WO1998033004A1 - Behälter zur speicherung von druckgas - Google Patents

Behälter zur speicherung von druckgas Download PDF

Info

Publication number
WO1998033004A1
WO1998033004A1 PCT/DE1998/000272 DE9800272W WO9833004A1 WO 1998033004 A1 WO1998033004 A1 WO 1998033004A1 DE 9800272 W DE9800272 W DE 9800272W WO 9833004 A1 WO9833004 A1 WO 9833004A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
container according
metal foam
wall
gas
Prior art date
Application number
PCT/DE1998/000272
Other languages
English (en)
French (fr)
Inventor
Wolfgang Herdeg
Original Assignee
Mannesmann Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann Ag filed Critical Mannesmann Ag
Priority to AU66088/98A priority Critical patent/AU6608898A/en
Priority to EP98907878A priority patent/EP0956470A1/de
Publication of WO1998033004A1 publication Critical patent/WO1998033004A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/002Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature
    • B22F7/004Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part
    • B22F7/006Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of porous nature comprising at least one non-porous part the porous part being obtained by foaming
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C1/00Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge
    • F17C1/02Pressure vessels, e.g. gas cylinder, gas tank, replaceable cartridge involving reinforcing arrangements
    • F17C1/08Integral reinforcements, e.g. ribs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/01Shape
    • F17C2201/0147Shape complex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/056Small (<1 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/06Vessel construction using filling material in contact with the handled fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0607Coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0617Single wall with one layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0602Wall structures; Special features thereof
    • F17C2203/0612Wall structures
    • F17C2203/0614Single wall
    • F17C2203/0619Single wall with two layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0658Synthetics
    • F17C2203/066Plastics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2209/00Vessel construction, in particular methods of manufacturing
    • F17C2209/23Manufacturing of particular parts or at special locations
    • F17C2209/232Manufacturing of particular parts or at special locations of walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/01Improving mechanical properties or manufacturing
    • F17C2260/018Adapting dimensions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2260/00Purposes of gas storage and gas handling
    • F17C2260/04Reducing risks and environmental impact
    • F17C2260/042Reducing risk of explosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0176Buses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0165Applications for fluid transport or storage on the road
    • F17C2270/0168Applications for fluid transport or storage on the road by vehicles
    • F17C2270/0178Cars
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • Container for storing compressed gas
  • the invention relates to a container for storing compressed gas, which has a gas-tight metallic outer wall which encloses the cavity for receiving the compressed gas and has at least one connection for a gas line for loading and / or unloading the container.
  • Containers for compressed gases are usually made of steel. For strength reasons, either spherical or cylindrical shapes (with spherical end faces) are preferred. As a rule, such containers either have a connection for loading and unloading the compressed gas or a common connection for loading and unloading the compressed gas. In the case of only one
  • the gas carried by the respective motor vehicle must be compressed to a relatively high pressure in order to be able to be accommodated in a reasonable volume.
  • the pressure required is, for example, 150 or 250 bar or even more.
  • This is a significant difference to the gas storage, which should only be suitable for carrying LPG.
  • a battery cylindrically shaped pressurized gas container that pressurized gas bottles. These can be carried on the roof of such a vehicle, for example.
  • Such a design of a compressed gas storage would hardly be practicable for passenger cars, since it would be rejected with great certainty for purely optical reasons by the buyers of such vehicles. It would be desirable if a container for the storage of compressed gas were available, which would not be subject to the usual restrictions with regard to its external shape, but could have a complex shape structure, such as that used in today's conventional fuel tanks
  • the production of metal foam can in principle be carried out in such a way that a metal powder is mixed with a blowing agent (e.g. titanium hydride) and is shaped into a semi-finished product, for example by extrusion or axial hot pressing, which is then further processed into the desired component in a thermal process becomes.
  • a blowing agent e.g. titanium hydride
  • the prepared material mixture is heated to above the solidus temperature of the metal, the blowing agent also being released at the same time and causing foaming.
  • this process in a suitable z. B. takes place made of ceramic or steel closed form can be made similar to metal casting workpieces.
  • the foaming of aluminum tubes with aluminum foam for the production of high-strength lightweight construction elements for aircraft construction is also known.
  • the use of metal foams in connection with the storage of compressed gases has not previously been considered.
  • the object of the invention is therefore to propose a generic container which offers a considerably greater scope for design with regard to its shape and at the same time reduces the safety risk of explosions as a result of accidental damage to the container wall as much as possible.
  • FIGS. 1 and 2 each schematically show two variants for a container according to the invention for storing compressed gas in the form of a sectional view.
  • a compressed gas container according to the invention has a gas-tight metallic outer wall 1, which in the case of FIGS. 1 and 2 is provided with a connection 2 for a gas line for loading and unloading the container and encloses the cavity for receiving the compressed gas in a gas-tight manner.
  • An essential characteristic of the present invention is that there is an open-pore in the cavity of the container
  • Metal foam 3 is located.
  • the metal foam 3 fills the cavity at least for the most part of its volume. This means that in such a case there are partial areas 4 of the volume which are free of metal foam.
  • the entire surface of the cavity is covered with the metal foam 3.
  • Another essential characteristic of the invention is that there is a material connection between the outer wall 1 and the open-pore metal foam 3. This means that there is not just a purely mechanical bond between two layers, as can be found, for example, in a double-walled tube in which one
  • Outer tube was only shrunk onto an inner tube, so that there is a purely frictional connection. In the sense of the invention, it is always a composite material.
  • the entire cavity of the container is preferably filled with metal foam 3, as shown in the variant in FIG. 2.
  • the metallic outer wall 1 and the metal foam 3 expediently consist of a material of the same type or at least a related material. This ensures a good composite. In principle, however, it is also possible to connect different materials to one another in a container according to the invention. In this context, provision can also be made for the composite material to be provided as a soldered connection by switching on a third material layer which is arranged between the metal outer wall 1 and the metal foam 3. Particularly for reasons of strength, it is advantageous to use a steel material, preferably a deep-drawing steel, as the material for the outer wall 1.
  • the entire container can also be formed from a metal foam 3, which is produced as an integral foam.
  • the integral foam has an increasing density in the direction of the outer wall 1. There is a 100% material density in the vicinity of the outer surface, so that a gas-tight outer skin is guaranteed.
  • a corrosion protection coating, preferably a plastic coating, is recommended for the outer surface of the outer wall 1.
  • the container according to the invention should be designed for loads such as are exerted by stored gases which are at a pressure of over 100 bar, in particular over 150 bar and preferably even over 250 bar arise.
  • the pore volume would not be accessible for gas absorption. If one were to produce a pressure vessel, as shown schematically in the outer form in FIGS. 1 and 2, without the foaming according to the invention, and fill it with pressurized gas, the vessel would bulge very quickly, particularly on the flat sides, that is, its shape would be inadmissible change.
  • the open-pore metal foam 3, which is materially connected to the outer wall 1, ensures a highly effective inner support structure which counteracts bulging.
  • a great advantage of the metal foam filling of the cavity of a container according to the invention is that this not only enables a large-area absorption of tensile forces which counter the bulging, but that at the same time the volume to be made available for gas storage is reduced comparatively little and the total weight of the Container is increased comparatively little. It is particularly important that the shape of the pressure vessel according to the invention is subject to almost no restrictions. For example, shapes can be realized, as are already used today in conventional fuel tanks for vehicles. But it could also, for. B. be thought of adapting the pressure vessel to the shape of the floor or the roof of a motor vehicle and thus completely hiding it visually without reducing the space available for accommodating people or luggage.
  • Another advantage of the invention is that the foaming of the cavity of the container, in particular a complete foaming, offers a significant gain in operational safety if the container wall e.g. should be damaged by accident.
  • the pore structure of the metal foam ensures a considerable flow resistance, which prevents a sudden outflow. This significantly reduces the risk of explosion.
  • the supportive effect of the metal foam connected to the outer wall prevents crack propagation in the outer wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

