2 との関係を示す図である。  FIG. 11 is a diagram showing the relationship between the opening area S 1 and the nozzle opening area S 2 in the heat treatment apparatus using a gas jet.
図 12は、 ガス噴流による熱処理装置において、 開口部とノ ズルの 開口面積の比と熱伝達率比との関係を示す図である。  FIG. 12 is a diagram showing the relationship between the ratio of the opening area of the nozzle and the opening area of the nozzle and the ratio of the heat transfer coefficient in the heat treatment apparatus using a gas jet.
図 13 ( a ) , ( b ) は、 ガス噴流による熱処理装置におけるガス 流れを示す図である。  FIGS. 13 (a) and 13 (b) are diagrams showing gas flows in a heat treatment apparatus using gas jets.
図 14は、 ガス噴流による冷却装置の冷却ノ ズル間で上昇流れが発 生する部位を示す図である。  FIG. 14 is a diagram showing a portion where a rising flow is generated between cooling nozzles of a cooling device by a gas jet.
図 15 ( a ) , ( b ) は、 本発明の熱処理装置のノ ズル周辺の構造 の例を示す図である。  FIGS. 15A and 15B are diagrams showing examples of the structure around the nozzle of the heat treatment apparatus of the present invention.
図 16は、 ガス噴流による熱処理装置において、 ノ ズルの突出長さ hとノ ズルの内径 Dとの比が熱伝達係数に及ぼす影響を示す図であ る o  Fig. 16 is a diagram showing the effect of the ratio of the projecting length h of the nozzle to the inner diameter D of the nozzle on the heat transfer coefficient in the heat treatment apparatus using a gas jet.
図 17は、 ガス噴流による熱処理装置において、 開口部を持たない ガス吹付ヘッダーとノズルの関係を示す図である。  FIG. 17 is a diagram showing a relationship between a gas blowing header having no opening and a nozzle in a heat treatment apparatus using a gas jet.
図 18は、 ガス噴流による熱処理装置において、 ノ ズル突出高さ h を変化させた時の風量密度と熱伝達率比の関係を示す図である。 図 19は、 従来のガス噴流による熱処理装置における押さえロール とガス吹付装置の配置を示す図である。  FIG. 18 is a diagram showing the relationship between the air flow density and the heat transfer coefficient ratio when the nozzle protrusion height h is changed in the heat treatment apparatus using a gas jet. FIG. 19 is a diagram showing an arrangement of a press roll and a gas spraying device in a conventional heat treatment apparatus using a gas jet.
図 20は、 本発明によるガス噴流による熱処理装置における押さえ ロールとガス吹付装置の配置を示す図である。  FIG. 20 is a diagram showing an arrangement of a press roll and a gas blowing device in a heat treatment apparatus using a gas jet according to the present invention.
図 21は、 ガス噴流による熱処理装置において、 押さえロールの進 退機構、 加熱冷却機構を示す断面図である。  FIG. 21 is a cross-sectional view showing a press roll advance / retreat mechanism and a heating / cooling mechanism in a heat treatment apparatus using a gas jet.
図 22 ( a ) は、 ガス噴流による熱処理装置における従来の熱交換 器の配置を示す図であり、 図 22 ( b ) はガス噴流による熱処理装置 における本発明の熱交換器の配置を示す図である。 図 23は、 ガス噴流による熱処理装置において、 鋼帯を冷却する際 のブロワ一動力比とガス吹付温度の関係を示す図である。 発明を実施するための最良の実施形態 Fig. 22 (a) is a diagram showing the arrangement of a conventional heat exchanger in a heat treatment apparatus using a gas jet, and Fig. 22 (b) is a diagram showing the arrangement of the heat exchanger of the present invention in a heat treatment apparatus using a gas jet. is there. FIG. 23 is a diagram showing a relationship between a blower-to-power ratio and a gas blowing temperature when cooling a steel strip in a heat treatment apparatus using a gas jet. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明を詳細に説明する。 なお、 問題解決に際し、 様々 な方面からのアプローチを試みた。 本発明の中ではノズル形態、 ガ ス排気、 有効ガス吹付長割合、 吹付ガス温度の観点から解決を図つ ており、 順次説明していく 。  Hereinafter, the present invention will be described in detail. In order to solve the problem, we tried various approaches. In the present invention, solutions are sought from the viewpoints of nozzle configuration, gas exhaust, effective gas spray length ratio, and spray gas temperature, and will be sequentially described.
第一に、 ノズルの形態であるが、 ノズル径及びノ ズルピッチの最 適化について各種試験を行い比較した。 その結果、 ガス吹付流速を 上げても、 本発明者らが先に提案した特公平 2 - 1 6375号公報に定義 されているノズル径およびノ ズルピッチが最も効率的であるこ とが 確認された。 図 1 に本発明における試験範囲と特公平 2 - 1 6375号公 報における試験範囲を示すが、 後述するガス排気上の問題がなけれ ば、 熱伝達率が 400kca l Z m 2 H r °C以上の領域でも風量密度と熱伝 達率の関係はほぼ延長線上にあることがわかる。 First, regarding the form of the nozzle, various tests were conducted to optimize the nozzle diameter and nozzle pitch, and comparisons were made. As a result, it was confirmed that the nozzle diameter and the nozzle pitch defined in Japanese Patent Publication No. 2-16375 previously proposed by the present inventors were the most efficient even when the gas blowing velocity was increased. Fig. 1 shows the test range in the present invention and the test range in the Japanese Patent Publication No. 2-16375.If there is no problem with gas exhaust described later, the heat transfer coefficient is 400 kcal Zm 2 Hr ° C or more. It can be seen that the relationship between the air flow density and the heat transfer coefficient is almost on an extended line even in the region.
さ らに、 ノズルより吐出されるガスの熱伝達率を向上させる手段 と して、 吐出 したガスが対象物に当たった際にできる淀み点が熱伝 達率を低下させており、 この点の乱れを促進させることが一般に知 られている。 例えば実開昭 61 - 401 55公報には、 図 7 に示すように、 ノズル 1 に乱流促進体と して抵抗板 3や螺旋状線 6 を設置すること が記載されている。  In addition, as a means of improving the heat transfer coefficient of the gas discharged from the nozzle, the stagnation point formed when the discharged gas hits the object reduces the heat transfer rate. It is generally known to promote turbulence. For example, Japanese Unexamined Utility Model Publication No. 61-40155 discloses that a resistance plate 3 and a spiral wire 6 are installed in a nozzle 1 as a turbulence promoter, as shown in FIG.
しかし、 実開昭 61 - 40 1 55公報記載のように抵抗板 3 を交差状にす るのでは、 2〜 3枚の抵抗板を入れるノズル長さが必要であり、 ェ 業的にも多数のノズルを製作するのは困難である。 また、 螺旋状線 6 もガスに回転が加わるため遠心力で発散し有効ではない。  However, in order to cross the resistance plates 3 as described in Japanese Utility Model Application Laid-Open No. 61-40155, a nozzle length for inserting two or three resistance plates is required, and many industrially It is difficult to manufacture a nozzle. In addition, the spiral wire 6 is not effective because it is diverged by centrifugal force because the gas is rotated.
前述のとおり、 乱れ強さはガス流れの中心部で弱く なつており ノ ズル中心部での乱れを高めることが効果的に熱伝達率を上げること に繫がる。 本発明では、 工業的に実施が容易なガス流れ中心部の乱 れ促進策と して、 図 2 に示すように、 ノズル 1 の先端の中心部に抵 抗体 2 または抵抗板 3 を設置することと した。 このようにすると、 図 3 ( a ) , ( b ) に示すように抵抗体 2や抵抗板 3 の後部に渦列 が発達した乱流 5が形成され、 ガス流れ 4の中心領域を乱すこ とが 可能となる。 なお、 抵抗体 2 の断面形状は円形の他、 多角形等でも 良い。 As mentioned above, the turbulence intensity is weak at the center of the gas flow. Increasing the turbulence in the center of the spill effectively increases the heat transfer coefficient. According to the present invention, as a measure for promoting turbulence in the center of the gas flow, which is industrially easy to implement, as shown in Fig. 2, a resistor 2 or a resistance plate 3 is installed at the center of the tip of the nozzle 1. And In this way, a turbulent flow 5 in which a vortex street develops is formed behind the resistor 2 and the resistor plate 3 as shown in FIGS. 3 (a) and 3 (b), disturbing the central region of the gas flow 4. Is possible. The cross-sectional shape of the resistor 2 may be polygonal or the like in addition to circular.
第二に、 ノ ズルから吐出されるガスの円滑なる排気方法について 検討した。 前記のとおり、 熱伝達率を上げるためには鋼帯に吹き付 けるガスの速度を上げれば良い。 すなわち、 吹き付けるガスの量を 増やせば良いことになる。 ところが、 ここで、 排気が不充分になつ てく ると一度吹き付けたガスが滞留し、 新しい吹付ガスと干渉して 熱伝達率が思つたほど上がらない現象が発生しはじめる。 図 1 の中 で、 実線が排気良好な場合の例であり、 点線が排気不良の場合の例 である。 排気不良の場合ある風量密度以上において、 熱伝達率の上 昇が鈍化してく ることがわかる。 そこで、 熱伝達率を効率的に上げ るためには、 吹き付けたガスの円滑な排気が重要な課題となってく る。 本発明ではこの課題に対し 2つの解決方法を見出した。  Second, we examined a method for smoothly exhausting gas discharged from the nozzle. As described above, in order to increase the heat transfer coefficient, the speed of the gas blown to the steel strip may be increased. In other words, the amount of gas to be blown should be increased. However, if the exhaust gas becomes insufficient, the gas once sprayed will stay and interfere with the new sprayed gas, causing a phenomenon in which the heat transfer coefficient does not increase as much as expected. In Fig. 1, the solid line is an example of a case where the exhaust is good, and the dotted line is an example of a case where the exhaust is poor. It can be seen that the rise in heat transfer coefficient slows down above a certain air flow density in the case of poor exhaust. Therefore, in order to efficiently increase the heat transfer coefficient, smooth exhaust of the blown gas becomes an important issue. The present invention has found two solutions to this problem.
鋼帯に衝突した後のガス流れを調査した結果、 ノ ズルから吐出し たガス噴流は衝突した後、 鋼帯に沿って流れ、 隣接するノ ズルから 吐出した噴流と衝突して鋼帯から離れる方向に流れるこ とが判つた 。 このノズル間上昇流は図 14の斜線部で発生しており、 ノ ズル 1 か ら吐出するガス噴流の 20〜40 %の流速で上昇していることが判つた o  As a result of investigating the gas flow after colliding with the steel strip, the gas jet discharged from the nozzle collides, flows along the steel strip, collides with the jet discharged from the adjacent nozzle, and leaves the steel strip It was found to flow in the direction. This ascending flow between nozzles occurred in the shaded area in Fig. 14, and it was found that the ascending flow was rising at a flow rate of 20 to 40% of the gas jet discharged from nozzle 1.o
