EP0954619B1 - Method and device for producing a coating on a substrate - Google Patents

Method and device for producing a coating on a substrate Download PDF

Info

Publication number
EP0954619B1
EP0954619B1 EP97947127A EP97947127A EP0954619B1 EP 0954619 B1 EP0954619 B1 EP 0954619B1 EP 97947127 A EP97947127 A EP 97947127A EP 97947127 A EP97947127 A EP 97947127A EP 0954619 B1 EP0954619 B1 EP 0954619B1
Authority
EP
European Patent Office
Prior art keywords
substrate
zone
cooling
heating
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97947127A
Other languages
German (de)
French (fr)
Other versions
EP0954619A1 (en
Inventor
Christian Coddet
Han Lin Liao
Bernard Hansz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut Polytechnique de Sevenans
Original Assignee
Institut Polytechnique de Sevenans
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Polytechnique de Sevenans filed Critical Institut Polytechnique de Sevenans
Publication of EP0954619A1 publication Critical patent/EP0954619A1/en
Application granted granted Critical
Publication of EP0954619B1 publication Critical patent/EP0954619B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying

Definitions

  • the present invention relates to a method and a device for production of a coating on a substrate and, more particularly, the making thermal deposits on a substrate using particles in fusion which are animated by kinetic energy.
  • the coatings are generally obtained by spraying a powder or a mixture of powders on the substrate to be coated, so as to confer on said substrate properties of hardness, resistance to wear and / or corrosion, good lubrication, or make them better conductors electricity.
  • the powder or powder mixture is sprayed onto the substrate by a technique known under the generic name of projection thermal which is generally carried out in air or under low pressure at by means of special devices known for example by the acronyms VPS (Vaccum Plasma Spray), LPPS (Low Pressure Plasma Spray), CAPS (Controlled Atmosphere Plasma Spraying), APS (Atmospheric plasma spraying), IPS (inert gas plasma spraying) or HVOF (High Velocity oxyfuel spraying).
  • VPS Vacum Plasma Spray
  • LPPS Low Pressure Plasma Spray
  • CAPS Controlled Atmosphere Plasma Spraying
  • APS Almospheric plasma spraying
  • IPS inert gas plasma spraying
  • HVOF High Velocity oxyfuel spraying
  • a major drawback is that current techniques for substrate preheating are totally unsuitable for substrates made up of large parts. Indeed, it is difficult to preheat a large room in its entirety before thermal spraying, because we rarely have suitable means for perform such preheating.
  • Another disadvantage is that when the cooling temperature is not satisfactorily controlled, results in a non-homogeneous coating or deposit layer.
  • a solution to remedy this drawback and applicable on particularly large parts is to treat them mechanically before thermal spraying then build the layer of coating with many successive passes, each pass producing a thin part of the coating layer, such a solution making it possible to reduce the internal tensions developing during the projection of particles and stabilize them at acceptable values.
  • JP-A-63218272 a method of depositing on a substrate and a device for implementing this method comprising preheating means, thermal spraying means of particles and cooling means.
  • This document does not specify the temperatures used according to the process supposed to improve the adhesion of the substrate and its resistance and decrease porosity.
  • the deposit obtained is not homogeneous.
  • the object of the present invention is to remedy the drawbacks mentioned above and to propose a method and a device for coating, by thermal spraying, parts of different structure and dimensions without the need to adapt them to the type of substrate or part to be treated.
  • the subject of the present invention is a method for producing a coating on a substrate, as defined in claim 1.
  • the local heating of the substrate is carried out with a means to high energy (flame, induction, laser, electron beam, plasma), immediately before the arrival of the particles so as to benefit from high surface temperature at the time of impact of the particles while minimizing heat transfer in the substrate.
  • a means to high energy flame, induction, laser, electron beam, plasma
  • cooling of the surface is achieved by energetic means, such as gases liquefied spray, immediately after deposition of the particles in order to always minimize heat transfer in the substrate.
  • the method according to the invention thus makes it possible to obtain a deposit adherent, cohesive and with a high residual stress level reduced compared to what is achieved with the methods of the prior art.
  • Another object of the present invention is a device allowing the implementation of the method, the device being as defined in claim 5.
  • An advantage of the present invention lies in the fact that in limiting the heated area of the substrate and keeping the rest of the substrate at the room temperature, oxidation is greatly avoided or reduced or nitriding the substrate during the projection of the particles.
  • Another advantage is better adhesion of the deposit due to the choice of the temperature of the impact zone on the substrate in relation to its superficial energy. Indeed, depending on the nature and the structure of the substrate, it is possible to select a heating temperature appropriate, so the difference between the particle temperatures projected and substrate can be adjusted to a value which improves the adhesion of the particles on the substrate.
  • the relative movement between the substrate and the means heating, particle projection and cooling is determined for example depending on the dimensions of said substrate, although others considerations can be taken into account.
  • a first mode of operation we can keep the substrate fixed and move each or all the means if they are mounted in tandem in front of the fixed substrate, zone after area, until the entire surface of the substrate is coated with the deposit wish.
  • a second operating mode we can move the substrate, always zone after zone, in front of the various aforementioned means.
  • the method according to the invention consists in heating an area of determined surface of a substrate to be coated with a deposit, then to be projected immediately after a powder or mixture of powders on said area to using thermal spraying means and then to cool as well immediately after said coated area using means of cooling known per se.
  • This sequence of operations can be performed either by holding the substrate fixed and moving in one piece said heating, spraying and cooling means which constitute a so-called covering assembly, either by maintaining said coating set and moving the substrate either by moving the substrate and coating set, in directions and with velocities of displacement (rotation or translation) which are defined so that an area is treated, as specified above, before the area will not be processed in turn, until the total recovery of the surface of the substrate to be coated with the desired thickness of the deposit.
  • the displacements can be vertical and / or horizontal or even in rotation, the combination of displacements being chosen according in particular to the dimensions of the substrate, its shape or any other parameter linked directly or not to the substrate.
  • the device for implementing the method according to the invention includes a set 1 consisting of at least one support 2 which moves relatively with respect to a substrate 3 to be coated with a deposit, and on which are mounted at least means 4 of thermal projection, heating means 5, mounted upstream of the projection means 4, and cooling means 6 arranged downstream of the projection means 4.
  • the substrate 3 is constituted by a part 7 of large dimensions and of cylindrical shape; the external face 8 must be coated with a metallic deposit, the components of which are arranged in the reserve of a torch, for example of the CDS type sold by the company PLASMA TECHNIK, the torch 4 projecting the components in the form of powders with high energy and strong temperature on said face 8.
  • the three elements 4 to 6 of the assembly are located in the same horizontal plane or at least their ends, of so that the area of the external face 8 is treated successively by each of the three elements.
  • each zone 9 to be treated are defined by the impact surface of the projection means 4, which impact surface is on the order of a few square centimeters and rather on the order of a centimeter square.
  • assembly 1 moves vertically so as to scan successive zones 9 and located at different levels, the various successive zones being located on fictitious sinusoids as and as the passes made by the device.
  • the area to be treated 9 is heated to a temperature of the order of 400 ° C.
  • the heated zone is brought opposite the projection torch 4.
  • the zone is already brought to a given temperature and that the temperature of projection is around 1100 ° C, we decrease the temperature difference between the molten powder and the part, thus allowing better spreading of the deposit.
  • the zone 9 is brought opposite at least one nozzle through which liquid CO 2 or another cryogenic fluid is sprayed.
  • This rapid cooling immediately after the projection, in fact constitutes a quench which solidifies the deposit and makes it adhere better to the part 3, while preserving its structure.
  • the cooling temperature is lower than the oxidation and / or deformation temperature of the substrate, thus preventing oxidation of said part and / or of the metallic components of the powder.
  • the substrate consists of example by a fixed plate 12.
  • the support 2 is, in this case mobile in translation along arrow 13.
  • the heating means 5 heat a given zone 16 to bring it to a predetermined temperature before it passes the means of projection 4 to receive a deposit. While part of zone 15 is coated, the cooling means 6 cool the zone 14 which has already been coated.
  • This is automatically programmed by a program which takes into account all the parameters of the repository and which organizes the sequence of operations with the appropriate relative speeds between device 2 and the part to be treated. At each end of the substrate 12, the system is either inverted be brought back to the starting side by an external path.
  • coated parts are obtained which exhibit very good corrosion resistance, as shown by the figures of table 3 and a very high hardness (table 4).
  • Table 3 presents by way of example the results obtained for a coating of the NiCrBSi type deposited on an aluminum substrate using on the one hand a conventional method and on the other hand the method according to the invention. These are corrosion test results carried out in normally aerated H 2 SO 4 2N medium with a potential sweep speed of 1 mVsec -1 . It is clearly seen, in this case, that the intensity of the passive current with the conventional coating does not allow protection against corrosion whereas with the process according to the invention the coating behaves as well or even better than stainless steel .
  • Table 4 presents the results in microhardness of this same deposit obtained under 300 g of filler.
  • the method according to the invention allows to obtain results superior to those of a solid alloy, which does not not allow conventional methods.
  • the device according to the invention is compact and can be transported to carry out a repair on site if necessary, in particular for very heavy and large parts.