Die Erfindung betrifft einen Behälter zur Speicherung von Druckgas, mit einer gasdichten metallischen Außenwand (1), die den zur Speicherung des Druckgases vorgesehenen Hohlraum umschließt und mindestens einen Anschluß (2) für eine Gasleitung zum Be- und/oder Entladen des Behälters aufweist. Es wird vorgeschlagen, daß sich im Hohlraum ein offenporiger Metallschaum (3) befindet, der mit der Außenwand (1) stofflich verbunden ist.

Description

Behälter zur Speicherung von Druckgas
Beschreibung
Die Erfindung betrifft einen Behälter zur Speicherung von Druckgas, der eine gasdichte metallische Außenwand besitzt, die den Hohlraum zur Aufnahme des Druckgases umschließt und mindestens einen Anschluß für eine Gasleitung zum Be- und/oder Entladen des Behälters aufweist.
Explosive Gase werden in speziellen Behältern transportiert, die zum einen eine Verflüchtigung des gespeicherten Gases verhindern, also dicht sein müssen, die aber zum anderen auch einen ausreichenden Schutz vor Beschädigungen bieten müssen, damit das Gas möglichst nicht schlagartig freigesetzt werden kann, wenn der Druckbehälter beispielsweise in ein Unfallgeschehen einbezogen wird. Üblicherweise bestehen Behälter für Druckgase aus Stahl. Aus Festigkeitsgründen werden dabei entweder Kugelformen oder Zylinderformen (mit kugelig ausgebildeten Stirnflächen) bevorzugt. Im Regelfall weisen solche Behälter entweder jeweils einen Anschluß zum Beladen und zum Entladen des Druckgases oder aber einen gemeinsamen Anschluß für das Be- und Entladen des Druckgases auf. Im Falle nur eines einzigen
Anschlusses spricht man auch von Druckgasflaschen.
Um das Gewicht des Behälters möglichst gering zu halten, wird angestrebt, die Wanddicke des Behälters so dünn wie möglich zu machen. Im Hinblick auf die Dichtigkeit eines solchen Behälters stellt dies kein Problem dar. Allerdings stößt man sehr schnell an die Grenzen des Zulässigen im Hinblick auf die erforderliche Festigkeit der Behälterwand. In diesem Zusammenhang ist es bekannt, extrem dünnwandige Druckgasbehälter mit einer äußeren Armierung durch Umwickeln mit hochfestem Fasermaterial oder Kunstfasergeweben zu versehen. Bei einer zylindrischen oder kugelförmigen Behälterform ist eine solche Wickelprozedur relativ einfach durchzuführen. Das Verfahren stößt jedoch auf erhebliche anwendungstechnische Problem, sobald Behälterformen gewählt werden, die von dieser idealen Kugel- oder Zylinderform abweichen.
In der Fahrzeugtechnik sind seit vielen Jahren Bestrebungen im Gange, anstelle der heute im Regelfall eingesetzten flüssigen Kraftstoffe wie Benzin und Dieselkraftstoff gasförmige Treibstoffe zu verwenden. In diesem Zusammenhang ist beispielsweise zu verweisen auf Kraftfahrzeuge, die mit Wasserstoff oder aber auch mit Erdgas betrieben werden und aufgrund dieser speziellen Treibstoffe ein vergleichsweise schadstoffarmes Abgas aufweisen. Dies ist insbesondere in städtischen
Ballungszonen im Innenstadtbereich ein wichtiger Umstand. Daher werden insbesondere kommunale Nutzkraftwagen sowie Omnibusse für den innerstädtischen Verkehr mit entsprechenden Verbrennungsmotoren ausgerüstet.
Um die Reichweite von gasbetriebenen Kraftfahrzeugen in einer ausreichenden
