WO1998041492A1 - Verfahren zur herstellung von aromatischen alkoholen - Google Patents

Verfahren zur herstellung von aromatischen alkoholen Download PDF

Info

Publication number
WO1998041492A1
WO1998041492A1 PCT/EP1998/001197 EP9801197W WO9841492A1 WO 1998041492 A1 WO1998041492 A1 WO 1998041492A1 EP 9801197 W EP9801197 W EP 9801197W WO 9841492 A1 WO9841492 A1 WO 9841492A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxides
catalyst
oxide
hydrogen
phenylacetic acid
Prior art date
Application number
PCT/EP1998/001197
Other languages
English (en)
French (fr)
Inventor
Rainer Roesky
Holger Borchert
Uwe Dingerdissen
Original Assignee
Aventis Research & Technologies Gmbh & Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aventis Research & Technologies Gmbh & Co. Kg filed Critical Aventis Research & Technologies Gmbh & Co. Kg
Publication of WO1998041492A1 publication Critical patent/WO1998041492A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/132Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group
    • C07C29/136Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH
    • C07C29/147Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof
    • C07C29/149Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of an oxygen containing functional group of >C=O containing groups, e.g. —COOH of carboxylic acids or derivatives thereof with hydrogen or hydrogen-containing gases

Definitions

  • the present invention relates to a process for the preparation of aromatic alcohols in the presence of oxide catalysts, in particular metal oxide catalysts.
  • Phenylethanols are important chemical intermediates for the production of medicaments, for the production of which various processes are described in the prior art. These processes have in common that an appropriate ester is reduced to alcohol in solution.
  • DE-A-3 332 505 discloses the use of NaBH 4 as a reducing agent, according to Acta Chem. Scand. 21 (1967) 53 is coming too
  • LiAlH 4 in question Diethylene glycol or tetrahydrofuran, synth. Commun. 18 (1988) 1765 also discloses the use of water or water-dioxane mixtures as solvents.
  • Org. React. 1954, 8, 1-27 discloses a process for the hydrogenation of carboxylic acid esters over a copper chromite catalyst in the gas phase. However, the reaction is carried out batchwise in an autoclave.
  • the object was therefore to find a process for the preparation of phenylethanols which avoids the disadvantages of the liquid phase reaction or discontinuous gas phase reaction known from the prior art.
  • the use of expensive chrome compounds such as Surprisingly, it was found that esters of phenylacetic acid can be converted into the corresponding phenylethanols using hydrogen over certain oxide catalysts. This reaction can be carried out continuously in good yields, and the oxide catalysts used are easier and cheaper to produce than copper chromite catalysts.
  • the invention relates to a process for the selective continuous production of a phenylethanol of the formula (1)
  • radicals R and R 1 in the formulas (1) and (2) being identical or different, and H, OH, F, Cl, Br, I, (C r bis C 20 ) alkyl, (C 6 to C 14 ) aryl, (C r to C 10 ) alkoxy, (C 2 to C 10 ) alkenyl, (C 7 to C 20 ) arylalkyl, ( C 7 to C 20 alkylaryl, (C 6 to C 10 ) aryloxy,
  • R represents a (C r to C 16 ) alkyl or (C r to C 10 ) alkoxy group and R 1 represents a (C, - to C 16 ) alkyl group.
  • R is preferably in the para position.
  • phenylethanols of the formula (1) are phenylethanol, hydroxyphenylethanol, methoxypheylethanol, butoxyphenylethanol, methylphenylethanol and propylphenylethanol.
  • the phenylacetic acid esters used as starting materials are products that are manufactured on an industrial scale.
  • catalysts Solid oxides of elements from groups la, IIIa, lilac, IVa, Va, Via, Ib, llb, IIIb, IVb, Vb, Vib, Vllb and Vlllb of the periodic table of the elements, or oxides of elements of the group of the lanthanides, are preferred as catalysts .
  • Preferred catalysts are oxides of the following elements or mixtures thereof: cadmium, silver, nickel, cobalt, copper, iron, manganese, molybdenum, tantalum,
  • the oxides of the metals are particularly preferred.
  • Oxides of cadmium, silver, nickel, cobalt, copper, iron, manganese, molybdenum, tungsten, vanadium, zinc, tin, antimony, aluminum, zirconium or an element of the lanthanides, or mixtures thereof, are especially used as catalysts.
  • the oxides of copper, zinc, aluminum and zirconium and mixtures thereof are particularly preferred.
  • Particularly preferred mixtures are those of the oxides of Al-Zn, Sn-Zn, Cu-Zn, Cu-Zr, Cu-Al, Cu-Sn-Zn, Sn-Al-Zn, V-Cu-Zn, W-Cu Zn, Fe-Al-Zn, Co-Al-Zn, Cd-Cu-Zn, V-Al-Zn and W-Al-Zn.