Abstract

The invention concerns a method and a device for producing a coating on a substrate whereby molten particles driven by kinetic energy are sprayed on a previously heated surface of a substrate and it is characterised in that it consists in heating each zone of the substrate to be coated immediately before the impact of the particles, the rest of the substrate being at room temperature, and in cooling each said coated zone immediately after the coating has been applied then in repeating sequentially the previous operation on each successive zone until said surface is completely coated.

Description

La présente invention concerne un procédé et un dispositif pour la réalisation d'un revêtement sur un substrat et, plus particulièrement, la réalisation de dépôts thermiques sur un substrat au moyen de particules en fusion qui sont animées d'une énergie cinétique.The present invention relates to a method and a device for production of a coating on a substrate and, more particularly, the making thermal deposits on a substrate using particles in fusion which are animated by kinetic energy.

Les revêtements sont généralement obtenus par projection d'une poudre ou d'un mélange de poudres sur le substrat à revêtir, de manière à conférer au dit substrat des propriétés de dureté, de résistance à l'usure et/ou à la corrosion, de bonne lubrification, ou de les rendre meilleurs conducteurs d'électricité.The coatings are generally obtained by spraying a powder or a mixture of powders on the substrate to be coated, so as to confer on said substrate properties of hardness, resistance to wear and / or corrosion, good lubrication, or make them better conductors electricity.

La poudre ou le mélange de poudres sont projetés sur le substrat par une technique connue sous la dénomination générique de projection thermique qui est effectuée généralement sous air ou sous basse pression au moyen de dispositifs spéciaux connus par exemple sous les sigles VPS (Vaccum Plasma Spray), LPPS (Low Pressure Plasma Spray), CAPS (Controlled Atmosphere Plasma Spraying), APS (Atmospheric plasma spraying), IPS (inert gas plasma spraying) ou HVOF (High Velocity oxyfuel spraying).The powder or powder mixture is sprayed onto the substrate by a technique known under the generic name of projection thermal which is generally carried out in air or under low pressure at by means of special devices known for example by the acronyms VPS (Vaccum Plasma Spray), LPPS (Low Pressure Plasma Spray), CAPS (Controlled Atmosphere Plasma Spraying), APS (Atmospheric plasma spraying), IPS (inert gas plasma spraying) or HVOF (High Velocity oxyfuel spraying).

Après préparation du substrat par toute technique appropriée telle que le sablage et avant la projection proprement dite, il est usuel de préchauffer la pièce ou substrat à traiter et ce, afin d'améliorer les caractéristiques de la couche déposée sur ledit substrat comme par exemple l'adhérence, l'état de contrainte.After preparation of the substrate by any suitable technique such as than sandblasting and before the actual projection, it is usual to preheat the part or substrate to be treated in order to improve the characteristics of the layer deposited on said substrate such as for example adhesion, the state of stress.