Größenordnung zu gewährleisten, muß das vom jeweiligen Kraftfahrzeug mitgeführte Gas auf einen relativ hohen Druck verdichtet werden, um in einem zumutbaren Volumen untergebracht werden zu können. Der erforderliche Druck beträgt beispielsweise 150 oder 250 bar oder sogar noch darüber. Dies ist ein wesentlicher Unterschied zu den Gasspeichern, die lediglich für die Mitnahme von Flüssiggas geeignet sein sollen. Bei 'erdgasbetriebenen Omnibussen verwendet man üblicherweise eine Batterie zylindrisch geformter Druckgasbehälter, also Druckgasflaschen. Diese können beispielsweise auf dem Dach eines solchen Fahrzeugs mitgeführt werden. Für Personenkraftwagen wäre eine solche Ausbildung eines Druckgasspeichers kaum praktikabel, da sie mit großer Sicherheit aus rein optischen Gründen von den Käufern derartiger Fahrzeuge abgelehnt werden würde. Wünschenswert wäre es, wenn ein Behälter zur Speicherung von Druckgas zur Verfügung stehen würde, der im Hinblick auf seine äußere Formgebung nicht den bisher üblichen Beschränkungen unterliegen würde, sondern eine komplexe Formstruktur aufweisen könnte, wie sie etwa bei heute üblichen Kraftstofftanks in der
Fahrzeugtechnik vorliegen.
Aus der Veröffentlichung „Metallschaum - ein Werkstoff mit Perspektiven" in Aluminium 70 (1994) Nr. 3 / 4 sowie aus der Veröffentlichung „Möglichkeiten zur Herstellung von Bauteilen aus geschäumten Metallen" in „Innovative und wirtschaftliche Bauteile durch Pulvermetallurgie" (Vorträge anläßlich des Symposiums am 25. /26. November 1993 in Hagen; VDI Verlag) ist es bekannt, metallische Bauteile herzustellen, bei denen anstelle massiver metallischer Werkstoffe geschäumte Metallwerkstoffe vorliegen. Es sind Techniken bekannt, mit denen gezielt geschlossenporige oder offenporige Metallschäume erzeugt werden können. Die
Herstellung von Metallschaum kann im Prinzip in der Weise vorgenommen werden, daß ein Metallpulver mit einem Treibmittel (z. B. Titanhydrid) vermischt wird und etwa durch Extrudieren oder axiales Heißpressen zu einem Halbzeug umgeformt wird, das später in einem thermischen Verfahren zum gewünschten Bauteil weiterverarbeitet wird. Hierzu wird die vorbereitete Werkstoffmischung bis über die Solidustemperatur des Metalls erhitzt, wobei gleichzeitig auch das Treibmittel freigesetzt wird und die Aufschäumung bewirkt. Wenn dieser Prozeß in einer geeigneten z. B. aus Keramik oder Stahl gefertigten geschlossenen Form stattfindet, können ähnlich wie durch Metallgießen beliebig geformte Werkstücke hergestellt werden. In diesem Zusammenhang ist es bekannt, aus Aluminium geschäumte Konstruktionsbauteile für Fahrzeuge herzustellen. Auch das Ausschäumen von Aluminiumrohren mit Aluminiumschaum zur Herstellung hochfester Leichtbaukonstruktionselemente für den Flugzeugbau ist bekannt. Nicht in Erwägung gezogen wurde bisher eine Verwendung von Metallschäumen in Zusammenhang mit der Speicherung von Druckgasen.
Aufgabe der Erfindung ist es daher, einen gattungsgemäßen Behälter vorzuschlagen, der im Hinblick auf seine Formgebung einen wesentlich größeren Gestaltungsspielraum bietet und gleichzeitig das Sicherheitsrisiko von Explosionen infolge unfallverursachter Beschädigungen der Behälterwand möglichst vermindert.
Gelöst wird diese Aufgabe bei einem Behälter der eingangs genannten Art erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1. Vorteilhafte Weiterbildungen der Erfindung sind unter Ansprüchen 2 bis 12 angegeben.
Die Erfindung wird nachfolgend anhand der Figuren 1 und 2 näher erläutert, die jeweils in Form eines Schnittbildes schematisch zwei Varianten für einen erfindungsgemäßen Behälter zur Speicherung von Druckgas zeigen. Ein erfindungsgemäßer Druckgasbehälter weist eine gasdichte metallische Außenwand 1 auf, die im Falle der Figuren 1 und 2 jeweils mit einem Anschluß 2 für eine Gasleitung zum Be- und Entladen des Behälters versehen ist und den Hohlraum zur Aufnahme des Druckgases gasdicht einschließt. Wesentliches Kennzeichen der vorliegenden Erfindung ist es, daß sich im Hohlraum des Behälters ein offenporiger
