WO1998024977A1 - Road vertical section profile measuring apparatus - Google Patents

Road vertical section profile measuring apparatus Download PDF

Info

Publication number
WO1998024977A1
WO1998024977A1 PCT/JP1997/004459 JP9704459W WO9824977A1 WO 1998024977 A1 WO1998024977 A1 WO 1998024977A1 JP 9704459 W JP9704459 W JP 9704459W WO 9824977 A1 WO9824977 A1 WO 9824977A1
Authority
WO
WIPO (PCT)
Prior art keywords
profile
road
measuring
acceleration
distance
Prior art date
Application number
PCT/JP1997/004459
Other languages
French (fr)
Japanese (ja)
Inventor
Shawtaro Kato
Junichi Ito
Original Assignee
Pasco Corporation
Japan Aviation Electronics Industry Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corporation, Japan Aviation Electronics Industry Limited filed Critical Pasco Corporation
Priority to AU51372/98A priority Critical patent/AU5137298A/en
Publication of WO1998024977A1 publication Critical patent/WO1998024977A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C7/00Tracing profiles
    • G01C7/02Tracing profiles of land surfaces
    • G01C7/04Tracing profiles of land surfaces involving a vehicle which moves along the profile to be traced

Definitions

  • the present invention relates to a road profile profile measuring device that is used by being mounted on a vehicle and measures a vertical profile of a road on which the vehicle runs while the vehicle is running.
  • Conventional technology is used by being mounted on a vehicle and measures a vertical profile of a road on which the vehicle runs while the vehicle is running.
  • Japanese Patent Application Publication No. 3-78882 As a conventional example of this kind of road longitudinal profile measuring device, there is one disclosed in Japanese Patent Application Publication No. 3-78882, for example.
  • This measuring device is equipped with an accelerometer that measures the vertical acceleration of the vehicle body and a distance meter that measures the distance from the vehicle body to the road surface, and integrates the vertical acceleration detected by the accelerometer to calculate the displacement. Is calculated, and the difference ⁇ between the displacement amount and the change amount of the vehicle height detected by the range finder is calculated to obtain a vertical profile of the road. It is said that the difference S allows the user to know the undulation and depression of the road surface due to land subsidence, for example.
  • the input shaft of the accelerometer since the input shaft of the accelerometer is fixed in the vertical direction of the vehicle body, it is not possible to measure the acceleration component in the vehicle traveling direction perpendicular to the input shaft.
  • the vehicle 11 follows the slope 12 as shown in FIG. 8 and is running on a slope, the output of the accelerometer based on the running acceleration becomes zero, and the vehicle on the slope 12 runs. 11 The vertical movement (displacement) in 1 cannot be measured.
  • the measuring device described in the above publication No. 3-7882 can measure the unevenness of the road surface such that the vehicle body moves up and down with respect to the road surface, it is difficult to measure the vehicle traveling along the inclined road surface. If there are large undulations or slopes (longitudinal undulations) on the road surface, the undulations cannot be measured.
  • An object of the present invention is to solve the above-mentioned drawbacks, and to measure a road profile profile accurately, including a undulation or a slope of a road surface in which a vehicle travels along the slope. Is to provide.
  • a road profile measuring apparatus mounted on a vehicle and measuring a profile of a road on which the vehicle travels measures a distance to a road surface Distance measuring means, vertical acceleration measuring means for measuring vertical acceleration, integrating means for integrating vertical acceleration by measuring the acceleration measured by the vertical acceleration measuring means, displacement obtained by the integrating means And a means for obtaining a longitudinal opening file using a difference between the distance measured by the distance measuring means.
  • FIG. 1 is a block diagram showing one embodiment of the present invention.
  • FIG. 2A is a side view of a vehicle equipped with the road profile measurement device of FIG.
  • Figure 2B is a front view.
  • FIG. 3 is a block diagram showing details of the posture vertical movement sensor in FIG.
  • FIG. 4 is a block diagram showing another example of the posture vertical movement sensor.
  • FIG. 5 is a diagram for explaining a method of measuring a road profile.
  • FIG. 6 is a GG sectional view of FIG.
  • Fig. 7 is a diagram showing the trajectory of the vertical displacement of the vehicle in the measurement of the road longitudinal profile.
  • FIG. 8 is a diagram for explaining a problem with the conventional road profile measurement device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a block diagram showing a preferred embodiment of the present invention.
  • the road profile measurement device is assumed to include a posture vertical movement sensor 21, a road-vehicle distance sensor 22, and a calculation device 23.
  • the posture vertical motion sensor 21 is provided with the inclination angle (pitch angle) ⁇ in the longitudinal direction (running direction) of the vehicle with respect to the horizontal plane, the inclination angle (roll angle) in the lateral direction (width direction) ⁇ , and the displacement of the vehicle in the vertical direction. (Vertical movement) Measures ⁇ . For example, it is mounted and fixed inside the vehicle as shown in Figs. 2 ⁇ and 2 ⁇ .
  • the road-to-vehicle distance sensor 22 measures the distance from the vehicle body to the road surface and is attached to, for example, a part of a bumper.
  • three distance sensors 22 are mounted on the bumper 24 at the center in the width direction of the vehicle 11 and in front of the left and right tires, as shown in FIG.
  • Distance sensors 22 are arranged opposite to the center of the lane of the road and to the left and right ruts, respectively.
  • a sensor that emits laser light or ultrasonic waves and detects the reflection to measure the distance is used as the distance sensor 22.
  • the distances C, L, and R to the road surface are input to the arithmetic unit 23, which calculates the lane center, left rutting, and right rutting road longitudinal profiles PC, PL, and PR.
  • the arithmetic unit 23 is installed in the vehicle, for example, like the posture vertical movement sensor 21.
  • FIG. 3 is a block diagram showing a detailed configuration of the posture vertical movement sensor 21.
  • a 3-axis gyro 25 mounted on the orthogonal 3-axis measures angular velocities around the X, Y, and Z axes.
  • the X-axis direction is the front of the device
  • the Y-axis direction is rightward
  • the Z-axis direction is downward.
  • a three-axis accelerometer 26 attached to three orthogonal axes measures acceleration in the X, Y, and ⁇ axis directions.
  • the coordinate conversion unit 27 converts the X, ⁇ , and ⁇ coordinates into N, E, and D coordinates (inertial coordinates).
  • the X, ⁇ , and Z accelerations output from the three-axis accelerometer 26 are converted by the coordinate conversion unit 27. Input to 27 and converted to N, E, D acceleration.
  • N is the north direction
  • E is the east direction
  • D is the earth center direction (vertical direction).
  • the coordinate transformation matrix of the coordinate transformation unit 27 changes every moment as the posture of the device changes.
  • the coordinate transformation matrix update value calculation unit 28 calculates the change that changes the value of this matrix. Since the matrix change corresponds one-to-one with the change in attitude, that is, the angular velocity, the three-axis gyro 2 The matrix change is calculated using the X, Y, and 5 angular velocity data of 5. The calculated change is input to the coordinate conversion unit 27, and the matrix value is updated every moment.
  • the N, E, and D accelerations output from the coordinate conversion unit 27 are input to the integration unit 29, and the integration unit 29 integrates the N, E, and D accelerations and outputs N, E, and D velocities.
  • the D speed is input to the integration unit 31.
  • the integration unit 31 calculates the displacement H in the vertical direction by integrating the D speed.
  • the N and E velocities are input to the integrator 32, which integrates the N and E velocities and outputs the N and E positions (moving distances). And this N, E position and GPS (G1
  • the N and E positions output from the obal positioning system 33 are input to the comparison unit 34.
  • the comparison unit 34 calculates the difference between the N and E positions obtained from these accelerations and the N and E positions of the GPS 33.
