WO1998032214A1 - Commande du demarrage et du fonctionnement d'un moteur synchrone monophase a rotor a aimantation permanente, y compris en cas de panne - Google Patents

Commande du demarrage et du fonctionnement d'un moteur synchrone monophase a rotor a aimantation permanente, y compris en cas de panne Download PDF

Info

Publication number
WO1998032214A1
WO1998032214A1 PCT/DE1998/000172 DE9800172W WO9832214A1 WO 1998032214 A1 WO1998032214 A1 WO 1998032214A1 DE 9800172 W DE9800172 W DE 9800172W WO 9832214 A1 WO9832214 A1 WO 9832214A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
phase
rotor
magnetic field
delay time
Prior art date
Application number
PCT/DE1998/000172
Other languages
German (de)
English (en)
Inventor
Wunnibald Kunz
Original Assignee
Wunnibald Kunz
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wunnibald Kunz filed Critical Wunnibald Kunz
Priority to EP98906827A priority Critical patent/EP0954901A1/fr
Priority to SK978-99A priority patent/SK282397B6/sk
Priority to US09/341,945 priority patent/US6239563B1/en
Publication of WO1998032214A1 publication Critical patent/WO1998032214A1/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/465Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor for starting an individual single-phase synchronous motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/26Arrangements for controlling single phase motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation

Definitions

  • the invention relates to the control of the start-up and operation of a single-phase synchronous motor with a permanent magnetic rotor, taking into account accidents and the permissible demagnetizing current according to the preamble of claim 1, in particular for driving the circulation pump of dishwashers and the compressor of refrigerators.
  • the locked position of the rotor is the position of the rotor in which its magnetic field, without additional current supply, has the lowest energy content and in which it stops when there are no frictional influences.
  • One measure to bring the power of such a motor to over 30W can be, for example, a special coupling between the motor and the pump, the pump then also having a special design, but the start-up is purely passive without additional electronic aids.
  • Alternating voltage source switched stator winding a sensor for measuring the magnetic field of the stator, preferably a Hall sensor, a sensor for measuring the current, a sensor for measuring the supply voltage, an electronic switch, preferably one that goes into the blocking state (e.g. triac) when the current passes zero and one electronic circuit that links the signals from the sensors and controls the switch accordingly.
  • a sensor for measuring the magnetic field of the stator preferably a Hall sensor
  • a sensor for measuring the current a sensor for measuring the supply voltage
  • an electronic switch preferably one that goes into the blocking state (e.g. triac) when the current passes zero and one electronic circuit that links the signals from the sensors and controls the switch accordingly.
  • means for phase control of the supply voltage are released in accordance with the polarity of the magnetic field sensor and the desired direction of rotation and the electronic switch is switched after a delay time in this device, so that a driving torque in the desired direction of rotation then results.
  • time segments for the release of the means for phase control are determined from the amount and the slope of the signal of the magnetic field sensor, and the AC voltage is switched on after a delay time.
  • the direction that starts well is that in which the flux vector of the rotor magnet (see FIG. 1) is directed in the opposite direction to the flux vector of the stator. He can then record almost over 180 ° speed and overcome the dead center, in which the flux vectors of the rotor and stator are parallel. In the other direction, the angle to the dead center is only a few degrees, and accordingly the possibility of overcoming the dead center is poor.
  • This method may require a current that at least partially demagnetizes the permanent magnet.
  • a disadvantage of the device mentioned is that it does not have a device which limits the current in these hazardous areas.
  • Time segments imply the use of time elements, e.g. Timers that, however, no longer synchronize with the rotor rotation when the motor accelerates or decelerates, leading to ignition errors that can cause the motor to brake or, what is worse, increase the risk of demagnetization.
  • time elements e.g. Timers that, however, no longer synchronize with the rotor rotation when the motor accelerates or decelerates, leading to ignition errors that can cause the motor to brake or, what is worse, increase the risk of demagnetization.
  • the invention has for its object to avoid these disadvantages at the lowest cost and the single-phase synchronous motor insensitive to load variations and disturbances such as Block, overload or make overspeed.
  • the load on the motor is to be determined in a simple manner for superordinate control purposes. It should be noted that the load on the engine and
  • Hall sensors in the lower price range in addition to large offset voltages, also have a strong temperature drift in the offset voltage and sensitivity. Together with the scatter of the characteristic values of the magnet system, this can lead to signal variations up to a factor of 3 from motor to motor.
  • ASICs in the lower price range also have a very limited computing power, which severely limits the permissible effort for sequence and control operations.
  • the means for igniting the stator current are released when the amplitude of the sensor signal results from the measurement of the magnetic field is within predetermined ignition limits in the form of amplitude values and the polarity of the alternating voltage half-wave generates a current which gives a driving torque.
  • the firing limits are two angles that are located so that the maximum of the Current pulse generated field taking into account the speed and the current build-up occurs when the magnetization vector of the rotor is in quadrants I, II or III, IV (see. Fig. 1 or 2), in which the stator current has a driving effect.
  • the procedure according to the invention has the advantage that the ignition conditions are checked at the time of the potential ignition and not at the beginning of the delay time.
  • ignition limits are advantageously standardized with the peak value of the magnetic field signal in order to eliminate the signal fluctuations due to scatter and temperature drifts of the magnetic field sensor and the magnetic field system of the rotor.
  • the limits are preferably set continuously in the run-up and synchronous operation according to the speed.
  • the rotor has not started. In this case, the direction of rotation of the motor is rotated and, starting with the start delay, the supply voltage is switched back to the stator winding until the permissible peak current is reached or the motor has started. This process is repeated until the rotor has rotated until the predetermined value of the magnetic field sensor is reached.
  • the advantage of this method is that the start-up process is also very safe and in a very short time There is friction in the direction in which the rotor starts up well and, if the rotor shaft is stuck in the bearings, as could possibly be the case with a long standstill, the hammering force is released by the pulsating drive torque, which changes at short intervals.
  • the delay time which was determined during the starting process at the maximum permissible current, serves as the starting time for the extended delay time.
  • a limit value is calculated to determine whether the maximum of the current falls within the angular range in which the rotor can be demagnetized. B. is determined in every half rotation of the rotor, which takes into account the build-up time of the current and the rotor speed and is standardized with the maximum of the signal from the magnetic field sensor. If the measured magnetic field sensor signal is above the calculated limit value, it is not necessary that the delay time (additional delay time) be extended.