Metallschaum 3 befindet. Im Falle der Figur 1 füllt der Metallschaum 3 den Hohlraum zumindest zu einem überwiegenden Teil von dessen Volumen aus. Das bedeutet, daß es in einem solchen Fall Teilbereiche 4 des Volumens gibt, die frei von Metallschaum sind. Für die Funktionsfähigkeit des erfindungsgemäßen Behälters ist es empfehlenswert und im Regelfall auch anzustreben, daß möglichst die gesamte Oberfläche des Hohlraums mit dem Metallschaum 3 bedeckt ist. Weiteres wesentliches Kennzeichen der Erfindung hierbei ist es, daß eine stoffliche Verbindung zwischen der Außenwand 1 und dem offenporigen Metallschaum 3 besteht. Das bedeutet, daß hier nicht etwa nur ein rein mechanicher Verbund zweier Schichten vorliegt, wie man ihn etwa bei einem Doppelmantelrohr vorfinden kann, bei dem ein
Außenrohr lediglich auf ein Innenrohr aufgeschrumpft wurde, so daß ein rein kraftschlüssiger Verbund besteht. Im Sinne der Erfindung handelt es sich stets um einen Stoffverbund.
Vorzugsweise ist der gesamte Hohlraum des Behälters mit Metallschaum 3 ausgefüllt, wie dies in der Variante der Figur 2 dargestellt ist. Zweckmäßigerweise bestehen die metallische Außenwand 1 und der Metallschaum 3 aus einem artgleichen oder zumindest artverwandten Werkstoff. Dies gewährleistet einen guten Stoffverbund. Grundsätzlich möglich ist es jedoch auch, unterschiedliche Werkstoffe bei einem erfindungsgemäßen Behälter miteinander zu verbinden. In diesem Zusammenhang kann auch vorgesehen sein, den Stoffverbund als Lötverbindung durch Einschaltung einer dritten Werkstoffschicht vorzusehen, die zwischen der metallischen Außenwand 1 und dem Metallschaum 3 angeordnet wird. Insbesondere aus Festigkeitsgründen ist es vorteilhaft, als Werkstoff für die Außenwand 1 einen Stahlwerkstoff, vorzugsweise einen Tiefziehstahl zu verwenden. Dies ist deswegen erstrebenswert, weil damit nicht nur eine hohe Grundfestigkeit der Außenwand 1 gewährleistet werden kann, sondern weil aus einem solchen Werkstoff ohne größere Probleme Hohlkörper mit einer komplexen Formstruktur, die wie etwa bei Kraftstofftanks für ein Kraftfahrzeug grundlegend von einer Kugel- oder Zylinderform abweicht, hergestellt werden können. Ein solcher beispielsweise durch Tiefziehen eines Bleches hergestellter Hohlkörper könnte unmittelbar als Form verwendet und mit Metallschaum ausgeschäumt werden und würde dann im Sinne einer Sandwichbauweise die äußere Blechhaut des Behälters bilden, wobei die Blechhaut mit dem innenliegenden Metallschaumkern verschweißt wäre. Auf diese Weise sind Behälterformen herstellbar, die hinsichtlich ihres Einbaus z. B. in ein Kraftfahrzeug die gleichen Freiheiten gewähren, wie sie etwa ein herkömmlicher Kraftstofftank für ein Fahrzeug bietet. Der Freiheitsgrad wäre sogar noch deutlich größer, da Beschränkungen hinsichtlich des notwendigen Gefälles für das Einfüllen von flüssigen Kraftstoffen hierbei nicht gegeben sind.
Anstatt bei der Zusammensetzung eines erfindungsgemäßen Behälters die
Verwendung einer zum Bestandteil des Behälters werdenden Blechform vorzusehen, kann der gesamte Behälter auch aus einem Metallschaum 3 gebildet werden, der als Integralschaum erzeugt wird. Dabei weist der Integralschaum in Richtung auf die Außenwand 1 eine zunehmende Dichte auf. Im Nahbereich der Außenoberfläche liegt dabei eine 100%ige Materialdichte vor, so daß eine gasdichte Außenhaut gewährleistet ist. Für die äußere Oberfläche der Außenwand 1 empfiehlt sich eine Korrosionsschutzbeschichtung, vorzugsweise eine Kunststoffbeschichtung.