  • the integrators 29 and 32 also integrate the error, the errors of the N and E positions obtained from the acceleration gradually increase, while the error of the GPS 33 can be ignored. Since the error does not increase with time for the N and E positions by the GPS 33, this difference indicates the error of the N and E positions obtained from the acceleration.
  • the main cause of this error is the error of the coordinate transformation matrix due to the error of the 3-axis gyro port 25. Therefore, the calculated difference (error) is fed back to the coordinate transformation matrix update value calculation unit 28, and the N, E position error Modify the coordinate transformation matrix so that the minute is zero. As a result, the error of the coordinate transformation matrix is suppressed, so that the D acceleration is also corrected, and therefore, the error of the displacement H is also suppressed.
  • the pitch angle e and the wail angle 0 are output from the pitch / whale calculation unit 35. Since the coordinate conversion matrix in the coordinate conversion unit 27 indicates the relationship between the X, ⁇ , and Z coordinates and the N, E, and D coordinates, the pitch angle ⁇ and the roll angle ⁇ are obtained from this relationship.
  • FIG. 4 shows an example in which a velocity sensor 36 is used in place of the GPS 33 in the posture vertical movement sensor 21.
  • the coordinate conversion unit 27 converts the X, ⁇ , ⁇ coordinates into ⁇ , ⁇ , D coordinates.
  • the X, ⁇ , and ⁇ accelerations output from the three-axis accelerometer 26 are converted into ⁇ , YH, and D accelerations by the coordinate conversion unit 27.
  • is the front of the vehicle on the horizontal plane
  • YH is the right side of the vehicle on the horizontal plane
  • D is the direction of the center of the earth.
  • the coordinate conversion matrix update value calculation unit 28 uses the X, Y, and ⁇ angular velocity data of the three-axis gyro 25 to calculate a change in the coordinate conversion matrix, and the calculated change is input to the coordinate conversion unit 27.
  • the matrix value is updated every moment.
  • the ⁇ ⁇ , ⁇ ⁇ , and D acceleration output from the coordinate conversion unit 27 are input to the integration unit 29.
  • the integration unit 29 integrates the X H , ⁇ ,, and D acceleration to output X H , YH, and D speeds. I do.
  • the D speed is input to the integration unit 31.
  • the integration unit 31 calculates the vertical displacement H by integrating the D speed.
  • the XH speed and the speed output from the speed sensor 36 are input to the comparison unit 34, Comparator 3 4 and X H speed obtained from acceleration, the difference between the speed sensor 3 6 speed of that calculation. Since the integration unit 29 also integrates the error, the error of the XH speed obtained from the acceleration gradually increases, while the error of the speed sensor 36 can be ignored. Since the error does not increase with time, this difference indicates the error in the XH speed obtained from the acceleration.
  • the main cause of this error is the error of the coordinate conversion matrix due to the error of the three-axis gyro 25. Therefore, the calculated difference (XH error) is fed back to the coordinate conversion matrix update value calculation unit 28. and, error of chi Eta rate so zero corrects the coordinate transformation matrix.
  • XH error the calculated difference
  • YH speed because it is the vehicle Ri as error Der
  • the Y H error component is also fed back to the coordinate transformation matrix updating value calculating unit 2 8 similarly. Thereby, the error of the coordinate transformation matrix is suppressed.
  • the pitch angle ⁇ and the roll angle 0 are output from the pitch / roll calculator 35. Since the coordinate conversion matrix in the coordinate conversion unit 27 shows the relationship between the X, ⁇ , ⁇ coordinates and ⁇ ⁇ , YH, D coordinates, the pitch angle 6 and the roll angle ⁇ are obtained from this relationship.
  • the speed sensor 36 determines the speed from the number of rotations of the wheels of the vehicle, for example.
  • An optical speedometer may be used as the speed sensor 36, or a GPS may be used to obtain the speed from the GPS.
  • an accurate coordinate transformation matrix can be obtained, that is, the vertical acceleration (E) acceleration can be accurately measured, so that an accurate vertical displacement H can be obtained, and Accurate pitch angle ⁇ and roll angle ⁇ can be obtained.
  • an HPF (high-pass filter) 30 is provided in front of the integration section 31 to cut the DC component. Is also good. In this case, a more accurate vertical displacement ⁇ can be obtained.
  • the running vehicle 11 is on a road surface 37 as shown in FIGS.
  • the road surface 37 has an ascending slope, and the left and right ruts 37a and 37b have uneven steps with respect to the center part 37c of the lane. Accordingly, the vehicle 11 has a pitch angle ⁇ and a roll angle of 0.
  • Fig. 6 shows the GG section in Fig. 5, and the vehicle Only the bumper 24 of 11 is schematically shown.
  • the distance between the distance sensors 22 (indicated by points in FIGS. 5 and 6) in the vehicle coordinate system is represented by t.
  • the posture vertical movement sensor 21 (similarly indicated by a dot) is assumed to be located at the center of the vehicle in the width direction similarly to the center distance sensor 22, and the distance m and the height in the front-rear direction of the vehicle and the distance sensor 22. It is assumed that the position is shifted by a distance n in the direction.
  • the vertical displacement H obtained by the posture vertical movement sensor 21 is expressed as the height of the posture vertical movement sensor 21 with respect to the reference plane 38 as shown in FIG.
  • the reference plane 38 is, for example, a level plane at the measurement starting point of the road.
  • Each of the longitudinal profiles PC, PL, and PR in the center, left rut, and right rut of the road expresses the height of each road surface from the reference plane 38, and FIG.
  • the longitudinal profile PC at the center of the lane measured under the condition is shown.
  • Each longitudinal profile PC, PL, PR is obtained by subtracting the vertical distance from the attitude vertical movement sensor 21 to the distance measuring road surface of each distance sensor 22 from H, respectively. If the vertical distances at the center of the lane, the left rut and the right rut are F C, FL and F R, respectively,
  • FC (C + n-mtan) cos ⁇ cos ⁇
  • each longitudinal profile PC, PL, PR can be obtained by the following equation.
  • FIG. 7 shows a state in which the vehicle 11 travels on the road for which the longitudinal profile is to be measured.
  • the broken line indicates the trajectory of the displacement H in the vertical direction measured by the posture vertical movement sensor 21. Is shown.
  • H. , Hi, z, to Hi schematically show data measured sequentially.
  • an accurate road profile can be obtained by mounting the road profile measuring device shown in FIG. 1 on a vehicle and sequentially measuring the vehicle while traveling.
  • the longitudinal profiles PC, PL, and PR obtained by the arithmetic unit 23 are recorded by, for example, a recording device.
  • the preferred embodiment of the present invention has been described above.
  • the basic principle of the present invention is that even when a vehicle travels along a road surface and leans in the front-rear direction (running direction) along a road surface, By measuring the acceleration in the direction, the displacement H in the vertical direction of the vehicle can be obtained, and the longitudinal profile of the road can be measured accurately.
  • the longitudinal profiles PC, PL, and PR are obtained from the difference between the vertical displacement ⁇ and the distances C, L, and R.
  • the vehicle body moves up and down with respect to the road surface.
  • distance measuring units By providing a plurality of road-to-vehicle distance sensors (distance measuring units), it is possible to simultaneously measure the longitudinal profiles of the same reference plane, for example, at the center of the lane of the road, and at the left and right rutting parts. It is also possible to accurately measure profiles in the cross-road direction such as rutting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Road Repair (AREA)

Abstract

A posture vertical motion sensor (21), a road-to-car distance sensor (22), and an arithmetic unit (23) are mounted on a vehicle, and the vertical section profile is obtained from the distance to the road face measured with the distance sensor (22) and the pitch angle υ, the roll angle ζ, and the displacement H in vertical direction of the vehicle measured with posture vertical motion sensor (21).