  • the catalyst used according to the invention can be prepared by impregnation on the support and the shaped body or by co-precipitation and subsequent drying and calcination. Another possibility is the direct calcination of suitable metal compounds, for example nitrates, acetates, carbonates or other salts and complexes of the above-mentioned elements.
  • the catalyst used according to the invention can contain an inorganic or organic support material. The following materials are preferably used as carrier materials: aluminum oxides, silicon dioxide, aluminum silicates, titanium dioxide, zirconium dioxide, thorium dioxide, lanthanum oxide, magnesium oxide, calcium oxide, barium oxide, tin oxide, cerium dioxide, zinc oxide, boron oxide, boron nitride,
  • Boron carbide boron phosphate, zirconium phosphate, silicon nitride or silicon carbide or polypyridines or polyacrylates.
  • a solution of compounds of the above elements on a carrier which is preferably inorganic and can consist, for example, of SiO 2 , SiC, Al 2 O 3 , Al (OH) 3 , ZrO 2 , aluminosilicates, SiN or TiO 2 , be applied.
  • Compounds of the above elements suitable for impregnation are, for example, their halides, nitrates, sulfates, oxalates, carboxylates and alkoxides.
  • the impregnated supports are then dried at 100 to 170 ° C., preferably at 120 to 150 ° C., and calcined at 400-1000 ° C., preferably at 500 to 800 ° C.
  • the catalysts prepared in this way can be further processed into pellets, tablets or extrudates by conventional methods before or after the calcination.
  • suitable compounds of the above-mentioned catalytically active elements can be precipitated as hydroxides at suitable pH values.
  • the hydroxides formed are filtered off and washed with a suitable solvent.
  • the drying is carried out at 100 to 170 ° C, preferably at 120 to 150 ° C, optionally with the application of vacuum, the calcination at 400 to 1000 ° C, preferably at 500 to 900 ° C.
  • the catalyst prepared in this way is in the form of granules and, after comminution to the desired particle size, can be used directly in the reaction.
  • the catalyst Before being used in the process according to the invention, the catalyst can be preformed at a temperature of 100 to 800 ° C. using a suitable reducing agent.
  • the process according to the invention can be carried out in a continuous or batchwise manner in a suitable reactor.
  • the process according to the invention can be carried out using molecular hydrogen, which can also be prepared in situ. It is also possible to dilute the hydrogen with an inert gas such as nitrogen or argon.
  • the ester of phenylacetic acid used according to the invention can be used as a liquid or as a solution in a suitable solvent, such as benzene, xylene, toluene or cyclohexane. The ester is preferably fed in directly and then brought into contact with the catalyst used according to the invention in the gas phase.
  • the molar ratio of the ester to hydrogen is preferably 1: 1 to 1: 500, particularly preferably 1: 2 to 1:50.
  • the feed rate of the ester is preferably 0.01 to 20 g / ml Kata ⁇ ysator h (LHSV: liquid hourly space velocity), particularly preferably from 0.2 to 10 g / ml Kata ⁇ ysator h.
  • the feed rate of the hydrogen is preferably at
  • GHSV gaseous hourly space velocity
  • phenylethanols of the formula (1) can be prepared with a selectivity of 80 to 100%, in particular 85 to 99%.
  • the sales for esters of phenylacetic acid are usually in the range from 60 to 80%, in particular in the range from 65 to 77%.
  • Examples 5 to 8 In a tubular reactor, 4-hydroxyphenylethyl ester was reacted with hydrogen to give hydroxyphenylethanol in the presence of the catalyst from Examples 1 to 4.
  • the temperature was 200 ° C and the hydrogen pressure 90 bar.
  • the bed volume of the catalyst used was 20 ml.
  • the GHSV gaseous hourly space velocity
  • the LHSV liquid hourly space velocity
  • the reaction product was condensed with a condenser and gas chromatographed analyzed. The conversion and the selectivity to hydroxyphenylethanol are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur selektiven Herstellung eines Phenylethanols der Formel (1) durch Umsetzung eines Phenylessigsäureesters der Formel (2) mit Wasserstoff an einem festen Katalysator, enthaltend eines oder mehrere Oxide, wobei die Reste R und R1 in den Formeln (1) und (2) gleich oder verschieden sind, und H, OH, F, Cl, Br, I (C¿1?- bis C20)-Alkyl, (C6- bis C14-Aryl, (C1- bis C10)-Alkoxy, (C2- bis C10)-Alkenyl, (C7- bis C20)-Arylalkyl, (C7- bis C20)-Alkylaryl, (C6- bis C10)-Aryloxy, (C1- bis C10)-Fluoralkyl, (C6- bis C10) Halogenaryl oder (C2- bis C10) Alkinyl bedeuten.