Der erfindungsgemäße Behälter sollte im Hinblick auf die Dicke der Außenwand 1 und die Struktur des Metallschaums 3 auf Belastungen ausgelegt sein, wie sie durch gespeicherte Gase ausgeübt werden, die auf einen Druck von über 100 bar, insbesondere über 150 bar und vorzugsweise sogar über 250 bar entstehen.
Durch die Offenporigkeit des Metallschaums 3, der zumindest zu einem überwiegenden Teil den von der Außenwand 1 eingeschlossenen Hohlraum ausfüllt, wird erreicht, daß der Hohlraum durch die Öffnung des Anschlusses 2 mit Druckgas gefüllt und das Druckgas später durch diesen Anschluß 2 wieder entnommen werden kann. Im Falle einer Ausschäumung mit einem geschlossenporigen Schaum wäre das Porenvolumen nicht zur Gasaufnahme zugänglich. Würde man einen Druckbehälter, wie er schematisch in den Figuren 1 und 2 in der äußeren Form dargestellt ist, ohne die erfindungsgemäße Ausschäumung herstellen, und mit Druckgas füllen, würde sich der Behälter insbesondere an den Flachseiten sehr schnell ausbeulen, also seine Form in unzulässiger Weise verändern. Durch den offenporigen Metallschaum 3, der stofflich mit der Außenwand 1 verbunden ist, wird dagegen eine hochwirksame innere Stützkonstruktion gewährleistet, die einem Ausbeulen entgegenwirkt. Diese ist selbstverständlich am stärksten ausgeprägt, wenn der gesamte Hohlraum mit Metallschaum 3 ausgefüllt ist, wie dies in Figur 2 der Fall ist. Dort besteht „flächendeckend" eine stoffliche Verbindung zwischen den sich gegenüberliegenden Flächen der Außenwand 1. Diese Stoffverbindung des Metallschaums 3 vermag erhebliche Zugkräfte aufzunehmen und verhindert das Ausbeulen. Eine erhebliche Stützwirkung besteht aber bereits, wenn die Innenoberfläche mit einer ausreichend dicken Schicht des Metallschaums 3 überzogen ist, insbesondere wenn zumindest in Teilbereichen, wie dies in Figur 1 im Mittelbereich der Fall ist, eine Brückenverbindung zwischen den sich gegenüberliegenden Flachseiten besteht.
Ein großer Vorteil der Metallschaumfüllung des Hohlraums eines erfindungsgemäßen Behälters besteht darin, daß hierdurch nicht nur eine großflächige Aufnahme von Zugkräften, die dem Ausbeulen entgegenwirken, ermöglicht wird, sondern daß gleichzeitig das für die Gasspeicherung zur Verfügung zu stellende Volumen vergleichsweise wenig geschmälert und das Gesamtgewicht des Behälters vergleichsweise wenig erhöht wird. Besonders wichtig ist es dabei, daß die Formgestaltung erfindungsgemäßer Druckbehälter nahezu keinerlei Einschränkungen unterliegt. Beispielsweise können Formen realisiert werden, wie sie bei üblichen Kraftstofftanks für Fahrzeuge heute bereits verwendet werden. Es könnte aber auch z. B. daran gedacht werden, Druckbehälter der Bodenform oder auch der Dachform eines Kraftfahrzeugs anzupassen und somit optisch vollständig zu verbergen, ohne etwa den verfügbaren Raum zur Aufnahme von Personen oder Gepäck zu schmälern.
Ein weiterer Vorteil der Erfindung besteht darin, daß die Ausschäumung des Hohlraums des Behälters, insbesondere eine vollständige Ausschäumung, einen deutlichen Gewinn an Betriebssicherheit bietet, wenn die Behälterwand z.B. durch Unfalleinwirkung beschädigt werden sollte. Während bei einem normalen Druckgasbehälter bei einem Aufreißen der Behälterwand praktisch der gesamte Inhalt der Gasfüllung in kürzester Zeit nach außen strömt, wird durch die Porenstruktur des Metallschaums ein erheblicher Strömungswiderstand gewährleistet, der ein schlagartiges Ausströmen verhindert. Dadurch wird das Explosionsrisiko deutlich vermindert. Im übrigen wird durch die stützende Wirkung des mit der Außenwand verbundenen Metallschaums eine Rißausbreitung in der Außenwand behindert.