  • step means that the rotor of the motor no longer runs synchronously with the mains frequency.
  • a special case of overload is a blockage of the motor, for example due to foreign objects entering the pump.
  • a wing of the pump impeller strikes the solid body.
  • the pump impeller is thrown back.
  • a wing of the impeller strikes the solid again when it is turned back.
  • the possible angle that the impeller can make is usually in the order of a wing pitch of the impeller, but in any case well below 360 °.
  • a maximum of Magnetic field signal less than the maxima of the magnetic field signal in normal operation.
  • Magnetic field amplitude falls below a predefined value.
  • the peak value of the current evaluated with the phase angle between the current and the magnetic field of the rotor, is used as a measure of the motor power. If this is not the case, then in the simplest case that only the value falls below this limit value, it has proven to be advantageous to use the resulting, to some extent, constant change between the control laws of synchronous and start-up.
  • Fig. 1 single-phase synchronous motor with sensors and hardware part of the control with indication of the rest positions, caused by the formation of the air gap
  • Fig. 2 single-phase synchronous motor with locking positions, caused by an additional magnet
  • Fig. 1 is an embodiment of the invention
  • the single-phase synchronous motor (1) comprises a stator (2), on the two poles (3,4) of which two coils (5,6) are seated, which in series form the stator winding and the connecting lines
  • Each arrow of the double arrow (15) can be the north or
  • the stator results in the two opposite locking positions, which, as shown, are a few degrees from the X axis, the polar axis of the
  • Stator deviate and thus allow a starting torque.
  • FIGS. 1 and 2 there is a good and a poorly starting direction of rotation for each rest position.
  • a positive current is applied, then the rotor is rotated a few degrees clockwise in the X direction, a further rotation cannot take place from a static point of view. It is difficult to overcome dead center, especially when there are frictional factors.
  • the rotor If, on the other hand, a negative current is applied, the rotor is turned counterclockwise and it can absorb kinetic energy over almost 180 degrees and overcome dead center. In this direction he starts up much better.
  • the magnetic field sensors can only be attached at locations where the stator current does not lead to additional signals in the sensor, since it is not otherwise possible to draw conclusions about the position of the rotor.
  • the location of the Hall sensor (10) shown in Fig.l and 2 is such a neutral place.
  • the control unit cannot use the magnetic field sensor to determine in which direction the rotor can start up.
  • the starting process is therefore carried out in such a way that the electronic switch (11) switches the supply voltage to the coil connections 7, 8 after a delay time, the phase gating time, in such a way that a torque results in the desired direction of rotation and after the current has dropped to zero separates from it again.
  • the delay time is at the first
  • the delay time is then reduced until a predetermined maximum current is reached, which is also still below the demagnetizing current.
  • This process is repeated until the rotor has rotated around this predefined value.
  • ignition limits are determined after every half rotation of the rotor. These consist of a first and a second amplitude value of the magnetic field sensor signal.
  • the delay time for the phase control is started with every zero crossing of the supply voltage.
  • the electronic switch (11) connects the supply voltage to the stator coils (5,6) if the corresponding polarity of the supply voltage half-wave is present, the amplitude of the magnetic field sensor is within the ignition limits and the time derivative of the magnetic field sensor signal has the correct polarity, ie a driving torque is to be expected.
  • the electronic switch (11) Before the electronic switch (11) connects the stator coils to the supply voltage, it is additionally checked whether the maximum of the following current pulse occurs in a rotor position in which the field vector of the stator field is directed against the field vector of the rotor magnet and thus has a demagnetizing effect. If this is the case, the delay time is extended and the current is reduced to a non-hazardous value.
  • the delay time for the leading edge is reduced in steps when starting up if the synchronous speed has not yet been reached and increased if it has been exceeded. In this way, load-dependent control of the acceleration current is achieved in a simple manner.
  • phase difference between the signal of the magnetic field sensor and that of the current is regulated via the delay time for the phase gating in such a way that maximum efficiency results. This is the case with the arrangement described here if the phase difference is regulated to zero.
  • a load and voltage adjustment is thus available which keeps the power loss and thus the motor size and the manufacturing costs small.
  • This situation is determined by comparing the magnitude of the phase angle between the motor current and the magnetic field signal with a predefined value and switching on the control laws of the startup when exceeded. If the rotor is blocked, for example if a corresponding foreign body gets into the pump wheel, the rotor will no longer turn and rebound. In this case, the maximum amplitude of the magnetic field signal is significantly smaller than that in normal operation. This criterion is used to replace the currently applicable control laws for acceleration or synchronous operation with those for startup, thus preventing damage to the motor from incorrectly acting currents.
  • a measure of the operating power of the motor is obtained in a simple manner by the selected type of control in synchronous operation in such a way that the peak value of the current pulses is determined and multiplied by the cosine of the phase angle between the current and magnetic field signals or an approximation thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Motor And Converter Starters (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