Description

明細書  Specification
道路縦断プロファイル測定装置  Road profile measurement device
技術分野 Technical field
この発明は車両に搭載されて使用され、 その車両が走行中に、 その車両が走行 する道路の縦断プロファイルを測定する道路縦断プロファイル測定装置に関する。 従来の技術  The present invention relates to a road profile profile measuring device that is used by being mounted on a vehicle and measures a vertical profile of a road on which the vehicle runs while the vehicle is running. Conventional technology
この種の道路縦断プロファイル測定装置の従来例として、 例えば日本国特許出 願公告 3 - 7 8 8 2号公報に記載されたものがある。 この測定装置は車体の上下 方向の加速度を測定する加速度計と、 車体から路面までの距離を測定する距離計 とを車体に取付け、 加速度計によって検出された上下動の加速度を積分して変位 量を求め、 この変位量と距離計によつて検出された車体高の変化量との差 δを演 算して、 道路の縦断プロファイルを得るものである。 この差 Sにより例えば地盤 沈下などによる路面のうねりやくぼみを知ることができるものとされている。  As a conventional example of this kind of road longitudinal profile measuring device, there is one disclosed in Japanese Patent Application Publication No. 3-78882, for example. This measuring device is equipped with an accelerometer that measures the vertical acceleration of the vehicle body and a distance meter that measures the distance from the vehicle body to the road surface, and integrates the vertical acceleration detected by the accelerometer to calculate the displacement. Is calculated, and the difference δ between the displacement amount and the change amount of the vehicle height detected by the range finder is calculated to obtain a vertical profile of the road. It is said that the difference S allows the user to know the undulation and depression of the road surface due to land subsidence, for example.
しかし、 上記の測定装置においては、 加速度計はその入力軸が車体の上下方向 に固定されているため、 これと直角な車両走行方向の加速度の成分については測 定することはできず、 従って例えば車両 1 1が図 8に示したように傾斜面 1 2に ならい、 傾斜して走行している場合には、 走行加速度ひに基づく加速度計の出力 は零となり、 この傾斜面 1 2走行による車両 1 1の鉛直方向の移動量 (変位量) を測定できないものとなっている。  However, in the above measuring device, since the input shaft of the accelerometer is fixed in the vertical direction of the vehicle body, it is not possible to measure the acceleration component in the vehicle traveling direction perpendicular to the input shaft. When the vehicle 11 follows the slope 12 as shown in FIG. 8 and is running on a slope, the output of the accelerometer based on the running acceleration becomes zero, and the vehicle on the slope 12 runs. 11 The vertical movement (displacement) in 1 cannot be measured.
つまり、 上記 3— 7 8 8 2号公報に記載された測定装置は路面に対して車体が 上下動するような路面の凹凸は測定できるものの、 車両がその傾斜した路面に沿 つて走行するような大きなうねりや傾斜 (縦断起伏) が路面に存在する場合には、 その縦断起伏を測定できないものとなっている。  In other words, although the measuring device described in the above publication No. 3-7882 can measure the unevenness of the road surface such that the vehicle body moves up and down with respect to the road surface, it is difficult to measure the vehicle traveling along the inclined road surface. If there are large undulations or slopes (longitudinal undulations) on the road surface, the undulations cannot be measured.
この発明の目的は上記欠点を解消し、 車両がその傾斜にならつて走行するよう な路面のうねりや傾斜をも含め、 道路の縦断プロフアイルを正確に測定すること ができる道路縦断プロフアイル測定装置を提供することにある。  SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned drawbacks, and to measure a road profile profile accurately, including a undulation or a slope of a road surface in which a vehicle travels along the slope. Is to provide.
発明の開示 Disclosure of the invention
この発明によれば、 車両に搭載されて、 その車両が走行する道路の縦断プロフ ァィルを測定する道路縦断プロフアイル測定装置は、 路面までの距離を測定する 測距手段と、 鉛直方向の加速度を測定する鉛直加速度測定手段と、 その鉛直加速 度測定手段で測定された加速度を積分して鉛直方向の変位を求める積分手段と、 その積分手段で求めた変位と、 測距手段で測定された距離との差を用いて縦断プ 口ファイルを求める手段とを具備するものとされる。 According to the present invention, a road profile measuring apparatus mounted on a vehicle and measuring a profile of a road on which the vehicle travels measures a distance to a road surface Distance measuring means, vertical acceleration measuring means for measuring vertical acceleration, integrating means for integrating vertical acceleration by measuring the acceleration measured by the vertical acceleration measuring means, displacement obtained by the integrating means And a means for obtaining a longitudinal opening file using a difference between the distance measured by the distance measuring means.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1はこの発明の一実施例を示すプロック図。  FIG. 1 is a block diagram showing one embodiment of the present invention.
図 2 Aは図 1の道路縦断プロファイル測定装置を搭載した車両の側面図。  FIG. 2A is a side view of a vehicle equipped with the road profile measurement device of FIG.
図 2 Bはその正面図。  Figure 2B is a front view.
図 3は図 1における姿勢上下動センサの詳細を示すプロック図。  FIG. 3 is a block diagram showing details of the posture vertical movement sensor in FIG.
図 4は姿勢上下動センサの他の例を示すブロック図。  FIG. 4 is a block diagram showing another example of the posture vertical movement sensor.
図 5は道路縦断プロファイルの測定方法を説明するための図。  FIG. 5 is a diagram for explaining a method of measuring a road profile.
図 6は図 5の G G断面図。  FIG. 6 is a GG sectional view of FIG.
図 7は道路縦断プロファイルの測定における車両の鉛直方向の変位の軌跡を示 す図。  Fig. 7 is a diagram showing the trajectory of the vertical displacement of the vehicle in the measurement of the road longitudinal profile.
図 8は従来の道路縦断プロファイル測定装置の不具合を説明するための図。 発明を実施するための最良の形態  FIG. 8 is a diagram for explaining a problem with the conventional road profile measurement device. BEST MODE FOR CARRYING OUT THE INVENTION
この発明の実施の形態を図面を参照して実施例により説明する。  Embodiments of the present invention will be described with reference to the drawings.
図 1はこの発明の好適な実施例をプロック図で示したものである。 この例では 道路縦断プロファイル測定装置は、 姿勢上下動センサ 2 1と路車間距離センサ 2 2と演算装置 2 3とを有するものとされる。 姿勢上下動センサ 2 1は水平面に対 する車両の前後方向 (走行方向) の傾斜角度 (ピッチ角) θ、 左右方向 (幅方 向) の傾斜角度 (ロール角) φ及び車両の鉛直方向の変位 (上下動) Ηを測定す るもので、 例えば図 2 Α, 2 Βに示したように車内に搭載固定される。  FIG. 1 is a block diagram showing a preferred embodiment of the present invention. In this example, the road profile measurement device is assumed to include a posture vertical movement sensor 21, a road-vehicle distance sensor 22, and a calculation device 23. The posture vertical motion sensor 21 is provided with the inclination angle (pitch angle) θ in the longitudinal direction (running direction) of the vehicle with respect to the horizontal plane, the inclination angle (roll angle) in the lateral direction (width direction) φ, and the displacement of the vehicle in the vertical direction. (Vertical movement) Measures Η. For example, it is mounted and fixed inside the vehicle as shown in Figs. 2Α and 2Β.