Une telle technique est décrite dans les documents (DE 42 20 063 - FR 2 681 538 - J-03050169A, J-01139749A).Such a technique is described in the documents (DE 42 20 063 - FR 2 681 538 - J-03050169A, J-01139749A).

Toutefois, le chauffage préalable du substrat à traiter à l'atmosphère ambiante induit un risque d'oxydation du dépôt et/ou du substrat du fait de la réactivité du substrat et/ou des particules de poudre projetées vis-à-vis de l'air. Il est donc nécessaire de définir de manière très précise les conditions du dépôt en maintenant constamment un équilibre thermique en modifiant les déplacements relatifs des organes en mouvement les uns par rapport aux autres et en utilisant des moyens de refroidissement. However, the prior heating of the substrate to be treated to the ambient atmosphere induces a risk of oxidation of the deposit and / or of the substrate due to the reactivity of the substrate and / or powder particles projected towards the air. It is therefore necessary to define in a very specifies the conditions of the deposit while constantly maintaining a balance thermal by modifying the relative displacements of moving parts with respect to each other and using cooling means.

Cependant, de tels procédés de réalisation d'un dépôt métallique, céramique, céramométallique ou organométallique, présentent de nombreux inconvénients. Parmi ces derniers, on peut citer une forte amplitude de variation de la température du substrat au point ou zone d'impact des particules au cours du dépôt, une température non homogène de la couche de particules déposées, ce qui peut induire des tensions internes dans ladite couche, la variation de température étant due à une maítrise imparfaite des conditions de chauffage ; de même, les énergies superficielles substrat/particules en fusion peuvent être totalement inadaptées notamment lorsque l'énergie à la surface du substrat est faible, ce qui conduit à une mauvaise adhérence des particules en fusion sur le substrat et/ou une mauvaise cohésion du dépôt.However, such methods of producing a metal deposit, ceramic, ceramometallic or organometallic, have many disadvantages. Among these, we can cite a large amplitude of variation of the temperature of the substrate at the point or zone of impact of particles during deposition, an inhomogeneous temperature of the layer of particles deposited, which can induce internal tensions in said layer, the temperature variation being due to an imperfect control of the heating conditions; similarly, the substrate / particle surface energies in fusion can be totally unsuitable especially when the energy at the surface of the substrate is low, which leads to poor adhesion of molten particles to the substrate and / or poor cohesion of the deposit.

Un inconvénient majeur est que les techniques actuelles de préchauffage du substrat sont totalement inadaptées pour des substrats constitués par des pièces de grandes dimensions. En effet, il est difficile de préchauffer une pièce de grandes dimensions dans sa totalité avant la projection thermique, car on dispose rarement de moyens adaptés pour réaliser un tel préchauffage.A major drawback is that current techniques for substrate preheating are totally unsuitable for substrates made up of large parts. Indeed, it is difficult to preheat a large room in its entirety before thermal spraying, because we rarely have suitable means for perform such preheating.

Un autre inconvénient réside dans le fait que lorsque la température de refroidissement n'est pas contrôlée de façon satisfaisante, on aboutit à une couche de revêtement ou de dépôt non homogène.Another disadvantage is that when the cooling temperature is not satisfactorily controlled, results in a non-homogeneous coating or deposit layer.

Une solution pour remédier à cet inconvénient et applicable sur des pièces notamment de grandes dimensions est de les traiter mécaniquement avant la projection thermique puis de construire la couche de revêtement par de nombreux passages successifs, chaque passage produisant une mince partie de la couche de revêtement, une telle solution permettant de réduire les tensions internes se développant lors de la projection des particules et de les stabiliser à des valeurs acceptables.A solution to remedy this drawback and applicable on particularly large parts is to treat them mechanically before thermal spraying then build the layer of coating with many successive passes, each pass producing a thin part of the coating layer, such a solution making it possible to reduce the internal tensions developing during the projection of particles and stabilize them at acceptable values.

On connaít aussi des techniques de refroidissement soit par jet d'air, soit par pulvérisation de fluide cryogénique, soit par pulvérisation d'eau, comme cela est décrit par exemple dans EP-A-0 546 359 ou DE-A-2 615 022.We also know cooling techniques either by jet air, either by spraying cryogenic fluid, or by spraying of water, as described for example in EP-A-0 546 359 or DE-A-2 615 022.

Toutes ces techniques consistent à maintenir l'ensemble de la pièce à traiter à basse température, de manière à éviter la déformation ou la décomposition du substrat, mais ne permettent pas d'augmenter l'adhérence de la couche de revêtement ni sa densité.All of these techniques involve maintaining the entire part to be treated at low temperature, so as to avoid deformation or decomposition of the substrate, but does not increase adhesion of the coating layer or its density.

On connaít par JP-A-63218272 un procédé de dépôt sur un substrat et un dispositif pour la mise en oeuvre de ce procédé comprenant des moyens de préchauffage, des moyens de projection thermique de particules et des moyens de refroidissement. Ce document ne précise pas les températures utilisées selon le procédé censé améliorer l'adhérence du substrat et sa résistance et diminuer la porosité. Cependant le dépôt obtenu n'est pas homogène.We know from JP-A-63218272 a method of depositing on a substrate and a device for implementing this method comprising preheating means, thermal spraying means of particles and cooling means. This document does not specify the temperatures used according to the process supposed to improve the adhesion of the substrate and its resistance and decrease porosity. However the deposit obtained is not homogeneous.

La présente invention a pour but de remédier aux inconvénients précités et de proposer un procédé et un dispositif pour revêtir, par projection thermique, des pièces de structure et de dimensions différentes sans qu'il soit nécessaire de les adapter au type de substrat ou pièce à traiter.The object of the present invention is to remedy the drawbacks mentioned above and to propose a method and a device for coating, by thermal spraying, parts of different structure and dimensions without the need to adapt them to the type of substrate or part to be treated.

La présente invention a pour objet un procédé de réalisation d'un revêtement sur un substrat, tel que défini dans la revendication 1.The subject of the present invention is a method for producing a coating on a substrate, as defined in claim 1.