L'invention concerne un système de commande et de fonctionnement d'un moteur synchrone monophasé à rotor à aimantation permanente (9), dans lequel ledit moteur (1) comprend au moins un enroulement de stator (5, 6) monté en série avec une source de tension alternative, cependant qu'il est prévu un détecteur (10) pour la mesure du champ magnétique du rotor, ainsi que des moyens commutant la source de tension alternative à l'enroulement du stator, en fonction d'un signal du détecteur de champ magnétique, de telle façon que le courant circulant dans l'enroulement du stator produise un couple du rotor dans le sens de rotation, sans que des conditions critiques se présentent eu égard à la démagnétisation du rotor. A cet effet, après un délai de la commande par coupe, le courant du stator n'est excité que lorsque les conditions précitées sont remplies. Une surcharge momentanée du moteur et un blocage sont interrompus de façon sûre. Pour l'utilisation extérieure, un signal indiquant la charge du moteur est généré. La séquence de commande est effectuée, pour chaque phase de fonctionnement, conformément au signal de tension et d'intensité, et au signal du détecteur de champ magnétique et à sa déviation dans le temps, de façon à fournir un couple d'entraînement. En phase de fonctionnement, la différence de phase entre le signal du détecteur de champ magnétique et le signal d'intensité est évaluée et réglée de façon à obtenir un rendement maximum. La puissance effective du moteur est déterminée à partir du signal d'intensité et de cette différence de phase.
PCT/DE1998/000172 1997-01-21 1998-01-21 Commande du demarrage et du fonctionnement d'un moteur synchrone monophase a rotor a aimantation permanente, y compris en cas de panne WO1998032214A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98906827A EP0954901A1 (fr) 1997-01-21 1998-01-21 Commande du demarrage et du fonctionnement d'un moteur synchrone monophase a rotor a aimantation permanente, y compris en cas de panne
SK978-99A SK282397B6 (sk) 1997-01-21 1998-01-21 Spôsob spúšťania a prevádzkovej regulácie jednofázového synchrónneho motora s rotorom s permanentnými magnetmi aj s prihliadnutím na poruchové stavy
US09/341,945 US6239563B1 (en) 1997-01-21 1998-01-21 Electronic starting and operating control system for a single-phase synchronous motor with a permanent magnetic rotor, also in case of failure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19701856A DE19701856A1 (de) 1997-01-21 1997-01-21 Elektronische Anlauf und Betriebssteuerung für einen Einphasen-Synchronmotor
DE19701856.4 1997-01-21

