WO1998029610A1 - Perfectionnements aux digues fixes de type caisson partiellement immergees - Google Patents

Perfectionnements aux digues fixes de type caisson partiellement immergees Download PDF

Info

Publication number
WO1998029610A1
WO1998029610A1 PCT/FR1997/002471 FR9702471W WO9829610A1 WO 1998029610 A1 WO1998029610 A1 WO 1998029610A1 FR 9702471 W FR9702471 W FR 9702471W WO 9829610 A1 WO9829610 A1 WO 9829610A1
Authority
WO
WIPO (PCT)
Prior art keywords
dike
downstream
water
upstream
width
Prior art date
Application number
PCT/FR1997/002471
Other languages
English (en)
Inventor
Pierre Roger
Christophe Colmard
Original Assignee
Bouygues Offshore
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9700038A external-priority patent/FR2758148B1/fr
Priority claimed from FR9700037A external-priority patent/FR2758147B1/fr
Application filed by Bouygues Offshore filed Critical Bouygues Offshore
Priority to AU57706/98A priority Critical patent/AU5770698A/en
Priority to EP97953987A priority patent/EP0956394B1/fr
Publication of WO1998029610A1 publication Critical patent/WO1998029610A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B3/00Engineering works in connection with control or use of streams, rivers, coasts, or other marine sites; Sealings or joints for engineering works in general
    • E02B3/04Structures or apparatus for, or methods of, protecting banks, coasts, or harbours
    • E02B3/06Moles; Piers; Quays; Quay walls; Groynes; Breakwaters ; Wave dissipating walls; Quay equipment