Claims

Patentansprüche
1. Behälter zur Speicherung von Druckgas, mit einer gasdichten metallischen Außenwand (1), die den zur Speicherung des Druckgases vorgesehenen
Hohlraum umschließt und mindestens einen Anschluß (2) für eine Gasleitung zum Be- und/oder Entladen des Behälters aufweist dadurch gekennzeichnet, daß sich im Hohlraum ein offenporiger Metallschaum (3) befindet, der mit der Außenwand (1) stofflich verbunden ist.
2. Behälter nach Anspruch 1 , dadurch gekennzeichnet, daß der Metallschaum (3) zumindest den überwiegenden Teil des Hohlraumvolumens ausfüllt.
3. Behälter nach einem der Ansprüche 1 bis 2, dadurch gekennzeichnet, daß die gesamte innere Oberfläche des Hohlraums mit dem Metallschaum (3) bedeckt ist.
4. Behälter nach Anspruch 2, dadurch gekennzeichnet, daß der Metallschaum (3) das Hohlraumvolumen vollständig ausfüllt.
Behälter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die metallische Außenwand (1) und der Metallschaum (3) aus einem artgleichen oder artverwandten Werkstoff besteht.
Behälter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Außenwand (1) aus einem Stahlwerkstoff, insbesondere einem
Tiefziehstahl besteht.
7. Behälter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Außenform des Behälters abweichend von der Kugel- oder Zylinderform eine komplexe Struktur im Sinne eines Kraftstofftanks für ein Kraftfahrzeug aufweist.
8. Behälter nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der Behälter an seiner Außenoberfläche mit einer Korrosionsschutzbeschichtung, insbesondere einer Kunststoff beschichtung, versehen ist.
9. Behälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Behälter in Sandwichbauweise aus einer äußeren Blechhaut und einem damit verschweißten inneren Metallschaumkern besteht.
10. Behälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Behälter in Sandwichbauweise aus einer äußeren Blechhaut und einem inneren Metallschaumkern besteht, der durch eine Lötverbindung mit der Blechhaut verbunden ist.
11. Behälter nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß der Metallschaum (3) als Integralschaum mit in Richtung zur Außenwand (1) zunehmender Dichte ausgebildet ist.
12. Behälter nach einem der Ansprüche 1 bis 11 , dadurch gekennzeichnet, daß die Dicke der Außenwand (1) und die Struktur des Metallschaums (3) auf eine Belastung durch einen Druck des gespeicherten Gases von mindestens 150 bar, insbesondere mindestens 250 bar, ausgelegt ist.
PCT/DE1998/000272 1997-01-28 1998-01-22 Behälter zur speicherung von druckgas WO1998033004A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU66088/98A AU6608898A (en) 1997-01-28 1998-01-22 Container for storing compressed gas
EP98907878A EP0956470A1 (de) 1997-01-28 1998-01-22 Behälter zur speicherung von druckgas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19704968A DE19704968C2 (de) 1997-01-28 1997-01-28 Behälter zur Speicherung von Druckgas
DE19704968.0 1997-01-28