Publications (1)

Publication Number Publication Date
WO1998032214A1 true WO1998032214A1 (fr) 1998-07-23

Family

ID=7817853

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1998/000172 WO1998032214A1 (fr) 1997-01-21 1998-01-21 Commande du demarrage et du fonctionnement d'un moteur synchrone monophase a rotor a aimantation permanente, y compris en cas de panne

Country Status (6)

Country Link
US (1) US6239563B1 (fr)
EP (1) EP0954901A1 (fr)
DE (1) DE19701856A1 (fr)
SK (1) SK282397B6 (fr)
TR (1) TR199901745T2 (fr)
WO (1) WO1998032214A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637890A1 (fr) 2004-09-01 2006-03-22 Wilo Ag Procédé pour la détermination sans contact de la vitesse d'un moteur électrique

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001045235A1 (fr) * 1999-12-17 2001-06-21 MONEGO, Guido Moteur electrique a aimants permanents et commande electronique
DE10028492B4 (de) * 2000-06-08 2008-09-25 Ebm-Papst Mulfingen Gmbh & Co. Kg System zum Steuern eines netzgeführten Wechselstrom-Synchronmotors
DE10207549B4 (de) * 2002-02-22 2004-05-06 Aradex Ag Verfahren und Vorrichtung zum Betrieb eines Synchronmotors
EP1351376A1 (fr) * 2002-03-11 2003-10-08 Askoll Holding S.r.l. Dispositif électronique pour le démarrage et la commande d'un moteur synchrone à aimants permants
ES2197822B1 (es) * 2002-06-18 2005-09-16 Fagor, S. Coop. Dispositivo electronico para el control de un motor sincrono con rotor de iman permanente.
DE50311997D1 (de) * 2003-01-21 2009-11-19 Grundfos As Verfahren zum Steuern des Zündwinkels und einphasiger wechselstromversorgter Elektromotor
DE10308090B4 (de) * 2003-02-24 2005-12-22 Hanning Elektro-Werke Gmbh & Co. Kg Synchronmotor mit Anlaufeinrichtung
DE60310929T2 (de) * 2003-09-04 2007-10-11 Askoll Holding S.R.L., Povolaro Di Dueville Verfahren und Vorrichtung zur Bestimmung des hydraulischen Durchflusses in einer Pumpe
BR0305905A (pt) * 2003-12-11 2005-08-16 Brasil Compressores Sa Sistema de partida para motor a indução monofásico
PL2060000T3 (pl) * 2006-09-06 2012-07-31 Siemens Ag Sposób pracy układu silnikowego i układ silnikowy
US20080116829A1 (en) * 2006-11-16 2008-05-22 Gerfast Sten R Efficient AC circuit for motor with like number of poles and magnets
US8581539B2 (en) * 2006-11-16 2013-11-12 Sten R. Gerfast Efficient circuit for brushless low cogging machine with congruent stator
ES1065745Y (es) * 2007-06-21 2008-01-16 Coprecitec Sl Dispositivo de control de una lavadora
ITTO20070458A1 (it) * 2007-06-26 2008-12-27 Emerson Appliance Motors Europe Sistema di controllo della rotazione a regime di un motore elettrico sincrono
ITTO20070459A1 (it) * 2007-06-26 2008-12-27 Emerson Appliance Motors Europe Sistema di controllo senza sensori di posizione per un motore elettrico sincrono
ITPD20080313A1 (it) * 2008-10-29 2010-04-30 Newa Tecno Ind S R L Dispositivo elettronico di avviamento e controllo per motori elettrici sincroni monofase con rotore a magneti permanenti
FI125117B (fi) * 2009-11-10 2015-06-15 Kone Corp Menetelmä hissijärjestelmän yhteydessä, sekä hissijärjestelmä
EP2410651B1 (fr) * 2010-07-23 2013-06-05 Askoll Holding S.r.l. Méthode pour le démarrage d'un Moteur électrique synchrone monophasé à aimant permanent et dispositif électronique de mise en oeuvre dudit procédé
US11563389B2 (en) * 2010-07-30 2023-01-24 Danfoss Customised Power Electronics Method for starting a single-phase induction motor
US8575873B2 (en) * 2010-08-06 2013-11-05 Nidec Motor Corporation Electric motor and motor control
CN106469958A (zh) * 2015-08-14 2017-03-01 德昌电机(深圳)有限公司 流体产生装置
US10557469B2 (en) * 2016-03-22 2020-02-11 Whirlpool Corporation Multi-outlet fluid flow system for an appliance incorporating a bi-directional motor
GB2549740B (en) * 2016-04-26 2019-04-17 Dyson Technology Ltd A method for controlling an electric motor
CN107465368B (zh) * 2016-05-30 2023-09-26 德昌电机(深圳)有限公司 电机及其驱动电路与驱动方法
CN109687780A (zh) * 2017-08-25 2019-04-26 德昌电机(深圳)有限公司 电机及其驱动电路与驱动方法
CN107911051B (zh) * 2018-01-05 2024-02-23 无锡好力泵业有限公司 一种单相永磁同步电动机的启动方法及启动电路

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434491A (en) * 1992-06-17 1995-07-18 Askoll S.P.A. Electronic device for starting a synchronous motor with permanent-magnet rotor
EP0666639A1 (fr) * 1994-02-03 1995-08-09 Werner Dr. Mühlegger Procédé et dispositif de démarrage d'une machine synchrone monophasée
DE19534423A1 (de) * 1995-09-16 1997-03-20 Wunnibald Kunz Vorrichtung zur Steuerung des Anlaufs und des Betriebs eines Einphasensynchronmotors mit permanentmagetischem Rotor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3507883A1 (de) * 1985-03-06 1986-09-18 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Schaltung zur steuerung eines buerstenlosen elektromotors
DE3517570A1 (de) * 1985-05-15 1986-11-20 Deutsche Thomson-Brandt Gmbh, 7730 Villingen-Schwenningen Schaltung zur steuerung eines buerstenlosen elektromotors
DE19533344A1 (de) 1995-09-08 1997-03-13 Aweco Kunststofftech Geraete Vorrichtung zur Steuerung des Anlaufs und des Betriebs eines Einphasensynchronmotors mit permanentmagnetischem Rotor
GB9715248D0 (en) * 1997-07-18 1997-09-24 Switched Reluctance Drives Ltd Starting of single-phase motors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434491A (en) * 1992-06-17 1995-07-18 Askoll S.P.A. Electronic device for starting a synchronous motor with permanent-magnet rotor
EP0666639A1 (fr) * 1994-02-03 1995-08-09 Werner Dr. Mühlegger Procédé et dispositif de démarrage d'une machine synchrone monophasée
DE19534423A1 (de) * 1995-09-16 1997-03-20 Wunnibald Kunz Vorrichtung zur Steuerung des Anlaufs und des Betriebs eines Einphasensynchronmotors mit permanentmagetischem Rotor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1637890A1 (fr) 2004-09-01 2006-03-22 Wilo Ag Procédé pour la détermination sans contact de la vitesse d'un moteur électrique

