WO1998028800A1 - Detecteur de rayons x a transformation quantique directe - Google Patents

Detecteur de rayons x a transformation quantique directe Download PDF

Info

Publication number
WO1998028800A1
WO1998028800A1 PCT/DE1997/002967 DE9702967W WO9828800A1 WO 1998028800 A1 WO1998028800 A1 WO 1998028800A1 DE 9702967 W DE9702967 W DE 9702967W WO 9828800 A1 WO9828800 A1 WO 9828800A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray detector
group
semiconductor
semiconductor layer
diodes
Prior art date
Application number
PCT/DE1997/002967
Other languages
German (de)
English (en)
Inventor
Martin Hoheisel
Herbert Dittrich
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE19781487T priority Critical patent/DE19781487D2/de
Publication of WO1998028800A1 publication Critical patent/WO1998028800A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation

Definitions

  • the invention relates to an X-ray detector with direct quantum conversion with at least one semiconductor layer for generating electrical signals by absorption of X-rays, excitation of electrical charge carriers and extraction thereof, which has a first conductive layer as an electrode, on which at least one semiconductor layer is applied, on which there is a second conductive layer as an electrode, the electrodes being connected to a voltage source via feed lines, so that an electrical field is generated in the semiconductor layer which separates the electrical charge carriers, collects them in the electrodes and feeds them to a registration device via the feed lines.
  • Such an X-ray detector can consequently be used for the direct conversion of X-rays into electrical signals.
  • X-rays are first converted into light using a scintillator.
  • the light is then converted into electrical charges.
  • these charges are then read out onto a further scintillator as in the case of the solid-state matrix detector, as described in US Pat. No. 5,523,554, or as accelerated in the case of the generally known X-ray image intensifier.
  • the light generated there is captured by a camera. In these conversion processes, losses naturally occur that limit the maximum achievable quantum efficiency (DQE).
  • DQE maximum achievable quantum efficiency
  • the invention is based on the object of creating an X-ray detector of the type mentioned at the beginning with directly converting semiconductor materials, which has a high X-ray absorption with good spatial resolution.
  • the semiconductor is deposited using thin-film technology and the semiconductor layers contain at least one metallic element with an atomic number Z> 42, which is connected to at least one other element from the sixth group of the periodic table.
  • the choice of elements with a high atomic number ensures excellent X-ray absorption.
  • Mo, Ag, Cd, Sn, Sb, Te, W, Hg, Tl, Pb and / or Bi can be used as elements with an atomic number Z> 42 and as element from the sixth group of the periodic table S, Se and / or Te become.
  • FIG. 1 shows an X-ray diagnostic device according to the prior art
  • FIG. 2 shows the structure of an X-ray image converter according to the invention for use as an X-ray detector in the X-ray diagnostic device according to FIG. 1.
  • the x-ray tube 1 shows an X-ray diagnostic device with an X-ray tube 1, which is operated by a high-voltage generator 2.
  • the x-ray tube 1 emits an x-ray beam 3, which penetrates a patient 4 and falls on an x-ray detector 5 in a weakened manner as an x-ray image in accordance with the transparency of the patient 4.
  • the x-ray detector 5 converts the x-ray image into electrical signals, which are processed in an image system ⁇ connected to it and fed to a monitor 7 for reproducing the x-ray image.
  • the image system 6 can have a processing circuit, converter, differential stages and image memory in a known manner.
  • a metal electrode is applied to a substrate.
  • a diode made of one of the semiconductors according to the invention is deposited thereon.
  • a pn diode, a pin diode, a Schottky diode, an MIS diode can be produced using additional blocking layers or a heterocontact.
  • Another metal electrode forms the end.
  • the diodes are arranged in a matrix and switched on with switches Row and column lines connected. These switches can be designed as diodes or consist of thin-film transistors (TFT).
  • TFT thin-film transistors
  • Electrodes 14 and a TFT matrix 9 made of amorphous silicon (a-Si) and silicon nitride (Si 3 N 4 ) with the associated leads 10 are applied in a known manner to a glass substrate 8.
  • a first semiconductor layer 11 made of zinckenite (Pb 9 Sb 22 S 42 ) and a second semiconductor layer 12 made of bournonite (CuPbSbS 3 ) with a total thickness of 250 mg / cm 2 are applied in each case. This can be done, for example, by electron beam evaporation or by another method which is mentioned below.
  • These semiconductor layers 11 and 12 are structured photolithographically.
  • Upper electrodes 13 are then sputtered on from a metal, for example aluminum, titanium or chrome.