路車間距離センサ 2 2は車体から路面までの距離を測定するもので、 例えばバ ンパ一部分に取付けられる。 なお、 この例では図 2 Βに示したように、 車両 1 1 の幅方向中央及び左右タイヤの各前方に位置されて、 3つの距離センサ 2 2がバ ンパー 2 4に取付けられており、 即ち道路の車線中央及び左右わだちにそれぞれ 対向して距離センサ 2 2が配置されている。 距離センサ 2 2には例えばレーザ光 や超音波を出射し、 その反射を検出して距離を測定する構成のものが用いられる。 姿勢上下動センサ 2 1で測定されたピッチ角 Θ、 口ール角 Φ、 鉛直方向の変位 Hと、 3つの距離センサ 2 2で測定された車体から車線中央、 左わだち、 右わだ ちの各路面までの距離 C, L, Rは演算装置 2 3に入力され、 この演算装置 2 3 によって車線中央、 左わだち、 右わだちの各道路縦断プロファイル P C, P L, P Rが求められる。 演算装置 2 3は例えば姿勢上下動センサ 2 1と同様に、 車内 に設置される。 The road-to-vehicle distance sensor 22 measures the distance from the vehicle body to the road surface and is attached to, for example, a part of a bumper. In this example, three distance sensors 22 are mounted on the bumper 24 at the center in the width direction of the vehicle 11 and in front of the left and right tires, as shown in FIG. Distance sensors 22 are arranged opposite to the center of the lane of the road and to the left and right ruts, respectively. For example, a sensor that emits laser light or ultrasonic waves and detects the reflection to measure the distance is used as the distance sensor 22. Pitch angle Θ, mouth angle Φ, vertical displacement H, measured by posture vertical movement sensor 21, and center of lane, left and right lines from vehicle body measured by three distance sensors 22 The distances C, L, and R to the road surface are input to the arithmetic unit 23, which calculates the lane center, left rutting, and right rutting road longitudinal profiles PC, PL, and PR. The arithmetic unit 23 is installed in the vehicle, for example, like the posture vertical movement sensor 21.
次に、 この図 1における姿勢上下動センサ 2 1の構成及び機能を詳細に説明す る。  Next, the configuration and function of the posture vertical movement sensor 21 in FIG. 1 will be described in detail.
図 3は姿勢上下動センサ 2 1の詳細構成をブロック図で示したものである。 直 交 3軸に取付けられた 3軸ジャイロ 2 5は X, Y, Z軸回りの角速度を測定する。 ここでは X軸方向を装置の前方、 Y軸方向を右方、 Z軸方向を下方とする。 一方、 直交 3軸に取付けられた 3軸加速度計 2 6は X, Y, Ζ軸方向の加速度を測定す る。  FIG. 3 is a block diagram showing a detailed configuration of the posture vertical movement sensor 21. A 3-axis gyro 25 mounted on the orthogonal 3-axis measures angular velocities around the X, Y, and Z axes. Here, the X-axis direction is the front of the device, the Y-axis direction is rightward, and the Z-axis direction is downward. On the other hand, a three-axis accelerometer 26 attached to three orthogonal axes measures acceleration in the X, Y, and Ζ axis directions.
座標変換部 2 7は X, Υ, Ζ座標を N, E, D座標 (慣性座標) に変換するも ので、 3軸加速度計 2 6から出力された X, Υ , Z加速度はこの座標変換部 2 7 に入力され、 N, E, D加速度に変換される。 なお、 ここでは Nを北方向、 Eを 東方向、 Dを地球中心方向 (鉛直方向) とする。  The coordinate conversion unit 27 converts the X, Υ, and Ζ coordinates into N, E, and D coordinates (inertial coordinates). The X, Υ, and Z accelerations output from the three-axis accelerometer 26 are converted by the coordinate conversion unit 27. Input to 27 and converted to N, E, D acceleration. Here, N is the north direction, E is the east direction, and D is the earth center direction (vertical direction).
座標変換部 2 7の座標変換マトリタスは本装置の姿勢の変化に伴ない、 刻々と 変化される。 座標変換マトリタス更新値計算部 2 8はこのマトリクスの値を変化 させる変化分を計算するものであって、 マトリクス変化分は姿勢の変化分、 即ち 角速度と一対一に対応するから、 3軸ジャイロ 2 5の X , Y, Ζ角速度データを 使用して、 マトリクス変化分が計算される。 計算された変化分は座標変換部 2 7 に入力され、 刻々とマトリクス値が更新される。  The coordinate transformation matrix of the coordinate transformation unit 27 changes every moment as the posture of the device changes. The coordinate transformation matrix update value calculation unit 28 calculates the change that changes the value of this matrix. Since the matrix change corresponds one-to-one with the change in attitude, that is, the angular velocity, the three-axis gyro 2 The matrix change is calculated using the X, Y, and 5 angular velocity data of 5. The calculated change is input to the coordinate conversion unit 27, and the matrix value is updated every moment.
座標変換部 2 7から出力された N, E, D加速度は積分部 2 9に入力され、 積 分部 2 9は N, E, D加速度を積分して N, E, D速度を出力する。 この N, E, E〕速度のうち、 D速度は積分部 3 1に入力され、 積分部 3 1は D速度を積分して 鉛直方向の変位 Hを計算する。  The N, E, and D accelerations output from the coordinate conversion unit 27 are input to the integration unit 29, and the integration unit 29 integrates the N, E, and D accelerations and outputs N, E, and D velocities. Among these [N, E, E] speeds, the D speed is input to the integration unit 31. The integration unit 31 calculates the displacement H in the vertical direction by integrating the D speed.
一方、 N, E速度は積分部 3 2に入力され、 積分部 3 2は N , E速度を積分し て N, E位置 (移動距離) を出力する。 そして、 この N, E位置と、 G P S (G1 obal Positioning System ) 33から出力される N, E位置とが比較部 34に入 力される。 比較部 3 4はこれら加速度から求めた N, E位置と、 G P S 3 3のN, E位置との差分を計算する。 On the other hand, the N and E velocities are input to the integrator 32, which integrates the N and E velocities and outputs the N and E positions (moving distances). And this N, E position and GPS (G1 The N and E positions output from the obal positioning system 33 are input to the comparison unit 34. The comparison unit 34 calculates the difference between the N and E positions obtained from these accelerations and the N and E positions of the GPS 33.
ここで、 積分部 2 9, 3 2は誤差も積分するため、 加速度から求めた N, E位 置の誤差は段々増加していくのに対し、 G P S 33の誤差は無視することができ、 つまり G P S 33による N, E位置には時間とともに誤差が増加しないため、 こ の差分は加速度から求めた N, E位置の誤差を示すものとなる。  Here, since the integrators 29 and 32 also integrate the error, the errors of the N and E positions obtained from the acceleration gradually increase, while the error of the GPS 33 can be ignored. Since the error does not increase with time for the N and E positions by the GPS 33, this difference indicates the error of the N and E positions obtained from the acceleration.
この誤差の主原因は 3軸ジャィ口 25の誤差による座標変換マトリタスの誤差 にあり、 従ってこの計算した差分 (誤差分) を座標変換マトリクス更新値計算部 28に帰還し、 N, E位置の誤差分が零となるように、 座標変換マトリクスを修 正する。 これにより、 座標変換マトリクスの誤差が抑えられるので、 D加速度も 補正され、 従って変位 Hも誤差が抑えられる。  The main cause of this error is the error of the coordinate transformation matrix due to the error of the 3-axis gyro port 25. Therefore, the calculated difference (error) is fed back to the coordinate transformation matrix update value calculation unit 28, and the N, E position error Modify the coordinate transformation matrix so that the minute is zero. As a result, the error of the coordinate transformation matrix is suppressed, so that the D acceleration is also corrected, and therefore, the error of the displacement H is also suppressed.
ピッチ角 e、 口ール角 0はピッチ ' 口ール計算部 3 5より出力される。 座標変 換部 27における座標変換マトリクスは X, Υ, Z座標と N, E, D座標との関 係を示しているから、 この関係からピッチ角 θ、 ロール角 φが求められる。 図 4は姿勢上下動センサ 2 1において、 G P S 3 3の代わりに速度センサ 3 6を用 いる例を示したものである。  The pitch angle e and the wail angle 0 are output from the pitch / whale calculation unit 35. Since the coordinate conversion matrix in the coordinate conversion unit 27 indicates the relationship between the X, Υ, and Z coordinates and the N, E, and D coordinates, the pitch angle θ and the roll angle φ are obtained from this relationship. FIG. 4 shows an example in which a velocity sensor 36 is used in place of the GPS 33 in the posture vertical movement sensor 21.