そこで本発明では、 ノ ズルから吐出したガス噴流が隣接するノ ズ ルから吐出したガス噴流と衝突して上昇流を形成するに充分な面積 のガス排気用の開口部を設置または間隙を確保することと した。 な お、 図 1 1に開口部面積 S , とノ ズルの開口面積 S 2 との関係を示す 図 13 ( a ) に示すように、 ノ ズル 1 から吐出したガス噴流は鋼帯 7 に衝突後、 鋼帯 7上を流れて隣接ノ ズルからのガス噴流と衝突し 上昇する。 この上昇流は、 図 13 ( a ) に示すように、 強制排気しな い場合には、 鋼帯幅方向端部に流れるため充分に排気されず、 ガス 吹付へッダー 8面で反転しノズル 1 からのガス噴流に混合する。 そ の結果、 ノズル 1 からのガス噴流の温度は冷却時には上昇し、 加熱 時には低下して所定の能力が得られなく なる。 また、 鋼帯 7 とガス 吹付ヘッダー 8 との間にガスが滞留することから鋼帯 7上を流れる 板状のガス流れが遅く なり、 ノズル 1 からのガス噴流衝突周辺部で の冷却能力も低下する。 Therefore, in the present invention, the gas jet discharged from the nozzle collides with the gas jet discharged from the adjacent nozzle and has an area sufficient to form an upward flow. An opening for gas exhaust was installed or a gap was secured. Na us, as shown in FIG. 13 (a) showing the relationship between the opening area S 2 of Roh nozzle in Figure 1 1 the opening area S, and the gas jet discharged from Roh nozzle 1 after colliding with the steel strip 7 Then, it flows over the steel strip 7 and collides with a gas jet from an adjacent nozzle and rises. As shown in Fig. 13 (a), this ascending flow, if not forcedly exhausted, flows to the end in the width direction of the steel strip and is not sufficiently exhausted. Into the gas jet from As a result, the temperature of the gas jet from the nozzle 1 increases during cooling, and decreases during heating, and the predetermined performance cannot be obtained. In addition, since gas stays between the steel strip 7 and the gas blowing header 8, the plate-like gas flow flowing over the steel strip 7 is slowed down, and the cooling capacity in the vicinity of the gas jet collision from the nozzle 1 is also reduced. I do.
本発明の装置では、 図 13 ( b ) に示すようにガス吹付ヘッダ一 8 の間に開口部 10を設け、 上昇流はこの開口部 10から抜けていく。 し たがつて、 ノ ズル 1 から吐出したガス噴流は上昇反転したガスの影 響をほとんど受けずに鋼帯 7 の表面に達し、 鋼帯 7 を冷却または加 熱できるこ とになる。 また、 鋼帯 7 とガス吹付ヘッダー 8 の間にガ スが滞留しないため、 鋼帯 7 に沿ったガス流れが円滑になり、 ガス の冷却も しく は加熱能力が低下する現象を緩和できる。  In the apparatus of the present invention, an opening 10 is provided between the gas blowing headers 18 as shown in FIG. 13 (b), and the upward flow exits through the opening 10. Therefore, the gas jet discharged from the nozzle 1 reaches the surface of the steel strip 7 almost without being affected by the gas that has been turned upside down, and the steel strip 7 can be cooled or heated. In addition, since gas does not stay between the steel strip 7 and the gas blowing header 8, the gas flow along the steel strip 7 is smooth, and the phenomenon that the gas cooling or heating capacity is reduced can be reduced.
本発明の熱処理設備のノズル周辺の構造の例を図 15に示す。 同図 ( a ) に示すノ ズル 1 は、 その先端がガス吹付ヘッダー 8 の先端部 より突出した突起状のノ ズルであり、 ガスを開口部 10から排気する 際、 ノズル 1 から吐出したガス噴流の一部が鋼帯に衝突することな く 直接排気されることを防いでいる。 また、 同図 ( b ) に示す例で はノ ズル 1 の先端がガス吹付へッグー 8の先端面と同一平面ではあ るがガス吹付へッダー 8 の先端部の形状が、 ガス流路の断面積がガ ス吹き付け方向で漸減する形状であり、 ガス吹付ヘッダー 8 間の排 気ガス入口部が先細になり、 この排気ガス流路の一番狭く なる所を 同図 ( a ) の場合の開口部と見なすことができるため、 同図 ( a ) と同様の効果が得られる。 FIG. 15 shows an example of the structure around the nozzle of the heat treatment equipment of the present invention. The nozzle 1 shown in FIG. 1A is a protruding nozzle whose tip protrudes from the tip of the gas blowing header 8, and the gas jet discharged from the nozzle 1 when exhausting gas from the opening 10. Part of the gas is prevented from being exhausted directly without colliding with the steel strip. In addition, in the example shown in FIG. 3B, the tip of the nozzle 1 is flush with the tip of the gas-blasting head 8, but the shape of the tip of the gas-blasting header 8 is broken in the gas flow path. Area The exhaust gas inlet between the gas blowing headers 8 is tapered, and the narrowest part of this exhaust gas flow path is regarded as the opening in the case of (a) in the figure. Therefore, the same effect as that shown in FIG.
次に二つめの円滑なガスの排気方法である。 一つめの排気方法で はガス吹付ヘッダーの間の開口部を通してノ ズルの所謂、 背面の方 向にガスを抜いていたが、 開口部のスペースのためガス吹付ヘッダ 一がい く つにも分割され、 理想的な排気方法ではあるが設備コ ス ト が高く なるという欠点があつた。 そこで二つめの排気方法と しては 背面への開口部を無く し、 適正なノズル突出高さをとることと した 。 すなわち、 図 17に示すノズル突出高さ hを確保することにより吹 付ガスとの千渉を排除しつつ、 ノズルの背面ではなく鋼帯と平行す る方向にガスを逃がす空間を設けたこ とによりガスの滞留を防いで いる。 本法については、 既に本発明者らが特公平 2 - 16375号公報の 中で提案している方法であり、 その中で鋼帯とノ ズル先端との距離 Zを 70mm以下と し、 ノ ズル突出高さ hが(100— Z ) 腿以上と定義し ている。 しかしながら、 前記のとおり熱伝達率の想定領域を ≤40 Okca l / m 2 H r°Cと していた時のものであり、 今回、 より高い熱伝 達率の領域までテス トを行ったところ、 風量を増加させるに従いノ ズル突出高さ hが(100— Z ) mm以上という定義だけでは不充分で、 単位面積あたりの風量密度 W m 3 / m i n m 2 の項を評価に加えない と適正な評価基準とならないことが判明した。 つま り、 吹き付ける ガスの量に応じた、 ガスの排出スペースを定義することが物理的に 重要な意味を持っているこ とを見出した。 Next is the second smooth gas exhaust method. In the first exhaust method, gas was evacuated to the so-called rear side of the nozzle through the opening between the gas blowing headers.However, the gas blowing header was divided into several parts due to the space of the opening. However, although it is an ideal exhaust method, it has a disadvantage that the equipment cost is high. Therefore, as a second exhaust method, we decided to eliminate the opening on the back side and take an appropriate nozzle protrusion height. In other words, by securing the nozzle protrusion height h shown in Fig. 17, interference with the spray gas is eliminated, and a space is provided to allow the gas to escape in the direction parallel to the steel strip instead of the back of the nozzle. This prevents gas from stagnating. This method has already been proposed by the present inventors in Japanese Patent Publication No. 2-16375, in which the distance Z between the steel strip and the tip of the nozzle is set to 70 mm or less, and the nozzle Projection height h is defined as (100-Z) thigh or more. However, are those when said as an assumed area of the heat transfer coefficient was a ≤40 Okca l / m 2 H r ° C, this was subjected to a test to a region higher heat transfer Itaruritsu However, it is not sufficient to define the nozzle protrusion height h as (100—Z) mm or more as the air flow increases, and the air flow density per unit area W m 3 / minm 2 must be added to the evaluation. It turned out that it did not become an evaluation standard. In other words, it was found that defining the gas emission space according to the amount of gas to be blown was physically important.
そこで、 ノズル突出高さ hを変更して加熱した鋼帯を冷却する実 験を行い、 風量密度と熱伝達率比の関係を求めた。 こ こで熱伝達率 比とはある熱伝達率を基準にとった熱伝達率の比率を示す。 この関 係を図 18に示す。 図 18によるとノ ズル突出高さ h力く 200mmの場合は 風量密度の上昇にほぼ比例して熱伝達率比が上昇しており、 吐出さ れたガスが滞留することなく排出されていることがわかる。 ノ ズル 突出高さが低い場合にはある風量密度から熱伝達率比の上昇が鈍く なり、 吐出されたガスが滞留しノズルから新たに吐出されるガスと 干渉していることがわかる。 また、 この傾向はノ ズル突出高さ hが 低いほど風量密度が低い領域で起こ り始めることがわかる。 これら の関係より風量密度 W m 3 / m i n m 2 と必要なノ ズル突出高さ h mm の関係を求めると次式となる。 Thus, an experiment was conducted in which the heated steel strip was cooled by changing the nozzle projection height h, and the relationship between the air flow density and the heat transfer coefficient ratio was determined. Here, the heat transfer coefficient ratio indicates the ratio of the heat transfer coefficient based on a certain heat transfer coefficient. This function Figure 18 shows the relationship. According to Fig. 18, when the nozzle protrusion height h is 200 mm, the heat transfer coefficient ratio increases almost in proportion to the increase in the air flow density, and the discharged gas is discharged without stagnation. I understand. When the nozzle protrusion height is low, the rise in the heat transfer coefficient ratio becomes slower from a certain air flow density, and it can be seen that the discharged gas stays and interferes with the gas newly discharged from the nozzle. Also, it can be seen that this tendency starts to occur in the region where the airflow density is lower as the nozzle protrusion height h is lower. From these relationships, the relationship between the air flow density W m 3 / minm 2 and the required nozzle protrusion height h mm is obtained as follows.
W / 4 ≤ h  W / 4 ≤ h
なお、 風量密度 Wについてはすべての設備性能領域において有効に 機能が発揮できるように設備上可能な最大風量密度で計算すること は言うまでもない。 さ らに、 ノズル突出高さ hに関しては上記の根 拠により最低高さを求めることができるが、 必要以上に長く すると ノ ズル圧損が増えること及び設備製作コス トが高く なることから必 要な最低高さ付近を選定するこ とが望ま しい。 Needless to say, the airflow density W is calculated using the maximum airflow density that can be achieved by the equipment so that the function can be effectively performed in all equipment performance areas. In addition, the minimum height of the nozzle protruding height h can be obtained based on the above grounds.However, if it is longer than necessary, it is necessary because nozzle pressure loss increases and equipment manufacturing cost increases. It is desirable to select near the minimum height.
