JP4386985B2 - In-vehicle measuring device for road surface extension - Google Patents

In-vehicle measuring device for road surface extension Download PDF

Info

Publication number
JP4386985B2
JP4386985B2 JP09192199A JP9192199A JP4386985B2 JP 4386985 B2 JP4386985 B2 JP 4386985B2 JP 09192199 A JP09192199 A JP 09192199A JP 9192199 A JP9192199 A JP 9192199A JP 4386985 B2 JP4386985 B2 JP 4386985B2
Authority
JP
Japan
Prior art keywords
vehicle
road surface
distance
measuring
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09192199A
Other languages
Japanese (ja)
Other versions
JP2000283745A (en
Inventor
満雄 高橋
久 高木
義道 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kokusai Kogyo Co Ltd
Original Assignee
Kokusai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kokusai Kogyo Co Ltd filed Critical Kokusai Kogyo Co Ltd
Priority to JP09192199A priority Critical patent/JP4386985B2/en
Publication of JP2000283745A publication Critical patent/JP2000283745A/en
Application granted granted Critical
Publication of JP4386985B2 publication Critical patent/JP4386985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、路面の延長方向形状を車両の姿勢と車高センサの測定データから比較的簡単な演算式に基づききめ細かに算出することにより高精度の測定結果が得られる車載測定装置に関する。
【0002】
【従来の技術】
従来も路面性状を把握すべく車両に搭載した測定装置により路面の横断面プロフィール、縦断面プロフィール及びひび割れを計測している。例えば、特開平10―168810号公報によれば、車両に路面までの距離を測定する測距手段と、鉛直方向の加速度を測定する鉛直加速度測定手段と、その鉛直加速度測定手段で測定された加速度を積分して鉛直方向の変位を求める積分手段と、上記車両の姿勢角を測定する姿勢測定手段と、その姿勢測定手段で測定された姿勢角と上記測距手段で測定された距離とから上記路面までの鉛直距離を算出し、その算出した鉛直距離と上記積分手段で求めた変位との差を用いて上記縦断プロファイルを求める手段とを備えた測定装置を車両に搭載し、同測定装置により走行する道路の道路縦断プロフィールを測定している。
【0003】
前記測距手段としては、例えばレーザ光や超音波が使われ、その反射を検出して車両と路面間の距離を測定する。また、前記姿勢測定手段としては、3軸ジャイロの他に、3軸加速度計やGPS、或いはGPSに代えて速度センサが用いられている。前記3軸加速度計から出力されるX,Y,Z加速度は座標変換手段により慣性座標であるN(北方向),E(東方向),D(地球中心方向)の各座標の加速度に変換され、これらのN,E,D加速度を積分して各速度を求めると共に、N,E,D速度を更に積分して鉛直方向の変位HとN,E位置(移動距離)を算出している。前記N,E速度を積分して得られるN,E位置の積分による誤差の増加は、例えばGPSのN,E位置と比較されて修正される。
【0004】
この公報に開示された道路の縦断面プロフィール測定装置によれば、路面に対して車体が上下動するような路面の凹凸の測定に加え、車体が路面に沿い、傾斜して走行するような路面の縦断起伏をも正確に測定することができるため正確な道路縦断プロファイルを得ることができるというにある。
【0005】
【発明が解決しようとする課題】