Le chauffage local du substrat est effectué avec un moyen à haute énergie (flamme, induction, laser, faisceau d'électrons, plasma), immédiatement avant l'arrivée des particules de manière à bénéficier d'une température élevée en surface au moment de l'impact des particules tout en minimisant le transfert thermique dans le substrat. De même, le refroidissement de la surface est réalisé par des moyens énergiques, tels que des gaz liquéfiés pulvérisés, immédiatement après le dépôt des particules afin de minimiser toujours le transfert thermique dans le substrat.The local heating of the substrate is carried out with a means to high energy (flame, induction, laser, electron beam, plasma), immediately before the arrival of the particles so as to benefit from high surface temperature at the time of impact of the particles while minimizing heat transfer in the substrate. Similarly, cooling of the surface is achieved by energetic means, such as gases liquefied spray, immediately after deposition of the particles in order to always minimize heat transfer in the substrate.

Le procédé selon l'invention permet ainsi d'obtenir un dépôt adhérent, cohésif et dont le niveau de contraintes résiduelles est fortement réduit par rapport à ce qui est réalisé avec les procédés de l'art antérieur.The method according to the invention thus makes it possible to obtain a deposit adherent, cohesive and with a high residual stress level reduced compared to what is achieved with the methods of the prior art.

Un autre objet de la présente invention est un dispositif permettant la mise en oeuvre du procédé, le dispositif étant tel que défini dans la revendication 5.Another object of the present invention is a device allowing the implementation of the method, the device being as defined in claim 5.

Un avantage de la présente invention réside dans le fait qu'en limitant la zone chauffée du substrat et en maintenant le reste du substrat à la température ambiante, on évite ou on diminue très fortement l'oxydation ou la nitruration du substrat pendant la projection des particules.An advantage of the present invention lies in the fact that in limiting the heated area of the substrate and keeping the rest of the substrate at the room temperature, oxidation is greatly avoided or reduced or nitriding the substrate during the projection of the particles.

Un autre avantage est une meilleure adhérence du dépôt du fait du choix de la température de la zone d'impact sur le substrat en relation avec son énergie superficielle. En effet, en fonction de la nature et de la structure du substrat, il est possible de sélectionner une température de chauffage appropriée, de sorte que la différence entre les températures des particules projetées et du substrat peut être ajustée à une valeur qui améliore l'adhérence des particules sur le substrat.Another advantage is better adhesion of the deposit due to the choice of the temperature of the impact zone on the substrate in relation to its superficial energy. Indeed, depending on the nature and the structure of the substrate, it is possible to select a heating temperature appropriate, so the difference between the particle temperatures projected and substrate can be adjusted to a value which improves the adhesion of the particles on the substrate.

De même, les contraintes internes susceptibles de se développer dans le substrat, ainsi que la porosité et les microfissures, sont fortement diminuées en raison du refroidissement subséquent qui est effectué immédiatement après le dépôt des particules sur la zone revêtue.Likewise, internal constraints likely to develop in the substrate, as well as porosity and microcracks, are strongly decreased due to subsequent cooling which is carried out immediately after depositing the particles on the coated area.

Les actions combinées du chauffage de la zone avant dépôt et du refroidissement de la même zone immédiatement après le dépôt, permettent de mieux maítriser le dépôt proprement dit.The combined actions of heating the area before deposit and cooling of the same area immediately after deposition, allow to better control the deposit itself.

Par ailleurs, le mouvement relatif entre le substrat et les moyens de chauffage, de projection de particules et de refroidissement, est déterminé par exemple en fonction des dimensions dudit substrat, bien que d'autres considérations puissent être prises en compte. Dans un premier mode de fonctionnement, on peut maintenir fixe le substrat et déplacer chacun ou tous les moyens s'ils sont montés en tandem devant le substrat fixe, zone après zone, jusqu'à ce que toute la surface du substrat soit revêtue par le dépôt souhaité. Mais selon un deuxième mode de fonctionnement, on peut déplacer le substrat, toujours zone après zone, devant les divers moyens précités.Furthermore, the relative movement between the substrate and the means heating, particle projection and cooling, is determined for example depending on the dimensions of said substrate, although others considerations can be taken into account. In a first mode of operation, we can keep the substrate fixed and move each or all the means if they are mounted in tandem in front of the fixed substrate, zone after area, until the entire surface of the substrate is coated with the deposit wish. But according to a second operating mode, we can move the substrate, always zone after zone, in front of the various aforementioned means.

D'autres avantages et caractéristiques ressortiront mieux à la lecture de la description d'un mode de réalisation préféré de l'invention, ainsi que des dessins annexés sur lesquels :

  • la figure 1 est une vue schématique d'un dispositif selon la présente invention pour un substrat en rotation.
  • la figure 2 est une vue de dessus et schématique du dispositif selon la présente invention pour un substrat fixe,
Other advantages and characteristics will emerge more clearly on reading the description of a preferred embodiment of the invention, as well as the appended drawings in which:
  • Figure 1 is a schematic view of a device according to the present invention for a rotating substrate.
  • FIG. 2 is a top schematic view of the device according to the present invention for a fixed substrate,

Le procédé selon l'invention consiste à chauffer une zone de surface déterminée d'un substrat à revêtir d'un dépôt, puis à projeter immédiatement après une poudre ou un mélange de poudres sur ladite zone à l'aide de moyens de projection thermique, puis à refroidir aussi immédiatement après ladite zone revêtue à l'aide de moyens de refroidissement connus en soi. Cette séquence d'opérations peut être effectuée soit en maintenant fixe le substrat et en déplaçant d'un seul bloc lesdits moyens de chauffage, de projection et de refroidissement qui constituent un ensemble dit de revêtement, soit en maintenant fixe ledit ensemble de revêtement et en déplaçant le substrat, soit en déplaçant le substrat et l'ensemble de revêtement, dans des directions et avec des vitesses de déplacement (rotation ou translation) qui sont définies de telle sorte qu'une zone soit traitée, comme précisé ci-dessus, avant que la zone consécutive ne soit traitée à son tour, et ce, jusqu'au recouvrement total de la surface du substrat à revêtir avec l'épaisseur désirée du dépôt.The method according to the invention consists in heating an area of determined surface of a substrate to be coated with a deposit, then to be projected immediately after a powder or mixture of powders on said area to using thermal spraying means and then to cool as well immediately after said coated area using means of cooling known per se. This sequence of operations can be performed either by holding the substrate fixed and moving in one piece said heating, spraying and cooling means which constitute a so-called covering assembly, either by maintaining said coating set and moving the substrate either by moving the substrate and coating set, in directions and with velocities of displacement (rotation or translation) which are defined so that an area is treated, as specified above, before the area will not be processed in turn, until the total recovery of the surface of the substrate to be coated with the desired thickness of the deposit.