第三に有効ガス吹付長割合について検討した。 通常、 冷却の場合 に冷却した温度差 Δ t °Cとその冷却に要した時間 T s e c により、 冷 却速度を Δ t Z T °C / s e c で定義している。 また、 加熱の場合も同 様に加熱速度を定義している。 ここで冶金的に重要なことは冷却速 度、 加熱速度であり これらを高めるために設備的工夫を凝ら してき た。 ガスの噴流を吹き付ける熱処理装置においては、 その加熱速度 または冷却速度を高めるためにノ ズルと鋼帯の間隔を近づけ、 ノ ズ ルから吐出されるガス速度減衰を可能な限り防いでいた。 このため 、 鋼帯の反りやばたつきを押さえるために図 19に示すようにある間 隔毎に押さえロール 16, 17を鋼帯 7 に接触させこれらを矯正し可能 な限り ノズル 1 と鋼帯 7の間隔を狭く していた。 しかしながら、 この押さえロール 16, 1 7は操業上の理由により鋼 帯に対して前進後退可能とするためにロール押さえ装置 18, 19が付 帯しており、 このために押さえロール挿入空間が必要でこの部分に 対してガスを吹き付けることが出来ず、 熱処理上は無駄な領域とな つていた。 さ らにこれらの空間が存在することにより加熱速度、 冷 却速度が部分的に遅く なつており、 冶金学上も不利であった。 冶金 学上重要な加熱速度、 冷却速度は一般に平均加熱速度または平均冷 却速度に意味があり、 これらの値を上げるためにはガス吹付空間に おける高効率化とともに押さえロール挿入空間の可能な限りの低減 が有効である。 Third, the effective gas spray length ratio was examined. Usually, in the case of cooling, the cooling rate is defined as Δt ZT ° C / sec based on the temperature difference Δt ° C of cooling and the time Tsec required for the cooling. In the case of heating, the heating rate is similarly defined. Here, what is important in metallurgy is the cooling rate and heating rate, and we have devised equipment to increase these. In heat treatment equipment that blows gas jets, the spacing between the nozzle and the steel strip was reduced to increase the heating or cooling rate, and the decay of the gas velocity discharged from the nozzle was prevented as much as possible. For this reason, as shown in Fig. 19, press rolls 16 and 17 are brought into contact with the steel strip 7 at certain intervals in order to suppress the warpage and fluttering of the steel strip, and these are straightened. The interval was narrow. However, the press rolls 16 and 17 are provided with roll press devices 18 and 19 in order to be able to move forward and backward with respect to the steel strip for operational reasons. Gas could not be sprayed on this part, which was a wasteful area for heat treatment. In addition, the presence of these spaces partially reduced the heating and cooling rates, which was disadvantageous in metallurgy. The heating rate and cooling rate, which are important in metallurgy, generally mean the average heating rate or average cooling rate.In order to increase these values, it is necessary to increase the efficiency in the gas spraying space and the space for the presser roll as much as possible Is effective.
図 1 9においてガス吹付け開始から終了までの長さ L 1 のうち実際 にガスを吹き付けている長さの割合を有効ガス吹付長割合と呼ぶが 、 従来の場合、 鋼帯の連続焼鈍設備において有効冷却長割合は 80 % 前後であった。 そこで、 本発明では押さえロール挿入空間において も加熱または冷却することを検討した。 図 19に示す押さえロール揷 入空間には大き く分けてロールを挿入する側と鋼帯 7 に対向した口 ールの無い側に分かれる。 ロールの無い側については図 20に示すよ うにガス吹付装置延長部 22を配設することによってガス吹付空間と することができる。 また、 ロールのある側については押さえロール 16, 1 7及び押さえロールを前進後退させるロール押さえ装置がある ためガス吹付け装置を設置するには困難が伴い、 たとえ設置しても 鋼帯に近接させることが難しいため効率が悪く なる。 そこで本発明 では押さえロールそのものを加熱または冷却しロール加熱または口 ール冷却を行う ことを考案した。 これらにより、 従来、 加熱または 冷却に関しては無効な領域であつたロール挿入空間を極力小さ く、 またはロール挿入空間内でも加熱、 冷却することにより、 平均の加 熱速度、 または冷却速度を向上させることが可能となつた。 最後に第四と して鋼帯を冷却する場合の吹付ガス温度の最適化に ついて検討した。 一般的な傾向と しては吹付ガス温度を下げるとブ 口ヮ一所要動力も下がるが、 ある温度以下になると吹付ガス温度を 下げるために熱交換器で使用 している冷媒と吹付ガスの温度差が小 さ く なつてく るために熱交換器の圧損が増える割には吹付ガス温度 が下がらなく なりプロヮー所要動力がかえつて上昇することとなる 。 吹付ガス温度について詳細に検討した結果、 最適な吹付ガス温度In Fig. 19, the ratio of the length of the gas that is actually blown out of the length L1 from the start to the end of the gas spraying is called the effective gas spraying length ratio, but in the conventional case, in the continuous annealing equipment for steel strip, The effective cooling length ratio was around 80%. Therefore, in the present invention, heating or cooling in the holding roll insertion space was studied. The press roll insertion space shown in FIG. 19 is roughly divided into a side into which the roll is inserted and a side without a hole facing the steel strip 7. On the side without a roll, a gas blowing space can be provided by arranging a gas blowing device extension 22 as shown in FIG. In addition, on the side where the roll is located, there are holding rolls 16, 17 and a roll holding device that moves the holding roll forward and backward, so it is difficult to install a gas spraying device. It is difficult to do so, so efficiency becomes poor. Therefore, in the present invention, it has been devised that the press roll itself is heated or cooled to perform the roll heating or the cooling of the roll. As a result, the average heating rate or cooling rate can be improved by minimizing the roll insertion space, which was previously an invalid area for heating or cooling, or by heating and cooling even in the roll insertion space. Has become possible. Finally, a fourth study was made on optimizing the spray gas temperature when cooling the steel strip. As a general trend, lowering the spray gas temperature also lowers the required power, but once the temperature falls below a certain temperature, the temperature of the refrigerant and the spray gas used in the heat exchanger to lower the spray gas temperature Although the pressure difference in the heat exchanger increases due to the smaller difference, the spray gas temperature does not decrease and the required power of the probe increases rather. After examining the spray gas temperature in detail, the optimum spray gas temperature
、 すなわちブロワ一動力が最小となる点については、 おおよそ 60 °C 〜 200 °Cの範囲にあり、 要求される熱伝達率、 熱処理装置の入側鋼 帯温度及び出側鋼帯温度、 使用する冷媒の温度等に応じて変動する ことが判明した。 特に今回、 熱伝達率の高い領域について詳細に調 査した結果、 従来の熱伝達率が低い領域に比べて最適点が吹付ガス 温度の低い方にシフ 卜 していること及び、 吹付ガス温度がブロワ一 動力に及ぼす影響が大きいことがわかった。 (図 23 ) In other words, the point at which the power of the blower is minimum is approximately in the range of 60 ° C to 200 ° C. The required heat transfer coefficient, the inlet and outlet steel strip temperatures of the heat treatment equipment, It was found that it fluctuated according to the temperature of the refrigerant. In particular, this time, as a result of a detailed investigation of the region with a high heat transfer coefficient, it was found that the optimum point was shifted toward the lower spray gas temperature compared to the conventional region with a low heat transfer coefficient, and that the spray gas temperature was lower. It was found that the effect on blower power was large. (Fig. 23)
そこで、 吹付ガス温度を効率良く低下させるための方案について 検討した。 鋼帯に非酸化性雰囲気ガスを循環して吹き付けて冷却す る熱処理装置において、 雰囲気ガスを冷却する方法と して、 冷媒と して水を使用 した熱交換器を一般的に用いる。 従来、 熱交換器はブ ロワ一の温度保護も考慮してブロワ一の入側に設置していた。 ここ で、 吹付ガス温度を下げるためには熱交換器の容量を上げていけば 良いが、 冷媒の温度とガス温度との温度差が少なく なつてく ると熱 交換効率が悪く なり熱交換器をガスが通過する際の圧力損失が大き く なる割には吹付ガス温度が下がらず、 結果と して図 23からも判る とおりあま り吹付ガス温度を下げすぎると却ってブロワ一動力が增 えることになる。 そこで、 本発明では吹付ガスがブロワ一によって 昇圧される際に温度上昇することに着目 し、 ブロワ一の出側に熱交 換器を設置することを考案した。 つまり、 ブロワ一入側に熱交換器 を増設するより も出側に増設した方がガス温度と冷媒の温度差が少 しでも大き く とることができるようになり熱交換効率が良く なる。 これにより同じ熱伝達係数 (《 ) 、 ガス吹付温度を得る場合でも従 来に比べて低いブロワ一動力で達成できるようになった。 特に、 鋼 帯へのガス吹付速度を早くするためにブロワ一の昇圧量を大き く し た時ほどプロヮ一でのガス温度上昇が大きいためその効果は顕著で ある。 実施例 Therefore, a method for efficiently reducing the spray gas temperature was studied. In a heat treatment apparatus that cools a steel strip by circulating and blowing a non-oxidizing atmosphere gas, a heat exchanger using water as a refrigerant is generally used as a method of cooling the atmosphere gas. Conventionally, the heat exchanger was installed on the inlet side of the blower in consideration of the temperature protection of the blower. Here, in order to lower the spray gas temperature, it is sufficient to increase the capacity of the heat exchanger.However, if the temperature difference between the refrigerant temperature and the gas temperature decreases, the heat exchange efficiency deteriorates, and The blown gas temperature does not decrease even though the pressure loss when the gas passes increases, and as a result, as can be seen from Fig. 23, if the blown gas temperature is too low, the blower power can be increased. Become. Therefore, in the present invention, attention has been paid to the fact that the temperature rises when the blowing gas is pressurized by the blower, and a heat exchanger is provided on the outlet side of the blower. In other words, the heat exchanger If the temperature difference between the gas temperature and the refrigerant can be increased even if the temperature difference between the gas temperature and the refrigerant is small, the heat exchange efficiency can be improved by increasing the temperature on the outlet side rather than increasing the temperature. This has made it possible to achieve the same heat transfer coefficient (<<) and gas blowing temperature with a lower blower power than before. In particular, the effect is remarkable because the gas temperature rise in the process becomes larger as the pressure of the blower is increased in order to increase the gas blowing speed to the steel strip. Example