Description

Beschreibung
Verfahren zur Herstellung von aromatischen Alkoholen
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von aromatischen Alkoholen in Gegenwart von Oxidkatalysatoren, insbesondere Metalloxidkatalysatoren.
Phenylethanole sind wichtige chemische Zwischenprodukte für die Herstellung von Arzneimitteln, für deren Herstellung im Stand der Technik verschiedene Verfahren beschrieben sind. Diesen Verfahren ist gemeinsam, daß ein entsprechender Ester in Lösung zum Alkohol reduziert wird. DE-A-3 332 505 offenbart die Verwendung von NaBH4 als Reduktionsmittel, nach Acta Chem. Scand. 21 (1967) 53 kommt auch
LiAlH4 dafür in Frage. Als Lösungsmittel dienen Diethylenglykol oder Tetrahydrofuran, Synth. Commun. 18 (1988) 1765 offenbart auch die Verwendung von Wasser oder Wasser-Dioxan-Gemischen als Lösungsmittel.
Diese Verfahren des Standes der Technik haben den Nachteil, daß sie in der Flüssigphase durchgeführt werden und damit aufwendige Trennprozesse zur Isolierung des Produktes notwendig machen. Außerdem werden teure Reagenzien wie NaBH4 oder LiAIH4 im Überschuß verwendet, was zu einem erheblichen Abfallaufkommen führt.
Org. React. 1954, 8, 1-27 offenbart ein Verfahren zur Hydrierung von Carbonsäureestern an einem Kupferchromitkatalysator in der Gasphase. Die Reaktion wird aber diskontinuierlich in einem Autoklaven durchgeführt.
Es bestand somit die Aufgabe, ein Verfahren zur Herstellung von Phenylethanolen zu finden, das die aus dem Stand der Technik bekannten Nachteile der Flüssigphasenreaktion oder diskontinuierlichen Gasphasenreaktion vermeidet. Außerdem sollte die Verwendung der teuren Chromverbindungen wie beispielsweise Überraschenderweise wurde gefunden, daß Ester der Phenylessigsäure mit Wasserstoff an bestimmten Oxidkatalysatoren in die entsprechenden Phenylethanole überführt werden können. Diese Reaktion ist mit guten Ausbeuten kontinuierlich durchführbar, und die verwendeten Oxidkatalysatoren sind einfacher und billiger herstellbar als Kupferchromitkatalysatoren.
Gegenstand der Erfindung ist ein Verfahren zur selektiven kontinuierlichen Herstellung eines Phenylethanols der Formel (1)
Figure imgf000004_0001
durch Umsetzung eines Phenylessigsäureesters der Formel (2) mit Wasserstoff
Figure imgf000004_0002
an einem festen Katalysator, enthaltend eines oder mehrere Oxide, wobei die Reste R und R1 in den Formeln (1) und (2) gleich oder verschieden sind, und H, OH, F, Cl, Br, I, (Cr bis C20)-Alkyl, (C6- bis C14)-Aryl, (Cr bis C10)-Alkoxy, (C2- bis C10)-Alkenyl, (C7- bis C20)-Arylalkyl, (C7- bis C20)-Alkylaryl, (C6- bis C10)-Aryloxy,
(Cr bis C10)-Fluoralkyl, (C6- bis C10)-Halogenaryl oder (C2- bis C10)-Alkinyl bedeuten, und R in ortho-, meta- oder para-Stellung steht.