Definitions

  • the invention relates to a fixed dam, of box type, arranged between an upstream body of water subjected to swell and a downstream body of water to be protected from the effects of swell, this dike being partially submerged so as to leave the water circulate under the dike.
  • Embodiments of this type of dam are described, for example, in the publications of patent applications FR-A-2 729 981 and EP 0 381 572.
  • the invention applies in particular to dikes mounted on piles, the word “pile” designating here any structure capable of carrying the dike while letting water circulate under the dike, the most frequent case actually being that of the piles. foundation.
  • These dikes are designed to constitute a hydrodynamic obstacle generated by the body of water in motion under the dike.
  • the upstream body of water is generally a sea, while the downstream body of water is generally a port.
  • the dike has a front facing the body of water which is located downstream of the dyke and which will be called the downstream front and an opposite front therefore facing the body of water located upstream, and which l 'we will call upstream front.
  • a first aspect of the invention relates to the downstream front.
  • the main object of the invention is to provide a downstream front configuration which allows the volume of water located above it, alternatively, to store and then restore the quantities of water transmitted then punctuated by the hydraulic phenomenon developed under the dike.
  • the part of the downstream front which is likely to be affected by the movement of water under the effect of the swell is essentially inclined at an angle between 25 to 60 ° in a downward slope towards the downstream body of water, so that the water which passes under the dike from upstream to downstream during the withdrawal of the wave on the upstream side is stored on this part of the downstream front and is returned under the dam with horizontal speeds directed upstream, during the next phase of ascent of the wave upstream of the dam.
  • This configuration of downstream front also produces an increase in vortex effects near this front to better dissipate the energy of the swell.
  • Another object achieved by the invention in addition to participating in the attenuation of the incident swell, is to reflect little the waves resulting from the agitation generated in the downstream area, this agitation being generated by the waves passing under the 'structure, those reflected by the site to be protected and those reflected by the downstream face of the structure.
  • Embankments with an inclined downstream front, flat or stepped, are known but are not designed to perform the same functions as in the present invention, either because they rest directly on the bottom and do not allow the water to move under the sea wall (US 4,502,816c; FR-A- 2 729931 ( Figure 3), Patent Abstracts of Japan vol. 8, no. 207 (M-327)), or because it does not allow water to be stored and returned. Under the structure (EP 0 381 572, fig. 6; FR 1 081 798).
  • this downstream front part is between 25 and 40 ° and even more preferably between 30 and 40 ° relative to the horizontal.
  • This inclined part is preferably but not necessarily formed by a plane, possibly provided with roughness.
  • the downstream front still has one or more of the following characteristics: said inclined part (AB) of the downstream front only emerged from a value close to the height of the transmitted swell.
  • said inclined part (AB) of the downstream front is between 1/4 and 1/3 of the total width of the dike.
  • the triangular surface delimiting the mass of water at rest on said inclined part (AB) of the downstream front is not less than the immersion of the structure multiplied by the eighth of the width of the dike.
  • the invention therefore adds to the known basic principle of partial-immersion box dikes causing the mass of water in movement under the dyke to be damped, another oscillating mass on the downstream side in phase opposition with that in movement in front of the structure. in order to amplify the phenomenon of damping and by the same to reduce the phenomena of reflection that can develop in the downstream body of water.
  • a second aspect of the invention concerns the upstream front of the dike.
  • An object of the invention is to improve such a configuration of the upstream front of the dam to limit the slap effects, further increase the hunting effect when the wave is withdrawn and also increase the swirl effects.
  • this arched part of the upstream front is given a parabolic shape, as is typically done on the crowns of embankments or slope protection at the end of the beach.
  • this arched part of the upstream front is given an epicyclic shape.
  • a third aspect of the invention relates to the central part of the box.
  • this part is provided with an attenuation chamber 11 open towards the underside of the dam and accessible to the moving water under the dam, of width at most equal to 20% and preferably at most equal. at 10% of the total width (upstream to downstream) of the dike.
  • means are available in this chamber for dissipating the energy of the mass of water in vertical movement in the chamber, for example horizontal perforated plates.
  • the purpose of this third arrangement of the box is to limit the vertical forces applied to partial dikes, to increase the dissipation of the energy of the incident swell by swirling effects and to reduce the transmission coefficient of the partial dikes for the weak swell periods.
  • the entrance to the chamber concerns only a small part of the width of the dam, so that the general functioning of the dam is not modified.
  • a dam structure in accordance with the present invention is particularly advantageous for protecting a site where a problem of great depth arises.
  • Kt is the swell transmission coefficient when the dyke protects an infinite body of water or a strongly damping beach, there is no interaction of the site with the structure.
  • Kt Ht / Hi with Ht height of the swell measured behind the structure and Hi height of the incident swell.
  • FIG. 1 is a principle view in cross section of a dam having a downstream front configuration in accordance with the present invention
  • Figures 2 and 3 are diagrams of the principle of resonance of a dam with a site to be protected
  • FIGS. 1 and 2 are diagrams of the principle of resonance of a dam with a site to be protected
  • FIGS. 4 and 5 are diagrams of the field of speeds averaged over a hundred swell cycles obtained by laser velocimetry respectively with a dike with vertical fronts and a dike having an inclined downstream front in accordance with the present invention
  • FIGS. 6 and 7 are diagrams of the field of instantaneous speeds respectively in the case of a dike with vertical fronts and of a dike having an inclined downstream front in accordance with the present invention, during the ascent of the wave on the upstream front of the dike
  • Figures 8 and 9 are diagrams respectively similar to those of Figures 6 and 7 during the withdrawal of the wave on the upstream front of the dam;
  • FIG. 10 is a comparative graph of the performances of a dike with vertical fronts upstream and downstream with that equipped with a downstream plane inclined by 35 ° and vertical upstream, in resonance condition (when the site to be protected is highly reflective and that '' it is distant from half a wavelength of the structure).
  • FIG. 11 is a graph showing the efficiency of the inclination of the downstream front of the dam for different swell periods, the upstream front being vertical.
  • FIG. 12 is a diagram of a dam having an upstream front in accordance with the present invention.
  • FIG. 13 is a diagram of an embodiment of a dam having a downstream front and an upstream front in accordance with the present invention
  • Figure 14 is a diagram of the velocity field during the ascent of a wave on the upstream front in the case of a dike according to Figure 13
  • FIG. 15 is a diagram of the speed field during the withdrawal of the wave from the upstream front in the case of a dyke conforming to FIG. 13
  • FIG. 16 is a comparative graph showing the improvement in the transmission coefficient provided by a dam having an inclined downstream front and an upstream front of epicyclic shape in accordance with the present invention compared to a dam with vertical edges, in the case where the downstream body of water is infinite e: where the body of water is in resonance condition.
  • FIG. 17 is a comparative graph showing the improvement in the transmission coefficient provided by a dam having an inclined downstream front and an upstream front of epicyclic shape in accordance with the present invention compared to a dam with vertical edges, in the case where the downstream body of water is infinite.