  • the two semiconductor layers 11 and 12 form a heterocontact, which is biased in the reverse direction during operation by a voltage source 17 connected to the electrodes 13 and 14 via leads 15 and 16.
  • a voltage source 17 connected to the electrodes 13 and 14 via leads 15 and 16.
  • an electrical field is generated in the semiconductor layers, which separates the electrical charge carriers, collects them in the electrodes 13 and 14 and feeds them to a registration device 18 via the leads 15 and 16.
  • the control and reading takes place as in known X-ray detectors made of amorphous silicon.
  • semiconductors from one or more of the following groups are used in particular. These substances occur naturally, such as the mineral boulangerite (Pb 5 Sb 4 S n ).
  • Molybdenite group substances such as Mo 2 S, Mo 2 Se, W 2 S or W 2 Se.
  • Antimonite group Substances of the composition A 2 X 3 , where A is an element of the group Sb, Bi, Sn and X is an element of the group S, Se.
  • Argyrodite group substances of the composition A 8 BX 6 , where A for an element from the group Ag, Cu, B is an element from the group Ge, Sn and X is an element from the group S, Se.
  • Fahlerz group substances of the composition A ⁇ 0 B 2 C 4 X ⁇ 3 , where A for an element from the group Cu, Ag, B an element from the group Cu, Fe, Zn, Cd, Pb, Hg, C an element from the group As , Sb, Bi, Te and X means an element of the group S, Se.
  • Sulfosal group substances of the composition A x B y X z , where A is an element from the group Pb, Cu, Ag, Hg, Tl, Fe, Mn, Sn, B is an element from the group As, Sb, Bi and X.
  • A is an element from the group Pb, Cu, Ag, Hg, Tl, Fe, Mn, Sn, B is an element from the group As, Sb, Bi and X.
  • Element of group S, Se, Te means.
  • the band gap of the above-mentioned semiconductors extends to energies of 2.2 eV. This fact ensures that diodes with low dark currents can be manufactured with reverse bias. However, this is necessary for operation as a detector.
  • the mobility of the charge carriers in the above-mentioned semiconductors was determined to be up to 40 cm 2 / Vs. This is it is possible to quickly extract the charge carriers generated from the semiconductor.
  • the above-mentioned semiconductors exist in nature as crystalline materials. However, it is possible to separate them using common thin-film technologies. This makes it possible to produce large-area semiconductor layers, which is essential for the feasibility of an X-ray detector that can be used for medical diagnostics.
  • detectors are also conceivable, such as those used for some applications, such as, for example, in computer tomography or nuclear medicine.
  • such detectors can be used for X-rays, minimally ionizing radiation ( ⁇ , e ⁇ , ß + ), ionizing particles (a, p + , heavy ions) and visible light.
  • Detectors can be suitable.
  • there is the good spatial resolution that is achieved with these materials in direct absorption can be enough.
  • the spatial resolution is not impaired by the semiconductor, so that one can practically reach the theoretical limit that is only determined by the reading.
  • Another advantage is the inexpensive manufacturing option using the common thin-film deposition processes.
  • the semiconductor layer can also be applied directly to the substrate and provided with coplanar contacts.
  • the semiconductor layer acts as a radiation-sensitive semiconductor resistor. By arranging an additional field electrode, a field defect transistor arrangement is also possible.
  • the semiconductor body can be formed as a crystalline or as an amorphous layer.
  • Polycrystalline layers are either deposited at higher temperatures or are produced by crystallizing the previously deposited amorphous layers by a thermal annealing treatment or a laser process.
  • Cathode sputtering also has high growth rates
  • the layer composition can be modified by adding gaseous substances to the sputtering gas. Close space sublimation, which is known from the CdTe solar cell production, also enables high deposition rates.
  • the screen printing process is particularly suitable for thicker layers, the components of the semiconductor layer to be formed being applied as a paste which is then homogenized by an annealing treatment.
  • the desired semiconductor layers can also be produced with the aid of spray pyrolysis.
  • sol-gel processes or electrochemical processes and galvanic deposition are also possible.
  • the semiconductor layer in the desired thickness in a first process step in order to then chemically or physically modify it in such a way that it obtains the optimum electronic properties. It can e.g. by thermal processes (tempering, rapid thermal processing), the layers being surrounded by a suitable atmosphere (e.g. forming gas).
  • a suitable atmosphere e.g. forming gas
  • the diodes In order to implement a row or area detector, the diodes must be arranged in a matrix and connected to switches on row and column lines. These switches can be designed as diodes or consist of thin-film transistors (TFT).
  • TFT thin-film transistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