In Formel (1) ist bevorzugt, daß R für eine (Cr bis C16)-Alkyl- oder (Cr bis C10)- Alkoxygruppe und R1 für eine (C,- bis C16)-Alkylgruppe steht. Bevorzugt steht R in para-Stellung. Beispiele für Phenylethanole der Formel (1) sind Phenylethanol, Hydroxyphenylethanol, Methoxypheylethanol, Butoxyphenylethanol, Methylphenylethanol und Propylphenylethanol. Die als Ausgangsstoffe dienenden Phenylessigsäureester sind Produkte, die großtechnisch hergestellt werden.
Als Katalysator bevorzugt sind feste Oxide von Elementen der Gruppen la, lla, lila, IVa, Va, Via, Ib, llb, lllb, IVb, Vb, Vib, Vllb und Vlllb des Periodensystems der Elemente, oder Oxide der Elemente der Gruppe der Lanthaniden. Bevorzugte Katalysatoren sind Oxide der folgenden Elemente oder deren Mischungen: Cadmium, Silber, Nickel, Kobalt, Kupfer, Eisen, Mangan, Molybdän, Tantal,
Scandium, Wolfram, Vanadium, Niob, Hafnium, Yttrium, Bor, Indium, Zinn, Blei, Zink Wismut, Selen, Gallium, Germanium, Antimon, Arsen, Tellur oder ein Element der Lanthanide. Unter diesen Oxiden sind die Oxide der Metalle besonders bevorzugt.
Speziell werden Oxide von Cadmium, Silber, Nickel, Cobalt, Kupfer, Eisen, Mangan, Molybdän, Wolfram, Vanadium, Zink, Zinn, Antimon, Aluminium, Zirkon oder einem Element der Lanthanide, oder deren Mischungen als Katalysatoren verwendet.
Besonders bevorzugt sind die Oxide von Kupfer, Zink, Aluminium und Zirkonium, sowie deren Mischungen.
Besonders bevorzugte Mischungen sind diejenigen der Oxide von Al-Zn, Sn-Zn, Cu-Zn, Cu-Zr, Cu-Al, Cu-Sn-Zn, Sn-Al-Zn, V-Cu-Zn, W-Cu-Zn, Fe-Al-Zn, Co-Al-Zn, Cd-Cu-Zn, V-Al-Zn und W-Al-Zn.
Der erfindungsgemäß eingesetzte Katalysator kann durch Imprägnierung auf Träger und Formkörper oder durch Cofällung sowie anschließender Trocknung und Kalzination hergestellt werden. Eine weitere Möglichkeit besteht in der direkten Kalzination geeigneter Metallverbindungen, z.B. von Nitraten, Acetaten, Carbonaten oder anderen Salzen und Komplexen oben genannter Elemente. Der erfindungsgemäß verwendete Katalysator kann ein anorganisches oder organisches Trägermaterial enthalten. Als Trägermaterialien werden vorzugsweise folgende Materialien verwendet: Aluminiumoxide, Siliciumdioxid, Alumosilikate, Titandioxid, Zirkoniumdioxid, Thoriumdioxid, Lanthanoxid, Magnesiumoxid, Calciumoxid, Bariumoxid, Zinnoxid, Cerdioxid, Zinkoxid, Boroxid, Bornitrid,
Borcarbid, Borphosphat, Zirkoniumphosphat, Siliziumnitrid oder Siliziumcarbid oder Polypyridine oder Polyacrylate.