以下、 実施例と して順次説明していく 。 第一にノ ズルに取り付け た抵抗体について説明する。 図 2 ( a ) , ( b ) に示すように抵抗 体 2および抵抗板 3 を設置した単一ノズルからのガス噴流による熱 伝達特性を、 高温の板を冷却して調査した。 冷却媒体と しては空気 を用いた。 ノ ズル径は 1 0. 5mm、 ノ ズルから吐出する空気流速は 1 50 / s、 ノ ズル先端〜被冷却体の距離は 50mmと した。  Hereinafter, examples will be sequentially described. First, the resistor attached to the nozzle will be described. As shown in Figs. 2 (a) and (b), the heat transfer characteristics of a gas jet from a single nozzle equipped with a resistor 2 and a resistor plate 3 were investigated by cooling a hot plate. Air was used as the cooling medium. The nozzle diameter was 10.5 mm, the air velocity discharged from the nozzle was 150 / s, and the distance between the tip of the nozzle and the object to be cooled was 50 mm.
この抵抗体を先端に設置したノ ズルの特性を、 高温の板を冷却し て調査した。 結果を図 4 に示すがノズル中心直下で熱伝達率が向上 した。  The characteristics of a nozzle with this resistor mounted at the tip were investigated by cooling a hot plate. The results are shown in Fig. 4, where the heat transfer coefficient was improved just below the center of the nozzle.
抵抗体に関して、 前述の冷却条件におけるノズル断面積に対する 抵抗体の投影面積の比率を図 5 に示す。 ノズル断面積の 3 %以上の 投影面積があれば、 熱伝達率向上の効果があることがわかる。 また 、 投影面積が 1 2 %以上になると抵抗体設置によるノ ズル先端部での 圧力損失が大き く なり、 ブロワ一動力が大き く なるため経済的に不 利である。 よつて抵抗体の投影面積はノズル断面積の 3〜12 %と し た。  Figure 5 shows the ratio of the projected area of the resistor to the nozzle cross-sectional area under the cooling conditions described above. It can be seen that if the projected area is 3% or more of the nozzle cross-sectional area, there is an effect of improving the heat transfer coefficient. Further, when the projected area is 12% or more, the pressure loss at the tip of the nozzle due to the installation of the resistor increases, and the power for the blower increases, which is economically disadvantageous. Therefore, the projected area of the resistor is set to 3 to 12% of the nozzle cross-sectional area.
同様に、 ノズル断面積の 3 %未満の板厚の抵抗板のノズル内での ノズル軸方向の板長に関して調査したところ、 図 6 に示すようにノ ズル径に対して 50 %以上の板長があれば、 熱伝達率向上効果がある ことが確認できた。 また、 抵抗板の板厚に関しては、 板厚を 3 %以 上にすると前記抵抗体に比してノ ズル軸長さ方向の長さがあるため にガスの圧損が大き く なる。 よって、 所要動力を少なく するために 抵抗板の板厚を 3 %未満にするほうが有利である。 Similarly, when the resistance plate with a thickness of less than 3% of the nozzle cross-sectional area was examined for the plate length in the nozzle axial direction inside the nozzle, as shown in Fig. 6, It was confirmed that if the plate length was 50% or more of the chisel diameter, the heat transfer coefficient was improved. Further, with respect to the thickness of the resistor plate, if the plate thickness is 3% or more, the pressure loss of the gas becomes large because the length in the nozzle axis direction is longer than that of the resistor. Therefore, it is advantageous to reduce the thickness of the resistance plate to less than 3% in order to reduce the required power.
第二に、 ノズルから吐出されるガスの円滑なる排気方法について 実施例を示す。 図 9 は、 本発明の熱処理装置の断面図である。 矢印 の方向に走行する鋼帯 7 に対向するようにノ ズル 1 を突き出し、 ノ ズル 1 からガスの噴流を鋼帯 1 に吹き付けて熱処理する。 この時、 吹き付けガスを加熱した場合は加熱装置に、 冷却した場合には冷却 装置となる。 なお、 熱処理室 12内は、 鋼帯の酸化を防ぐために窒素 に水素を混合した非酸化性雰囲気にすることが多いが、 大気等のガ スを使用 した場合でも同様の効果がある。 図 1 中の矢印はガスの流 れを示す。  Second, an example of a method for smoothly exhausting the gas discharged from the nozzle will be described. FIG. 9 is a cross-sectional view of the heat treatment apparatus of the present invention. The nozzle 1 is protruded so as to face the steel strip 7 running in the direction of the arrow, and a gas jet is blown from the nozzle 1 onto the steel strip 1 to perform heat treatment. At this time, when the blowing gas is heated, it becomes a heating device, and when it is cooled, it becomes a cooling device. Note that the inside of the heat treatment chamber 12 is often set to a non-oxidizing atmosphere in which hydrogen is mixed with nitrogen in order to prevent oxidation of the steel strip, but the same effect is obtained even when gas such as air is used. The arrows in Fig. 1 indicate the gas flow.
ブロワ一 9 から連続的に供給されるガスはガス分配へッダ一 (図 示せず) を経て分割されたガス吹付ヘッダー 8 に送られ、 ここから 各ノズル 1 に分岐供給される。 ノズル 1 から吐出して鋼帯 7 に衝突 したガス噴流は鋼帯 1 から熱を奪い、 反転して開口部 1 0から排気さ れる。 すなわち、 ガスは鋼帯 7 に対してノ ズル 1 の背面側に排気さ れる。 排気されたガスは吸引ガスヘッダ一 1 1を介して再びブロワ一 9 に送られて昇圧後再利用される。  The gas continuously supplied from the blower 9 is sent to a divided gas blowing header 8 via a gas distribution header (not shown), from which it is branched and supplied to each nozzle 1. The gas jet discharged from the nozzle 1 and collided with the steel strip 7 takes heat from the steel strip 1, reverses and is exhausted from the opening 10. That is, the gas is exhausted from the steel strip 7 to the back side of the nozzle 1. The exhausted gas is sent again to the blower 9 via the suction gas header 11 and is reused after the pressure is increased.
図 9 において、 図示していないがガスを加熱または冷却する設備 は、 ブロワ一 9の前または後に配設される。 また、 図 9では吸引ガ スヘッダー 1 1を介して開口部 10を通過したガスのみを再循環するよ うにしている力く、 吸引ガスヘッダ一 1 1を設けずに熱処理室の一部か らガスを吸引 しても良い。 このとき、 ノズル 1 から吐出されたガス は鋼帯 7 に衝突後、 反転する上昇流の力のみで開口部を通過するこ とになる。 また、 図 9ではガス吹付ヘッダ一 8 の断面形状を長方形 と しているが、 製作上の便宜性等の理由からその断面を円形、 楕円 形、 多角形あるいはその組み合わせ形状と しても良い。 In FIG. 9, equipment for heating or cooling the gas, not shown, is provided before or after the blower 9. Also, in FIG. 9, only the gas that has passed through the opening 10 via the suction gas header 11 is recirculated, and the gas is supplied from a part of the heat treatment chamber without the suction gas header 11. May be sucked. At this time, the gas discharged from the nozzle 1 collides with the steel strip 7 and can pass through the opening only by the reversing upward flow force. And Further, in FIG. 9, the cross-sectional shape of the gas blowing header 18 is rectangular, but the cross-sectional shape may be circular, elliptical, polygonal, or a combination thereof for reasons of manufacturing convenience and the like.
図 10に鋼帯側から見たノズル 1 とガス吹付ヘッダ一 8 の配置を示 す。 図 10 ( a ) に示すように、 ノ ズル 1 は千鳥状に配置する他、 図 10 ( b ) に示すように 3〜 7列の組ごとに千鳥状となるように配置 することも可能である。 また、 ガス吹付ヘッダーをノ ズル 1 列に対 し 1 本づっ設置すると設備費が高く なるために図 2 ( c ) に示すよ うに 2本あるいはそれ以上の複数ノ ズル列ごとにガス吹付へッダ一 をまとめ開口部を減らすことも可能である。 但し、 この場合には排 気が不完全になることがあるため、 開口部の面積に応じてノ ズルの 突出高さ hを調整する必要が生じることがある。  Fig. 10 shows the arrangement of nozzle 1 and gas spray header 18 as viewed from the steel strip side. As shown in Fig. 10 (a), the nozzles 1 can be arranged in a staggered manner, as shown in Fig. 10 (b), and can also be arranged in a staggered manner for every three to seven rows as shown in Fig. 10 (b). is there. In addition, installing one gas blowing header per row of nozzles increases the equipment cost.Therefore, as shown in Fig. 2 (c), gas blowing headers are provided for every two or more rows of nozzles. It is also possible to reduce the number of openings by combining the die. However, in this case, since exhaust may be incomplete, it may be necessary to adjust the protrusion height h of the nozzle according to the area of the opening.
図 9, 10に示した本発明の装置を用い、 窒素と水素の混合ガスを 冷却媒体と して、 厚み 1. 0mmの鋼帯 1 のガス噴流による冷却を実施 した。 この時の冷却ノズル突出長さ hは 20mmと した。 図 12に、 一定 のブロワ一動力で、 開口部とノズル開口面積の比を変えたときの熱 伝達率比を示し、 表 1 にノズル径、 ノ ズルピッチなどを示す。 図 12 においては、 鋼帯幅方向平均の熱伝達率により、 ガス噴流による鋼 帯の冷却能力を評価している。 開口部とノ ズルの開口面積の比が 0 、 3. 4及び 17. 3のところは、 比較例の結果を示している。 ここで、 面積比 0 とは、 開口部をすベて塞いだことを意味している。 開口部 とノ ズルの開口面積の比が 5. 8から 15. 7は実施例の結果を示してい る。 開口部とノ ズルの開口面積の比が 5〜17の範囲で比較例より大 き く なっていることがわかる。 すなわち開口部とノ ズル開口面積の 比を 5〜17にするとガス噴流による鋼帯の冷却能力が向上する。 〔表 1 〕 Using the apparatus of the present invention shown in FIGS. 9 and 10, cooling was performed with a gas jet of steel strip 1 having a thickness of 1.0 mm using a mixed gas of nitrogen and hydrogen as a cooling medium. The projection length h of the cooling nozzle at this time was 20 mm. Figure 12 shows the ratio of the heat transfer coefficient when the ratio of the opening to the nozzle opening area is changed with a constant blower power, and Table 1 shows the nozzle diameter and nozzle pitch. In Fig. 12, the cooling capacity of the steel strip by gas jet is evaluated based on the average heat transfer coefficient in the steel strip width direction. The ratios of the opening area of the nozzle and the opening area of the nozzle of 0, 3.4 and 17.3 show the results of the comparative example. Here, an area ratio of 0 means that the opening is completely closed. The ratio of the opening area of the nozzle to the opening area of the nozzle is from 5.8 to 15.7, indicating the results of the example. It can be seen that the ratio of the opening area to the opening area of the nozzle is larger than that of the comparative example in the range of 5 to 17. That is, when the ratio of the opening to the nozzle opening area is 5 to 17, the cooling capacity of the steel strip by the gas jet is improved. 〔table 1 〕