  • the dikes compared are the same width and submerged on the same dimension;
  • - Figure 18 is a graph similar to that of Figure 17 in the case where the present invention is half the width of the dike with vertical fronts: -_ and for the same immersion;
  • Figures 19 to 21 show different embodiments of a dam according to the present invention provided with a attenuation chamber 11, and,
  • Figure 22 shows the embodiment of a dam according to the present invention provided with a chamber attenuation equipped with means of energy dissipation.
  • the dike shown in Figure 1 is a box 1 partially submerged in a body of water between an upstream area 3 where the swell occurs, for example a port, which must be protected from the effects of swell.
  • the box is rigidly held at an immersion dimension defined either by a metal or concrete structure, or by vertical or inclined piles 2. Protection against scouring of the base of the retaining elements may prove necessary if the bottom is granular.
  • This type of structure can be built on the ground in the form of small modules and set up by lifting devices. It can also be built in larger dimensions and be floated. It can also be built on site like bridges.
  • the box has a downstream front 5 whose part AB concerned by the movement of water is constituted by an inclined wall descending downstream at an angle ⁇ of about 35 ° relative to the horizontal .
  • This inclined wall 5 constitutes a potential energy store: When the wave rises on the upstream side the mass of water on the downstream side contributes to the supply of the incident swell.
  • the speeds downstream of the dam of the present invention (FIGS. 6 and 7) take the orientation of the inclined wall. It can be seen that the liquid mass above the downstream inclined plane is highly stressed during the ascent of the wave on the upstream side and that it allows a partial decoupling of the mass of water downstream from the structure of the mass of moving water under the housing.
  • the mass of water in motion under the box is stored on the downstream part potentially during the withdrawal of the wave from the upstream part then returned under the box during the ascent of the wave on the upstream side.
  • the inclined wall therefore partially decouples the body of water on the downstream side from the body of water located under the dike, which is the exciter of the wave generation process on the downstream side.
  • Figure 10 the resonance phenomena developed by a highly reflective site protected by an inclined downstream wall in accordance with the invention (curve represented by diamonds) -e by a conventional vertical front 5 '(curve represented by squares), the period T of the swell being represented on the abscissa.
  • Fig. 11 is a graph showing the evolution of the value Kt plotted on the ordinate, as a function of the angle oc of inclination of the downstream wall, for periods T of between 1.2 and 2 seconds (reduced scale l / 81st), i.e. 10 to 18 real seconds.
  • FIG. 12 is the diagram of an exemplary embodiment of a dam constituted by a box 6 mounted on piles 7 so as to be partially submerged between an upstream area 8 and a downstream area 9, this box having in accordance with the present invention an upstream front constituted by a flat part 10a followed by a part of planetary curvature 10b.
  • the camber of the wave increases sharply on the horizontal wall 10a due to the shallow depth of immersion.
  • the wave is divided into two undulations greatly reducing the height of fluctuation of the water level at the front of the structure.
  • the wave is then channeled on the wall of epicyclic curvature 10b, stored in the form of potential energy, then restored in the form of a strong horizontal current directed upstream (the epicyclic shape is the most optimized form to accelerate the fluid ).
  • This current which is not in phase with the swell, opposes the new incident wave (as shown schematically in Figure 15).
  • This opposition for a wide range of periods, can generate a reverse surge upstream of the structure.
  • these important horizontal speeds the influence of the vertical speeds responsible for setting up recede upstream. movement of the body of water under the box. The box, by this phenomenon, behaves like a box with wider vertical fronts.
  • Figures 14 and 15 are diagrams of the speed fields obtained with such a structure during the ascent ( Figure 14) and withdrawal (Figure 15) of the wave on the upstream side.
  • Figure 16 shows the evolution of the agitation of the downstream body of water as a function of the period for two site configurations, the case of a highly reflective site (vertical wall of a port quay for example) and the case of a highly absorbent site (sandy beach with a slight slope).
  • our present invention consisting of downstream and upstream improvements (triangle in the case of the absorbent site and cross in the case of the highly reflective site) is compared to a partial parallelepiped dike (diamonds in the case of the absorbent site and square in the case of the highly reflective site).
  • FIG. 17 shows the evolution of the value Kt as a function of the period in the case of the invention presenting the downstream and upstream improvement (diamonds) and in the case of a box with vertical walls (squares), these two partial dikes having the same immersion, the same width and protecting a highly absorbent site (sandy beach with a slight slope).
  • Figure 18 is a similar comparison.
  • the present invention (diamonds) is in this example half as wide as the structure with vertical walls (squares).
  • Figures 19, 20, 21 and 22 show different possibilities of arranging a central chamber.
  • the dike has, between its upstream front 6 and its downstream front 1, a attenuation chamber 11, open towards the bottom of the box to be accessible to the water in movement under the box, and of width at more equal to 20% of the width of the dam, preferably at most equal to 10% of the width of the dam and preferably at least equal to 6% of the width of the dam.
  • This chamber is closed towards the top (fig. 19) or opened by more or less important vents (fig. 20) towards the top.
  • This chamber can separate the dam into two boxes 1 and 6, completely independent and carried by separate piles (fig. 21).
  • the graph in FIG. 22 shows the efficiency of such a chamber with regard to the reduction of vertical forces.
  • the Fzmax represent the maximum positive vertical forces (directed upwards) for the configuration of the dam with chamber and without chamber.
  • the Fzmin represent the maximum negative vertical forces (directed downwards) for the configuration with chamber and without chamber.
  • Dfz represents the difference of negative and positive e fores.
  • the present invention does not in any way deteriorate the behavior of the dam at the level of the transmission coefficient and at the level of the horizontal forces. On the contrary, it brings a clear improvement in terms of the transmission coefficient for small swell periods.
  • the attenuation chamber By creating a break in the flow under the dam, the attenuation chamber also amplifies the absorption of energy from the swell by the formation of vortex effects.
  • the chamber can be provided with horizontal energy dissipating structures, (figure 23). Dissipation is obtained by "breaking" the vertical velocities that are generated in the chamber.
  • the invention is not limited to a particular configuration of the upstream or downstream front of the dike and the configurations shown in the figures are given only by way of examples only, without limiting the scope of the invention.
  • the embankment including these innovations can be arranged, in a manner known per se, to constitute an upper carriageway, a quay, etc.
  • the general application and dimensioning rules according to the invention of the dam are those of known partial dams with wider possible applications thanks to the very improved attenuation coefficient. With an equivalent transmission coefficient, it is therefore possible to reduce the width of this type of dike and also lighten the construction because the forces due to the swell are much lower (especially for long periods).
  • the minimum width is linked to the wavelength of the offshore swell, and we generally accept as a minimum value 1/3 of this wavelength (associated with the minimum period) or half the height d 'water; the higher of these two values being used as the minimum value.
  • a dike comprising a downstream front and an upstream front according to the invention:
  • the invention is not limited to the embodiments which have been described and which can be modified by adding or deleting or replacing the means described by means of different but functionally equivalent structures.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Revetment (AREA)