Zur Imprägnierung auf Träger kann eine Lösung von Verbindungen obiger Elemente auf einen Träger, der bevorzugt anorganisch ist und beispielsweise aus Si02, SiC, Al203, AI(OH)3, ZrO2, Alumosilikaten, SiN oder TiO2 bestehen kann, aufgebracht werden. Zur Imprägnierung geeignete Verbindungen obiger Elemente sind z.B. deren Halogenide, Nitrate, Sulfate, Oxalate, Carboxylate und Alkoxide. Die imprägnierten Träger werden anschließend bei 100 bis 170°C, bevorzugt bei 120 bis 150°C, getrocknet und bei 400-1000°C, bevorzugt bei 500 bis 800°C kalziniert. Die so hergestellten Katalysatoren können nach üblichen Verfahren vor oder nach dem Kalzinieren zu Pellets, Tabletten oder Extrudaten weiterverarbeitet werden.
Zur Cofällung können geeignete Verbindungen der oben genannten katalytisch aktiven Elemente bei geeigneten pH-Werten als Hydroxide gefällt werden. Nach der Fällung werden die entstandenen Hydroxide abfiltriert und mit einem geeigneten Lösungsmittel gewaschen. Die Trocknung erfolgt bei 100 bis 170°C, bevorzugt bei 120 bis 150 °C, gegebenenfalls unter Anlegung von Vakuum, die Kalzination bei 400 bis 1000°C, bevorzugt bei 500 bis 900°C. Der so hergestellte Katalysator liegt als Granulat vor und kann nach Zerkleinerung auf die gewünschte Teilchengröße direkt in der Reaktion eingesetzt werden.
Vor dem Einsetzen in dem erfindungsgemäßen Verfahren, kann der Katalysator bei Temperaturen von 100 bis 800°C mit einem geeigneten Reduktionsmittel präformiert werden. Das erfindungsgemäße Verfahren kann in kontinuierlicher oder diskontinuierlicher Fahrweise in einem geeigneten Reaktor durchgeführt werden. Vorzugsweise werden bei dem erfindungsgemäßen Verfahren Verbindungen der Formel (2) bei einer Temperatur im Bereich von vorzugsweise 50 bis 400°C, insbesondere bei 140 bis 320°C, und einem Druck im Bereich von vorzugsweise 1 bis 150 bar, insbesondere bei 70 bis 120 bar, in Gegenwart eines Katalysators enthaltend obige Oxid- Verbindungen zu Verbindungen der Formel (1) umgesetzt.
Das erfindungsgemäße Verfahren kann mit molekularem Wasserstoff durchgeführt werden, der auch in situ hergestellt werden kann. Es ist auch möglich, den Wasserstoff mit einem Inertgas wie Stickstoff oder Argon zu verdünnen. Der erfindungsgemäß eingesetzte Ester der Phenylessigsäure kann als Flüssigkeit oder als Lösung in einem geeigneten Lösungsmittel, wie Benzol, Xylol, Toluol oder Cyclohexan eingesetzt werden. Bevorzugt wird der Ester direkt zugeführt und anschließend in der Gasphase mit dem erfindungsgemäß eingesetzten Katalysator in Kontakt gebracht. Das molare Verhältnis des Esters zu Wasserstoff liegt bevorzugt bei 1:1 bis 1:500, besonders bevorzugt bei 1:2 bis 1:50. Die Zufuhrgeschwindigkeit für den Ester liegt bevorzugt bei 0,01 bis 20 g/mlKataιysatorh (LHSV: liquid hourly space velocity), besonders bevorzugt bei 0,2 bis 10 g/mlKataιysatorh. Die Zufuhrgeschwindigkeit des Wasserstoffs liegt bevorzugt bei
0 bis 50000 h 1 (GHSV: gaseous hourly space velocity), besonders bevorzugt bei 0 bis 1000 h"1.