Figure imgf000018_0001
Figure imgf000018_0001
ノズル 1 の突出長さ hは、 ノズル 1 の内径 Dの 5倍以下とするの が好ま しい。 ノ ズル 1 の突出長さ hがノ ズルの内径 Dの 5倍を超え ると、 図 16に示すように、 熱伝達率が著しく低下するためである。 これは、 ノ ズルの突出長さ hが長いとガスの上昇流がガス吹付へッ ダー 8 間の開口部 1 0に到達するまでにガス流速が減衰し、 排気され 難く なるためと考えられる。  It is preferable that the protruding length h of the nozzle 1 is not more than 5 times the inner diameter D of the nozzle 1. If the protruding length h of the nozzle 1 exceeds five times the inner diameter D of the nozzle 1, the heat transfer coefficient is significantly reduced as shown in FIG. This is considered to be because if the protruding length h of the nozzle is long, the gas flow velocity is attenuated by the time the ascending flow of gas reaches the opening 10 between the gas blowing headers 8, making it difficult to exhaust the gas.
次にガス吹付ヘッダ一の開口部を無く し、 ノ ズル突出高さ hを適 正高さにとってガス排気を行う場合の実施例を示す。 図 1 7に実施例 を示すがガス吹付ヘッダー 8 はノズル 1 間の開口部をなく し、 ある ノズル本数単位で共通の大きな箱型形状のガス吹付へッダ一となつ ている。 なお、 ノズル先端と鋼帯 7 との距離 Zについては特公平 2 - 1 6375号公報において規定されているとおり ノズルから吐出された 70麵以下にとることが一般的である。  Next, an embodiment in which the opening of the gas blowing header is eliminated and the gas is exhausted with the nozzle protrusion height h set to an appropriate height will be described. FIG. 17 shows an embodiment, in which the gas blowing header 8 has no opening between the nozzles 1 and has a common large box-shaped gas blowing header for each nozzle. The distance Z between the tip of the nozzle and the steel strip 7 is generally set to 70 mm or less as discharged from the nozzle as specified in Japanese Patent Publication No. 2-163675.
次にガス流れ 14について図 17を用いて説明する。 ノ ズル 1 から吐 出されたガスは鋼帯 7 に衝突後、 鋼帯 1 に沿って流れるがやがて隣 接するノズルから吐出されたガスと衝突し、 ノズルから突出された ガスと反対の方向すなわち鋼帯 1 からガス吹付ヘッダ一 8 に向かつ て流れる。 その後、 このガスはガス吹付ヘッダーに衝突しガス吹付 へッダ一に沿った方向に流れ、 やがて、 ガス吹付ヘッダ一 8 と鋼帯 7 に挟まれた領域を抜けて排出される。 この時、 ガスの風量密度が 小さい場合にはガス吹付へッダ一に沿つたガス流れはノ ズル突出高 さ h分の領域において流れているが、 風量密度が上がるとこの領域 では足りず鋼帯 7 とノ ズル 1 の先端の間の領域にまで鋼板に衝突後 のガスが満ちてく る。 このようになると一度鋼板に衝突したガスが 再度ノ ズルから突出したガスに巻き込まれる。 例えば、 鋼板を冷却 する場合には吐出ガスは冷却されているが、 鋼板に既に衝突した温 度の高いガスを巻き込むことにより、 鋼板に衝突するガスの温度は 上がってしまい冷却効率が低下してしまう。 なお、 ガス吹付ヘッダ —はノ ズル高さ hを一定以上とればガスの排気は整然と行われるが 、 ガス吹付ヘッダーを適宜分割してその間を開けることにより さ ら に排気を促進させてもよい。 特に、 鋼帯の板幅が広い場合やガス吹 付ヘッダーの長手方向の長さが大きい場合等、 ガス吹き付けヘッダ 一の大きさが大きい場合にはガス吹付へッダ一の分割が有効である o Next, the gas flow 14 will be described with reference to FIG. The gas discharged from the nozzle 1 collides with the steel strip 7 and then flows along the steel strip 1, but then collides with the gas discharged from the adjacent nozzle, and in the opposite direction to the gas protruding from the nozzle, i.e., steel. It flows from zone 1 to gas spray header 18. After that, this gas collides with the gas blowing header and blows the gas. The gas flows in the direction along the header, and is eventually discharged through the area between the gas blowing header 18 and the steel strip 7. At this time, if the gas flow density is low, the gas flow along the gas blowing header flows in the region of the nozzle protrusion height h, but if the gas flow density increases, the steel flow is insufficient in this region. The gas after the collision with the steel sheet is filled up to the area between zone 7 and the tip of nozzle 1. In this case, the gas that once collides with the steel sheet is engulfed again by the gas that has protruded from the nozzle. For example, when cooling a steel sheet, the discharge gas is cooled, but the high-temperature gas that has already collided with the steel sheet causes the temperature of the gas colliding with the steel sheet to rise, resulting in a decrease in cooling efficiency. I will. In addition, if the nozzle height h is equal to or more than a certain value, the gas spray header can be evacuated properly. However, the gas spray header may be appropriately divided and opened between them to further promote the exhaust. In particular, when the size of the gas blowing header is large, such as when the strip width of the steel strip is large or the length of the gas blowing header in the longitudinal direction is large, dividing the gas blowing header is effective. o
第三に有効ガス吹付長割合の向上に関し実施例を示す。 図 19に従 来のガス噴流による鋼帯の熱処理装置を示す。 鋼帯 7 とノ ズル 1 を 近接させ、 ガス噴流の効率をあげているが、 板のばたつき、 反りに より ノズルと鋼帯が接触することを避けるため左押さえロール 16及 び右押さえロール 17で交互に押さえられている。 ところがこれら押 さえロールの部分にある左押さえロール挿入空間 23及び右押さえ口 一ル揷入空間 24においてはガスが吹付られていないため、 冷却、 ま たは加熱は L 1 の区間において行われている ものの、 その中に加熱 、 冷却において無効な部分が含まれており、 結果と して高い冷却速 度または加熱速度が得られない状態となっていた。 すなわち、 有効 ガス吹付長割合が低い状態であつた。 本発明の実施例と して図 20にて説明する。 図 20では押さえロール の鋼帯 7 に対して反対側にガス吹付装置延長部 22を設け、 ガス吹付 開始から終了までの長さ L 2 を短縮した。 図 19と図 20は実際にガス を吹き付けている長さは同じであるが L 1 と L 2を比較すると L 2 の長さが短く なつており、 有効ガス吹付長割合が高く なつた。 鋼帯 7の移動速度を V m /秒とすると、 加熱または冷却に要する時間はThird, an embodiment will be described regarding the improvement of the effective gas spray length ratio. Figure 19 shows a conventional steel strip heat treatment system using a gas jet. The steel strip 7 and the nozzle 1 are brought close to each other to increase the gas jet efficiency.However, in order to prevent the nozzle from contacting the steel strip with the nozzle due to fluttering and warping of the plate, the left holding roll 16 and right holding roll 17 are used. It is held down alternately. However, since no gas is blown into the left presser roll insertion space 23 and right presser outlet opening space 24 in these presser rolls, cooling or heating is performed in the section L1. Despite this, there were portions ineffective in heating and cooling, and as a result, high cooling or heating rates could not be obtained. That is, the effective gas spray length ratio was low. An embodiment of the present invention will be described with reference to FIG. In FIG. 20, a gas blowing device extension 22 is provided on the opposite side to the steel strip 7 of the holding roll, and the length L 2 from the start to the end of gas blowing is shortened. Figures 19 and 20 show the same length of gas spraying, but comparing L1 and L2 shows that the length of L2 is shorter and the effective gas spraying ratio is higher. Assuming that the moving speed of the steel strip 7 is V m / sec, the time required for heating or cooling is
( L 1 一 L 2 ) Z V秒短く なつており、 加熱速度または冷却速度に ついてもこの分高く することができる。 なお、 本発明を実際の鋼帯 の連続焼鈍処理設備に適用 したところ有効ガス吹付長割合は 82 %か ら 90 %まで上昇した。 (L1-L2) Z V seconds are short, and the heating rate or cooling rate can be increased accordingly. When the present invention was applied to the actual continuous annealing equipment for steel strip, the effective gas spray length ratio increased from 82% to 90%.
また、 前述のとおり押さえロールについても加熱または冷却する ことにより加熱、 冷却能力が高められより一層の加熱速度あるいは 冷却速度の向上が図られる。 但し、 前述のようにロールを接触させ て加熱または冷却を行う設備は一般的にロールと鋼帯を均一に接触 させるこ とが難しいため鋼帯の温度むらを生じやすいという欠点が あった。 ところが実験によると、 押さえロールの口一ル径は通常 ø Further, as described above, by heating or cooling the press roll, the heating and cooling capacity is increased, and the heating rate or the cooling rate is further improved. However, equipment for heating or cooling by contacting the rolls as described above generally has a drawback in that it is difficult to uniformly contact the rolls and the steel strip, so that the temperature of the steel strip tends to be uneven. However, according to the experiment, the diameter of the holding roll is usually ø.
300mm以下と小さ く 、 一般に加熱または冷却ロールと して用いられ るロール径 0 1 000mmに対して、 鋼帯がロールに押さえつけられる圧 力 (以下、 面圧と言う) が大き く 、 鋼帯の加熱、 冷却むらは問題な いこと力 わ力、つた。 It is as small as 300 mm or less, and the pressure (hereinafter referred to as the surface pressure) against which the steel strip is pressed against the roll is large compared to the roll diameter of 0.1000 mm, which is generally used as a heating or cooling roll. There was no problem with uneven heating and cooling.