Abstract

La présente invention concerne une digue fixe de type caisson (1) partiellement immergée entre une étendue d'eau amont (3) et une étendue d'eau aval (4) en sorte que l'eau passe sous la digue. La partie (AB) du front aval de la digue qui est susceptible d'être concernée par le mouvement de l'eau sous l'effet de la houle, est pour l'essentiel en pente descendante vers l'aval selon un angle (α) au plus égal à 60° et au moins égal à 25° par rapport à l'horizontale. Cette digue est encore perfectionnée par un profil du front amont (10) spécialement conçu pour augmenter l'effet produit par le profil du front aval et par l'ajout d'une chambre centrale (11) diminuant fortement les efforts verticaux. Cette digue amplifie le phénomène d'amortissement notamment pour les périodes de houle importante (T > 8 secondes) et limite les risques de résonance du côté aval engendrés par l'interaction de l'ouvrage avec le site à protéger.

Description

PERFECTIONNEMENTS AUX DIGUES FIXES DE TYPE CAISSON PARTIELLEMENT IMMERGÉES .
L'invention concerne une digue fixe, de type caisson, disposée entre une étendue d'eau amont soumise à la houle et une étendue d'eau aval à protéger des effets de la houle, cette digue étant partiellement immergée de façon à laisser l'eau circuler sous la digue. Des modes de réalisation de ce type de digue sont décrits par exemple, dans les publications de demandes de brevet FR-A-2 729 981 et EP 0 381 572.
L'invention s'applique notamment aux digues montées sur des pieux, le mot «pieu» désignant ici toute structure apte à porter la digue tout en laissant l'eau circuler sous la digue, le cas le plus fréquent étant effectivement celui des pieux de fondation.
Ces digues sont conçues pour constituer un obstacle hydrodynamique généré par la masse d'eau en mouvement sous la digue.
L'étendue d'eau amont est généralement une mer, tandis que l'étendue d'eau aval est généralement un port.
La digue présente un front tourné vers l'étendue d'eau qui est située en aval de la digue et que l'on appellera front aval et un front opposé tourné par conséquent vers l'étendue d'eau située en amont, et que l'on appellera front amont .
Un premier aspect de 1 ' invention concerne le front aval . Le but principal de l'invention est de fournir une configuration de front aval qui permette au volume d'eau situé au dessus de celui ci, alternativement, de stocker puis de restituer les quantités d'eau transmises puis ponctionnées par le phénomène hydraulique développé sous la digue .
L'énergie transmise sous le caisson est ainsi canalisée en grande partie dans cette nouvelle zone liquide et non plus dans l'étendue d'eau en aval de la digue.
Selon une première réalisation de l'invention, la partie du front aval qui est susceptible d'être concernée par le mouvement de l'eau sous l'effet de la houle est pour l'essentiel inclinée d'un angle compris entre 25 à 60° en pente descendante vers le plan d'eau aval, en sorte que l'eau qui passe sous la digue de l'amont vers l'aval lors du retrait de la vague côté amont soit stockée sur cette partie du front aval et soit restituée sous la digue avec des vitesses horizontales dirigées vers l'amont, lors de la phase suivante d'ascension de la vague en amont de la digue .
C'est au-dessus de cette partie que se trouve la nouvelle zone liquide.
Cette configuration de front aval produit en outre une augmentation des effets tourbillonnaires à proximité de ce front pour mieux dissiper l'énergie de la houle.
Un autre but atteint par l'invention, en plus de participer à l'atténuation de la houle incidente, est de peu réfléchir les ondes issues de l'agitation générée dans l'étendue aval, cette agitation étant générée par les ondes passant sous l'ouvrage, celles réfléchies par le site à protéger et celles réfléchies par la face aval de 1 ' ouvrage .
Des digues à front aval incliné, plan ou en escalier, sonc connues mais ne sont pas conçues pour accomplir les mêmes fonctions que dans la présente invention, soit parce qu'elles reposent directement sur le fond et ne laissent pas l'eau se déplacer sous la digue (US 4 502 816c; FR-A- 2 729931 (figure 3), Patent Abstracts of Japan vol. 8, n° 207 (M-327) ) , soit parce qu'elle ne permettent pas de stocker l'eau et de la renvoyer .sous l'ouvrage (EP 0 381 572, fig. 6 ; FR 1 081 798) .
Dans un mode de réalisation préféré de l'invention l'inclinaison de cette partie de front aval est comprise entre 25 et 40° et de façon encore davantage préférée entre 30 et 40° par rapport à l'horizontale.
Cette partie inclinée est de préférence mais non nécessairement constituée par un plan, éventuellement muni de rugosités.
Dans des réalisations préférées, le front aval présente encore une ou plusieurs des caractéristiques suivantes : ladite partie inclinée (AB) du front aval n'est émergée que d'une valeur voisine de la hauteur de la houle transmise. ladite partie inclinée (AB) du front aval est d'une largeur comprise entre 1/4 et 1/3 de la largeur totale de la digue. - la surface triangulaire délimitant la masse d'eau au repos sur ladite partie inclinée (AB) du front aval n'est pas inférieure à l'immersion de l'ouvrage multipliée par le huitième de la largeur de la digue . L'invention ajoute donc au principe de base connu des digues caisson à immersion partielle provoquant l'amortissement de la masse d'eau en mouvement sous la digue, une autre masse oscillante côté aval en opposition de phase avec celle en mouvement devant l'ouvrage afin d'amplifier le phénomène d'amortissement et par la même de diminuer les phénomènes de réflexion pouvant se développer dans le plan d'eau aval. Un deuxième aspect de l'invention concerne le front amont de la digue .
Il a déjà été proposé (EP 0 381 572) de munir le front amont d'une digue caisson fixe partiellement immergée d'une partie horizontale immergée pour limiter l'effet des vitesses verticales responsables de l'excitation du système, cette configuration qui concentre l'énergie de la vague sur la partie avant de l'ouvrage augmentant l'efficacité mais accroissant les efforts horizontaux (effets de claque sur le mur vertical amont) . De plus lorsque la vague arrive au niveau de l'avancée plane, sa cambrure devient extrême et un déferlement peut même se produire (efforts verticaux importants) .
Un but de l'invention est d'améliorer une telle configuration du front amont de la digue pour limiter les effets de claque, augmenter encore l'effet de chasse lors du retrait de la vague et augmenter également les effets tourbillonnaires .
On y parvient selon l'invention, en concevant le front amont avec une avancée horizontale immergée suivie d'une partie cambrée coupant la surface lisse de l'eau et s ' incurvant progressivement depuis l'avancée horizontale jusqu'à la verticale.
Dans un mode de réalisation préféré, on donne à cette partie cambrée du front amont une forme parabolique comme cela est réalisé typiquement sur les couronnements de digue ou protection de talus en extrémité de plage
(FR 1 505 485).
Dans un mode de réalisation perfectionnée, on donne à cette partie cambrée du front amont une forme épicycloïdique .
Un troisième aspect de l'invention concerne la partie centrale du caisson. Selon l'invention cette partie est munie d'une chambre d'atténuation 11 ouverte .vers le dessous de la digue et accessible à l'eau en mouvement sous la digue, de largeur au plus égale à 20% et de préférence au plus égale à 10% de la largeur totale (d'amont en aval) de la digue.
Dans une réalisation préférée, on dispose dans cette chambre des moyens pour dissiper l'énergie de la masse d'eau en mouvement vertical dans la chambre, par exemple des plaques perforées horizontales. Le but de ce troisième aménagement du caisson est de limiter les efforts verticaux s 'appliquant aux digues partielles, d'augmenter la dissipation de l'énergie de la houle incidente par effets tourbillonnaires et de diminuer le coefficient de transmission des digues partielles pour les faibles périodes de houle.
On a déjà décrit des digues accessibles à l'eau en mouvement sous la digue (FR 1 417 153 ; CH 559 289 ; DE 4 025 002) mais il s'agit de digues de type cloche et non de type caisson, ou de digues flottantes, dont la chambre ouverte sur le dessous de la digue n'a pas la même fonction que celle de la présente invention.
Il est essentiel pour la présente invention que l'entrée de la chambre ne concerne qu'une faible partie de la largeur de la digue, en sorte que le fonctionnement général de la digue ne soit pas modifié.