L'invention concerne un détecteur de rayons X (5) comportant au moins une couche à semi-conducteur (1, 12) pour produire des signaux électriques par absorption de rayons X, excitation de porteurs électriques de charge et par extraction desdits porteurs. Ce détecteur présente une première couche conductrice sous forme d'électrode (14) sur laquelle est appliquée au moins une couche à semi-conducteur (11, 12) recouverte d'une seconde couche conductrice sous forme d'électrode (13). Les électrodes (13, 14) sont reliées à une source de tension (17) par l'intermédiaire de lignes électriques (15, 16), de manière à produire dans le couche à semi-conducteur un champ électrique qui sépare les porteurs électriques de charge, les réunit dans les électrodes (13, 14) et les achemine jusqu'à un dispositif enregistreur (18) par l'intermédiaire des lignes électriques (15, 16). Le semi-conducteur est séparé selon la technique des couches minces et les couches de semi-conducteur (11, 12) contiennent au moins un élément métallique d'un nombre atomique Z≥42, qui est lié à au moins un élément du sixième groupe de la classification périodique des éléments.
PCT/DE1997/002967 1996-12-20 1997-12-19 Detecteur de rayons x a transformation quantique directe WO1998028800A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19781487T DE19781487D2 (de) 1996-12-20 1997-12-19 Röntgendetektor mit direkter Quantenwandlung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19653534.4 1996-12-20
DE19653534 1996-12-20

Publications (1)

Publication Number Publication Date
WO1998028800A1 true WO1998028800A1 (fr) 1998-07-02

Family

ID=7815689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/002967 WO1998028800A1 (fr) 1996-12-20 1997-12-19 Detecteur de rayons x a transformation quantique directe

Country Status (2)

Country Link
DE (1) DE19781487D2 (fr)
WO (1) WO1998028800A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2033669A2 (fr) * 2007-09-06 2009-03-11 BIOTRONIK VI Patent AG Stent doté d'un corps de base en alliage biocorrodable
CN101728450B (zh) * 2009-11-18 2011-11-02 中国科学院上海技术物理研究所 高占空比碲镉汞长波红外光电导面阵探测器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437041A1 (fr) * 1989-12-06 1991-07-17 Xerox Corporation Détecteur de rayonnement à l'état solide
WO1993014418A1 (fr) * 1992-01-06 1993-07-22 The Regents Of The University Of Michigan Matrice de detecteurs a conversion en pixels, a panneau plat et a couche mince, destinee a l'imagerie numerique et a la dosimetrie en temps reel d'un rayonnement ionisant
US5510644A (en) * 1992-03-23 1996-04-23 Martin Marietta Corporation CDTE x-ray detector for use at room temperature

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0437041A1 (fr) * 1989-12-06 1991-07-17 Xerox Corporation Détecteur de rayonnement à l'état solide
WO1993014418A1 (fr) * 1992-01-06 1993-07-22 The Regents Of The University Of Michigan Matrice de detecteurs a conversion en pixels, a panneau plat et a couche mince, destinee a l'imagerie numerique et a la dosimetrie en temps reel d'un rayonnement ionisant
US5510644A (en) * 1992-03-23 1996-04-23 Martin Marietta Corporation CDTE x-ray detector for use at room temperature

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DITTRICH H ET AL.: "RESULTS ON NEW PHOTOVOLTAIC MATERIALS FROM SYSTEMATIC MINERALOGY", 13TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, vol. 2, 23 October 1995 (1995-10-23) - 27 October 1995 (1995-10-27), NICE, FRANCE, pages 1299 - 1302, XP002063601 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2033669A2 (fr) * 2007-09-06 2009-03-11 BIOTRONIK VI Patent AG Stent doté d'un corps de base en alliage biocorrodable
EP2033669A3 (fr) * 2007-09-06 2013-06-05 Biotronik VI Patent AG Stent doté d'un corps de base en alliage biocorrodable
CN101728450B (zh) * 2009-11-18 2011-11-02 中国科学院上海技术物理研究所 高占空比碲镉汞长波红外光电导面阵探测器

Also Published As

Publication number Publication date
DE19781487D2 (de) 1999-11-25

Similar Documents

Publication Publication Date Title
EP0662247B1 (fr) Procede rapide de realisation d'un semi-conducteur en chalcopyrite sur un substrat
DE69835851T2 (de) Verfahren zur Herstellung von dünnen Schichten aus Gruppe IB-IIIA-VIA Verbindungshalbleitern und Verfahren zur Herstellung eines photovoltäischen Bauelements
DE4333407C1 (de) Solarzelle mit einer Chalkopyritabsorberschicht
EP1153439B1 (fr) Structure à diodes, notamment destinée à des cellules solaires à couches minces
DE102013216406B4 (de) Strahlungsdetektionsplatte, Strahlungsbildgebungsvorrichtung und diagnostische Bildgebungsvorrichtung
EP2834852B1 (fr) Électrode arrière multicouche pour une cellule photovoltaïque en couches minces, utilisation de cette électrode pour la fabrication de cellules et de modules solaires en couches minces, cellules et modules photovoltaïques en couches minces dotés de l'électrode arrière multicouche, et procédé de fabrication correspondant
DE112012003297B4 (de) Deckschichten für verbesserte Kristallisation
DE3015706A1 (de) Solarzelle mit schottky-sperrschicht
EP2834851B1 (fr) Procédé de fabrication d'un électrode arrière multicouche pour une cellule photovoltaïque en couches minces, électrode arrière multicouches selon le procédé, cellule et module photovoltaïque en couches minces comprenant cet électrode arrière multicouche
EP1521308A1 (fr) Composant semiconducteur sphérique ou granulaire utilisé pour des cellules solaires et son procédé de fabrication; procédé de fabrication d'une cellule solaire avec ce composant semiconducteur et cellule solaire
DE102005010790A1 (de) Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
DE2944913A1 (de) Solarzelle mit amorphem siliziumkoerper
DE2903651A1 (de) Festkoerper-bildsensor
DE3308598A1 (de) Rueckreflektorsystem fuer sperrschicht-fotoelemente
DE102005047907A1 (de) Photovoltaische Zelle mit einem darin enthaltenen photovoltaisch aktiven Halbleitermaterial
DE1614768A1 (de) Fotokonduktiver Schirm fuer Bildaufnahmeroehren
DE2424488B2 (de) Bildaufnahmeroehren-speicherelektrode und verfahren zu deren herstellung
DE2945156A1 (de) Strahlungsempfindlicher schirm
DE10259258B4 (de) Verfahren zur Herstellung einer Verbindungshalbleiterschicht mit Alkalimetallzusatz
DE102012104616B4 (de) Verfahren zum Bilden einer Fensterschicht in einer Dünnschicht-Photovoltaikvorrichtung auf Cadmiumtelluridbasis
DE102009018877A1 (de) Röntgenstrahlungsdetektor zur Verwendung in einem CT-System
WO1998028800A1 (fr) Detecteur de rayons x a transformation quantique directe
DE102011102886A1 (de) Generatoren zur Direktumwandlung von Wärme und Licht in elektrische Energie unter Vermeidung der Thermalisierung von Ladungsträgern
DE19611996C1 (de) Solarzelle mit einer Chalkopyritabsorberschicht und Verfahren zu ihrer Herstellung
DE102008024539B3 (de) Strahlungswandler und dessen Verwendung insbesondere für die Röntgen-Computertomografie

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): DE US

WWE Wipo information: entry into national phase

Ref document number: 09331480

Country of ref document: US

REF Corresponds to

Ref document number: 19781487

Country of ref document: DE

Date of ref document: 19991125

WWE Wipo information: entry into national phase

Ref document number: 19781487

Country of ref document: DE