図 21に右押さえロール部の断面図を示す。 なお、 左押さえロール についてもほぼ同様の設備構成であるため、 ここでは代表して右押 さえロールについて説明する。 また、 本例では押さえロールを水冷 ロールと した場合を示す。 図 21に示すように、 右押さえロール 17は 、 熱処理室壁 13の両側壁に前後方向に摺動自在に設けられた軸受 26 に回転自在に支持されている。 こ こで鋼帯 7 の左側の間隙にはガス 吹付ヘッダー、 ノズル等が配置されているが簡単のため省略してい る。 内部にジャケ ッ 卜構造を有する右押さえロール 17の一端は押さ えロール回転モーター 27に連結されている。 一方、 反対側の軸受 26 はロータ リ ージ ョ イ ン ト構造となつており、 給水管 28と排水管 29が 接続されている。 こ こで、 軸受 26は摺動可能となっており、 伝導軸 3 1、 分配器 32、 押さえロール進退用モータ一によって前進後退が可 能である。 FIG. 21 is a cross-sectional view of the right pressing roll portion. Note that the left press roll has almost the same equipment configuration, so the right press roll will be described as a representative here. In this example, a case is shown in which the holding roll is a water-cooled roll. As shown in FIG. 21, the right pressing roll 17 is rotatably supported by bearings 26 slidably provided on both side walls of the heat treatment chamber wall 13 in the front-rear direction. Here, gas blowing headers, nozzles, etc. are placed in the gap on the left side of steel strip 7, but they are omitted for simplicity. You. One end of a right holding roll 17 having a jacket structure inside is connected to a holding roll rotating motor 27. On the other hand, the bearing 26 on the opposite side has a rotary joint structure, and a water supply pipe 28 and a drain pipe 29 are connected. Here, the bearing 26 is slidable, and can be moved forward and backward by the transmission shaft 31, the distributor 32, and the press roll advance / retreat motor.
かかる構成によって、 給水管 28を通して、 右押さえロール 1 7に冷 却水が供給できるとともに、 使用 した水は排水管 29によつて排出で きる。 本説明では一般的な冷却事例と して示しているが、 加熱した 流体を使用すれば加熱ロールと しても使用可能である。 また、 冷却 の場合にも水以外の流体を使用することも可能である。 さ らに加熱 の場合には流体を使う代わり と してロールに給電することにより電 気加熱ロールとすること もできる。 さ らに、 使用する流体の温度、 量、 または、 電気の電流を制御することにより加熱量または冷却量 を制御することができる。  With this configuration, the cooling water can be supplied to the right holding roll 17 through the water supply pipe 28, and the used water can be discharged through the drain pipe 29. In this explanation, it is shown as a general cooling case, but if a heated fluid is used, it can be used as a heating roll. In the case of cooling, it is also possible to use a fluid other than water. In the case of heating, instead of using a fluid, an electric heating roll can be used by supplying power to the roll. In addition, the amount of heating or cooling can be controlled by controlling the temperature, volume, or electrical current of the fluid used.
最後に第四と してガス吹付温度の効率的な低減に関し実施例を示 す。 図 22 ( a ) に鋼帯に非酸化性の雰囲気ガスを循環し噴流を吹き 付けて冷却する熱処理装置の従来の実施例を示す。 図 22 ( a ) にお いて 7が被冷却物と しての鋼帯であり 1 3の熱処理室壁の内部におい て、 非酸化性ガス (図示しない) の雰囲気において冷却されている 。 9が熱処理室の非酸化性ガスを吸引 し昇圧するためのブロワ一で あり熱処理室の雰囲気ガスをダク ト 34を通じて吸引 している。 この ダク トの途中に雰囲気ガスを冷却するための熱交換器 35が設置され ており冷却されたガスがブロワ一 9で昇圧される。 昇圧された雰囲 気ガスは再びダク ト 34により熱処理室内に導入されガス吹付へッダ 一 8、 ノ ズル 1 を介して鋼帯 7 に吹き付けられ鋼帯は急速に冷却さ れる。 こ こで、 熱交換器の位置であるが従来の場合にはブロワ一 9 を熱から保護するために熱処理室の雰囲気ガスを熱交換器において 冷却したあとブロワ一で吸引 していた。 つま りブロワ一の上流側に 熱交換器を配置していた。 従来は鋼帯冷却の熱伝達率の想定領域が 低かったためノズル先端の吐出流速がさほど高く なく ブロワ一にお いて高い昇圧量が要求されていなかつたためプロヮ一における雰囲 気ガス温度上昇が少なく特に実用上問題がなかつた。 しかしながら 、 鋼帯冷却における熱伝達率が高く なつてく るとノ ズル先端の吐出 流速を高く する必要がありブロワ一において高い昇圧量が要求され るようになる。 このため昇圧後の温度上昇が無視できなく なり図 22 ( b ) にしめすように熱交換器 35をブロワ一 9の後、 すなわち下流 側にも設置したほうが冷却効率が良く なる。 つま り、 雰囲気ガスの ガス温度低下代を一定と した場合、 図 22 ( a ) より も ( b ) のほう が熱交換器の能力を小さ くすることができ、 結果と して熱交換器の 圧力損失が小さ く なるため、 熱処理装置のプロヮ一容量も小さ く で きる。 なお、 図 22 ( b ) ではブロワ一の前後に熱交換器を設置して いるが、 プロヮ一の耐熱上の問題がなければ上流側の熱交換器を外 し下流側のみに設置しても良い。 産業上の利用可能性 Finally, as a fourth example, an example will be given regarding the efficient reduction of the gas spraying temperature. Fig. 22 (a) shows a conventional example of a heat treatment apparatus for cooling a steel strip by circulating a non-oxidizing atmosphere gas and blowing a jet. In Fig. 22 (a), reference numeral 7 denotes a steel strip as an object to be cooled, which is cooled in a non-oxidizing gas (not shown) atmosphere inside the heat treatment chamber wall of Fig. 13. Reference numeral 9 denotes a blower for sucking the non-oxidizing gas in the heat treatment chamber and increasing the pressure, and sucks the atmosphere gas in the heat treatment chamber through the duct. A heat exchanger 35 for cooling the atmospheric gas is installed in the middle of the duct, and the cooled gas is pressurized by the blower 19. The pressurized atmosphere gas is again introduced into the heat treatment chamber by the duct 34, and is blown to the steel strip 7 through the gas spraying head 18 and the nozzle 1, whereby the steel strip is rapidly cooled. Here, it is the position of the heat exchanger. The atmosphere gas in the heat treatment room was cooled in a heat exchanger to protect it from heat, and then suctioned by a blower. In other words, a heat exchanger was located upstream of the blower. In the past, the assumed area of the heat transfer coefficient of steel strip cooling was low, so the discharge flow velocity at the nozzle tip was not so high, and a high pressure increase in the blower was not required. There was no practical problem. However, as the heat transfer coefficient in the cooling of the steel strip increases, the discharge flow velocity at the tip of the nozzle must be increased, and a high pressure increase is required in the blower. For this reason, the temperature rise after the pressure rise cannot be ignored, and the cooling efficiency is improved by installing the heat exchanger 35 after the blower 19, that is, on the downstream side as shown in FIG. 22 (b). That is, when the gas temperature drop of the atmospheric gas is fixed, the capacity of the heat exchanger can be made smaller in (b) than in Fig. 22 (a), and as a result, Since the pressure loss is reduced, the professional capacity of the heat treatment apparatus can also be reduced. In Fig. 22 (b), heat exchangers are installed before and after the blower, but if there is no problem with the heat resistance of the professional, it is possible to remove the upstream heat exchanger and install it only on the downstream side. good. Industrial applicability
本発明は、 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 ま たは乾燥させる熱処理装置においては、 ガス噴流の中心部での乱れ 促進により熱伝達率を向上させることができ、 また、 鋼帯に吹き付 けたガスを円滑に排気することが可能になり、 新しい吹き付けガス との干渉を防止できるようになるため熱伝達率を向上させるこ とが 可能となる。  The present invention provides a heat treatment apparatus that heats, cools, or dries a steel strip by spraying a gas jet onto the steel strip, and can improve a heat transfer coefficient by promoting turbulence at the center of the gas jet. In addition, the gas blown to the steel strip can be smoothly exhausted, and interference with new blown gas can be prevented, so that the heat transfer coefficient can be improved.
また、 本発明においては、 鋼帯にガスの噴流を吹き付けて鋼帯を 加熱、 冷却、 または乾燥させる熱処理装置においては、 左右ロール 挿入空間における空走部、 すなわち鋼帯を加熱、 冷却、 または乾燥 させることに寄与していない部分を短縮できるため熱処理装置の設 備長を短くできる。 さ らに、 これにより鋼帯を加熱、 冷却、 または 乾燥させる時間が短く なるため鋼帯の加熱速度、 冷却速度、 または 乾燥速度を向上させることが可能となり、 更にブロワ一等のガス圧 縮装置の出側にガス冷却用の熱交換器を配したことにより、 効率良 く 吹付ガス温度を低下せしめることが可能となり、 結果と して冷却 効率が上がりブロワ一等のガス圧縮装置に必要な動力を小さ く する ことが可能となる。 Further, in the present invention, in a heat treatment apparatus for heating, cooling, or drying a steel strip by spraying a gas jet onto the steel strip, the left and right rolls The length of the free running portion in the insertion space, that is, the portion that does not contribute to heating, cooling, or drying the steel strip can be reduced, so that the equipment length of the heat treatment apparatus can be shortened. In addition, this shortens the time required to heat, cool, or dry the steel strip, so that the heating rate, cooling rate, or drying rate of the steel strip can be improved, and a gas compression device such as a blower can be used. A heat exchanger for gas cooling on the outlet side of the gas makes it possible to lower the spray gas temperature efficiently, resulting in increased cooling efficiency and the power required for gas compressors such as blowers. Can be reduced.
従って、 過大なブロワ一ゃダク トを設けることなく 、 冶金的また はその他のプロセス上必要とされる加熱速度または冷却速度を容易 に確保できる。 また、 設備長も短くできることから設備もコ ンパク 卜になるとともに必要とするプロヮー動力も従来に比べ大幅に低減 するこ とが可能となり、 ラ ンニングコス 卜の面からも大きなメ リ ッ 卜が得られ、 更に、 従来の熱伝達率 α≥ 400kca l / m 2 Hr°Cの領域 の冷却方式である、 ロール冷却に見られる鋼帯の温度むらや形状悪 化といった問題、 気水冷却における鋼帯の表面酸化といつた問題が ないため、 鋼帯の品質向上が図れるとともに、 酸化膜除去のための 酸洗設備が不要となり設備構成上も簡単になる。 Therefore, the heating rate or cooling rate required for metallurgical or other processes can be easily secured without providing an excessive blower duct. In addition, since the equipment length can be shortened, the equipment becomes more compact and the required propulsion power can be significantly reduced compared to the conventional equipment, and a great advantage can be obtained in terms of running cost. Furthermore, the conventional cooling method in the range of heat transfer coefficient α≥400 kcal / m 2 Hr ° C, such as the problem of uneven temperature and shape deterioration of steel strip seen in roll cooling, Since there is no problem with surface oxidation, the quality of the steel strip can be improved, and the pickling equipment for removing the oxide film is not required, which simplifies the equipment configuration.