Il est avantageux de combiner dans une même digue les différents aspects de l'invention, réalisant ainsi un ouvrage efficace (notamment pour les grandes périodes) qui favorise la dissipation de l'énergie de la houle par effets tourbillonnaires, qui limite les efforts dans la structure (notamment pour les grandes périodes) et qui atténue les phénomènes de résonance possible de la digue avec le site à protéger . Une structure de digue conforme à la présente invention est particulièrement intéressante pour protéger un site où se pose un problème de grande profondeur.
Elle est toujours avantageuse par rapport à une digue parallélépipédique partielle en ce qui concerne la réduction de la quantité de matériaux de construction et l'encombrement de la digue, pour des performances aux moins égales .
L'invention sera encore expliquée ci-après, en référence aux figures des dessins joints, la description et les figures étant mises à profit pour faire apparaître diverses particularités de l'invention et des modes de réalisation qui sont décrits et représentés.
Pour pouvoir quantifier l'efficacité de la digue, nous introduisons les coefficients Kt et Kpm .
Kt est le coefficient de transmission de la houle lorsque la digue protège un plan d'eau infini ou bien une plage fortement amortissante, il n'y a alors pas d'interaction du site avec l'ouvrage. Kt=Ht/Hi avec Ht hauteur de la houle mesurée derrière l'ouvrage et Hi hauteur de la houle incidente.
Lorsque le site à protéger est totalement réfléchissant (Mur vertical d'un quai par exemple) et dans le cas où la distance entre la partie avale de l'ouvrage et ce mur vertical est égale à un nombre entier de la demie longueur d'onde de la houle incidente (voir figures 2 et 3) nous pouvons rencontrer pour la plupart des digues partielles (les digues parallélépipédiques par exemple) des différences de hauteurs d'eau dans le plan d'eau aval supérieures à celles mesurées en amont de la digue (Kt>>l) par mise en résonance du plan d'eau. Ce n'est jamais le cas de la présente invention qui réduit au minimum ce phénomène du fait de sa grande efficacité et du faibl--- pouvoir réflecteur du plan incliné aval. Afin de stigmatiser ce phénomène de résonance de l'ouvrage avec le site à protéger, nous avons introduit le coefficient Kpm d'agitation relative maximale que nous comparons au coefficient de référence Kt . Kpm = Hmaxi/Hi avec Hmaxi différence de hauteur maximale mesurée dans le plan d'eau aval en condition de résonance. Sur les figures : la figure 1 est une vue de principe en coupe transversale d'une digue présentant une configuration de front aval conforme à la présente invention ; les figures 2 et 3 sont des schémas du principe de résonance d'une digue avec un site à protéger ; les figures 4 et 5 sont des schémas du champ des vitesses moyennées sur une centaine de cycles de houle obtenus par velocimetrie laser respectivement avec une digue à fronts verticaux et une digue présentant un front aval incliné conforme à la présente invention ; les figures 6 et 7 sont des schémas du champ des vitesses instantanées respectivement dans le cas d'une digue à fronts verticaux et d'une digue présentant un front aval incliné conforme à la présente invention, lors de l'ascension de la vague sur le front amont de la digue; les figures 8 et 9 sont des schémas respectivement analogues à ceux des figures 6 et 7 lors du retrait de la vague sur le front amont de la digue; la figure 10 est un graphique comparatif des performances d'une digue à fronts verticaux amont et aval avec celle équipée d'un plan aval incliné de 35° et amont vertical, en condition de résonance (lorsque le site à protégé est fortement réfléchissant et qu'il est distant de n demie longueurs d'onde de l'ouvrage) . la figure 11 est un graphique montrant l'efficacité de l'inclinaison du front aval de la digue pour différentes périodes de houle le front amont étant vertical. la figure 12 est un schéma d'une digue présentant un front amont conforme à la présente invention; la figure 13 est un schéma d'une réalisation d'une digue présentant un front aval et un front amont conformes à la présente invention; la figure 14 est un schéma du champ des vitesses lors de l'ascension d'une vague sur le front amont dans le cas d'une digue conforme à la figure 13; la figure 15 est un schéma du champ de vitesses lors du retrait de la vague du front amont dans le cas d'une digue conforme à la figure 13; - la figure 16 est un graphique comparatif montrant l'amélioration du coefficient de transmission apporté par une digue présentant un front aval incliné et un front amont de forme épicycloïdique conformes à la présente invention par rapport à une digue à fronts verticaux, dans le cas où le plan d'eau aval est infini e: où le plan d'eau est en condition de résonance. Les digues comparées sont de même largeur et immergés de la même cote; la figure 17 est un graphique comparatif montrant l'amélioration du coefficient de transmission apporté par une digue présentant un front aval incliné et un front amont de forme épicycloïdique conformes à la présente invention par rapport à une digue à fronts verticaux, dans le cas où le plan d'eau aval est infini. Les digues comparées sont de même largeur et immergés de la même cote; - la figure 18 est un graphique analogue à celui de la figure 17 dans le cas où la présente invention est deux fois moins large que la digue à fronts verticau:-_ et pour même immersion; les figures 19 à 21 représentent différentes réalisations d'une digue conforme à la présente invention munie d'une chambre d'atténuation 11, et, la figure 22 représente la réalisation d'une digue conforme à la présente invention munie d'une chambre d'atténuation équipée de moyen de dissipation d'énergie.
La digue représentée sur la figure 1 est un caisson 1 partiellement immergé dans une étendue d'eau entre une zone amont 3 où se produit la houle, par exemple un port, qu'il faut protéger des effets de la houle.
Le caisson est maintenu rigidement à une cote d'immersion définie soit par une structure métallique ou en béton, soit par des pieux 2 verticaux ou inclinés. Une protection contre 1 ' affouillement de la base des éléments de soutènement peut s'avérer nécessaire si le fond est granulaire .
Ce type d'ouvrage peut être construit à terre sous forme de petits modules et mis en place par des engins de levage. Il peut être également construit dans de plus larges dimensions et être convoyé par flottaison. Il peut également être construit sur place à la manière des ponts.
Conformément à la présente invention le caisson présente un front aval 5 dont la partie AB concernée par le mouvement de l'eau est constituée par une paroi inclinée descendant vers l'aval suivant un angle α d'environ 35° par rapport à l'horizontale.
On a comparé (figures 4 à 9) , les champs des vitesses obtenus dans le cas d'une digue parallélépipédique à front aval vertical 5' (figures 4, 6, 8) et dans le cas d'une digue à front aval incliné 5 (figures 5, 7, 9) . On constate que les vitesses instantanées (fig. 7 et 9) et les vitesses moyennes (fig. 5) aux alentours de la partie aval de la digue sont beaucoup plus actives dans le cas d'une digue conforme à la présente invention.
Cette paroi inclinée 5 constitue un stockeur d'énergie potentielle : Lors de l'ascension de la vague côté amont la masse d'eau coté aval contribue à l'alimentation de la houle incidente. Les vitesses en aval de la digue de la présente invention (figures 6 et 7), prennent l'orientation de la paroi inclinée. On constate que la masse liquide au-dessus du plan incliné aval est fortement sollicitée lors de l'ascension de la vague coté amont et qu'elle permet un découplage partiel de masse d'eau en aval de l'ouvrage de la masse d'eau en mouvement sous le caisson.
Lors du retrait de la vague côté amont (figures 8 et 9), les vitesses horizontales sous le caisson se combinent sous forme de vitesses verticales ascendantes. Dans le cas d'un front perpendiculaire aval ces vitesses développent une cinématique de houle dans la masse d'eau aval. Dans le cas d'un front aval incliné, ces vitesses sont principalement réorientées parallèlement au profil aval à l'inverse du sens de la propagation de la houle.
La masse d'eau en mouvement sous le caisson est stockée sur la partie aval potentiellement lors du retrait de la vague de la partie amont puis restituée sous le caisson lors de l'ascension de la vague coté amont.
La paroi inclinée découple donc partiellement la masse d'eau côté aval de la masse d'eau située sous la digue, laquelle est l'excitateur du processus de génération de la houle côté aval . On a quantifié sur la figure 10 les phénomènes de résonance développés par un site fortement réfléchissant protégé par une paroi aval inclinée conformément à l'invention (courbe représentée par des losanges) -e par un front classique vertical 5 ' (courbe représentée par des carrés) , la période T de la houle étant représentée en abscisse .