Bien évidemment, les déplacements peuvent être verticaux et/ou horizontaux ou encore en rotation, la combinaison des déplacements étant choisie en fonction notamment des dimensions du substrat, de sa forme ou de tout autre paramètre lié directement ou non au substrat.Obviously, the displacements can be vertical and / or horizontal or even in rotation, the combination of displacements being chosen according in particular to the dimensions of the substrate, its shape or any other parameter linked directly or not to the substrate.

Le dispositif de mise en oeuvre du procédé selon l'invention comprend un ensemble 1 constitué par au moins un support 2 qui se déplace de façon relative par rapport à un substrat 3 à revêtir d'un dépôt, et sur lequel sont montés au moins des moyens 4 de projection thermique, des moyens de chauffage 5, montés en amont des moyens de projection 4, et des moyens de refroidissement 6 disposés en aval des moyens de projection 4.The device for implementing the method according to the invention includes a set 1 consisting of at least one support 2 which moves relatively with respect to a substrate 3 to be coated with a deposit, and on which are mounted at least means 4 of thermal projection, heating means 5, mounted upstream of the projection means 4, and cooling means 6 arranged downstream of the projection means 4.

Dans le mode de réalisation de la figure 1, le substrat 3 est constitué par une pièce 7 de grandes dimensions et de forme cylindrique ; la face externe 8 doit être revêtue d'un dépôt métallique dont les composants sont disposés dans la réserve d'un chalumeau par exemple du type CDS vendu par la société PLASMA TECHNIK, le chalumeau 4 projetant les composants sous forme de poudres avec une grande énergie et sous une forte température sur ladite face 8. Les trois éléments 4 à 6 de l'ensemble sont situés dans un même plan horizontal ou à tout le moins leurs extrémités, de sorte que la zone de la face externe 8 soit traitée successivement par chacun des trois éléments.In the embodiment of FIG. 1, the substrate 3 is constituted by a part 7 of large dimensions and of cylindrical shape; the external face 8 must be coated with a metallic deposit, the components of which are arranged in the reserve of a torch, for example of the CDS type sold by the company PLASMA TECHNIK, the torch 4 projecting the components in the form of powders with high energy and strong temperature on said face 8. The three elements 4 to 6 of the assembly are located in the same horizontal plane or at least their ends, of so that the area of the external face 8 is treated successively by each of the three elements.

Les dimensions de chaque zone 9 à traiter sont définies par la surface d'impact des moyens de projection 4, laquelle surface d'impact est de l'ordre de quelques centimètres carrés et plutôt de l'ordre du centimètre carré.The dimensions of each zone 9 to be treated are defined by the impact surface of the projection means 4, which impact surface is on the order of a few square centimeters and rather on the order of a centimeter square.

Dans le dispositif de la figure 1 et en raison des dimensions de la pièce 7 qui se déplace avec une vitesse de rotation déterminée et dans le sens de la flèche 10, l'ensemble 1 se déplace verticalement de manière à balayer des zones 9 successives et situées à des niveaux différents, les diverses zones successives étant situées sur des sinusoïdes fictives au fur et à mesure des passes effectuées par le dispositif.In the device of Figure 1 and due to the dimensions of the part 7 which moves with a determined speed of rotation and in the direction of arrow 10, assembly 1 moves vertically so as to scan successive zones 9 and located at different levels, the various successive zones being located on fictitious sinusoids as and as the passes made by the device.

On pourrait, si cela s'avérait nécessaire ou préférable, déterminer un mouvement relatif différent entre le dispositif et la pièce 7 de manière à réaliser le dépôt sur une bande circonférentielle 11 et de traiter ladite pièce 7, bande après bande, mais en gardant la même séquence d'opérations chauffage-projection-refroidissement ainsi que cela fut indiqué précédemment à propos du procédé.We could, if necessary or preferable, determine a different relative movement between the device and the part 7 so as to deposit on a circumferential strip 11 and treat said part 7, strip after strip, but keeping the same sequence of operations heating-projection-cooling as previously indicated about the process.

Dans une réalisation selon la figure 1, la zone à traiter 9 est chauffée à une température de l'ordre de 400°C.In an embodiment according to FIG. 1, the area to be treated 9 is heated to a temperature of the order of 400 ° C.

Immédiatement après le chauffage et comme indiqué ci-dessus, la zone chauffée est amenée en regard de la torche de projection 4. Comme la zone est déjà portée à une température donnée et que la température de projection est de l'ordre de 1100°C, on diminue l'écart en température entre la poudre en fusion et la pièce, permettant ainsi un meilleur étalement du dépôt.Immediately after heating and as indicated above, the heated zone is brought opposite the projection torch 4. As the zone is already brought to a given temperature and that the temperature of projection is around 1100 ° C, we decrease the temperature difference between the molten powder and the part, thus allowing better spreading of the deposit.

Dans une autre étape, et immédiatement après le dépôt, la zone 9 est amenée en regard d'au moins une buse à travers laquelle est projeté du CO2 liquide ou un autre fluide cryogénique. Ce refroidissement rapide, immédiatement après la projection, constitue en fait une trempe qui solidifie le dépôt et le fait mieux adhérer à la pièce 3, en préservant sa structure. La température de refroidissement est inférieure à la température d'oxydation et/ou de déformation du substrat évitant ainsi une oxydation de ladite pièce et/ou des composants métalliques de la poudre.In another step, and immediately after deposition, the zone 9 is brought opposite at least one nozzle through which liquid CO 2 or another cryogenic fluid is sprayed. This rapid cooling, immediately after the projection, in fact constitutes a quench which solidifies the deposit and makes it adhere better to the part 3, while preserving its structure. The cooling temperature is lower than the oxidation and / or deformation temperature of the substrate, thus preventing oxidation of said part and / or of the metallic components of the powder.