Claims

請 求 の 範 囲 The scope of the claims
1. 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾 燥する熱処理装置において、 ガスの噴流を吐出するノ ズルの先端に 抵抗体をその投影面積がノズル断面積に対して 3〜 12 %となるよう に設置したことを特徴とする鋼帯のガス噴流による熱処理装置。 1. In a heat treatment system that heats, cools, or dries a steel strip by spraying a gas jet onto the steel strip, a resistor is attached to the tip of the nozzle that discharges the gas jet, and the projected area of the resistor is in relation to the nozzle cross-sectional area. A heat treatment system using a gas jet of a steel strip, which is installed so as to be 3 to 12%.
2. 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾 燥する熱処理装置において、 ガスの噴流を吐出するノズルの先端に 抵抗板をその投影断面積がノ ズル断面積に対して 3 %未満、 ノ ズル 内でのノ ズル軸方向の板長がノズル径の 50 %以上となるように設置 したことを特徴とする鋼帯のガス噴流による熱処理装置。  2. In a heat treatment system that heats, cools, or dries a steel strip by spraying a gas jet onto the steel strip, a resistive plate is attached to the tip of the nozzle that discharges the gas jet, so that the projected cross-sectional area is A heat treatment apparatus using a gas jet of steel strip, characterized in that it is installed so that the plate length in the nozzle axis direction within the nozzle is at least 50% of the nozzle diameter.
3. 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾 燥する熱処理装置において、 ガスの噴流を吐出するノズルと、 複数 のノ ズルを有し、 かつ該ノ ズルにガスを供給するガス吹付ヘッダー と、 複数のガス吹付へッダ一にガスを分配するガス分配へッダ一を 配設するとと もに、 前記ガス吹付へッダ一間にガスの排気口と して の開口部または間隙であって、 該開口部の面積が前記ノ ズルの開口 面積の 5倍以上、 17倍以下である開口部を配設したことを特徴とす る鋼帯のガス噴流による熱処理装置。  3. In a heat treatment apparatus that heats, cools, or dries a steel strip by blowing a jet of gas onto the steel strip, it has a nozzle that discharges a jet of gas, a plurality of nozzles, and a gas is injected into the nozzle. A gas blowing header to be supplied and a gas distribution header for distributing gas to a plurality of gas blowing headers are provided, and a gas exhaust port is provided between the gas blowing headers. A heat treatment using a gas jet of a steel strip, wherein an opening having an area of 5 to 17 times the opening area of the nozzle is provided. apparatus.
4. 前記ノ ズルが、 前記ガス吹付ヘッダー先端部より吐出 した突 起状ノ ズルであることを特徴とする請求項 3 に記載の鋼帯のガス噴 流による熱処理装置。  4. The heat treatment apparatus according to claim 3, wherein the nozzle is a protruding nozzle discharged from a tip end of the gas blowing header.
5. 前記ノズルの突出長さ力 該ノズルの内径の 5倍以下である こ とを特徴とする請求項 3 に記載の鋼帯のガス噴流による熱処理装  5. The heat treatment apparatus according to claim 3, wherein the projecting length force of the nozzle is not more than 5 times the inner diameter of the nozzle.
6. 前記ガス吹付ヘッダー先端部の形状が、 ガス流路の断面がガ ス吹付方向で漸減する形状であり、 前記ノズルの先端がガス吹付へ ッダ一先端面より突出していないことを特徴とする請求項 3 に記載 の鋼帯のガス噴流による熱処理装置。 6. The shape of the tip of the gas blowing header is such that the cross section of the gas flow path is gradually reduced in the gas blowing direction, and the tip of the nozzle is directed to gas blowing. 4. The heat treatment apparatus according to claim 3, wherein the heat treatment apparatus does not protrude from the tip end of the steel strip.
7. 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾 燥する熱処理装置において、 鋼帯とノズル先端との距離 Zを 70匪以 下と し、 ノ ズルへガスを供給するヘッダ一からのノ ズル突出高さ h mmと、 単位面積あたりの吹き付けガス量 (風量密度) W m 3 / m i n m 2 の間に、 W Z 4 ≤ hの関係を満たすことを特徴とする鋼帯のガ ス噴流による熱処理装置。 7. In a heat treatment device that heats, cools, or dries the steel strip by blowing a jet of gas onto the steel strip, the distance Z between the steel strip and the tip of the nozzle is set to 70 or less, and gas is supplied to the nozzle. Roh nozzle projecting and height h mm, spraying gas amount per unit area from the header one between (air volume density) W m 3 / minm 2, the steel strip and satisfies the relation of WZ 4 ≤ h Gas jet heat treatment equipment.
8. 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾 燥する熱処理装置であって、 ガスの噴流を吐出するノ ズルが配設さ れたガス吹付空間の間に鋼帯の進行方向にそったある間隔をもって 交互に押さえロールを配設したロール挿入空間を設け、 鋼帯のフ ラ ッ タ リ ングを防止するようにした熱処理装置において、 鋼帯に対し ロール挿入側と反対側のロール揷入空間にガスの噴流を吐出するノ ズルを配設し、 ガス吹付空間を延長するようにしたこ とを特徴とす る鋼帯のガス噴流による熱処理装置。  8. A heat treatment device that heats, cools, or dries the steel strip by spraying a gas jet onto the steel strip. The steel strip is located between the gas spraying space where the nozzle that discharges the gas jet is installed. In a heat treatment device that has a roll insertion space in which presser rolls are alternately arranged at certain intervals along the traveling direction of the steel strip to prevent fluttering of the steel strip, A heat treatment system using a gas jet of steel strip, characterized in that a nozzle that discharges a gas jet is installed in the opposite roll inlet space to extend the gas spray space.
9. 鋼帯にガスの噴流を吹き付けて鋼帯を加熱、 冷却、 または乾 燥する熱処理装置であって、 ガスの噴流を吐出するノ ズルが配設さ れたガス吹付空間の間に鋼帯の進行方向にそつたある間隔をもつて 交互に押さえロールを配設したロール挿入空間を設け、 鋼帯のフ ラ ッ タ リ ングを防止するようにした熱処理装置において、 鋼帯を冷却 する場合は、 押さえロールを冷却した冷却ロールと し、 鋼帯を加熱 または乾燥させる場合は、 押さえロールを加熱した加熱ロールと し たことを特徴とする鋼帯のガス噴流による熱処理装置。  9. A heat treatment device that heats, cools, or dries the steel strip by spraying a gas jet onto the steel strip. The steel strip is located between the gas spraying space where the nozzle that discharges the gas jet is installed. The steel strip is cooled in a heat treatment device that has a roll insertion space in which presser rolls are arranged alternately at a certain interval in the traveling direction of the steel strip to prevent fluttering of the steel strip. Is a heat treatment apparatus using a gas jet of a steel strip, characterized in that a press roll is a cooling roll that is cooled, and a steel roll is heated when a steel strip is heated or dried.
10. 鋼帯に非酸化性の雰囲気ガスを循環し噴流を吹き付けて冷却 する熱処理装置において、 少なく ともブロワ一等のガス圧縮装置の 下流側にガス冷却用の熱交換器を配設したことを特徴とする鋼帯の ガス噴流による熱処理装置。 10. In a heat treatment system that circulates a non-oxidizing atmosphere gas through a steel strip and sprays it to cool it, a heat exchanger for gas cooling was installed at least downstream of the gas compressor such as a blower. Features of steel strip Heat treatment equipment by gas jet.
PCT/JP1998/001072 1997-03-14 1998-03-13 Steel band heat-treating apparatus by gas jet stream WO1998041661A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP98907225A EP0911418B1 (en) 1997-03-14 1998-03-13 Method and apparatus for heat treating by means of gas jet stream
DE69833424T DE69833424T2 (en) 1997-03-14 1998-03-13 METHOD AND DEVICE FOR HEAT TREATMENT BY MEANS OF GAS JET
BR9804782A BR9804782A (en) 1997-03-14 1998-03-13 Heat treatment device for conducting heat treatment on steel strip by gas jet blast
KR1019980709182A KR100293139B1 (en) 1997-03-14 1998-03-13 Steel Band Heat Treatment Apparatus by Gas Jet Flow