この例では、 座標変換部 2 7は X, Υ, Ζ座標を ΧΗ, ΥΗ , D座標に変換す る。 3軸加速度計 26から出力された X, Υ, Ζ加速度はこの座標変換部 27に より、 ΧΗ, YH , D加速度に変換される。 なお、 ここでは ΧΗ を水平面上の車 両前方、 YH を水平面上の車両右方、 Dを地球中心方向とする。  In this example, the coordinate conversion unit 27 converts the X, Υ, Ζ coordinates into ΧΗ, ΥΗ, D coordinates. The X, Υ, and Ζ accelerations output from the three-axis accelerometer 26 are converted into ΧΗ, YH, and D accelerations by the coordinate conversion unit 27. Here, ΧΗ is the front of the vehicle on the horizontal plane, YH is the right side of the vehicle on the horizontal plane, and D is the direction of the center of the earth.
座標変換マトリクス更新値計算部 28は 3軸ジャイロ 25の X, Y, Ζ角速度 データを使用して、 座標変換マトリクスの変化分を計算し、 計算された変化分は 座標変換部 27に入力され、 刻々とマトリクス値が更新される。  The coordinate conversion matrix update value calculation unit 28 uses the X, Y, and Ζ angular velocity data of the three-axis gyro 25 to calculate a change in the coordinate conversion matrix, and the calculated change is input to the coordinate conversion unit 27. The matrix value is updated every moment.
座標変換部 27から出力された ΧΗ, ΥΗ, D加速度は積分部 29に入力され、 積分部 2 9は XH, ΥΗ, D加速度を積分して XH, YH, D速度を出力する。 この XH , YH, D速度のうち、 D速度は積分部 3 1に入力され、 積分部 3 1は D速度を積分して鉛直方向の変位 Hを計算する。 The 加速度Η , Υ Η , and D acceleration output from the coordinate conversion unit 27 are input to the integration unit 29. The integration unit 29 integrates the X H , Υ ,, and D acceleration to output X H , YH, and D speeds. I do. Of the XH, YH, and D speeds, the D speed is input to the integration unit 31. The integration unit 31 calculates the vertical displacement H by integrating the D speed.
XH 速度と、 速度センサ 36から出力される速度とは比較部 34に入力され、 比較部 3 4は加速度から求めた X H 速度と、 速度センサ 3 6の速度との差分を計 算する。 積分部 2 9は誤差も積分するため、 加速度から求めた X H 速度の誤差は 段々増加していくのに対し、 速度センサ 3 6の誤差は無視することができ、 つま り速度センサ 3 6による速度には時間とともに誤差が増加しないため、 この差分 は加速度から求めた X H 速度の誤差を示すものとなる。 The XH speed and the speed output from the speed sensor 36 are input to the comparison unit 34, Comparator 3 4 and X H speed obtained from acceleration, the difference between the speed sensor 3 6 speed of that calculation. Since the integration unit 29 also integrates the error, the error of the XH speed obtained from the acceleration gradually increases, while the error of the speed sensor 36 can be ignored. Since the error does not increase with time, this difference indicates the error in the XH speed obtained from the acceleration.
この誤差の主原因は前述したように、 3軸ジャイロ 2 5の誤差による座標変換 マトリクスの誤差にあり、 従ってこの計算した差分 (X H 誤差分) を座標変換マ トリタス更新値計算部 2 8に帰還し、 Χ Η 速度の誤差分が零となるように、 座標 変換マトリクスを修正する。 一方、 車両であるから Y H 速度はそのまま誤差であ り、 この Y H 誤差分も同様に座標変換マトリクス更新値計算部 2 8に帰還される。 これにより、 座標変換マトリタスの誤差が抑えられる。 As described above, the main cause of this error is the error of the coordinate conversion matrix due to the error of the three-axis gyro 25. Therefore, the calculated difference (XH error) is fed back to the coordinate conversion matrix update value calculation unit 28. and, error of chi Eta rate so zero corrects the coordinate transformation matrix. On the other hand, YH speed because it is the vehicle Ri as error Der, the Y H error component is also fed back to the coordinate transformation matrix updating value calculating unit 2 8 similarly. Thereby, the error of the coordinate transformation matrix is suppressed.
ピッチ角 θ、 ロール角 0はピッチ ' ロール計算部 3 5より出力される。 座標変 換部 2 7における座標変換マトリクスは X, Υ , Ζ座標と Χ Η , Y H , D座標と の関係を示しているから、 この関係からピッチ角 6、 ロール角 φが求められる。 速度センサ 3 6は例えば車両の車輪回転数から速度を求めるものとされる。 な お、 速度センサ 3 6として光学式速度計を用いてもよく、 また G P Sを用い、 こ の G P Sから速度を得るようにしてもよレ、。 The pitch angle θ and the roll angle 0 are output from the pitch / roll calculator 35. Since the coordinate conversion matrix in the coordinate conversion unit 27 shows the relationship between the X, Υ, Ζ coordinates and Χ Η , YH, D coordinates, the pitch angle 6 and the roll angle φ are obtained from this relationship. The speed sensor 36 determines the speed from the number of rotations of the wheels of the vehicle, for example. An optical speedometer may be used as the speed sensor 36, or a GPS may be used to obtain the speed from the GPS.
上記した構成によれば、 正確な座標変換マトリクスが得られ、 即ち鉛直方向の 加速度 (E〕加速度) を正確に測定することができるため、 正確な鉛直方向の変位 Hを得ることができ、 かつ正確なピッチ角 θ、 ロール角 φを得ることができる。 なお、 積分による誤差発散を極力避けるため、 図 3及び 4中に破線で示したよう に、 H P F (ハイパスフィルタ) 3 0を積分部 3 1の前段に設けて直流分をカツ トするようにしてもよい。 この場合、 さらに正確な鉛直方向の変位 Ηを得ること ができる。  According to the above-described configuration, an accurate coordinate transformation matrix can be obtained, that is, the vertical acceleration (E) acceleration can be accurately measured, so that an accurate vertical displacement H can be obtained, and Accurate pitch angle θ and roll angle φ can be obtained. In order to minimize error divergence due to integration, as shown by the broken lines in FIGS. 3 and 4, an HPF (high-pass filter) 30 is provided in front of the integration section 31 to cut the DC component. Is also good. In this case, a more accurate vertical displacement Η can be obtained.
次に、 演算装置 2 3における演算内容について説明する。  Next, the content of the calculation in the calculation device 23 will be described.
今、 走行する車両 1 1が図 5, 6に示すような路面 3 7上にあるとする。 この 路面 3 7は登り勾配を持ち、 また左右わだち部 3 7 a, 3 7 bには車線中央部 3 7 cに対して不均一な段差がある。 従って、 車両 1 1にはピッチ角 θ、 ロール角 0の傾斜が生じている。 なお、 図 6は図 5における G G断面を示しており、 車両 1 1のバンパー 2 4のみを模式的に示している。 Now, it is assumed that the running vehicle 11 is on a road surface 37 as shown in FIGS. The road surface 37 has an ascending slope, and the left and right ruts 37a and 37b have uneven steps with respect to the center part 37c of the lane. Accordingly, the vehicle 11 has a pitch angle θ and a roll angle of 0. Fig. 6 shows the GG section in Fig. 5, and the vehicle Only the bumper 24 of 11 is schematically shown.
ここで、 車両座標系における各距離センサ 2 2 (図 5, 6においては、 点で示 す) 間の距離をそれぞれ tとする。 一方、 姿勢上下動センサ 2 1 (同様に、 点で 示す) は中央の距離センサ 2 2と同じく車両の幅方向中央にあるとし、 かつ距離 センサ 2 2と車両の前後方向に距離 m、 高さ方向に距離 nずれた位置にあるとす る。  Here, the distance between the distance sensors 22 (indicated by points in FIGS. 5 and 6) in the vehicle coordinate system is represented by t. On the other hand, the posture vertical movement sensor 21 (similarly indicated by a dot) is assumed to be located at the center of the vehicle in the width direction similarly to the center distance sensor 22, and the distance m and the height in the front-rear direction of the vehicle and the distance sensor 22. It is assumed that the position is shifted by a distance n in the direction.