La figue 11 est un graphique montrant l'évolution de la valeur Kt portée en ordonnée, en fonction de l'angle oc d'inclinaison de la paroi aval, pour des périodes T comprises entre 1,2 et 2 secondes (échelle réduite l/81ième) , soit 10 à 18 secondes réelles.
On voit sur cette figure que l'on commence à avoir une amélioration significative lorsque l'angle α est inférieur à 60° .
La figure 12 est le schéma d'un exemple de réalisation d'une digue constituée par un caisson 6 monté sur pieux 7 de façon à être partiellement immergé entre une zone amont 8 et une zone aval 9, ce caisson présentant conformément à la présente invention un front amont constitué par une partie plane 10a suivie d'une partie de courbure épicycloïdique 10b.
Lorsque la vague incidente frappe le front amont, la cambrure de la vague augmente fortement sur la paroi horizontale 10a du fait de la faible profondeur d'immersion. La vague se découpe en deux ondulations diminuant fortement la hauteur de fluctuation du niveau d'eau à l'avant de l'ouvrage.
La vague est ensuite canalisée sur la paroi de courbure épicycloïdique 10b, stockée sous forme d'énergie potentielle, puis restituée sous forme d'un fort courant horizontal dirigé vers l'amont (la forme épicycloïdique est la forme la plus optimisée pour accélérer le fluide) . Ce courant qui n'est pas en phase avec la houle, s'oppose à la nouvelle vague incidente (comme cela est schématisé sur la figure 15) . Cette opposition, pour une large gamme de périodes, peut générer un déferlement inverse en amont de l'ouvrage. De plus ces vitesses horizontales importantes reculent en amont l'influence des vitesses verticales responsables de la mise en. mouvement de la masse d'eau sous le caisson. Le caisson, par ce phénomène, se comporte comme un caisson à fronts verticaux plus large. Les améliorations dues à la forme du front aval et à celle du front amont se combinent avec synergie dans le cas d'une digue comportant à la fois un front aval incliné conformément à l'invention et un front amont 10 comportant une partie plane et une partie courbe conformément à l'invention, comme représenté sur la figure 13.
Les figures 14 et 15 sont des schémas des champs de vitesses obtenus avec une telle structure lors de l'ascension (figure 14) et du retrait (figure 15) de la vague coté amont . La figure 16 montre l'évolution de l'agitation du plan d'eau aval en fonction de la période pour deux configurations de site, le cas d'un site fortement réfléchissant (mur vertical d'un quai de port par exemple) et le cas d'un site fortement absorbant (plage de sable de faible pente) . Sur cette figure notre présente invention constituée des améliorations aval et amont (triangle dans le cas du site absorbant et croix dans le cas du site fortement réfléchissant) est comparée à une digue partielle parallélepipedique (losanges dans le cas du site absorbant et carré dans le cas du site fortement réfléchissant) .
La figure 17 montre l'évolution de la valeur Kt en fonction de la période dans le cas de l'invention présentant l'amélioration aval et amont (losanges) et dans le cas d'un caisson à parois verticales (carrés), ces deux digues partielles ayant même immersion, même largeur et protégeant un site fortement absorbant (plage de sable de faible pente) . La figure 18 est une comparaison analogue. La présente invention (losanges) est dans cet exemple deux fois moins large que l'ouvrage aux parois verticales (carrés).
Les figures 19, 20, 21 et 22 montrent différentes possibilités d'aménager une chambre centrale.
Conformément à l'invention la digue présente, entre son front amont 6 et son front aval 1, une chambre d'atténuation 11, ouverte vers le dessous du caisson pour être accessible à l'eau en mouvement sous le caisson, et de largeur au plus égale à 20% de la largeur de la digue, de préférence au plus égale à 10% de la largeur de la digue et de préférence au moins égale à 6% de la largeur de la digue .
Cette chambre est fermée vers le dessus (fig. 19) ou ouverte par des évents plus ou moins importants (fig. 20) vers le dessus.
Cette chambre peut séparer la digue en deux caissons 1 et 6, complètement indépendants et portés par des pieux distincts (fig. 21) . Le graphique de la figure 22 montre l'efficacité d'une telle chambre concernant la diminution des efforts verticau .
Les résultats de mesure d'effort à l'échelle l/52eme sur la digue décrite en figure 20 sont comparés à ceux obtenus sur cette même digue mais non munie de la présente invention (figure 13) .
Sur la figure 22, les Fzmax représentent les efforts verticaux maximaux positifs (dirigés vers le haut) pour la configuration de la digue avec chambre et sans chambre. Les Fzmin représentent les efforts verticaux maximaux négatifs (dirigés vers le bas) pour la configuration avec chambre et sans chambre. Dfz représente la différence des e fores négatifs et positifs. On constate que l'amélioration concernant la diminution des efforts verticaux, en installant une chambre, est importante surtout pour les efforts verticaux négatifs. Grâce à la présente invention ils peuvent être divisés par 2,3 dans le meilleur des cas testés et divisés par 1,05 dans le moins bon cas testé.
La présente invention ne détériore en rien le comportement de la digue au niveau du coefficient de transmission et au niveau des efforts horizontaux. Au contraire elle apporte une nette amélioration au niveau du coefficient de transmission pour les petites périodes de houle .
En créant une rupture de l'écoulement sous la digue, la chambre d'atténuation amplifie également l'absorption de l'énergie de la houle par la formation d'effets tourbillonnaires .
La chambre peut être munie de structures horizontales dissipatrices d'énergie, (figure 23) . La dissipation est obtenue en «cassant» les vitesses verticales qui sont générées dans la chambre.
Cet ajout permet d'augmenter l'efficacité de l'ouvrage au niveau de l'atténuation de la houle dans le plan aval.
Des plaques à trous disposées horizontalement semblent une bonne solution. Un assemblage de corps de petites dimensions emprisonnés dans ladite chambre est également une solution intéressante .
L'invention n'est pas limitée à une conformation particulière du front amont ou aval de la digue et les configurations représentées sur les figures ne sont données qu'à titre d'exemples uniquement, non limitatifs de la portée de l'invention. La digue incluant ces innovations peut être aménagée, de façon en soi connue,, pour constituer une chaussée supérieure, un quai, etc....
Les règles d'application et de dimensionnement général selon l'invention de la digue sont celles des digues partielles connues avec des applications possibles plus larges grâce au coefficient d'atténuation très amélioré. A coefficient de transmission équivalent, on peut donc réduire la largeur de ce type de digue et également alléger la construction du fait que les efforts dus à la houle sont nettement inférieurs (notamment pour les grandes périodes) .
Pour les digues partielles parallélépipédiques , on admet généralement les valeurs suivantes:
Profondeur d'immersion du fond par rapport au zéro hydro, minimum: l/5ième de la profondeur d'eau ou demie hauteur de la houle incidente maximale (houle centennale) , la plus importante de ces deux valeurs étant retenue.
Il n'est pas intéressant d'aller au-là du 1/3 de la hauteur d'eau sauf si la houle maximale l'impose.
La largeur minimale est liée à la longueur d'onde de la houle du large, et l'on admet généralement comme valeur minimale le 1/3 de cette longueur d'onde (associée à la période minimale) ou la moitié de la hauteur d'eau; la plus forte de ces deux valeurs étant utilisée comme valeur minimale .
Il faut noter que pour une profondeur d'immersion donnée et pour une houle donnée, le coefficient d'atténuation est toujours amélioré par l'augmentation de la largeur de la digue, mais il n'est pas économiquement ni techniquement justifié de chercher des coefficients d'atténuation inférieurs à 0.2 pour les houles maximales. Dans des réalisations préférées d'une digue comportant un front aval et un front amont selon 1 ' invention :
On retient comme valeurs générales de prédimensionnement : - méplat du front amont: 10% de B front amont: 40% de B - profil aval: 40% de B où B est la largeur maximale de la digue. Selon les cas, cette chambre est formée dans la partie aval de la digue.
L'invention n'est pas limitée aux modes de réalisation qui ont été décrits et qui peuvent être modifiés par adjonction ou suppression ou remplacement des moyens décrits par des moyens de structures différentes mais fonctionnellement équivalents.

Claims

REVENDICATIONS
1 • Digue fixe de type caisson (1) partiellement immergée entre une étendue d'eau amont (3) et une étendue d'eau aval (4) de façon à laisser l'eau circuler sous la digue, pour atténuer dans l'étendue d'eau située en aval, les effets de la houle qui se produit dans l'étendue d'eau située en amont, caractérisée en ce que la partie (AB) du front aval (5) qui est susceptible d'être concernée par le mouvement de l'eau sous l'effet de la houle est pour l'essentiel inclinée d'un angle compris entre 25 et 60° en pente descendante vers le plan d'eau aval, en sorte que l'eau qui passe sous la digue de l'amont vers l'aval lors du retrait de la vague côté amont soit stockée sur cette partie du front aval et soit restituée sous la digue vers l'amont, lors de la phase suivante d'ascension de la vague en amont de la digue .
2. Digue selon la revendication 1 dans laquelle ledit angle (α) est compris entre 25° et 40°.
_____ Digue selon la revendication 2 dans laquelle ledit angle (α) est compris entre 30° et 40°.
_____ Digue selon la revendication 3 dans laquelle ledit angle (α) est voisin de 35°.
5. Digue selon l'une des revendications 1 à 4, dans laquelle ladite partie (AB) du front aval est constituée par un plan incliné.
6. Digue selon l'une des revendications 1 à 5 dans laquelle ladite partie (AB) du front aval n'est émergée que d'une valeur voisine de la hauteur de la houle transmise.
7. Digue selon l'une des revendications 1 à 6 dans laquelle ladite partie (AB.) du front aval est d'une largeur comprise entre 1/4 et 1/3 de la largeur totale de la digue.
8. Digue selon l'une des revendications 1 à 7 dans laquelle la surface triangulaire délimitant la masse d'eau au repos sur la partie (AB) du front aval n'est pas inférieure à l'immersion de l'ouvrage multipliée par le huitième de la largeur de la digue.
9. Digue selon l'une des revendications 1 à 8 et dont le front amont (10) présente une avancée horizontale (10a) immergée suivie d'une partie cambrée (10b), coupant la surface libre de l'eau et s ' incurvant progressivement depuis l'avancée horizontale jusqu'à la verticale.
10. Digue selon la revendication 9, dans laquelle ladite partie cambrée (10b) est de forme parabolique.
11. Digue selon la revendication 9, dans laquelle ladite partie cambrée (10b) est de forme épicycloïdique.
12. Digue selon les revendications 1 à 11 qui comporte une chambre d'atténuation (11) ouverte vers le dessous de la digue, entre le front amont et le front aval de la digue, pour être accessible à l'eau en mouvement sous la digue, d'une largeur au plus égale à 20% de la largeur de la digue.
13. Digue selon la revendication 12, dont la chambre d'atténuation a une largeur au plus égale à 10% de la largeur totale de la digue.
14. Digue selon l'une des revendications 12 à 13 dont la chambre d'atténuation (11) a une largeur au moins égale à 6% de la largeur totale de la digue.
15. Digue selon la revendication 12 dont la chambre d'atténuation (11) a une largeur voisine de 8% de la largeur totale de la digue.
16. Digue selon l'une des revendications 12 à 15, dont la chambre d'atténuation (11) comporte des moyens pour dissiper l'énergie de la masse d'eau en mouvement vertical dans la chambre.
17. Digue selon la revendication 16, dont lesdits moyens sont constitués par des plaques perforées horizontales .
18. Digue selon la revendication 16, dont lesdits moyens sont constitués par un nombre important de corps de faibles dimensions emprisonnés dans ladite chambre.
19. Digue selon l'une des revendications 12 à 18 donc la chambre d'atténuation est munie d1 évents.
20. Digue selon l'une des revendications 1 à 19 dont les fronts amont et aval sont constitués par les deux faces opposées d'un même caisson (12).
21. Digue selon l'une des revendications 1 à 19 dont les fronts sont constitués par les deux faces opposées d'un groupe de deux caissons (1, 6) qui sont séparés, situés en vis à vis et portés par des pieux respectifs.
22. Digue selon l'une des revendications 1 à 21 et qui est portée par des pieux ou des colonnes gravitaires.
PCT/FR1997/002471 1997-01-03 1997-12-31 Perfectionnements aux digues fixes de type caisson partiellement immergees WO1998029610A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU57706/98A AU5770698A (en) 1997-01-03 1997-12-31 Improvements to fixed partially immersed caisson dikes
EP97953987A EP0956394B1 (fr) 1997-01-03 1997-12-31 Perfectionnements aux digues fixes de type caisson partiellement immergees

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR9700038A FR2758148B1 (fr) 1997-01-03 1997-01-03 Digue perfectionnee, du type partiellement immergee
FR97/00038 1997-01-03
FR97/00037 1997-01-03
FR9700037A FR2758147B1 (fr) 1997-01-03 1997-01-03 Perfectionnements aux digues partiellement immergees