Mit Hilfe des beschriebenen Verfahrens können Phenylethanole der Formel (1) mit einer Selektivität von 80 bis 100%, insbesondere von 85 bis 99 % hergestellt werden. Die Umsätze für Ester der Phenylessigsäure liegen hierbei üblicherweise im Bereich von 60 bis 80 %, insbesondere im Bereich von 65 bis 77%.
Die Erfindung wird anhand der nachfolgenden Beispiele erläutert.
Beispiel 1 : 139,0g Cu(N03)2 x 3 H20 werden in 1 ,8 1 Wasser aufgelöst und auf 5°C abgekühlt. Der pH-Wert wird mit 25%iger Ammoniaklösung auf pH =9 eingestellt. Der Niederschlag wird abfiltriert und mit Wasser gewaschen. Die Trocknung erfolgt bei 130°C und die Kalzination bei 600°C. Nach Zerkleinerung auf Teilchengrößen von 10 bis 20 mesh wird der Katalysator bei 450°C im Wasserstoffstrom präformiert.
Beispiel 2:
139,0g Zn(NO3)2 x 6 H2O und 55,0 g AI(NO3)3 x 9 H2O werden in 3,8 I Wasser aufgelöst und auf 5CC abgekühlt. Der pH-Wert wird mit 25%iger Ammoniaklösung auf pH =9 eingestellt. Der Niederschlag wird abfiltriert und mit Wasser gewaschen. Die Trocknung erfolgt bei 130°C und die Kalzination bei 600°C. Nach Zerkleinerung auf Teilchengrößen von 10 bis 20 mesh wird der Katalysator bei 450°C im Wasserstoffstrom präformiert.
Beispiel 3:
Man löse 23,56 g Cu(NO3)2.3H2O in 54,32 ml H20. Anschließend werden 100g ZnO Träger (BASF) abgewogen und der Träger wird in einen Kolben gegeben. Die Lösung wird zügig zugegeben und der Kolben verschlossen. Während einer halben Stunde wird mehrmals geschüttelt. Sobald die Lösung vollständig aufgesaugt ist und die Körper nicht mehr kleben wird der Kolben geöffnet und die Körper bei 120°C während 16 Stunden getrocknet. Anschließend wird bei 600°C kalziniert.
Beispiel 4:
Man ;öse 77,5 g Cu(N03;2.3H2O in 78,52 ml H20. Anschließend werden 100g ZrO Träger (Norton) abgewogen und der Träger wird in einen Kolben gegeben. Die
Lösung wird zügig zugegeben und der Kolben verschlossen. Während einer halben Stunde wird mehrmals geschüttelt. Sobald die Lösung vollständig aufgesaugt ist und die Körper nicht mehr kleben wird der Kolben geöffnet und die Körper bei 120°C während 16 Stunden getrocknet. Anschließend wird bei 600°C kalziniert.
Beispiele 5 bis 8: In einem Rohrreaktor wurde 4-Hydroxyphenylethylester in Gegenwart des Katalysators aus den Beispielen 1 bis 4 mit Wasserstoff zu Hydroxyphenylethanol umgesetzt. Die Temperatur betrug 200°C und der Wasserstoffdruck 90 bar. Das Schüttvolumen des eingesetzten Katalysators betrug 20 ml. Die GHSV (gaseous hourly space velocity) betrug 0,3 /h und die LHSV (liquid hourly space velocity) betrug 3,25 g/mlKath Das Reaktionsprodukt wurde mit einem Kühler kondensiert und gaschromatographisch analysiert. Der Umsatz und die Selektivität zu Hydroxyphenylethanol sind aus Tabelle 1 zu entnehmen.
Tabelle 1
Figure imgf000009_0001