Also Published As

Publication number Publication date
SK282397B6 (sk) 2002-01-07
EP0954901A1 (fr) 1999-11-10
US6239563B1 (en) 2001-05-29
DE19701856A1 (de) 1998-07-23
SK97899A3 (en) 1999-12-10
TR199901745T2 (xx) 1999-10-21

Similar Documents

Publication Publication Date Title
WO1998032214A1 (fr) Commande du demarrage et du fonctionnement d'un moteur synchrone monophase a rotor a aimantation permanente, y compris en cas de panne
DE19628585C2 (de) Verfahren zum Kommutieren eines bürstenlosen Motors und Speiseschaltung für einen bürstenlosen Motor
DE4009258C2 (de) Verfahren und elektronische Regelschaltung zum Anlassen eines bürstenlosen Gleitstrommotors
EP1017159B1 (fr) Méthode de régulation d'un moteur électrique monophasé ou polyphasé commandé par un convertisseur tension/fréquence
DE60201124T2 (de) Permanentmagnetsynchronmotor mit einer elektronischen Vorrichtung zum Starten des Motors und einer Sensoreinrichtung deren Position von der vom Motor getriebenen Last abhängig ist
EP1518318B1 (fr) Procede pour commander un moteur electrique oscillant d'un petit appareil electrique
WO2009071267A2 (fr) Procédé et dispositif de détection de pertes d'avancement d'un moteur pas à pas
EP3413458B1 (fr) Commande pour moteur synchrone monophasé
DE102014210069A1 (de) Sensorlose BEMF-Messung für stromgeregelte bürstenlose Motoren
EP1514342B1 (fr) Procede et ensemble de circuits pour faire fonctionner des moteurs pas a pas
EP0771065B1 (fr) Procédé pour le démarrage d'un entraínement électrique à vitesse de rotation variable
DE69730505T2 (de) Betätigungs- und regelverfahren und vorrichtung, insbesondere für synchrone, permanentmagnet-motoren
DE19946050A1 (de) Verfahren zur Drehzahlregelung für geschaltete Reluktanzmotoren (GRM)
EP1443635B1 (fr) Procédé de contrôle d'un angle d'allumage et moteur électrique alimenté en courant monophasé
DE19534423A1 (de) Vorrichtung zur Steuerung des Anlaufs und des Betriebs eines Einphasensynchronmotors mit permanentmagetischem Rotor
DE4242665B4 (de) Verfahren und Vorrichtung zum Rückschalten eines polumschaltbaren Motors
WO2014161614A1 (fr) Procédé de mise en marche d'un moteur électrique à vitesse variable
DE19952328A1 (de) Treibersteuerung für einen Motor mit geschalteter Reluktanz
DE19533344A1 (de) Vorrichtung zur Steuerung des Anlaufs und des Betriebs eines Einphasensynchronmotors mit permanentmagnetischem Rotor
EP0151497B1 (fr) Moteur monophasé synchrone ayant un rotor bipolaire à aimant permanent
WO2020114816A1 (fr) Procédé de synchronisation sur le réseau d'une machine à courant triphasé à excitation permanente avec un démarreur progressif comprenant des thyristors
DE4316292A1 (de) Elektrischer Stellantrieb
WO2019052640A1 (fr) Exploitation d'une machine synchrone à excitation permanente
WO2020239385A1 (fr) Procédé de commutation sans capteur
DE102013106528A1 (de) Anlaufverfahren

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CZ SK TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: PV1999-2554

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 1998906827

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 97899

Country of ref document: SK

Ref document number: 1999/01745

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 09341945

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998906827

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1999-2554

Country of ref document: CZ

WWW Wipo information: withdrawn in national office

Ref document number: 1998906827

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: PV1999-2554

Country of ref document: CZ