Publications (1)

Publication Number Publication Date
WO1998029610A1 true WO1998029610A1 (fr) 1998-07-09

Family

ID=26233241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/002471 WO1998029610A1 (fr) 1997-01-03 1997-12-31 Perfectionnements aux digues fixes de type caisson partiellement immergees

Country Status (4)

Country Link
EP (1) EP0956394B1 (fr)
AU (1) AU5770698A (fr)
ES (1) ES2224295T3 (fr)
WO (1) WO1998029610A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081798A (fr) * 1953-07-31 1954-12-22 Perfectionnements aux ouvrages maritimes flottants
FR1417153A (fr) * 1964-07-24 1965-11-12 Transp Et De La Valorisation D Dispositif d'atténuation de la houle et de ses effets
FR1505485A (fr) * 1966-10-27 1967-12-15 Digues et ouvrages portuaires à haute résistance
CH559289A5 (en) * 1972-12-15 1975-02-28 Staempfli Alexandre John Harbour wall ie protecting mooring from the sea - is pile supported inverted asymmetrical leg diverging U of precast reinforced concrete elements
FR2334789A1 (fr) * 1975-12-10 1977-07-08 Moncade Noel La digue souple et permeable
US4502816A (en) * 1983-06-27 1985-03-05 Creter Vault Corp. Shoreline breakwater
EP0381572A1 (fr) * 1989-01-30 1990-08-08 GOUVERNEMENT MONEGASQUE représenté par LE SERVICE DES TRAVAUX PUBLICS MONEGASQUES (DIVISION DES TRAVAUX MARITIMES) Dispositif perfectionné d'atténuation de la houle
DE4025002C1 (en) * 1990-08-07 1991-09-26 Rudolf-Manfred 2083 Halstenbek De Segler Floating breakwater anchored to ground - has contact surface angled to incoming wave to catch and remove overflow wave
FR2729981A1 (fr) * 1995-01-31 1996-08-02 Doris Engineering Barriere de protection contre la houle
JPH08232235A (ja) * 1995-02-24 1996-09-10 Fujita Corp 消波型防波堤

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1081798A (fr) * 1953-07-31 1954-12-22 Perfectionnements aux ouvrages maritimes flottants
FR1417153A (fr) * 1964-07-24 1965-11-12 Transp Et De La Valorisation D Dispositif d'atténuation de la houle et de ses effets
FR1505485A (fr) * 1966-10-27 1967-12-15 Digues et ouvrages portuaires à haute résistance
CH559289A5 (en) * 1972-12-15 1975-02-28 Staempfli Alexandre John Harbour wall ie protecting mooring from the sea - is pile supported inverted asymmetrical leg diverging U of precast reinforced concrete elements
FR2334789A1 (fr) * 1975-12-10 1977-07-08 Moncade Noel La digue souple et permeable
US4502816A (en) * 1983-06-27 1985-03-05 Creter Vault Corp. Shoreline breakwater
EP0381572A1 (fr) * 1989-01-30 1990-08-08 GOUVERNEMENT MONEGASQUE représenté par LE SERVICE DES TRAVAUX PUBLICS MONEGASQUES (DIVISION DES TRAVAUX MARITIMES) Dispositif perfectionné d'atténuation de la houle
DE4025002C1 (en) * 1990-08-07 1991-09-26 Rudolf-Manfred 2083 Halstenbek De Segler Floating breakwater anchored to ground - has contact surface angled to incoming wave to catch and remove overflow wave
FR2729981A1 (fr) * 1995-01-31 1996-08-02 Doris Engineering Barriere de protection contre la houle
JPH08232235A (ja) * 1995-02-24 1996-09-10 Fujita Corp 消波型防波堤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 097, no. 001 31 January 1997 (1997-01-31) *

Also Published As

Publication number Publication date
AU5770698A (en) 1998-07-31
EP0956394B1 (fr) 2004-08-18
ES2224295T3 (es) 2005-03-01
EP0956394A1 (fr) 1999-11-17

Similar Documents

Publication Publication Date Title
EP1650355B1 (fr) Dispositif d'atténuation d'une houle
EP0434521B1 (fr) Déversoir évacuateur de crues pour barrages et ouvrages similaires
FR2669052A1 (fr) Dispositif de lutte contre l'erosion marine.
FR2967642A1 (fr) Dispositif d'eolienne offshore avec flotteur semi-submersible particulier
US20030072615A1 (en) Wave energy dissipater and beach renourishing system
EP0956394B1 (fr) Perfectionnements aux digues fixes de type caisson partiellement immergees
FR2758147A1 (fr) Perfectionnements aux digues partiellement immergees
FR2476712A1 (fr) Amortisseur de houles
FR2968020A1 (fr) Brise-lames flottant
EP1165894B1 (fr) Bloc de carapace a surface rugueuse
WO2018211094A1 (fr) Dispositif de protection du littoral contre les risques de submersion marine comprenant une face avant incurvee et digue de protection comprenant une pluralite de dispositfs de protection alignes
FR2693216A1 (fr) Barrière de protection contre la houle.
EP0815327B1 (fr) Dispositif attenuateur de houle
EP0381572B1 (fr) Dispositif perfectionné d'atténuation de la houle
FR2590629A1 (fr) Dispositif de dissipation de l'energi e d'un ecoulement liquide a surface libre, barrage et boucle d'essais hydrauliques utilisant ce dispositif
EP0346554B1 (fr) Structure atténuatrice de la houle
FR2729981A1 (fr) Barriere de protection contre la houle
EP3653793B1 (fr) Réduction du coefficient de réflexion d'une paroi verticale dans un port
WO2011114072A1 (fr) Dispositif de récupération de l'énergie des vagues, ensemble de récupération d'énergie et procédé correspondants
FR3139836A1 (fr) Ouvrage déversant, barrage hydraulique muni de celui-ci
FR2695666A1 (fr) Procédé et dispositif destinés à atténuer la houle.
FR3113292A1 (fr) Procédé et dispositif d’atténuation des vagues
WO2004016859A1 (fr) Dispositif de protection des cotes marines
FR2935149A1 (fr) Systeme d'attenuation de la houle en eau profonde
WO1992010398A1 (fr) Plate-forme semi-submersible a pontons poreux

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH GM GW HU ID IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZW AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997953987

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1997953987

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997953987

Country of ref document: EP