Claims

Patentansprüche
1. Verfahren zur selektiven kontinuierlichen Herstellung eines Phenylethanols der Formel (1)
Figure imgf000010_0001
durch Umsetzung eines Phenylessigsäureesters der Formel (2)
Figure imgf000010_0002
mit Wasserstoff an einem festen Katalysator, enthaltend eines oder mehrere Oxide, wobei die Reste R und R1 in den Formeln (1) und (2) gleich oder verschieden sind, und H, OH, F, Cl, Br, I, (Cr bis C20)-Alkyl, (C6- bis C14)-Aryl, (Cr bis C10)-Alkoxy, (C2- bis C10)-Alkenyl, (C7- bis C20)-Arylalkyl, (C7- bis C20)-Alkylaryl, (C6- bis C10)- Aryloxy, (Cr bis C10)-Fluoralkyl, (C6- bis C10)-Halogenaryl oder (C2- bis C10)-Alkinyl bedeuten, und R in ortho-, meta- oder para-Stellung steht.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß R (Cr bis C16)- Alkyl oder (Cr bis C10)-Alkoxy und R1 (Cr bis C16)-Alkyl bedeutet.
3. Verfahren nach Anspruch 1 und/oder 2, dadurch gekennzeichnet, daß das Phenylethanol nach Formel (1) Phenylethanol, Hydroxyphenylethanol, Methoxyphenylethanol, Butoxyphenylethanol, Methylphenylethanol oder Propylphenylethanol ist.
4. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß als Katalysator feste Oxide von Elementen der Gruppen la, lla, lila, IVa, Va, Via, Ib, Mb, lllb, IVb, Vb, Vib, Vllb und Vlllb des Periodensystems der Elemente oder Oxide der Elemente der Gruppe der Lanthaniden verwendet werden.
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß als Katalysatoren Oxide der Elemente Cadmium, Kupfer, Silber, Nickel, Cobalt, Eisen, Mangan, Molybdän, Wolfram, Vanadium, Zink, Zinn, Antimon, Aluminium, Zirkon oder einem Element der Lanthanide, oder deren Mischungen verwendet werden.
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß Metalloxide als Katalysatoren verwendet werden.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Katalysator durch Imprägnierung auf Träger und Formkörper oder durch Cofällung sowie anschließender Trocknung und Kalzination hergestellt wird.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Katalysator auf einem anorganischen oder organischen Trägermaterial aufgebracht ist, vorzugsweise auf Aluminiumoxide, Siliciumdioxid, Alumosilikate, Titandioxid, Zirkoniumdioxid, Thoriumdioxid, Lanthanoxid,
Magnesiumoxid, Calciumoxid, Bariumoxid, Zinnoxid, Cerdioxid, Zinkoxid, Boroxid, Bornitrid, Borcarbid, Borphosphat, Zirkoniumphosphat, Siliziumnitrid, Siliziumcarbid Polypyridine oder Polyacrylat.
9. Verfahren nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß es bei einer Temperatur im Bereich von 50 bis 400°C, insbesondere bei 140 bis 320°C durchgeführt wird.
10. Verfahren nach einem oder mehreren der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß es bei einem Druck im Bereich von 1 bis 150 bar, insbesondere bei 70 bis 120 bar durchgeführt wird.
11. Verfahren nach einem oder mehreren der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß es mit einem wasserstoffhaltigen Gasgemisch, insbesondere mit reinem Wasserstoff durchgeführt wird.
12. Verfahren nach einem oder mehreren der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß der Ester der Phenylessigsäure als Flüssigkeit oder als Lösung in einem geeigneten Lösungsmittel, insbesondere Benzol, Xylol, Toluol oder Cyclohexan in die Reaktion gegeben wird.
13. Verfahren nach einem oder mehreren der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß das molare Verhältnis von Ester der Phenylessigsäure zu Wasserstoff 1 :1 bis 1 :500, bevorzugt 1 :2 bis 1 :50 beträgt.
14. Verfahren nach einem oder mehreren der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Zufuhrgeschwindigkeit für den Ester der Phenylessigsäure 0,01 bis 20 g/(mlKatalysatorh), bevorzugt 0,2 bis 10 g/(mlKatalysatorh), und die Zufuhrgeschwindigkeit des Wasserstoffs 0 bis 50000 h"\ bevorzugt 0 bis 1000 h"1 beträgt.
15. Verfahren nach einem oder mehreren der Ansprüche 1 bis 14, dadurch gekennzeichnet, daß die Selektivität für die Herstellung der Phenylethanole 80 bis 100%, insbesondere 85 bis 99 %, und der Umsatz der Ester der Phenylessigsäure 60 bis 80 %, insbesondere 65 bis 77% beträgt.
PCT/EP1998/001197 1997-03-19 1998-03-04 Verfahren zur herstellung von aromatischen alkoholen WO1998041492A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1997111404 DE19711404A1 (de) 1997-03-19 1997-03-19 Verfahren zur Herstellung von aromatischen Alkoholen
DE19711404.0 1997-03-19