姿勢上下動センサ 2 1によって得られる鉛直方向の変位 Hは、 図 5中に示した ように、 基準面 3 8を基準とする姿勢上下動センサ 2 1の高さとして表わされる。 なお、 基準面 3 8は例えば道路の測定起点における水準面とされる。 道路の車線 中央部、 左わだち部、 右わだち部の各縦断プロファイル P C, P L , P Rは共に、 この基準面 3 8からの各路面の高さを表わすものであり、 図 5中にはこの図の状 態で測定される車線中央部の縦断プロファイル P Cが示されている。  The vertical displacement H obtained by the posture vertical movement sensor 21 is expressed as the height of the posture vertical movement sensor 21 with respect to the reference plane 38 as shown in FIG. The reference plane 38 is, for example, a level plane at the measurement starting point of the road. Each of the longitudinal profiles PC, PL, and PR in the center, left rut, and right rut of the road expresses the height of each road surface from the reference plane 38, and FIG. The longitudinal profile PC at the center of the lane measured under the condition is shown.
各縦断プロファイル P C, P L , P Rは姿勢上下動センサ 2 1から各距離セン サ 2 2の距離測定路面までの鉛直距離を、 それぞれ Hから減算することによって 求められる。 車線中央部、 左わだち部、 右わだち部におけるこの鉛直距離をそれ ぞれ F C , F L, F Rとすれば、 これらは次式  Each longitudinal profile PC, PL, PR is obtained by subtracting the vertical distance from the attitude vertical movement sensor 21 to the distance measuring road surface of each distance sensor 22 from H, respectively. If the vertical distances at the center of the lane, the left rut and the right rut are F C, FL and F R, respectively,
FC= (C+n-m · tan θ ) cos θ cos φ  FC = (C + n-mtan) cos θ cos φ
FL= (し +η- m · tan Θ - · tan φ ) cos Θ cos φ  FL = (then + η- m · tan Θ-· tan φ) cos Θ cos φ
FR= (R+n-m · tan Θ +t · tan φ ) cos Θ cos φ  FR = (R + n-m · tan Θ + t · tan φ) cos Θ cos φ
のように表わされる。 従って、 各縦断プロファイル P C, P L , P Rは下式によ り求めることができる。 It is represented as Therefore, each longitudinal profile PC, PL, PR can be obtained by the following equation.
PC = H-FC=H- (C+n-m - tan Θ ) cos θ cos φ … )  PC = H-FC = H- (C + n-m-tan)) cos θ cos φ…)
PL == Η— FL = Η~ (L+n-m · tan Θ -t · tan φ ) cos Θ cos …(2)  PL == Η— FL = Η ~ (L + n-m · tan Θ -t · tan φ) cos Θ cos… (2)
PR=H- FR = H- (R+n-m · tan Θ +t · tan ) cos Θ cos φ … (3)  PR = H- FR = H- (R + n-m · tan Θ + t · tan) cos Θ cos φ… (3)
なお、 車線中央部に対する左わだち部及び右わだち部の変動プロファイル D L, D Rは、 In addition, the fluctuation profiles D L and D R of the left rutting part and the right rutting part with respect to the lane center part are as follows.
DL = PC-PL= (L-C-t■ tan φ ) cos θ cos φ  DL = PC-PL = (L-C-t ■ tan φ) cos θ cos φ
DR=PC-PR= (R-C+t · tan φ ) cos Θ cos φ  DR = PC-PR = (R-C + t tan φ) cos Θ cos φ
で表わされる。 図 7は縦断プロファイルを測定すべき道路を車両 1 1が走行してゆく状態を示 したものであり、 図中、 破線は姿勢上下動センサ 2 1によって測定される鉛直方 向の変位 Hの軌跡を示している。 なお、 H。 , Hi , z, 〜Hi は順次測定さ れるデータを模式的に示したものである。 Is represented by FIG. 7 shows a state in which the vehicle 11 travels on the road for which the longitudinal profile is to be measured. In the figure, the broken line indicates the trajectory of the displacement H in the vertical direction measured by the posture vertical movement sensor 21. Is shown. In addition, H. , Hi, z, to Hi schematically show data measured sequentially.
このように、 図 1に示した道路縦断プロファイル測定装置を車両に搭載し、 車 両を走行させながら順次測定を行うことにより、 正確な道路縦断プロファイルを 得ることができる。 なお、 図 1には示していないが、 演算装置 2 3によって求め られた縦断プロファイル PC, P L, PRは例えば記録装置によって記録される。 以上、 この発明の好適な実施例について説明したが、 この発明の基本は道路に 縦断起伏があり、 車両がその路面に沿い、 前後方向 (走行方向) に傾斜して走行 する場合においても、 鉛直方向の加速度を測定することによって、 車両の鉛直方 向の変位 Hを求めることができるようにし、 その道路の縦断プロファイルを正確 に測定できるようにしたことにある。  As described above, an accurate road profile can be obtained by mounting the road profile measuring device shown in FIG. 1 on a vehicle and sequentially measuring the vehicle while traveling. Although not shown in FIG. 1, the longitudinal profiles PC, PL, and PR obtained by the arithmetic unit 23 are recorded by, for example, a recording device. The preferred embodiment of the present invention has been described above. However, the basic principle of the present invention is that even when a vehicle travels along a road surface and leans in the front-rear direction (running direction) along a road surface, By measuring the acceleration in the direction, the displacement H in the vertical direction of the vehicle can be obtained, and the longitudinal profile of the road can be measured accurately.
なお、 姿勢上下動センサ 2 1が例えば距離センサ 2 2と同様に、 パンパ一24 上にあるとすれば、 m=0, n = 0より、 上記(1)〜(3)式は、 Similarly to the orientation vertical movement sensor 2 1, for example, the distance sensor 2 2, if any on Pampa one 2 4, from m = 0, n = 0, (1) to (3), the
PC = H-C - cos Θ cos</> …ひ),  PC = H-C-cos Θ cos </>… hi),
PL = H-(L-t - tan ø) cos Θ cos φ …(2) '  PL = H- (L-t-tan ø) cos Θ cos φ… (2) '
PR = H-(R+t · tan ) cos Θ cos φ …(3) '  PR = H- (R + t · tan) cos Θ cos φ… (3) '
となり、 これらは姿勢上下動センサ 2 1から路面までの鉛直距離と、 車両の鉛直 方向の変位 Ηとの差より縦断プロファイル P C, P L, PRを求めるものとなる。 また、 ピッチ角 θ、 口一ノレ角 øが比較的小さく、 cos6 = l、 cos(> ^ 1 , tan φ 0とすれば、 これら(1)'〜(3)'式は、 These are to determine the longitudinal profiles PC, PL and PR from the difference between the vertical distance from the attitude vertical motion sensor 21 to the road surface and the vertical displacement Η of the vehicle. Also, if the pitch angle θ and the lip angle ø are relatively small, and cos6 = l, cos (> ^ 1, tan φ0), these equations (1) 'to (3)'
P C = H-C ■■■(!)"  P C = H-C ■■■ (!) "
P L = H- L ··· {2)"  P L = H- L ... (2) "
P R = H-R '·'(3Γ  P R = H-R '
と表わされ、 即ち鉛直方向の変位 Ηと、 距離 C, L, Rとの差より縦断プロファ ィル P C, P L, PRを求めるものとなる。 That is, the longitudinal profiles PC, PL, and PR are obtained from the difference between the vertical displacement Η and the distances C, L, and R.
発明の効果 The invention's effect
以上説明したように、 この発明によれば路面に対して車体が上下動するような 路面の凹凸の測定に加え、 車体が路面に沿い、 傾斜して走行するような路面の縦 断起伏をも正確に測定することができ、 よって正確な道路縦断プロフアイルを得 ることができる。 As described above, according to the present invention, the vehicle body moves up and down with respect to the road surface. In addition to measuring the unevenness of the road surface, it is also possible to accurately measure the vertical undulations of the road surface where the vehicle runs along the road surface and on an incline, and thus, it is possible to obtain an accurate road profile profile.
なお、 路車間距離センサ (測距部) を複数設けることにより、 例えば道路の車 線中央部、 左右わだち部の、 同一基準面に対する各縦断プロファイルを同時に測 定することができ、 この測定より例えばわだち掘れ等の道路横断方向のプロファ ィルをも正確に測定することが可能となる。  By providing a plurality of road-to-vehicle distance sensors (distance measuring units), it is possible to simultaneously measure the longitudinal profiles of the same reference plane, for example, at the center of the lane of the road, and at the left and right rutting parts. It is also possible to accurately measure profiles in the cross-road direction such as rutting.

Claims

請求の範囲 The scope of the claims
1 . 車両に搭載されて、 その車両が走行する道路の縦断プロファイルを測定する 装置であって、 1. A device mounted on a vehicle to measure the longitudinal profile of the road on which the vehicle travels,
路面までの距離を測定する測距手段と、  Distance measuring means for measuring the distance to the road surface,
鉛直方向の加速度を測定する鉛直加速度測定手段と、  Vertical acceleration measuring means for measuring vertical acceleration,
その鉛直加速度測定手段で測定された加速度を積分して鉛直方向の変位を求め る積分手段と、  Integrating means for calculating the vertical displacement by integrating the acceleration measured by the vertical acceleration measuring means;
その積分手段で求めた変位と、 上記測距手段で測定された距離との差を用いて 上記縦断プロフアイルを求める手段と、  Means for obtaining the longitudinal profile by using a difference between the displacement obtained by the integrating means and the distance measured by the distance measuring means;
を具備することを特徴とする道路縦断プロフアイル測定装置。  A road profile measurement device, comprising:
2 . 車両に搭載されて、 その車両が走行する道路の縦断プロファイルを測定する 装置であって、  2. A device that is mounted on a vehicle and measures the longitudinal profile of the road on which the vehicle travels,
路面までの距離を測定する測距手段と、  Distance measuring means for measuring the distance to the road surface,
鉛直方向の加速度を測定する鉛直加速度測定手段と、  Vertical acceleration measuring means for measuring vertical acceleration,
その鉛直加速度測定手段で測定された加速度を積分して鉛直方向の変位を求め る積分手段と、  Integrating means for calculating the vertical displacement by integrating the acceleration measured by the vertical acceleration measuring means;
上記車両の姿勢角を測定する姿勢測定手段と、  Attitude measuring means for measuring the attitude angle of the vehicle,
その姿勢測定手段で測定された姿勢角と上記測距手段で測定された距離とから 上記路面までの鉛直距離を算出し、 その算出した鉛直距離と上記積分手段で求め た変位との差を用いて上記縦断プ口ファイルを求める手段と、  A vertical distance to the road surface is calculated from the attitude angle measured by the attitude measuring means and the distance measured by the distance measuring means, and a difference between the calculated vertical distance and the displacement obtained by the integrating means is used. Means for obtaining the profile file by using
を具備することを特徴とする道路縦断プロフアイル測定装置。  A road profile measurement device, comprising:
3 . 請求項 2記載の道路縦断プロフアイル測定装置において、  3. The road profile measurement device according to claim 2,
上記測距手段が上記車両の幅方向に配列されて複数設けられていることを特徴 とする道路縦断プロフアイル測定装置。  A road profile profile measuring device, wherein a plurality of the distance measuring means are arranged in the width direction of the vehicle.
4 . 請求項 2又は 3記載の道路縦断プロフアイル測定装置において、  4. The road profile profile measuring device according to claim 2 or 3,
上記姿勢測定手段が 3軸ジャイロを用いるものであることを特徴とする道路縦 断プロファイル測定装置。  A road longitudinal profile measuring apparatus, wherein the attitude measuring means uses a three-axis gyro.
5 . 請求項 2又は 3記載の道路縦断プロフアイル測定装置において、 上記姿勢測定手段は 3軸ジャイロと 3軸加速度計と G P Sとを用いるものであ り、 上記 3軸加速度計で測定された加速度を上記 3軸ジャイロで測定された角速 度を用レ、て慣性座標系における加速度に座標変換し、 その座標変換された加速度 から求めた慣性位置と上記 G P Sより得られる慣性位置との差分により、 上記 3 軸ジャイロの誤差を補正して姿勢角を求める構成とされていることを特徴とする 道路縦断プロフアイル測定装置。 5. The road profile measurement device according to claim 2 or 3, The attitude measuring means uses a three-axis gyro, a three-axis accelerometer, and a GPS.The acceleration measured by the three-axis accelerometer is calculated by using the angular velocity measured by the three-axis gyro. A configuration in which coordinates are converted into acceleration in an inertial coordinate system, and an error of the three-axis gyro is corrected to obtain an attitude angle based on a difference between an inertial position obtained from the coordinate-converted acceleration and an inertial position obtained from the GPS. Road profile profile measuring device characterized in that:
6 . 請求項 2又は 3記載の道路縦断プロフアイル測定装置において、  6. The road profile profile measuring device according to claim 2 or 3,
上記姿勢測定手段は 3軸ジャイロと 3軸加速度計と速度センサとを用いるもの であり、 上記 3軸加速度計で測定された加速度を上記 3軸ジャイロで測定された 角速度を用いて慣性座標系における加速度に座標変換し、 その座標変換された加 速度から求めた慣性速度と上記速度センサより得られる速度との差分により、 上 記 3軸ジャイロの誤差を補正して姿勢角を求める構成とされていることを特徴と する道路縦断プロフアイル測定装置。  The attitude measuring means uses a three-axis gyro, a three-axis accelerometer, and a speed sensor, and calculates the acceleration measured by the three-axis accelerometer in an inertial coordinate system using the angular velocity measured by the three-axis gyro. The coordinate is converted into acceleration, and the error of the three-axis gyro is corrected based on the difference between the inertial speed obtained from the coordinate-converted acceleration and the speed obtained from the speed sensor to obtain the attitude angle. Road profile profile measuring device characterized by the fact that
7 . 請求項 6記載の道路縦断プロフアイル測定装置において、  7. The road profile profile measuring device according to claim 6,
上記速度センサは上記車両の車輪回転数から速度を求める構成とされているこ とを特徴とする道路縦断プロフアイル測定装置。  A road profile profile measuring device, wherein the speed sensor is configured to calculate a speed from a wheel rotation speed of the vehicle.
8 . 請求項 6記載の道路縦断プロファイル測定装置において、  8. The road longitudinal profile measuring device according to claim 6,
上記速度センサは G P Sを用いて構成されていることを特徴とする道路縦断プ 口ファイル測定装置。  The above-mentioned speed sensor is constituted using GPS, The road profile opening file measuring device characterized by the above-mentioned.
9 . 請求項 1、 2又は 3記載の道路縦断プロファイル測定装置において、 上記鉛直加速度測定手段は 3軸加速度計と 3軸ジャイロとを用いて構成されて いることを特徴とする道路縦断プロファイル測定装置。  9. The road profile measuring apparatus according to claim 1, 2 or 3, wherein the vertical acceleration measuring means comprises a three-axis accelerometer and a three-axis gyro. .
PCT/JP1997/004459 1996-12-05 1997-12-05 Road vertical section profile measuring apparatus WO1998024977A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU51372/98A AU5137298A (en) 1996-12-05 1997-12-05 Road vertical section profile measuring apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/325683 1996-12-05
JP08325683A JP3074464B2 (en) 1996-12-05 1996-12-05 Road profile measurement device

Publications (1)

Publication Number Publication Date
WO1998024977A1 true WO1998024977A1 (en) 1998-06-11

Family

ID=18179559

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/004459 WO1998024977A1 (en) 1996-12-05 1997-12-05 Road vertical section profile measuring apparatus

Country Status (3)

Country Link
JP (1) JP3074464B2 (en)
AU (1) AU5137298A (en)
WO (1) WO1998024977A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105133472A (en) * 2015-06-11 2015-12-09 广西大学 Road surface roughness measurement method and inertial detector
CN107504949A (en) * 2017-08-18 2017-12-22 河南科技大学 Ditch shape outline mapping method and ditch shape outline plotting board
EP3617647A4 (en) * 2017-04-27 2021-01-27 The University Of Tokyo Road surface profile estimating device, road surface profile estimating system, road surface profile estimating method, and road surface profile estimating program

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002081941A (en) * 2000-09-11 2002-03-22 Zenrin Co Ltd System and method of measuring three-dimensional shape of road
JP4075465B2 (en) * 2002-05-24 2008-04-16 日産自動車株式会社 Road information collection device
DE102004055069B4 (en) * 2004-07-15 2007-02-15 Daimlerchrysler Ag Multidimensional road survey
DE102004055070B4 (en) * 2004-10-04 2010-10-14 Daimler Ag Stroke correction in the vehicle-based measurement of road surface profiles
DE102004048636B4 (en) * 2004-10-04 2008-07-31 Daimler Ag Device and method for the synchronization of measuring devices
US8989982B2 (en) 2008-08-29 2015-03-24 Sony Corporation Velocity calculation device, velocity calculation method, and navigation device
JP5482047B2 (en) * 2009-09-15 2014-04-23 ソニー株式会社 Speed calculation device, speed calculation method, and navigation device
JP5088401B2 (en) * 2010-06-23 2012-12-05 日本電気株式会社 Road structure measuring method and road surface measuring device
JP2012202749A (en) * 2011-03-24 2012-10-22 Yokogawa Denshikiki Co Ltd Orientation detection device
JP5267618B2 (en) * 2011-06-24 2013-08-21 ソニー株式会社 Information processing device
CN102345269B (en) * 2011-07-14 2013-04-03 广州大学 Rubber asphalt compacting technology based on pavement quality indicator
JP2014186612A (en) * 2013-03-25 2014-10-02 Tamagawa Seiki Co Ltd Linearity measuring apparatus
JP2014228421A (en) * 2013-05-23 2014-12-08 多摩川精機株式会社 Correction method of measured trajectory of road surface measurement device
CN103643620B (en) * 2013-12-18 2016-08-24 北京市路兴公路新技术有限公司 A kind of laser beam depth of parallelism regulation system and method measured for pavement deflection
CN103835212B (en) * 2014-02-21 2015-11-25 哈尔滨工业大学 A kind of highway pavement three-dimensional detection system
JP2016130704A (en) * 2015-01-15 2016-07-21 株式会社Ihi Altitude change calculation apparatus and altitude change calculation method
CN105019339A (en) * 2015-07-21 2015-11-04 中山市拓维电子科技有限公司 Intelligent roller
CN105019344A (en) * 2015-07-21 2015-11-04 中山市拓维电子科技有限公司 Road surface roughness monitor
JP6154951B1 (en) * 2016-10-18 2017-06-28 サイトセンシング株式会社 Velocity measuring device, position measuring device, velocity measuring method and program

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239236A (en) * 1994-02-28 1995-09-12 Hitachi Ltd Method and apparatus for measurement of quantity of state of moving body and calculation device of attitude angle of moving body
JPH0814928A (en) * 1994-06-30 1996-01-19 Matsushita Electric Ind Co Ltd Speed-sensor-factor computation apparatus
JPH08292022A (en) * 1995-04-24 1996-11-05 Mitsubishi Heavy Ind Ltd Road surface form measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07239236A (en) * 1994-02-28 1995-09-12 Hitachi Ltd Method and apparatus for measurement of quantity of state of moving body and calculation device of attitude angle of moving body
JPH0814928A (en) * 1994-06-30 1996-01-19 Matsushita Electric Ind Co Ltd Speed-sensor-factor computation apparatus
JPH08292022A (en) * 1995-04-24 1996-11-05 Mitsubishi Heavy Ind Ltd Road surface form measuring device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105133472A (en) * 2015-06-11 2015-12-09 广西大学 Road surface roughness measurement method and inertial detector
CN105133472B (en) * 2015-06-11 2017-04-12 广西大学 Road surface roughness measurement method and inertial detector
EP3617647A4 (en) * 2017-04-27 2021-01-27 The University Of Tokyo Road surface profile estimating device, road surface profile estimating system, road surface profile estimating method, and road surface profile estimating program
CN107504949A (en) * 2017-08-18 2017-12-22 河南科技大学 Ditch shape outline mapping method and ditch shape outline plotting board

Also Published As

Publication number Publication date
JPH10168810A (en) 1998-06-23
JP3074464B2 (en) 2000-08-07
AU5137298A (en) 1998-06-29

Similar Documents

Publication Publication Date Title
WO1998024977A1 (en) Road vertical section profile measuring apparatus
US7463953B1 (en) Method for determining a tilt angle of a vehicle
JP4170284B2 (en) Method and system for estimating moving direction of moving object
US6474159B1 (en) Motion-tracking
US7289898B2 (en) Apparatus and method for measuring speed of a moving object
JP3375268B2 (en) Navigation device
Scheding et al. Experiments in autonomous underground guidance
US20070005212A1 (en) Lateral and longitudinal velocity determination for an automotive vehicle
CN107063305B (en) Method for correcting downhill suspended rear wheel odometer error by using inertial navigation and pressure sensors
JP2001221652A (en) Inertial guide apparatus and method for navigation system for car
CN107607113A (en) A kind of two axle posture inclination angle measurement methods
JP4149913B2 (en) Integrated inertia VMS navigation with inertia odometer correction
JP2004125689A (en) Position calculation system for self-contained navigation
KR101356347B1 (en) Inertial navigation system of walk and method for estimating angle and height information using the same
JP4386985B2 (en) In-vehicle measuring device for road surface extension
JP6594546B2 (en) Angle measuring device
JP2843904B2 (en) Inertial navigation system for vehicles
US20040016309A1 (en) Device for the dynamic measurement of an object&#39;s relative position
US9791277B2 (en) Apparatus and method for measuring velocity of moving object in a navigation system
JPH11295335A (en) Detecting apparatus for position of moving body
EP1206683B1 (en) Integrated inertial/vms navigation system
JP3783061B1 (en) Method and apparatus for detecting tilt angle and translational acceleration
JPH0781858B2 (en) Vehicle position and attitude angle measuring device
JPH06207830A (en) Apparatus and method for measuring shape of roadway
RU2162202C1 (en) Method determining grade, curvature, roughness and adhesion factor of pavement and gear for its implementation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

WWE Wipo information: entry into national phase

Ref document number: 09117731

Country of ref document: US