La séquence des opérations qui vient d'être décrite est effectuée de manière continue depuis le chauffage jusqu'au refroidissement.The sequence of operations which has just been described is carried out continuously from heating to cooling.

Diverses manières de revêtir la pièce 3 peuvent être mises en oeuvre. Dans un autre mode, on peut ne faire qu'une passe de quelques micromètres sur chaque zone et revêtir la face externe 8 d'une première couche, puis recommencer les mêmes opérations autant de fois que nécessaire jusqu'à l'obtention de l'épaisseur finale du dépôt, chaque couche constituant alors une sous-couche pour la couche suivante.Various ways of coating the part 3 can be implemented artwork. In another mode, you can only make a pass of a few micrometers on each zone and coat the external face 8 with a first layer, then repeat the same operations as many times as necessary until the final thickness of the deposit is obtained, each layer constituting then an undercoat for the next layer.

Dans le dispositif de la figure 2, le substrat est constitué par exemple par une plaque 12 fixe. Le support 2 est, dans ce cas mobile en translation suivant la flèche 13.In the device of FIG. 2, the substrate consists of example by a fixed plate 12. The support 2 is, in this case mobile in translation along arrow 13.

De la même manière que précédemment à propos de la figure 1 les moyens de chauffage 5 chauffent une zone donnée 16 pour la porter à une température prédéterminée avant qu'elle passe devant les moyens de projection 4 pour recevoir un dépôt. Pendant qu'une partie de la zone 15 est revêtue, les moyens de refroidissement 6 refroidissent la zone 14 qui a déjà été revêtue. Cela est programmé automatiquement par un programme qui prend en compte tous les paramètres du dépôt et qui organise la séquence des opérations avec les vitesses relatives appropriées entre le dispositif 2 et la pièce à traiter. A chaque extrémité du substrat 12, le système est soit inversé soit ramené du côté du départ par un chemin extérieur.In the same way as above with regard to Figure 1 the heating means 5 heat a given zone 16 to bring it to a predetermined temperature before it passes the means of projection 4 to receive a deposit. While part of zone 15 is coated, the cooling means 6 cool the zone 14 which has already been coated. This is automatically programmed by a program which takes into account all the parameters of the repository and which organizes the sequence of operations with the appropriate relative speeds between device 2 and the part to be treated. At each end of the substrate 12, the system is either inverted be brought back to the starting side by an external path.

Grâce à la présente invention, on obtient des pièces revêtues qui présentent une très bonne tenue à la corrosion, comme l'attestent les chiffres du tableau 3 et une très forte dureté (tableau 4).Thanks to the present invention, coated parts are obtained which exhibit very good corrosion resistance, as shown by the figures of table 3 and a very high hardness (table 4).

Le tableau 3 présente à titre d'exemple les résultats obtenus pour un revêtement du type NiCrBSi déposé sur un substrat en aluminium en utilisant d'une part une méthode conventionnelle et d'autre part le procédé selon l'invention. Il s'agit de résultats de tests de corrosion réalisés en milieu H2SO42N normalement aéré avec une vitesse de balayage en potentiel de 1 mVsec-1. On voit nettement, dans ce cas, que l'intensité du courant passif avec le revêtement conventionnel ne permet pas une protection contre la corrosion alors qu'avec le procédé selon l'invention le revêtement se comporte aussi bien voire mieux qu'un acier inoxydable.Table 3 presents by way of example the results obtained for a coating of the NiCrBSi type deposited on an aluminum substrate using on the one hand a conventional method and on the other hand the method according to the invention. These are corrosion test results carried out in normally aerated H 2 SO 4 2N medium with a potential sweep speed of 1 mVsec -1 . It is clearly seen, in this case, that the intensity of the passive current with the conventional coating does not allow protection against corrosion whereas with the process according to the invention the coating behaves as well or even better than stainless steel .

Le tableau 4 présente les résultats en microdureté de ce même dépôt obtenus sous 300 g de charge. Le procédé selon l'invention permet d'obtenir des résultats supérieurs à ceux d'un alliage massif, ce que ne permettent pas les procédés conventionnels.Table 4 presents the results in microhardness of this same deposit obtained under 300 g of filler. The method according to the invention allows to obtain results superior to those of a solid alloy, which does not not allow conventional methods.

A titre d'exemple et pour un substrat constitué par un cylindre de diamètre 250 mm et d'un mètre de longueur, les conditions opératoires sont les suivantes :

  • torche de projection HVOF :
    • méthane   220 l/minute
    • O2   440 l/minute
    • gaz poudre   15 l/minute
    • poudre de FeNiCrBSi   75 g/minute
  • brûleur :
    • O2/C2 H2   1000 l/minute
    • largeur de flamme   50 mm
    • température de chauffage   300°C
  • buse :
    • CO2   50 kg/heure
    • diamètre   25 mm
    • température de refroidissement   ambiante
    • vitesse de rotation du cylindre   200 t/minute
    • déplacement torche projection   1 m/minute
  • By way of example and for a substrate constituted by a cylinder with a diameter of 250 mm and one meter in length, the operating conditions are as follows:
  • HVOF projection torch :
    • methane 220 l / minute
    • O 2 440 l / minute
    • gas powder 15 l / minute
    • FeNiCrBSi powder 75 g / minute
  • burner :
    • O 2 / C 2 H 2 1000 l / minute
    • flame width 50 mm
    • heating temperature 300 ° C
  • nozzle :
    • CO 2 50 kg / hour
    • diameter 25 mm
    • ambient cooling temperature
    • cylinder rotation speed 200 rpm
    • projection torch movement 1 m / minute
  • Avec les paramètres de dépôt ci-dessus, on a obtenu un revêlement de 0,6 mm d'épaisseur et d'une dureté supérieure à 850 Hv (dureté Vickers), la porosité du revêtement étant invisible avec un grossissement 1000 d'un microscope optique et qui est, en tout état de cause, inférieure à 1 %.With the above deposition parameters, we obtained a 0.6 mm thick coating with a hardness greater than 850 Hv (Vickers hardness), the porosity of the coating being invisible with magnification 1000 of an optical microscope and that is, in any event, less than 1%.