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP8224797 1997-03-14
JP9/82247 1997-03-14
JP9/166644 1997-06-10
JP16664497 1997-06-10
JP9/177815 1997-06-19
JP17781597 1997-06-19

Publications (1)

Publication Number Publication Date
WO1998041661A1 true WO1998041661A1 (en) 1998-09-24

Family

ID=27303851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/001072 WO1998041661A1 (en) 1997-03-14 1998-03-13 Steel band heat-treating apparatus by gas jet stream

Country Status (7)

Country Link
EP (1) EP0911418B1 (en)
KR (1) KR100293139B1 (en)
CN (1) CN1083896C (en)
BR (1) BR9804782A (en)
DE (1) DE69833424T2 (en)
TW (1) TW404982B (en)
WO (1) WO1998041661A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200319A (en) * 1999-12-17 2001-07-24 Stein Heurtey Method and apparatus for reducing wrinkle formation in strip in quenching zone of heat treatment line
JP2006077301A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Method for restraining fluttering of steel sheet
KR100788178B1 (en) * 2001-06-15 2007-12-26 스탕 위르떼 Method and apparatus for reducing wrinkles on a strip in a rapid cooling zone of a heat treatment line
JP2009503258A (en) * 2005-08-01 2009-01-29 エープナー インドゥストリーオーフェンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for cooling metal strips
JP2018522138A (en) * 2015-05-29 2018-08-09 フォエスタルピネ スタール ゲーエムベーハー Non-contact cooling method and apparatus for steel plate
WO2019097711A1 (en) * 2017-11-20 2019-05-23 Primetals Technologies Japan株式会社 Cooling device for metal plates and continuous heat treatment equipment for metal plates
JP7364619B2 (en) 2021-05-14 2023-10-18 中外炉工業株式会社 metal strip heat treatment furnace

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9929956D0 (en) 1999-12-17 2000-02-09 Boc Group Plc Qenching heated metallic objects
GB0029281D0 (en) 2000-11-30 2001-01-17 Boc Group Plc Quenching Method & Apparatus
DE10212234A1 (en) * 2002-03-19 2003-10-09 Junker Gmbh O Device for uniformly loading a flat surface of a workpiece with a heated gas
KR100928980B1 (en) 2002-12-23 2009-11-26 주식회사 포스코 Cooling device of hot-dip galvanized steel sheet with improved cooling capacity
FR2925919B1 (en) * 2007-12-28 2010-06-11 Cmi Thermline Services DEVICE FOR BLOWING GAS ON A FACE OF A THREADED STRIP MATERIAL
EP2855716B1 (en) * 2012-05-30 2019-10-16 Solaronics S.A. Continuous curing or drying installation for sheet metal strip
CN102909226B (en) * 2012-11-05 2015-06-17 大亚科技股份有限公司 Aluminum foil surface residual oil pretreatment temperature control purging device and use method and application thereof
JP6527879B2 (en) 2014-03-20 2019-06-05 華為終端有限公司 mobile computer
EP2933342A1 (en) * 2014-04-15 2015-10-21 Böhler-Uddeholm Precision Strip GmbH Method and device for producing a strip steel with bainitic microstructure
DE102015113056B4 (en) 2015-08-07 2018-07-26 Voestalpine Metal Forming Gmbh Method for the contactless cooling of steel sheets and device therefor
CN106282877B (en) * 2016-08-29 2018-11-09 首钢京唐钢铁联合有限责任公司 Galvanizing annealing furnace band steel enters pot temperature control method
CN108148956B (en) * 2016-12-02 2019-10-25 宝山钢铁股份有限公司 A kind of jumbo jet heating equipment of continuous annealing unit
DE102017111991B4 (en) 2017-05-31 2019-01-10 Voestalpine Additive Manufacturing Center Gmbh Device for cooling hot, plane objects
DE102018109579A1 (en) * 2018-04-20 2019-10-24 Schwartz Gmbh Temperature control device for partial cooling of a component
CN111363910B (en) * 2020-03-03 2021-11-19 首钢京唐钢铁联合有限责任公司 Pulse type burner heating output control method and system

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140155U (en) * 1984-08-14 1986-03-13 新日本製鐵株式会社 Structure of the nozzle with turbulence promoter
JPS63241123A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Cooling method for steel strip
JPH0216375B2 (en) * 1985-11-15 1990-04-17 Nippon Steel Corp
JPH044052U (en) * 1990-04-23 1992-01-14
JPH04198424A (en) * 1990-11-28 1992-07-17 Kawasaki Steel Corp Method of jet stream type heating/cooling control
JPH04311535A (en) * 1991-04-10 1992-11-04 Nkk Corp Method for roll cooling
JPH05277542A (en) * 1992-03-31 1993-10-26 Nkk Corp Method and device for cooling steel strip
JPH06340913A (en) * 1993-06-01 1994-12-13 Nkk Corp Gas-cooling device for metal strip
JPH0726332A (en) * 1993-07-12 1995-01-27 Nkk Corp Device for cooling metal strip
JPH09194954A (en) * 1996-01-22 1997-07-29 Nippon Steel Corp Cooling device for steel strip by gas jet

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6140155U (en) * 1984-08-14 1986-03-13 新日本製鐵株式会社 Structure of the nozzle with turbulence promoter
JPH0216375B2 (en) * 1985-11-15 1990-04-17 Nippon Steel Corp
JPS63241123A (en) * 1987-03-27 1988-10-06 Sumitomo Metal Ind Ltd Cooling method for steel strip
JPH044052U (en) * 1990-04-23 1992-01-14
JPH04198424A (en) * 1990-11-28 1992-07-17 Kawasaki Steel Corp Method of jet stream type heating/cooling control
JPH04311535A (en) * 1991-04-10 1992-11-04 Nkk Corp Method for roll cooling
JPH05277542A (en) * 1992-03-31 1993-10-26 Nkk Corp Method and device for cooling steel strip
JPH06340913A (en) * 1993-06-01 1994-12-13 Nkk Corp Gas-cooling device for metal strip
JPH0726332A (en) * 1993-07-12 1995-01-27 Nkk Corp Device for cooling metal strip
JPH09194954A (en) * 1996-01-22 1997-07-29 Nippon Steel Corp Cooling device for steel strip by gas jet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0911418A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001200319A (en) * 1999-12-17 2001-07-24 Stein Heurtey Method and apparatus for reducing wrinkle formation in strip in quenching zone of heat treatment line
KR100788178B1 (en) * 2001-06-15 2007-12-26 스탕 위르떼 Method and apparatus for reducing wrinkles on a strip in a rapid cooling zone of a heat treatment line
JP2006077301A (en) * 2004-09-10 2006-03-23 Nippon Steel Corp Method for restraining fluttering of steel sheet
JP4495553B2 (en) * 2004-09-10 2010-07-07 新日本製鐵株式会社 Steel sheet fluttering suppression method
JP2009503258A (en) * 2005-08-01 2009-01-29 エープナー インドゥストリーオーフェンバウ ゲゼルシャフト ミット ベシュレンクテル ハフツング Equipment for cooling metal strips
JP2018522138A (en) * 2015-05-29 2018-08-09 フォエスタルピネ スタール ゲーエムベーハー Non-contact cooling method and apparatus for steel plate
JP2018524535A (en) * 2015-05-29 2018-08-30 フォエスタルピネ スタール ゲーエムベーハー Uniform non-contact temperature control method and apparatus for non-endless surface to be temperature controlled
JP2018532877A (en) * 2015-05-29 2018-11-08 フォエスタルピネ スタール ゲーエムベーハー Method and apparatus for uniform non-contact cooling of high temperature non-endless surfaces
JP7028514B2 (en) 2015-05-29 2022-03-02 フォエスタルピネ スタール ゲーエムベーハー Non-contact cooling method for steel sheet and its equipment
WO2019097711A1 (en) * 2017-11-20 2019-05-23 Primetals Technologies Japan株式会社 Cooling device for metal plates and continuous heat treatment equipment for metal plates
JP7364619B2 (en) 2021-05-14 2023-10-18 中外炉工業株式会社 metal strip heat treatment furnace

Also Published As

Publication number Publication date
EP0911418A1 (en) 1999-04-28
KR100293139B1 (en) 2001-06-15
TW404982B (en) 2000-09-11
CN1083896C (en) 2002-05-01
EP0911418A4 (en) 2004-03-24
DE69833424D1 (en) 2006-04-20
KR20000011032A (en) 2000-02-25
EP0911418B1 (en) 2006-02-08
CN1219206A (en) 1999-06-09
DE69833424T2 (en) 2006-10-26
BR9804782A (en) 1999-08-17

Similar Documents

Publication Publication Date Title
WO1998041661A1 (en) Steel band heat-treating apparatus by gas jet stream
JP4115390B2 (en) Heat transfer device
JPS607199B2 (en) Method and device for cleaning heat exchanger plates of rotary regenerative heat exchanger
EP2495343B1 (en) Gas jet cooling device for continuous annealing furnace
EP0182050A2 (en) Strip cooling apparatus for continuous annealing furnace
JPS6192719A (en) Cooling system for rolling mill
US5697169A (en) Apparatus for cooling strip and associated method
JP5600395B2 (en) Food conveying cooling method and apparatus
JP2006307244A (en) Sealing unit and sealing method for cooling process in continuous heat treatment facility for steel strip
JP4290430B2 (en) Rapid cooling device for steel strip in continuous annealing equipment
JPS6154090B2 (en)
JPH09165616A (en) Apparatus for heat-treating metallic annealing material
JP4331982B2 (en) Steel strip cooling device
JP4713791B2 (en) Drying equipment
JPH105844A (en) Method and device for cooling rolled heated shape, and cooling medium
JPH1171618A (en) Cooling device for rolled product
JP4838700B2 (en) Heat treatment apparatus and heat treatment method
JP4340090B2 (en) Steel strip cooling device
JP2000119757A (en) Method for cooling steel strip in continuous annealing
JP4537875B2 (en) Steel strip cooling device
JPH10192951A (en) Method and device for cooling high temp. steel plate
JPH1046262A (en) Cooling device
JP2543612Y2 (en) Steel plate cooling system
JP2007321204A (en) Heat-treatment facility for which heating and cooling are used in combination
JP3626614B2 (en) Gas jet heat treatment equipment for steel strip

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 98800275.2

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1998907225

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980709182

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1998907225

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980709182

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1019980709182

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998907225

Country of ref document: EP