Publications (1)

Publication Number Publication Date
WO1998033004A1 true WO1998033004A1 (de) 1998-07-30

Family

ID=7819808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000272 WO1998033004A1 (de) 1997-01-28 1998-01-22 Behälter zur speicherung von druckgas

Country Status (4)

Country Link
EP (1) EP0956470A1 (de)
AU (1) AU6608898A (de)
DE (1) DE19704968C2 (de)
WO (1) WO1998033004A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541665A (ja) * 2006-06-23 2009-11-26 オングストローム パワー インク. 流体容器およびそれに関する方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19834164A1 (de) * 1998-07-29 2000-02-03 Volkswagen Ag Flüssigkeitstank, insbesondere Kraftstofftank, mit einem Schwallschutzelement und Verfahren zu seiner Herstellung
KR20010090714A (ko) * 1998-08-06 2001-10-19 로버트 조셉 주니어 세트록 유체 정압 유지 시스템
GB9902925D0 (en) * 1999-02-09 1999-03-31 Boc Group Plc Improved metal foam containers
GB9906059D0 (en) * 1999-03-17 1999-05-12 Boc Group Plc Improved metal foam containers
CA2374487A1 (en) * 1999-05-19 2000-11-30 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E.V. Component comprised of a composite material containing a formable metallic material and method for producing the same
GB9917616D0 (en) * 1999-07-27 1999-09-29 Boc Group Plc Improved metal foam container
GB9929047D0 (en) 1999-12-08 2000-02-02 Boc Group Plc Containers for perishable produce
DE10058632B4 (de) * 2000-11-25 2006-08-03 Air Liquide Deutschland Gmbh Geschäumtes Schutzsystem für Druckgasbehälter
US7309380B2 (en) 2003-06-30 2007-12-18 Basf Aktiengesellschaft Gas storage system
ITCO20110011A1 (it) * 2011-03-22 2012-09-23 Nuovo Pignone Spa Recipiente di un apparato di accumulo e rilascio di calore, assieme per accumulo e rilascio di calore, e impianto di produzione di energia
DE102011116517A1 (de) * 2011-10-20 2013-04-25 Hydac Technology Gmbh Druckspeicher
WO2014090912A1 (en) * 2012-12-13 2014-06-19 Linde Aktiengesellschaft Method for pressure control and low-pressure drop filling of vehicle onboard fuel tanks
DE102018218427A1 (de) * 2018-10-29 2020-04-30 Robert Bosch Gmbh Tankvorrichtung zur Speicherung von verdichteten Fluiden und Verfahren zur Herstellung einer Tankvorrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1030999A (en) * 1962-12-24 1966-05-25 Drager Otto H Container for the storage of gas under pressure, more particulary for respirators
EP0003657A1 (de) * 1978-02-07 1979-08-22 The Expanded Metal Company Limited Behälter für Druckgase
WO1985004128A1 (en) * 1984-03-15 1985-09-26 Atlantic Cylinder Tek Corp. Explosion resistant tank for liquid fuel
EP0633422A1 (de) * 1993-07-09 1995-01-11 Rockwell International Corporation Konformierbarer Druckgasspeicherbehälter