    Le dispositif selon l'invention est peu encombrant et peut être transporté pour faire une réparation sur site si besoin était, notamment pour les pièces très lourdes et de grandes dimensions. Etat de référence I passif (µA.cm-2) Revêtement NiCrBSi revêtement classique 3 500 à 7 500 Revêtement NiCrBSi nouveau procédé 40 Acier inox austénitique de type 316 L massif 54 Etat de référence Dureté Hv300 FeNiCrBSiC déposé selon procédé thermique classique 650 ± 150 FeNiCrBSiC déposé selon le procédé de l'invention 870 ± 75 FeNiCrBSiC à l'état d'alliage massif ou refondu 800 ± 50 The device according to the invention is compact and can be transported to carry out a repair on site if necessary, in particular for very heavy and large parts. Reference state I passive (µA.cm -2 ) NiCrBSi coating classic coating 3,500 to 7,500 NiCrBSi coating new process 40 Austenitic stainless steel type 316 L solid 54 Reference state Hv300 hardness FeNiCrBSiC deposited by conventional thermal process 650 ± 150 FeNiCrBSiC deposited according to the process of the invention 870 ± 75 FeNiCrBSiC in solid or remelted alloy state 800 ± 50

    Claims (7)

    1. Method for producing a coating on a substrate, of the type in which molten particles moved by kinetic energy are sprayed onto a surface of a substrate, of the type consisting of heating a zone of the substrate to be coated to a very shallow depth just before impact of the particles, and of cooling the coated zone to a cooling temperature lower than the temperature of oxidation and of deformation of the substrate, characterised in that it consists of keeping the rest of the substrate at ambient temperature and in that the cooling is carried out immediately after deposition of the coating, the heated zone being substantially equal to the impact surface of the particles, then of sequentially recommencing the preceding operation zone by zone until the said surface is completely coated.
    2. Method according to claim 1, characterised in that the heating temperature depends on the nature of the substrate.
    3. Method according to claim 1, characterised in that the cooling means consist of a jet of a cryogenic fluid such as liquid CO2.
    4. Method according to claim 1, characterised in that the heating and particle-spraying means perform a relative movement with respect to the substrate, the pitch of the relative movement being equal to the surface of the zone to be coated.
    5. Device for implementing the method according to claims 1 to 4, of the type comprising heating means(5), thermal particle-spraying means (4) and cooling means (6), the said heating and spraying means performing a relative movement with respect to the substrate (3), the said heating means (5) being disposed upstream of the spraying means (4) so that each heated zone (9) is immediately in advance of its passage under the spraying means, characterised in that the zone of the substrate located under the spraying means has a cross-section which is equal to the heated zone and in that the coated zone is subjected immediately afterwards, without transition, to cooling by a cryogenic fluid, the cooling temperature being lower than the temperature of oxidation and of deformation of the substrate (3).
    6. Device according to claim 5, characterised in that the cooling means perform the same said relative movement with respect to the substrate.
    7. Device according to claims 5 or 6, characterised in that the heating and cooling temperature are selected depending on the nature of the substrate and of the sprayed particles.
    EP97947127A 1996-12-09 1997-11-24 Method and device for producing a coating on a substrate Expired - Lifetime EP0954619B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    FR9615092A FR2756756B1 (en) 1996-12-09 1996-12-09 PROCESS AND DEVICE FOR PRODUCING A COATING ON A SUBSTRATE
    FR9615092 1996-12-09
    PCT/FR1997/002117 WO1998026104A1 (en) 1996-12-09 1997-11-24 Method and device for producing a coating on a substrate

    Publications (2)

    Publication Number Publication Date
    EP0954619A1 EP0954619A1 (en) 1999-11-10
    EP0954619B1 true EP0954619B1 (en) 2002-02-13

    Family

    ID=9498468

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP97947127A Expired - Lifetime EP0954619B1 (en) 1996-12-09 1997-11-24 Method and device for producing a coating on a substrate

    Country Status (5)

    Country Link
    EP (1) EP0954619B1 (en)
    AT (1) ATE213281T1 (en)
    DE (1) DE69710495D1 (en)
    FR (1) FR2756756B1 (en)
    WO (1) WO1998026104A1 (en)

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102006061977A1 (en) * 2006-12-21 2008-06-26 Forschungszentrum Jülich GmbH Method and apparatus for thermal spraying

    Families Citing this family (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US8715772B2 (en) 2005-04-12 2014-05-06 Air Products And Chemicals, Inc. Thermal deposition coating method
    CA2661867C (en) 2006-08-28 2014-06-10 Air Products And Chemicals, Inc. Cryogenic nozzle
    US8293035B2 (en) 2006-10-12 2012-10-23 Air Products And Chemicals, Inc. Treatment method, system and product
    US20190033138A1 (en) * 2017-07-28 2019-01-31 United Technologies Corporation Processes and tooling for temperature controlled plasma spray coating
    US20190078463A1 (en) * 2017-09-08 2019-03-14 United Technologies Corporation Segmented Ceramic Coatings and Methods
    CN116988061B (en) * 2023-09-27 2023-12-19 太原科技大学 Nickel-based superalloy and surface modification method thereof