Publications (1)

Publication Number Publication Date
WO1998041492A1 true WO1998041492A1 (de) 1998-09-24

Family

ID=7823873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/001197 WO1998041492A1 (de) 1997-03-19 1998-03-04 Verfahren zur herstellung von aromatischen alkoholen

Country Status (2)

Country Link
DE (1) DE19711404A1 (de)
WO (1) WO1998041492A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103232328B (zh) * 2013-05-17 2015-06-10 厦门大学 一种对羟基苯乙醇的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003854A1 (en) * 1981-04-29 1982-11-11 Bradley Michael William Process fo enolysis of carboxylic acid esters

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3332505A1 (de) * 1983-09-09 1985-03-28 Henkel Kgaa Sebosuppressive kosmetische mittel, enthaltend alkoxyarylalkanole

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1982003854A1 (en) * 1981-04-29 1982-11-11 Bradley Michael William Process fo enolysis of carboxylic acid esters

Also Published As

Publication number Publication date
DE19711404A1 (de) 1998-09-24

Similar Documents

Publication Publication Date Title
EP0700890B1 (de) Verfahren zur Herstellung von Aldehyden durch katalytische Gasphasenhydrierung von Carbonsäuren oder ihre Derivate mit Hilfe eines Zinnkatalysators
EP2417087B1 (de) Verfahren zur herstellung von 1,6-hexandiol durch hydrierung von oligo- und polyestern
EP1613576B2 (de) Verfahren zur hydrierung von carbonylverbindungen
EP2582669B1 (de) Verfahren zur herstellung eines zyklischen tertiären methylamins
EP2501667B1 (de) Verfahren zur herstellung eines geträgerten hydrierkatalysators mit erhöhter hydrieraktivität
EP1768781A1 (de) Katalysatorformkörper und verfahren zur hydrierung von carbonylverbindungen
EP2417088B1 (de) Verfahren zur herstellung von 1,6-hexandiol
EP0044444A1 (de) Verwendung von Hydrierkatalysatoren für die Herstellung von Propandiolen und Verfahren zur Herstellung von Propandiolen mit solchen Katalysatoren
DE102005032726A1 (de) Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen
EP2632909B1 (de) Verfahren zur herstellung von 1,4-bishydroxyethyl-piperazin
US5347056A (en) Process for producing unsaturated alcohols
DE102004033554A1 (de) Katalysator und Verfahren zur Hydrierung von Carbonylverbindungen
WO2002085825A2 (de) Verfahren zur hydrierung von carbonylverbindungen
WO1998041492A1 (de) Verfahren zur herstellung von aromatischen alkoholen
DE19901135A1 (de) Verfahren zur Herstellung von N-Ethyl-diisopropylamin
WO2008046790A1 (de) Verfahren zur herstellung von lactonen aus diolen
EP0968159B1 (de) Verfahren zur herstellung von styrolen
DE3149022A1 (de) Verfahren zur ortho-methylierung von phenolverbindungen
EP0763030B1 (de) Verfahren zur herstellung von heterocyclischen aldehyden
WO2003062174A1 (de) Verfahren zur herstellung von toluolderivaten
EP0794165A1 (de) Verfahren zur Herstellung von Indenen
DE19718742A1 (de) Verfahren zur Herstellung von aromatischen Aldehyden durch katalytische Gasphasenhydrierung der Carbonsäuren
WO1996037297A1 (de) Katalysatoren zur selektiven oxidation organischer substrate und verfahren zu deren herstellung
WO2004046073A1 (de) Verfahren zur herstellung von ethern
DE10004654A1 (de) Verfahren zur Herstellung von substituierten Indanolen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998540071

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase