WO1998026104A1 - Method and device for producing a coating on a substrate - Google Patents

Method and device for producing a coating on a substrate Download PDF

Info

Publication number
WO1998026104A1
WO1998026104A1 PCT/FR1997/002117 FR9702117W WO9826104A1 WO 1998026104 A1 WO1998026104 A1 WO 1998026104A1 FR 9702117 W FR9702117 W FR 9702117W WO 9826104 A1 WO9826104 A1 WO 9826104A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
zone
particles
projection
heating
Prior art date
Application number
PCT/FR1997/002117
Other languages
French (fr)
Inventor
Christian Coddet
Han Lin Liao
Bernard Hansz
Original Assignee
Institut Polytechnique De Sevenans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Polytechnique De Sevenans filed Critical Institut Polytechnique De Sevenans
Priority to EP97947127A priority Critical patent/EP0954619B1/en
Priority to DE69710495T priority patent/DE69710495D1/en
Priority to AT97947127T priority patent/ATE213281T1/en
Publication of WO1998026104A1 publication Critical patent/WO1998026104A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the present invention relates to a method and a device for producing a coating on a substrate and, more particularly, producing thermal deposits on a substrate by means of molten particles which are animated with kinetic energy.
  • the coatings are generally obtained by spraying a powder or a mixture of powders onto the substrate to be coated, so as to give the said substrate properties of hardness, resistance to wear and / or to corrosion, good lubrication, or make them better conductors of electricity.
  • the powder or mixture of powders is sprayed onto the substrate by a technique known under the generic name of thermal spraying which is generally carried out in air or under low pressure by means of special devices known for example under the acronyms VPS (Vaccum Plasma Spray) , LPPS (Low Pressure Plasma Spray), CAPS (Controlled Atmosphere Plasma Spray ing), APS (Atmospheric plasma spraying), IPS (inert gas plasma spray ing) or HVOF (High Velocity oxyfuel spraying).
  • VPS Vacum Plasma Spray
  • LPPS Low Pressure Plasma Spray
  • CAPS Controlled Atmosphere Plasma Spray ing
  • APS Almospheric plasma spraying
  • IPS inert gas plasma spray ing
  • HVOF High Velocity oxyfuel spraying
  • the surface energies of the substrate / molten particles may be totally unsuitable, in particular when the energy at the surface of the substrate is low, which leads to poor adhesion of the molten particles to the substrate and / or poor cohesion of the deposit.
  • a major drawback is that the current techniques for preheating the substrate are totally unsuitable for substrates made up of large parts. In fact, it is difficult to preheat a large part in its entirety before thermal spraying, since there are rarely means suitable for carrying out such preheating.
  • Cooling techniques are also known either by air jet, or by spraying cryogenic fluid, or by spraying water, as described for example in EP-A-0 546 359 or DE-A-2 615 022 .
  • the aim of the present invention is to remedy the aforementioned drawbacks and to propose a method and a device for coating, by thermal spraying, parts of different structure and dimensions without it being necessary to adapt them to the type of substrate or part to be treat.
  • the subject of the present invention is a production method according to which particles of animated kinetic energy are projected onto a surface of a substrate which is previously heated, the method being characterized in that it consists in heating each zone of the substrate to be coated just before the impact of the particles, the rest of the substrate remaining at room temperature, and in cooling each said coated area immediately after the coating has been deposited, then in sequentially starting the previous operation, area after area, until that said surface is fully coated.
  • the local heating of the substrate is carried out with high energy means (flame, induction, laser, electron beam, plasma), immediately before the arrival of the particles so as to benefit from a high surface temperature at the time of l impact of the particles while minimizing the heat transfer in the substrate.
  • high energy means flame, induction, laser, electron beam, plasma
  • the cooling of the surface is carried out by energetic means, such as pulverized liquefied gases, immediately after the deposition of the particles in order to always minimize the heat transfer in the substrate.
  • the method according to the invention thus makes it possible to obtain an adherent, cohesive deposit, the residual stress level of which is greatly reduced compared to what is achieved with the methods of the prior art.
  • Another object of the present invention is a device allowing the implementation of the method, the device being characterized in that at least said heating and projection means are driven in a relative movement relative to the substrate, said means heating being arranged upstream of the particle projection means, so that each zone of the substrate to be coated is heated immediately before the deposition of the particles on said zone.
  • An advantage of the present invention is that by limiting the heated area of the substrate and keeping the rest of the substrate at the ambient temperature, the oxidation or nitriding of the substrate is avoided or greatly reduced during the projection of the particles.
  • Another advantage is better adhesion of the deposit due to the choice of the temperature of the impact zone on the substrate in relation to its surface energy. Indeed, depending on the nature and structure of the substrate, it is possible to select an appropriate heating temperature, so that the difference between the temperatures of the projected particles and of the substrate can be adjusted to a value which improves the adhesion of the particles on the substrate. Likewise, the internal stresses liable to develop in the substrate, as well as the porosity and microcracks, are greatly reduced due to the subsequent cooling which is carried out immediately after the deposition of the particles on the coated area.
  • the relative movement between the substrate and the heating, particle projection and cooling means is determined for example as a function of the dimensions of said substrate, although other considerations may be taken into account.
  • a first operating mode it is possible to keep the substrate fixed and to move each or all of the means if they are mounted in tandem in front of the fixed substrate, zone after zone, until the entire surface of the substrate is coated with the deposit desired.
  • the substrate always zone after zone, can be moved in front of the various aforementioned means.
  • FIG. 1 is a schematic view of a device according to the present invention for a rotating substrate
  • FIG. 2 is a top schematic view of the device according to the present invention for a fixed substrate
  • the method according to the invention consists in heating a determined surface area of a substrate to be coated with a deposit, then in spraying immediately after a powder or a mixture of powders onto said area. using thermal spraying means, then also cooling immediately after said coated area using cooling means known per se.
  • This sequence of operations can be carried out either by keeping the substrate fixed and by moving in a single block said heating, projection and cooling means which constitute a so-called coating assembly, or by holding said coating assembly fixed and by moving the substrate, either by moving the substrate and the coating assembly, in directions and with displacement speeds (rotation or translation) which are defined so that an area is treated, as specified above, before that the consecutive area is not treated in turn, until the total covering of the surface of the substrate to be coated with the desired thickness of the deposit.
  • the displacements can be vertical and / or horizontal or even in rotation, the combination of displacements being chosen as a function in particular of the dimensions of the substrate, of its shape or of any other parameter linked directly or not to the substrate.
  • the device for implementing the method according to the invention comprises an assembly 1 constituted by at least one support 2 which moves relatively with respect to a substrate 3 to be coated with a deposit, and on which are mounted at least means 4 for thermal projection, heating means 5, mounted upstream from the projection means 4, and cooling means 6 arranged downstream from the projection means 4.
  • the substrate 3 is constituted by a part 7 of large dimensions and of cylindrical shape; the external face 8 must be coated with a metallic deposit, the components of which are placed in the reserve of a torch, for example of the CDS type sold by the company PLASMA TECHNIK, the torch 4 projecting the components in the form of powders with great energy. and under a high temperature on said face 8.
  • the three elements 4 to 6 of the assembly are located in the same horizontal plane or at least their ends, so that the area of the external face 8 is treated successively by each of the three elements.
  • each zone 9 to be treated are defined by the impact surface of the projection means 4, which impact surface is on the order of a few square centimeters and rather on the order of a square centimeter.
  • the assembly 1 moves vertically so as to sweep successive zones 9 and located at different levels, the various successive zones being located on fictitious sinusoids as and when the passes made by the device.
  • the area to be treated 9 is heated to a temperature of the order of 400 ° C.
  • the heated zone is brought opposite the projection torch 4.
  • the projection temperature is of the order of 1100 ° C. , the temperature difference between the molten powder and the part is reduced, thus allowing better spreading of the deposit.
  • the zone 9 is brought opposite at least one nozzle through which liquid CO2 or another cryogenic fluid is sprayed.
  • This rapid cooling immediately after the projection, in fact constitutes a quench which solidifies the deposit and makes it adhere better to the part 3, while preserving its structure.
  • the cooling temperature is lower than the oxidation and / or deformation temperature of the substrate, thus avoiding oxidation of said part and / or of the metallic components of the powder.
  • the substrate consists for example of a fixed plate 12.
  • the support 2 is, in this case mobile in translation along the arrow 13.
  • the heating means 5 heat a given zone 16 to bring it to a predetermined temperature before it passes in front of the projection means 4 to receive a deposit. While part of the zone 15 is coated, the cooling means 6 cool the zone 14 which has already been coated.
  • This is automatically programmed by a program which takes into account all the parameters of the deposit and which organizes the sequence of operations with the appropriate relative speeds between the device 2 and the part to be treated.
  • the system is either inverted or brought back to the starting side by an external path.
  • coated parts are obtained which have a very good corrosion resistance, as evidenced by the figures in Table 3 and a very high hardness (Table 4).
  • Table 3 presents by way of example the results obtained for a coating of the NiCrBSi type deposited on an aluminum substrate using on the one hand a conventional method and on the other hand the method according to the invention. These are corrosion test results carried out in normally aerated H2SO42N medium with a potential sweep speed of 1 mVsec ⁇ l. It is clearly seen, in this case, that the intensity of the passive current with the conventional coating does not allow protection against corrosion whereas with the process according to the invention the coating behaves as well or even better than stainless steel .
  • Table 4 presents the microhardness results of this same deposit obtained under 300 g of filler.
  • the method according to the invention makes it possible to obtain results which are superior to those of a solid alloy, which conventional methods do not allow.
  • HVOF projection torch For a substrate constituted by a cylinder with a diameter of 250 mm and one meter in length, the operating conditions are as follows: HVOF projection torch:
  • the device according to the invention is space-saving and can be transported to make a repair on site if necessary, in particular for very heavy and large parts.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

The invention concerns a method and a device for producing a coating on a substrate whereby molten particles driven by kinetic energy are sprayed on a previously heated surface of a substrate and it is characterised in that it consists in heating each zone of the substrate to be coated immediately before the impact of the particles, the rest of the substrate being at room temperature, and in cooling each said coated zone immediately after the coating has been applied then in repeating sequentially the previous operation on each successive zone until said surface is completely coated.

Description

Procédé et dispositif pour la réalisation d'un revêtement sur un substratMethod and device for producing a coating on a substrate
La présente invention concerne un procédé et un dispositif pour la réalisation d'un revêtement sur un substrat et, plus particulièrement, la réalisation de dépôts thermiques sur un substrat au moyen de particules en fusion qui sont animées d'une énergie cinétique.The present invention relates to a method and a device for producing a coating on a substrate and, more particularly, producing thermal deposits on a substrate by means of molten particles which are animated with kinetic energy.
Les revêtements sont généralement obtenus par projection d'une poudre ou d'un mélange de poudres sur le substrat à revêtir, de manière à conférer au dit substrat des propriétés de dureté, de résistance à l'usure et/ou à la corrosion, de bonne lubrification, ou de les rendre meilleurs conducteurs d'électricité.The coatings are generally obtained by spraying a powder or a mixture of powders onto the substrate to be coated, so as to give the said substrate properties of hardness, resistance to wear and / or to corrosion, good lubrication, or make them better conductors of electricity.
La poudre ou le mélange de poudres sont projetés sur le substrat par une technique connue sous la dénomination générique de projection thermique qui est effectuée généralement sous air ou sous basse pression au moyen de dispositifs spéciaux connus par exemple sous les sigles VPS (Vaccum Plasma Spray), LPPS (Low Pressure Plasma Spray), CAPS (Controlled Atmosphère Plasma Spray ing), APS (Atmospheric plasma spraying), IPS (inert gas plasma spray ing) ou HVOF (High Velocity oxyfuel spraying).The powder or mixture of powders is sprayed onto the substrate by a technique known under the generic name of thermal spraying which is generally carried out in air or under low pressure by means of special devices known for example under the acronyms VPS (Vaccum Plasma Spray) , LPPS (Low Pressure Plasma Spray), CAPS (Controlled Atmosphere Plasma Spray ing), APS (Atmospheric plasma spraying), IPS (inert gas plasma spray ing) or HVOF (High Velocity oxyfuel spraying).
Après préparation du substrat par toute technique appropriée telle que le sablage et avant la projection proprement dite, il est usuel de préchauffer la pièce ou substrat à traiter et ce, afin d'améliorer les caractéristiques de la couche déposée sur ledit substrat comme par exemple l'adhérence, l'état de contrainte.After preparation of the substrate by any suitable technique such as sandblasting and before the actual projection, it is usual to preheat the part or substrate to be treated, in order to improve the characteristics of the layer deposited on said substrate such as for example the adhesion, the state of constraint.
Une telle technique est décrite dans les documents (DE 42 20 063 - FR 2 681 538 - J-03050169A, J-01 139749A).Such a technique is described in the documents (DE 42 20 063 - FR 2 681 538 - J-03050169A, J-01 139749A).
Toutefois, le chauffage préalable du substrat à traiter à l'atmosphère ambiante induit un risque d'oxydation du dépôt et/ou du substrat du fait de la réactivité du substrat et/ou des particules de poudre projetées vis-à-vis de l'air. Il est donc nécessaire de définir de manière très précise les conditions du dépôt en maintenant constamment un équilibre thermique en modifiant les déplacements relatifs des organes en mouvement les uns par rapport aux autres et en utilisant des moyens de refroidissement. Cependant, de tels procédés de réalisation d'un dépôt métallique, céramique, céramométallique ou organométallique, présentent de nombreux inconvénients. Parmi ces derniers, on peut citer une forte amplitude de variation de la température du substrat au point ou zone d'impact des particules au cours du dépôt, une température non homogène de la couche de particules déposées, ce qui peut induire des tensions internes dans ladite couche, la variation de température étant due à une maîtrise imparfaite des conditions de chauffage ; de même, les énergies superficielles substrat/particules en fusion peuvent être totalement inadaptées notamment lorsque l'énergie à la surface du substrat est faible, ce qui conduit à une mauvaise adhérence des particules en fusion sur le substrat et/ou une mauvaise cohésion du dépôt.However, the prior heating of the substrate to be treated to the ambient atmosphere induces a risk of oxidation of the deposit and / or of the substrate due to the reactivity of the substrate and / or of the powder particles projected with respect to the air. It is therefore necessary to very precisely define the conditions of the deposition by constantly maintaining a thermal equilibrium by modifying the relative displacements of the moving members with respect to each other and by using cooling means. However, such methods of producing a metallic, ceramic, ceramometallic or organometallic deposit have many drawbacks. Among these, there may be mentioned a large amplitude of variation of the temperature of the substrate at the point or zone of impact of the particles during the deposition, a nonhomogeneous temperature of the layer of deposited particles, which can induce internal tensions in said layer, the temperature variation being due to an imperfect control of the heating conditions; similarly, the surface energies of the substrate / molten particles may be totally unsuitable, in particular when the energy at the surface of the substrate is low, which leads to poor adhesion of the molten particles to the substrate and / or poor cohesion of the deposit. .
Un inconvénient majeur est que les techniques actuelles de préchauffage du substrat sont totalement inadaptées pour des substrats constitués par des pièces de grandes dimensions. En effet, il est difficile de préchauffer une pièce de grandes dimensions dans sa totalité avant la projection thermique, car on dispose rarement de moyens adaptés pour réaliser un tel préchauffage.A major drawback is that the current techniques for preheating the substrate are totally unsuitable for substrates made up of large parts. In fact, it is difficult to preheat a large part in its entirety before thermal spraying, since there are rarely means suitable for carrying out such preheating.
Un autre inconvénient réside dans le fait que lorsque la température de refroidissement n'est pas contrôlée de façon satisfaisante, on aboutit à une couche de revêtement ou de dépôt non homogène.Another drawback lies in the fact that when the cooling temperature is not satisfactorily controlled, the result is a non-homogeneous coating or deposit layer.
Une solution pour remédier à cet inconvénient et applicable sur des pièces notamment de grandes dimensions est de les traiter mécaniquement avant la projection thermique puis de construire la couche de revêtement par de nombreux passages successifs, chaque passage produisant une mince partie de la couche de revêtement, une telle solution permettant de réduire les tensions internes se développant lors de la projection des particules et de les stabiliser à des valeurs acceptables.One solution to remedy this drawback, which can be applied to particularly large parts, is to treat them mechanically before thermal spraying and then to build the coating layer by numerous successive passes, each pass producing a thin part of the coating layer, such a solution making it possible to reduce the internal tensions developing during the projection of the particles and to stabilize them at acceptable values.
On connaît aussi des techniques de refroidissement soit par jet d'air, soit par pulvérisation de fluide cryogénique, soit par pulvérisation d'eau, comme cela est décrit par exemple dans EP-A-0 546 359 ou DE-A-2 615 022.Cooling techniques are also known either by air jet, or by spraying cryogenic fluid, or by spraying water, as described for example in EP-A-0 546 359 or DE-A-2 615 022 .
Toutes ces techniques consistent à maintenir l'ensemble de la pièce à traiter à basse température, de manière à éviter la déformation ou la décomposition du substrat, mais ne permettent pas d'augmenter l'adhérence de la couche de revêtement ni sa densité.All these techniques consist in keeping the entire part to be treated at low temperature, so as to avoid deformation or decomposition of the substrate, but do not increase the adhesion of the coating layer or its density.
La présente invention a pour but de remédier aux inconvénients précités et de proposer un procédé et un dispositif pour revêtir, par projection thermique, des pièces de structure et de dimensions différentes sans qu'il soit nécessaire de les adapter au type de substrat ou pièce à traiter.The aim of the present invention is to remedy the aforementioned drawbacks and to propose a method and a device for coating, by thermal spraying, parts of different structure and dimensions without it being necessary to adapt them to the type of substrate or part to be treat.
La présente invention a pour objet un procédé de réalisation selon lequel on projette des particules en fusion animées d'une énergie cinétique sur une surface d'un substrat qui est préalablement chauffée, le procédé étant caractérisé en ce qu'il consiste à chauffer chaque zone du substrat à revêtir juste avant l'impact des particules, le reste du substrat demeurant à la température ambiante, et à refroidir chaque dite zone revêtue immédiatement après le dépôt du revêtement puis à recommencer séquentiellement la précédente opération, zone après zone, jusqu'à ce que ladite surface soit totalement revêtue.The subject of the present invention is a production method according to which particles of animated kinetic energy are projected onto a surface of a substrate which is previously heated, the method being characterized in that it consists in heating each zone of the substrate to be coated just before the impact of the particles, the rest of the substrate remaining at room temperature, and in cooling each said coated area immediately after the coating has been deposited, then in sequentially starting the previous operation, area after area, until that said surface is fully coated.
Le chauffage local du substrat est effectué avec un moyen à haute énergie (flamme, induction, laser, faisceau d'électrons, plasma), immédiatement avant l'arrivée des particules de manière à bénéficier d'une température élevée en surface au moment de l'impact des particules tout en minimisant le transfert thermique dans le substrat. De même, le refroidissement de la surface est réalisé par des moyens énergiques, tels que des gaz liquéfiés pulvérisés, immédiatement après le dépôt des particules afin de minimiser toujours le transfert thermique dans le substrat.The local heating of the substrate is carried out with high energy means (flame, induction, laser, electron beam, plasma), immediately before the arrival of the particles so as to benefit from a high surface temperature at the time of l impact of the particles while minimizing the heat transfer in the substrate. Likewise, the cooling of the surface is carried out by energetic means, such as pulverized liquefied gases, immediately after the deposition of the particles in order to always minimize the heat transfer in the substrate.
Le procédé selon l'invention permet ainsi d'obtenir un dépôt adhérent, cohésif et dont le niveau de contraintes résiduelles est fortement réduit par rapport à ce qui est réalisé avec les procédés de l'art antérieur.The method according to the invention thus makes it possible to obtain an adherent, cohesive deposit, the residual stress level of which is greatly reduced compared to what is achieved with the methods of the prior art.
Un autre objet de la présente invention est un dispositif permettant la mise en oeuvre du procédé, le dispositif étant caractérisé en ce qu'au moins lesdits moyens de chauffage et de projection sont animés d'un mouvement relatif par rapport au substrat, lesdits moyens de chauffage étant disposés en amont des moyens de projection de particules, de sorte que chaque zone du substrat à revêtir soit chauffée immédiatement avant le dépôt des particules sur ladite zone.Another object of the present invention is a device allowing the implementation of the method, the device being characterized in that at least said heating and projection means are driven in a relative movement relative to the substrate, said means heating being arranged upstream of the particle projection means, so that each zone of the substrate to be coated is heated immediately before the deposition of the particles on said zone.
Un avantage de la présente invention réside dans le fait qu'en limitant la zone chauffée du substrat et en maintenant le reste du substrat à la température ambiante, on évite ou on diminue très fortement l'oxydation ou la nitruration du substrat pendant la projection des particules.An advantage of the present invention is that by limiting the heated area of the substrate and keeping the rest of the substrate at the ambient temperature, the oxidation or nitriding of the substrate is avoided or greatly reduced during the projection of the particles.
Un autre avantage est une meilleure adhérence du dépôt du fait du choix de la température de la zone d'impact sur le substrat en relation avec son énergie superficielle. En effet, en fonction de la nature et de la structure du substrat, il est possible de sélectionner une température de chauffage appropriée, de sorte que la différence entre les températures des particules projetées et du substrat peut être ajustée à une valeur qui améliore l'adhérence des particules sur le substrat. De même, les contraintes internes susceptibles de se développer dans le substrat, ainsi que la porosité et les microfissures, sont fortement diminuées en raison du refroidissement subséquent qui est effectué immédiatement après le dépôt des particules sur la zone revêtue.Another advantage is better adhesion of the deposit due to the choice of the temperature of the impact zone on the substrate in relation to its surface energy. Indeed, depending on the nature and structure of the substrate, it is possible to select an appropriate heating temperature, so that the difference between the temperatures of the projected particles and of the substrate can be adjusted to a value which improves the adhesion of the particles on the substrate. Likewise, the internal stresses liable to develop in the substrate, as well as the porosity and microcracks, are greatly reduced due to the subsequent cooling which is carried out immediately after the deposition of the particles on the coated area.
Les actions combinées du chauffage de la zone avant dépôt et du refroidissement de la même zone immédiatement après le dépôt, permettent de mieux maîtriser le dépôt proprement dit.The combined actions of heating the area before deposition and cooling the same area immediately after deposition allow better control of the deposition itself.
Par ailleurs, le mouvement relatif entre le substrat et les moyens de chauffage, de projection de particules et de refroidissement, est déterminé par exemple en fonction des dimensions dudit substrat, bien que d'autres considérations puissent être prises en compte. Dans un premier mode de fonctionnement, on peut maintenir fixe le substrat et déplacer chacun ou tous les moyens s'ils sont montés en tandem devant le substrat fixe, zone après zone, jusqu'à ce que toute la surface du substrat soit revêtue par le dépôt souhaité. Mais selon un deuxième mode de fonctionnement, on peut déplacer le substrat, toujours zone après zone, devant les divers moyens précités.Furthermore, the relative movement between the substrate and the heating, particle projection and cooling means, is determined for example as a function of the dimensions of said substrate, although other considerations may be taken into account. In a first operating mode, it is possible to keep the substrate fixed and to move each or all of the means if they are mounted in tandem in front of the fixed substrate, zone after zone, until the entire surface of the substrate is coated with the deposit desired. However, according to a second mode of operation, the substrate, always zone after zone, can be moved in front of the various aforementioned means.
D'autres avantages et caractéristiques ressortiront mieux à la lecture de la description d'un mode de réalisation préféré de l' invention, ainsi que des dessins annexés sur lesquels :Other advantages and characteristics will emerge more clearly on reading the description of a preferred embodiment of the invention, as well as the appended drawings in which:
- la figure 1 est une vue schématique d'un dispositif selon la présente invention pour un substrat en rotation,FIG. 1 is a schematic view of a device according to the present invention for a rotating substrate,
- la figure 2 est une vue de dessus et schématique du dispositif selon la présente invention pour un substrat fixe,FIG. 2 is a top schematic view of the device according to the present invention for a fixed substrate,
Le procédé selon l'invention consiste à chauffer une zone de surface déterminée d'un substrat à revêtir d'un dépôt, puis à projeter immédiatement après une poudre ou un mélange de poudres sur ladite zone à l'aide de moyens de projection thermique, puis à refroidir aussi immédiatement après ladite zone revêtue à l'aide de moyens de refroidissement connus en soi. Cette séquence d'opérations peut être effectuée soit en maintenant fixe le substrat et en déplaçant d'un seul bloc lesdits moyens de chauffage, de projection et de refroidissement qui constituent un ensemble dit de revêtement, soit en maintenant fixe ledit ensemble de revêtement et en déplaçant le substrat, soit en déplaçant le substrat et l'ensemble de revêtement, dans des directions et avec des vitesses de déplacement (rotation ou translation) qui sont définies de telle sorte qu'une zone soit traitée, comme précisé ci-dessus, avant que la zone consécutive ne soit traitée à son tour, et ce, jusqu'au recouvrement total de la surface du substrat à revêtir avec l'épaisseur désirée du dépôt.The method according to the invention consists in heating a determined surface area of a substrate to be coated with a deposit, then in spraying immediately after a powder or a mixture of powders onto said area. using thermal spraying means, then also cooling immediately after said coated area using cooling means known per se. This sequence of operations can be carried out either by keeping the substrate fixed and by moving in a single block said heating, projection and cooling means which constitute a so-called coating assembly, or by holding said coating assembly fixed and by moving the substrate, either by moving the substrate and the coating assembly, in directions and with displacement speeds (rotation or translation) which are defined so that an area is treated, as specified above, before that the consecutive area is not treated in turn, until the total covering of the surface of the substrate to be coated with the desired thickness of the deposit.
Bien évidemment, les déplacements peuvent être verticaux et/ou horizontaux ou encore en rotation, la combinaison des déplacements étant choisie en fonction notamment des dimensions du substrat, de sa forme ou de tout autre paramètre lié directement ou non au substrat.Obviously, the displacements can be vertical and / or horizontal or even in rotation, the combination of displacements being chosen as a function in particular of the dimensions of the substrate, of its shape or of any other parameter linked directly or not to the substrate.
Le dispositif de mise en oeuvre du procédé selon l'invention comprend un ensemble 1 constitué par au moins un support 2 qui se déplace de façon relative par rapport à un substrat 3 à revêtir d'un dépôt, et sur lequel sont montés au moins des moyens 4 de projection thermique, des moyens de chauffage 5, montés en amont des moyens de projection 4, et des moyens de refroidissement 6 disposés en aval des moyens de projection 4.The device for implementing the method according to the invention comprises an assembly 1 constituted by at least one support 2 which moves relatively with respect to a substrate 3 to be coated with a deposit, and on which are mounted at least means 4 for thermal projection, heating means 5, mounted upstream from the projection means 4, and cooling means 6 arranged downstream from the projection means 4.
Dans le mode de réalisation de la figure 1 , le substrat 3 est constitué par une pièce 7 de grandes dimensions et de forme cylindrique ; la face externe 8 doit être revêtue d'un dépôt métallique dont les composants sont disposés dans la réserve d'un chalumeau par exemple du type CDS vendu par la société PLASMA TECHNIK, le chalumeau 4 projetant les composants sous forme de poudres avec une grande énergie et sous une forte température sur ladite face 8. Les trois éléments 4 à 6 de l'ensemble sont situés dans un même plan horizontal ou à tout le moins leurs extrémités, de sorte que la zone de la face externe 8 soit traitée successivement par chacun des trois éléments.In the embodiment of FIG. 1, the substrate 3 is constituted by a part 7 of large dimensions and of cylindrical shape; the external face 8 must be coated with a metallic deposit, the components of which are placed in the reserve of a torch, for example of the CDS type sold by the company PLASMA TECHNIK, the torch 4 projecting the components in the form of powders with great energy. and under a high temperature on said face 8. The three elements 4 to 6 of the assembly are located in the same horizontal plane or at least their ends, so that the area of the external face 8 is treated successively by each of the three elements.
Les dimensions de chaque zone 9 à traiter sont définies par la surface d'impact des moyens de projection 4, laquelle surface d'impact est de l'ordre de quelques centimètres carrés et plutôt de l'ordre du centimètre carré.The dimensions of each zone 9 to be treated are defined by the impact surface of the projection means 4, which impact surface is on the order of a few square centimeters and rather on the order of a square centimeter.
Dans le dispositif de la figure 1 et en raison des dimensions de la pièce 7 qui se déplace avec une vitesse de rotation déterminée et dans le sens de la flèche 10, l'ensemble 1 se déplace verticalement de manière à balayer des zones 9 successives et situées à des niveaux différents, les diverses zones successives étant situées sur des sinusoïdes fictives au fur et à mesure des passes effectuées par le dispositif.In the device of FIG. 1 and due to the dimensions of the part 7 which moves with a determined rotational speed and in the direction of the arrow 10, the assembly 1 moves vertically so as to sweep successive zones 9 and located at different levels, the various successive zones being located on fictitious sinusoids as and when the passes made by the device.
On pourrait, si cela s'avérait nécessaire ou préférable, déterminer un mouvement relatif différent entre le dispositif et la pièce 7 de manière à réaliser le dépôt sur une bande circonférentielle 11 et de traiter ladite pièce 7, bande après bande, mais en gardant la même séquence d'opérations chauffage-projection-refroidissement ainsi que cela fut indiqué précédemment à propos du procédé. Dans une réalisation selon la figure 1 , la zone à traiter 9 est chauffée à une température de l'ordre de 400°C.One could, if this proved necessary or preferable, determine a different relative movement between the device and the part 7 so as to deposit it on a circumferential strip 11 and to treat said part 7, strip after strip, but keeping the same sequence of heating-spraying-cooling operations as indicated above in connection with the process. In an embodiment according to FIG. 1, the area to be treated 9 is heated to a temperature of the order of 400 ° C.
Immédiatement après le chauffage et comme indiqué ci-dessus, la zone chauffée est amenée en regard de la torche de projection 4. Comme la zone est déjà portée à une température donnée et que la température de projection est de l'ordre de 1100°C, on diminue l'écart en température entre la poudre en fusion et la pièce, permettant ainsi un meilleur étalement du dépôt.Immediately after heating and as indicated above, the heated zone is brought opposite the projection torch 4. As the zone is already brought to a given temperature and the projection temperature is of the order of 1100 ° C. , the temperature difference between the molten powder and the part is reduced, thus allowing better spreading of the deposit.
Dans une autre étape, et immédiatement après le dépôt, la zone 9 est amenée en regard d'au moins une buse à travers laquelle est projeté du CO2 liquide ou un autre fluide cryogénique. Ce refroidissement rapide, immédiatement après la projection, constitue en fait une trempe qui solidifie le dépôt et le fait mieux adhérer à la pièce 3, en préservant sa structure. De préférence, la température de refroidissement est inférieure à la température d'oxydation et/ou de déformation du substrat évitant ainsi une oxydation de ladite pièce et/ou des composants métalliques de la poudre.In another step, and immediately after deposition, the zone 9 is brought opposite at least one nozzle through which liquid CO2 or another cryogenic fluid is sprayed. This rapid cooling, immediately after the projection, in fact constitutes a quench which solidifies the deposit and makes it adhere better to the part 3, while preserving its structure. Preferably, the cooling temperature is lower than the oxidation and / or deformation temperature of the substrate, thus avoiding oxidation of said part and / or of the metallic components of the powder.
La séquence des opérations qui vient d'être décrite est effectuée de manière continue depuis le chauffage jusqu'au refroidissement.The sequence of operations which has just been described is carried out continuously from heating to cooling.
Diverses manières de revêtir la pièce 3 peuvent être mises en oeuvre. Dans un autre mode, on peut ne faire qu'une passe de quelques microns sur chaque zone et revêtir la face externe 8 d'une première couche, puis recommencer les mêmes opérations autant de fois que nécessaire jusqu'à l'obtention de l'épaisseur finale du dépôt, chaque couche constituant alors une sous-couche pour la couche suivante.Various ways of coating the part 3 can be implemented. In another mode, it is possible to make only a pass of a few microns over each zone and to coat the external face 8 with a first layer, then repeat the same operations as many times as necessary until the final thickness of the deposit is obtained, each layer then constituting an under-layer for the next layer.
Dans le dispositif de la figure 2, le substrat est constitué par exemple par une plaque 12 fixe. Le support 2 est, dans ce cas mobile en translation suivant la flèche 13.In the device of FIG. 2, the substrate consists for example of a fixed plate 12. The support 2 is, in this case mobile in translation along the arrow 13.
De la même manière que précédemment à propos de la figure 1 les moyens de chauffage 5 chauffent une zone donnée 16 pour la porter à une température prédéterminée avant qu'elle passe devant les moyens de projection 4 pour recevoir un dépôt. Pendant qu'une partie de la zone 15 est revêtue, les moyens de refroidissement 6 refroidissent la zone 14 qui a déjà été revêtue. Cela est programmé automatiquement par un programme qui prend en compte tous les paramètres du dépôt et qui organise la séquence des opérations avec les vitesses relatives appropriées entre le dispositif 2 et la pièce à traiter. A chaque extrémité du substrat 12, le système est soit inversé soit ramené du côté du départ par un chemin extérieur.In the same way as previously with respect to FIG. 1, the heating means 5 heat a given zone 16 to bring it to a predetermined temperature before it passes in front of the projection means 4 to receive a deposit. While part of the zone 15 is coated, the cooling means 6 cool the zone 14 which has already been coated. This is automatically programmed by a program which takes into account all the parameters of the deposit and which organizes the sequence of operations with the appropriate relative speeds between the device 2 and the part to be treated. At each end of the substrate 12, the system is either inverted or brought back to the starting side by an external path.
Grâce à la présente invention, on obtient des pièces revêtues qui présentent une très bonne tenue à la corrosion, comme l'attestent les chiffres du tableau 3 et une très forte dureté (tableau 4). Le tableau 3 présente à titre d'exemple les résultats obtenus pour un revêtement du type NiCrBSi déposé sur un substrat en aluminium en utilisant d'une part une méthode conventionnelle et d'autre part le procédé selon l'invention. Il s'agit de résultats de tests de corrosion réalisés en milieu H2SO42N normalement aéré avec une vitesse de balayage en potentiel de 1 mVsec~l . On voit nettement, dans ce cas, que l'intensité du courant passif avec le revêtement conventionnel ne permet pas une protection contre la corrosion alors qu'avec le procédé selon l'invention le revêtement se comporte aussi bien voire mieux qu'un acier inoxydable.Thanks to the present invention, coated parts are obtained which have a very good corrosion resistance, as evidenced by the figures in Table 3 and a very high hardness (Table 4). Table 3 presents by way of example the results obtained for a coating of the NiCrBSi type deposited on an aluminum substrate using on the one hand a conventional method and on the other hand the method according to the invention. These are corrosion test results carried out in normally aerated H2SO42N medium with a potential sweep speed of 1 mVsec ~ l. It is clearly seen, in this case, that the intensity of the passive current with the conventional coating does not allow protection against corrosion whereas with the process according to the invention the coating behaves as well or even better than stainless steel .
Le tableau 4 présente les résultats en microdureté de ce même dépôt obtenus sous 300 g de charge. Le procédé selon l'invention permet d'obtenir des résultats supérieurs à ceux d'un alliage massif, ce que ne permettent pas les procédés conventionnels.Table 4 presents the microhardness results of this same deposit obtained under 300 g of filler. The method according to the invention makes it possible to obtain results which are superior to those of a solid alloy, which conventional methods do not allow.
A titre d'exemple et pour un substrat constitué par un cylindre de diamètre 250 mm et d'un mètre de longueur, les conditions opératoires sont les suivantes : torche de projection HVOF :By way of example and for a substrate constituted by a cylinder with a diameter of 250 mm and one meter in length, the operating conditions are as follows: HVOF projection torch:
- méthane 220 1/minute - 02 440 1/minute- methane 220 1 / minute - 0 2 440 1 / minute
- gaz poudre 15 1/minute- gas powder 15 1 / minute
- poudre de FeNiCrBSi 75 g/minute brûleur- FeNiCrBSi powder 75 g / minute burner
02/C2 H2 1000 1/minute largeur de flamme 50 mm température de chauffage 300 °C buse0 2 / C 2 H 2 1000 1 / minute flame width 50 mm heating temperature 300 ° C nozzle
- C02 50 kg/heure- C0 2 50 kg / hour
- diamètre 25 mm- diameter 25 mm
- température de refroidissement ambiante- ambient cooling temperature
- vitesse de rotation du cylindre 200 t/minute - déplacement torche projection 1 m/minute- cylinder rotation speed 200 t / minute - projection torch movement 1 m / minute
Avec les paramètres de dépôt ci-dessus, on a obtenu un revêtement de 0,6 mm d'épaisseur et d'une dureté supérieure à 850 Hv (dureté Vickers), la porosité du revêtement étant invisible avec un grossissement 1000 d'un microscope optique et qui est, en tout état de cause, inférieure à 1 % .With the above deposition parameters, a coating 0.6 mm thick and with a hardness greater than 850 Hv (Vickers hardness) was obtained, the porosity of the coating being invisible with a 1000 magnification of a microscope. optical and which is, in any event, less than 1%.
Le dispositif selon l'invention est peu encombrant et peut être transporté pour faire une réparation sur site si besoin était, notamment pour les pièces très lourdes et de grandes dimensions. The device according to the invention is space-saving and can be transported to make a repair on site if necessary, in particular for very heavy and large parts.
TABLEAU 3TABLE 3
Figure imgf000011_0001
Figure imgf000011_0001
TABLEAU 4TABLE 4
Figure imgf000011_0002
Figure imgf000011_0002

Claims

REVENDICATIONS
1. Procédé pour la réalisation d'un revêtement sur un substrat, du type selon lequel on projette des particules en fusion animées d'une énergie cinétique sur une surface d'un substrat qui est préalablement chauffée, caractérisé en ce qu'il consiste à chauffer chaque zone du substrat à revêtir sur une épaisseur très réduite, juste avant l'impact des particules, le reste du substrat étant à la température ambiante, et à refroidir chaque dite zone revêtue immédiatement après le dépôt du revêtement, la température de refroidissement étant inférieure à la température d' oxydation et de déformation du substrat, puis à recommencer séquentiellement la précédente opération, zone après zone, jusqu'à ce que ladite surface soit totalement revêtue.1. Method for producing a coating on a substrate, of the type according to which molten particles animated with kinetic energy are projected onto a surface of a substrate which is previously heated, characterized in that it consists of heating each zone of the substrate to be coated to a very reduced thickness, just before the impact of the particles, the rest of the substrate being at room temperature, and to cool each said zone coated immediately after the coating is deposited, the cooling temperature being below the oxidation and deformation temperature of the substrate, then to repeat the previous operation sequentially, zone after zone, until said surface is completely coated.
2. Procédé selon la revendication 1 , caractérisé en ce que la zone qui est chauffée est sensiblement égale à la surface d'impact des particules.2. Method according to claim 1, characterized in that the zone which is heated is substantially equal to the impact surface of the particles.
3. Procédé selon les revendications 1 ou 2, caractérisé en ce que la température de chauffage dépend de la nature du substrat. .3. Method according to claims 1 or 2, characterized in that the heating temperature depends on the nature of the substrate. .
4. Procédé selon la revendication 1 , caractérisé en ce que les moyens de refroidissement sont constitués par une projection d'un fluide cryogénique tel que du C02 liquide.4. Method according to claim 1, characterized in that the cooling means consist of a projection of a cryogenic fluid such as liquid C0 2 .
5. Procédé selon la revendication 1 , caractérisé en ce que les moyens de chauffage et de projection de particules sont animés d'un mouvement relatif par rapport au substrat, le pas du mouvement relatif étant égal à la surface de la zone à revêtir.5. Method according to claim 1, characterized in that the heating means and of projection of particles are animated by a relative movement relative to the substrate, the pitch of the relative movement being equal to the surface of the area to be coated.
6. Dispositif pour la mise en oeuvre du procédé selon les revendications 1 à 5, du type comprenant des moyens de chauffage (5), des moyens de projection thermique de particules (4) et des moyens de refroidissement (6), lesdits moyens de chauffage et de projection étant animés d'un mouvement relatif par rapport au substrat (3), caractérisé en ce que lesdits moyens de chauffage (5) sont disposés en amont des moyens de projection (4), de sorte que chaque zone (9) chauffée soit disposée immédiatement avant son passage sous les moyens de projection, ladite zone chauffée et revêtue après la projection de particules passant immédiatement sous les moyens de refroidissement, la température de refroidissement étant inférieure à la température d'oxydation et de déformation du substrat (3). 6. Device for implementing the method according to claims 1 to 5, of the type comprising heating means (5), means for thermal projection of particles (4) and cooling means (6), said means for heating and projection being moved relative to the substrate (3), characterized in that said heating means (5) are arranged upstream of the projection means (4), so that each zone (9) heated is disposed immediately before its passage under the projection means, said heated and coated area after the projection of particles passing immediately under the cooling means, the cooling temperature being lower than the oxidation and deformation temperature of the substrate (3).
7. Dispositif selon la revendication 6, caractérisé en ce que les moyens de refroidissement sont animés du même dit mouvement relatif par rapport au substrat.7. Device according to claim 6, characterized in that the cooling means are driven by the same said relative movement relative to the substrate.
8. Dispositif selon les revendications 6 ou 7, caractérisé en ce que les températures de chauffage et de refroidissement sont choisies en fonction de la nature du substrat et des particules projetées. 8. Device according to claims 6 or 7, characterized in that the heating and cooling temperatures are chosen according to the nature of the substrate and of the projected particles.
PCT/FR1997/002117 1996-12-09 1997-11-24 Method and device for producing a coating on a substrate WO1998026104A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP97947127A EP0954619B1 (en) 1996-12-09 1997-11-24 Method and device for producing a coating on a substrate
DE69710495T DE69710495D1 (en) 1996-12-09 1997-11-24 METHOD AND DEVICE FOR PRODUCING A COATING ON A SUBSTRATE
AT97947127T ATE213281T1 (en) 1996-12-09 1997-11-24 METHOD AND DEVICE FOR PRODUCING A COATING ON A SUBSTRATE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9615092A FR2756756B1 (en) 1996-12-09 1996-12-09 PROCESS AND DEVICE FOR PRODUCING A COATING ON A SUBSTRATE
FR96/15092 1996-12-09

Publications (1)

Publication Number Publication Date
WO1998026104A1 true WO1998026104A1 (en) 1998-06-18

Family

ID=9498468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1997/002117 WO1998026104A1 (en) 1996-12-09 1997-11-24 Method and device for producing a coating on a substrate

Country Status (5)

Country Link
EP (1) EP0954619B1 (en)
AT (1) ATE213281T1 (en)
DE (1) DE69710495D1 (en)
FR (1) FR2756756B1 (en)
WO (1) WO1998026104A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712962A1 (en) * 2005-04-12 2006-10-18 Air Products and Chemicals, Inc. Thermal deposition coating method
US8293035B2 (en) 2006-10-12 2012-10-23 Air Products And Chemicals, Inc. Treatment method, system and product
US9200356B2 (en) 2006-08-28 2015-12-01 Air Products And Chemicals, Inc. Apparatus and method for regulating cryogenic spraying
CN116988061A (en) * 2023-09-27 2023-11-03 太原科技大学 Nickel-based superalloy and surface modification method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006061977A1 (en) * 2006-12-21 2008-06-26 Forschungszentrum Jülich GmbH Method and apparatus for thermal spraying
US20190033138A1 (en) * 2017-07-28 2019-01-31 United Technologies Corporation Processes and tooling for temperature controlled plasma spray coating
US20190078463A1 (en) * 2017-09-08 2019-03-14 United Technologies Corporation Segmented Ceramic Coatings and Methods

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE510038A (en) *
GB191415960A (en) * 1914-07-03 1915-07-05 Reginald Keble Morcom An Improved Process of and Apparatus for Applying Coatings to Various Surfaces or Materials.
DE821903C (en) * 1950-08-12 1951-11-22 Karl Schoenbacher Dr Ing Method of manufacturing bearing shells
FR1347716A (en) * 1962-10-09 1964-01-04 A method of applying a sprayed metal to a heated surface made of another metal and article thus obtained
DE2028050A1 (en) * 1970-06-08 1971-12-16 Metallgesellschaft Ag Process for the production of corrosion- and wear-resistant metallic coatings by spraying
DE2615022B1 (en) * 1976-04-07 1977-07-21 Agefko Kohlensaeure Ind Method of coating a surface by means of a jet of heated gas and molten material
WO1985004121A1 (en) * 1984-03-12 1985-09-26 Commissariat A L'energie Atomique Treatment of a surface of a part and utilization of said treatment to improve the adhesion of a coating deposited on the part particularly by hot projection
JPS6247470A (en) * 1985-08-23 1987-03-02 Toshiba Corp Formation of thermally sprayed coating on inside surface of cylinder
JPS63218272A (en) * 1987-03-06 1988-09-12 Hideo Nagasaka Method and device for thermal spraying
WO1990012122A1 (en) * 1989-04-04 1990-10-18 Cis Friuli Method for superficial treatment of high temperature resistance tubes and tubes so treated
EP0580534A1 (en) * 1992-07-23 1994-01-26 INSTITUT POLYTECHNIQUE DE SEVENANS(Etablissement Public à caractère scientifique, culturel et professionnel) Method and apparatus for pretreating and coating a surface

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE510038A (en) *
GB191415960A (en) * 1914-07-03 1915-07-05 Reginald Keble Morcom An Improved Process of and Apparatus for Applying Coatings to Various Surfaces or Materials.
DE821903C (en) * 1950-08-12 1951-11-22 Karl Schoenbacher Dr Ing Method of manufacturing bearing shells
FR1347716A (en) * 1962-10-09 1964-01-04 A method of applying a sprayed metal to a heated surface made of another metal and article thus obtained
DE2028050A1 (en) * 1970-06-08 1971-12-16 Metallgesellschaft Ag Process for the production of corrosion- and wear-resistant metallic coatings by spraying
DE2615022B1 (en) * 1976-04-07 1977-07-21 Agefko Kohlensaeure Ind Method of coating a surface by means of a jet of heated gas and molten material
WO1985004121A1 (en) * 1984-03-12 1985-09-26 Commissariat A L'energie Atomique Treatment of a surface of a part and utilization of said treatment to improve the adhesion of a coating deposited on the part particularly by hot projection
JPS6247470A (en) * 1985-08-23 1987-03-02 Toshiba Corp Formation of thermally sprayed coating on inside surface of cylinder
JPS63218272A (en) * 1987-03-06 1988-09-12 Hideo Nagasaka Method and device for thermal spraying
WO1990012122A1 (en) * 1989-04-04 1990-10-18 Cis Friuli Method for superficial treatment of high temperature resistance tubes and tubes so treated
EP0580534A1 (en) * 1992-07-23 1994-01-26 INSTITUT POLYTECHNIQUE DE SEVENANS(Etablissement Public à caractère scientifique, culturel et professionnel) Method and apparatus for pretreating and coating a surface

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 242 (C - 438) 7 August 1987 (1987-08-07) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 011 (C - 558) 11 January 1989 (1989-01-11) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712962A1 (en) * 2005-04-12 2006-10-18 Air Products and Chemicals, Inc. Thermal deposition coating method
KR100849912B1 (en) * 2005-04-12 2008-08-04 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Thermal deposition coating method and apparatus
US8715772B2 (en) 2005-04-12 2014-05-06 Air Products And Chemicals, Inc. Thermal deposition coating method
US9200356B2 (en) 2006-08-28 2015-12-01 Air Products And Chemicals, Inc. Apparatus and method for regulating cryogenic spraying
US8293035B2 (en) 2006-10-12 2012-10-23 Air Products And Chemicals, Inc. Treatment method, system and product
CN116988061A (en) * 2023-09-27 2023-11-03 太原科技大学 Nickel-based superalloy and surface modification method thereof
CN116988061B (en) * 2023-09-27 2023-12-19 太原科技大学 Nickel-based superalloy and surface modification method thereof

Also Published As

Publication number Publication date
DE69710495D1 (en) 2002-03-21
EP0954619B1 (en) 2002-02-13
FR2756756B1 (en) 1999-01-15
EP0954619A1 (en) 1999-11-10
FR2756756A1 (en) 1998-06-12
ATE213281T1 (en) 2002-02-15

Similar Documents

Publication Publication Date Title
FR2642672A1 (en) APPARATUS AND METHOD FOR SPRAYING UNDER PLASMA BY AN AXIAL FLOW LASER
CA2726237C (en) Manufacture of a portion of a metal part using the mig method with pulsed current and wire
EP1785650B1 (en) Manufacturing method of a labyrinth knife edge seal, thermomechanical part and turbomachine comprising such a seal
EP0592309B1 (en) Process for nitriding a titanium alloy workpiece and device for spraying nitrogen and inert gas
EP2129810B1 (en) Method for coating a substrate and metal alloy vacuum deposition facility
FR2458973A1 (en) METHOD AND APPARATUS FOR SPRAYING MATERIAL ON A PLASMA ARC SUBSTRATE
FR2762667A1 (en) HEAT TREATMENT DEVICE AND METHOD
FR2636198A1 (en) NOZZLE FOR PLASMA TORCH AND METHOD FOR INTRODUCING POWDER IN PLASMA TORCH
FR2893358A1 (en) THERMOMECHANICAL PIECE OF TURBOMACHINE FOR REVOLUTION AROUND A LONGITUDINAL AXIS, COMPRISING AN ANNULAR LECHETTE, AND METHOD FOR MANUFACTURING THE SAME
EP0954619B1 (en) Method and device for producing a coating on a substrate
FR2978070A1 (en) Repairing turbine engine part e.g. blade, comprises forming preform by selective melting of powder containing base material, maintaining preform in part by laser pointing, and degreasing and/or pickling a surface of preform to be brazed
EP1350861A1 (en) Process for fabrication and regeneration of sputtering targets
CA1051288A (en) Method and apparatus for fusibly bonding a coating metal powder to a metal article
US20110229665A1 (en) Thermal spray coating for track roller frame
EP0896639A1 (en) Method and installation for metallizing cast-iron pipes
FR2630752A1 (en) FLAME SPRAYING PROCESS FOR POWDER MATERIALS AND FLAME SPRAYING APPARATUS FOR CARRYING OUT SAID METHOD
EP0599737B1 (en) Build-up procedure on a work piece by plasma with transferred arc
FR2598157A1 (en) PROCESS FOR PRODUCING PLASMA DEPOSITS EXTENDED AND OF HIGH QUALITY
EP1616041A1 (en) Flame covering method and corresponding device
CH617499A5 (en) Support for electromagnetic brake or clutch
EP4051826A1 (en) Method for compacting an anti-corrosive paint of a turbine engine part
WO1995007768A1 (en) Method for the production of composite materials or coatings and system for implementing it
CA2930180A1 (en) Integrated sintering process for microcracking and erosion resistance of thermal barriers
FR2558850A1 (en) Process and device for coating a long product by spraying with a liquid coating material
EP1471162A1 (en) Process for obtaining a flexo-adaptive thermal barrier coating

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997947127

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997947127

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997947127

Country of ref document: EP