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    BE510038A (en) *
    GB191415960A (en) * 1914-07-03 1915-07-05 Reginald Keble Morcom An Improved Process of and Apparatus for Applying Coatings to Various Surfaces or Materials.
    DE821903C (en) * 1950-08-12 1951-11-22 Karl Schoenbacher Dr Ing Method of manufacturing bearing shells
    FR1347716A (en) * 1962-10-09 1964-01-04 A method of applying a sprayed metal to a heated surface made of another metal and article thus obtained
    DE2028050A1 (en) * 1970-06-08 1971-12-16 Metallgesellschaft Ag Process for the production of corrosion- and wear-resistant metallic coatings by spraying
    DE2615022C2 (en) * 1976-04-07 1978-03-02 Agefko Kohlensaeure-Industrie Gmbh, 4000 Duesseldorf Method of coating a surface by means of a jet of heated gas and molten material
    DE3566088D1 (en) * 1984-03-12 1988-12-15 Commissariat Energie Atomique Treatment of a surface of a part to improve the adhesion of a coating deposited on the part particularly by hot projection
    JPS6247470A (en) * 1985-08-23 1987-03-02 Toshiba Corp Formation of thermally sprayed coating on inside surface of cylinder
    JPS63218272A (en) * 1987-03-06 1988-09-12 Hideo Nagasaka Method and device for thermal spraying
    IT1234618B (en) * 1989-04-04 1992-05-25 Pivetta Domenico Varmo Udine METHOD FOR SURFACE TREATMENT OF PIPES FOR RESISTANCE TO HIGH TEMPERATURES AND PIPES SO TREATED.
    FR2693925B1 (en) * 1992-07-23 1994-10-14 Sevenans Inst Polytechnique Method of preparation and surface coating and device for carrying out said method.

    Cited By (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE102006061977A1 (en) * 2006-12-21 2008-06-26 Forschungszentrum Jülich GmbH Method and apparatus for thermal spraying

    Also Published As

    Publication number Publication date
    EP0954619A1 (en) 1999-11-10
    FR2756756A1 (en) 1998-06-12
    WO1998026104A1 (en) 1998-06-18
    ATE213281T1 (en) 2002-02-15
    DE69710495D1 (en) 2002-03-21
    FR2756756B1 (en) 1999-01-15

    Similar Documents

    Publication Publication Date Title
    EP0592309B1 (en) Process for nitriding a titanium alloy workpiece and device for spraying nitrogen and inert gas
    FR2458973A1 (en) METHOD AND APPARATUS FOR SPRAYING MATERIAL ON A PLASMA ARC SUBSTRATE
    CA1274071A (en) Process for the superficial laser treatment of ceramic objets
    CA2517239C (en) Process for reloading a single-crystal or gradient solidification metal part
    CA2567888C (en) Method for producing a leak prevention unit for a sealing labyrinth, thermomechanical part and turbine engine comprising such a leak prevention unit
    EP1972699A1 (en) Method of coating a substrate under vacuum
    FR2762667A1 (en) HEAT TREATMENT DEVICE AND METHOD
    FR2909297A1 (en) METHOD FOR LASER DRILLING OF A PIECE OF COMPOSITE MATERIAL WITH CERAMIC MATRIX, HOLE OBTAINED BY THIS PROCESS, PIECE OF COMPOSITE MATERIAL WITH CERAMIC MATRIX COMPRISING IT, TURBOREACTOR COMPRISING SUCH A PIECE
    EP0954619B1 (en) Method and device for producing a coating on a substrate
    FR2969521A1 (en) METHOD FOR FORMING PASSAGE HOLES IN A HIGH TEMPERATURE SUBSTRATE
    FR2575763A1 (en) HARDENING OF A METAL SURFACE BY FORMING CARBIDE
    FR2893358A1 (en) THERMOMECHANICAL PIECE OF TURBOMACHINE FOR REVOLUTION AROUND A LONGITUDINAL AXIS, COMPRISING AN ANNULAR LECHETTE, AND METHOD FOR MANUFACTURING THE SAME
    FR2978070A1 (en) Repairing turbine engine part e.g. blade, comprises forming preform by selective melting of powder containing base material, maintaining preform in part by laser pointing, and degreasing and/or pickling a surface of preform to be brazed
    EP0562920B1 (en) Process for coating the notch of a nickel substrate with laser
    EP0506552A1 (en) Method of treating for instance a substrate surface by projecting a plasma flow and apparatus for carrying out the method
    EP0011547B1 (en) Process and apparatus for producing a zinc plate or strip lightly coated on one or both sides, and product obtained by this process
    US4182299A (en) Engine valve
    FR2630752A1 (en) FLAME SPRAYING PROCESS FOR POWDER MATERIALS AND FLAME SPRAYING APPARATUS FOR CARRYING OUT SAID METHOD
    EP0599737B1 (en) Build-up procedure on a work piece by plasma with transferred arc
    FR2598157A1 (en) PROCESS FOR PRODUCING PLASMA DEPOSITS EXTENDED AND OF HIGH QUALITY
    FR2523480A1 (en) METHOD FOR DEPOSITING A METAL AND / OR CERAMIC PROTECTION LAYER ON A SUBSTRATE
    EP4051826A1 (en) Method for compacting an anti-corrosive paint of a turbine engine part
    CA2930180A1 (en) Integrated sintering process for microcracking and erosion resistance of thermal barriers
    EP0667810A1 (en) Method for the production of composite materials or coatings and system for implementing it
    FR2558850A1 (en) Process and device for coating a long product by spraying with a liquid coating material

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19990521

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    17Q First examination report despatched

    Effective date: 20010130

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: IF02

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020213

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

    Effective date: 20020213

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020213

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020213

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020213

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020213

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020213

    REF Corresponds to:

    Ref document number: 213281

    Country of ref document: AT

    Date of ref document: 20020215

    Kind code of ref document: T

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69710495

    Country of ref document: DE

    Date of ref document: 20020321

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020513

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020513

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020513

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020514

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: ERNST ACKERMANN PATENTANWALT

    NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 20020213

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20020829

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20021218

    Year of fee payment: 6

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20021114

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031130

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20071105

    Year of fee payment: 11

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20071105

    Year of fee payment: 11

    BERE Be: lapsed

    Owner name: *INSTITUT POLYTECHNIQUE DE SEVENANS

    Effective date: 20081130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20090731

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081130

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081130