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222450A1 (de) * 1992-07-08 1994-01-13 Helmut Schiwek Tank oder Container für Gefahrengut
DE4324726A1 (de) * 1992-07-08 1994-07-28 Helmut Schiwek Luftfahrzeug mit explosionsgeschützten Tanks

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1030999A (en) * 1962-12-24 1966-05-25 Drager Otto H Container for the storage of gas under pressure, more particulary for respirators
EP0003657A1 (de) * 1978-02-07 1979-08-22 The Expanded Metal Company Limited Behälter für Druckgase
WO1985004128A1 (en) * 1984-03-15 1985-09-26 Atlantic Cylinder Tek Corp. Explosion resistant tank for liquid fuel
EP0633422A1 (de) * 1993-07-09 1995-01-11 Rockwell International Corporation Konformierbarer Druckgasspeicherbehälter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009541665A (ja) * 2006-06-23 2009-11-26 オングストローム パワー インク. 流体容器およびそれに関する方法
US8651269B2 (en) 2006-06-23 2014-02-18 Societe Bic Fluid enclosure and methods related thereto

Also Published As

Publication number Publication date
EP0956470A1 (de) 1999-11-17
AU6608898A (en) 1998-08-18
DE19704968A1 (de) 1998-07-30
DE19704968C2 (de) 1999-06-02

Similar Documents

Publication Publication Date Title
DE19704968C2 (de) Behälter zur Speicherung von Druckgas
EP1128123B1 (de) Speicherbehälter für kryogene Flüssigkeiten mit verstärkten Wandungen
EP3027955B1 (de) Tank
EP2010815B1 (de) Von einem aussenbehälter umgebener und zur aufnahme einer kryogenen flüssigkeit dienender innenbehälter
DE19749950C2 (de) Behälter zum Speichern von Druckgas
WO1997009134A1 (de) Verstärktes formteil, verfahren zu seiner herstellung und seine verwendung
EP1874575A2 (de) Modularer behälter für kryogene flüssigkeiten
DE102008050404A1 (de) Behälter zum Aufnehmen und Speichern von Flüssigkeiten und viskosen Stoffen, insbesondere von kryogenen Fluiden, und Verfahren zu dessen Herstellung sowie zur Verwendung dessen
DE19837886C2 (de) Speicherbehälter für kryogene Flüssigkeiten
EP1951538A1 (de) Aussentank für einen kryogenen kraftstoff
EP1064493B1 (de) Vorrichtung zum speichern von druckgas
DE19524680A1 (de) Speicherbehälter für kryogene Medien
DE102013012287B4 (de) Speicherbehälteranordnung für ein Fahrzeug mit einem ein Medium, insbesondere einen Betriebsstoff speichernden Speicherbehälter
DE19816651C2 (de) Speicheranordnung für tiefkalte Fluide
DE19929421B4 (de) Behälter zur Aufnahme von Fluiden
DE102009024795A1 (de) Wasserstofftank in einem Kraftfahrzeug
DE2165880A1 (de) Leichtbau-behaelter fuer gase
DE202005018579U1 (de) Druckbehälter
WO2022135810A1 (de) Schienenfahrzeug-wagen mit einem tank
DE102006019014A1 (de) Speichermodul für komprimierte fluidische Kraftstoffe
WO2016037852A1 (de) Behälter zum aufnehmen und speichern von flüssigkeiten und viskosen stoffen, insbesondere von kryogenen fluiden, und verfahren zu dessen herstellung sowie dessen verwendung
DE10259204B4 (de) Kraftstoffreservoir und Verfahren zur Herstellung eines Kraftstoffreservoirs
DE102017100034B3 (de) Behälter zum Aufnehmen, Speichern und Abgeben von Flüssigkeiten und/oder viskosen Stoffen, insbesondere von Kraftstoff oder Treibstoff oder Trinkwasser, Verfahren zu dessen Herstellung und dessen Verwendung
DE102010000966B4 (de) Druckspeicher, insbesondere Wasserstoffdruckspeicher
DE102004023533A1 (de) Wärmeisolierter Behälter zur Speicherung von Kraftstoff

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998907878

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998907878

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998531495

Format of ref document f/p: F

WWW Wipo information: withdrawn in national office

Ref document number: 1998907878

Country of ref document: EP