つまり、道路の前記縦断面プロフィール測定方法は、3軸加速度計及び3軸ジャイロから得られる鉛直上下変位から、ロール角、ピッチ角、ジャイロ取付高さ、路車間の測距手段により得られる各データから演算して求められる鉛直方向の高さを引算した値を路面縦断プロフィールとしている。このため、得られるデータは3軸ジャイロによる鉛直上下変位の精度に依存することになるが、この鉛直上下変位は3軸加速度計により得られる加速度に、刻々と変わる3軸ジャイロのX、Y、Z角加速度のデータを使用して、そのマトリクス変化分を更新して座標変換手段に入力している。そして、前記座標変換手段から出力される鉛直加速度を2重積分(速度に変換したのち、変位に変換する。)することにより上記鉛直上下変位を算出することから、以下に挙げるような諸々の課題が生じる。
【0006】
(1) 積分することにより生じる3軸ジャイロのデータの発散を少なくするために、上記公報にも記載されているようにハイパスフィルターを使用する必要がある。この場合、採用される周波数の範囲により得られる縦断プロフィールの正確な路面のうねり周期が限定されてしまい、緩やかな坂道の計測は不可能となる。例えば、ハイパスフィルタのカットオフ周波数を0.4Hz以下とすると、時速100kmで走行する車両からは69m以上の路面うねり周期の計測は不可能となる。
【0007】
(2) 鉛直方向加速度を2重積分して変位を求めようとする場合には、車両の鉛直方向加速度の変化が0.4Hzを越える周波数の交流正弦波運動に限られ、一定の加速度の場合や加速度が0.4Hz以下の周波数で変化する場合には、変位出力が時間とともに零に収束してしまう。
【0008】
(3) 一方、GPSからのデータに基づいて3軸ジャイロの出力(ロール角、ピッチ角、鉛直上下変位)データを補正しようとすると、一般にGPSからのデータは1sec間隔ごとにしか得られないため、これらのデータを用いて高精度のデータを得ようとすると、1sec間隔で補正された3軸ジャイロからの出力データしか採用できない。従って、例えば車速が36km/hの車両上から信頼性の高い縦断プロフィールに使われるデータを得ようとすると、10m間隔のデータしか採用できないことになる。このことは、実際の路面を走行する計測車両にあっては、限られた条件下における計測のみが有効になることを意味している。
【0009】
(4) 更に、車上に設置されたジャイロの上下鉛直変位成分は、路面の形状、車両のタイヤ、バネ系を含む各鉛直上下変位成分の上重された高調波成分からなり、0.4Hz以上の交流正弦波運動とはなり得ないため、正確な測定は望めない。
【0010】
本発明は、従来のこの種の測定装置における前述の課題を解決すべくなされたものであり、具体的には極めて短い距離から比較的長い距離に到るまでの路面のうねり等を、簡単な演算式を用いて正確に測定し得る路面の延長方向形状の車載測定装置を提供することを目的としている。
【0011】
【課題を解決するための手段及び作用効果】
本発明者等は、前述の目的を達成するために上記公報に開示された測定装置の上記課題が如何なる要因により発生するかを検討した。同公報による測定装置では、上述のように刻々と変化する鉛直上下変位を3軸加速度計から得られるZ加速度に3軸ジャイロのZ軸の角加速度データを利用してマトリックス変化分をを計算し、その値からら鉛直加速度を得て、これを2重積分することにより算出している。このときの2重積分による誤差発散分を回避するため、上述のようにハイパスフィルタを介在させている。このハイパスフィルタの介在により、測定条件などに制限を受けることとなる。
【0012】
本件請求項1に係る発明は、車両のローリング角度(α)、ピッチング角度(β)を測定する傾斜角検出手段と、車両の巾方向同一直線上の両端に設置され、各路面までの距離(Am,Bm)を測定する車高検出手段と、車両の進行方向距離を測定する走行距離検出手段と、予め設定された所定の距離(L)ごとに前記各検出手段により検出される各種の計測データをサンプリングするサンプリング手段と、路面上にレーザビームを走査させるスキャナとを有し、上記計測データの入力により、
Rθi =tan-1(bi /l)
=tan-1〔{HiL−(HiR−ai )}/l〕
i+1 =Lsinβi
但し、Rθi :測定点ごとの路面の横断勾配角度
l :左右車高検出手段間の距離
i :l・tanαi (車幅方向一端の相対車高)
i :HiL−(HiR−ai )(車幅方向他端の相対車高)
i+1 :測定点Pi+1 における前回の測定点Pi との路面高低差
i :0〜n(サンプリング回)
上記演算式に基づく路面延長方向の横断勾配演算及び縦断勾配演算を行う延長方向形状演算手段とを有してなることを特徴とする路面延長方向形状の車載測定装置にある。
【0013】
常に前回(i回目)の測定点Pi を基準点として、車両が所定の距離Lだけ進んだときの次回(i+1回目)の測定点Pi+1 における路面の横断勾配Rθi 及び測定点Pi+1 における前回の測定点Pi との高低差Hi+1 を、測定点Pi+1 における測定データを車両に搭載した演算装置に入力して上記演算式を使ってそれぞれの値を算出し、前回の測定点Pi を基準点とする次回の測定点Pi+1 までの道路の縦断プロフィールを求める。次の演算は、測定点Pi+1 を新たな基準点として路面の延長上にある所定の距離Lを隔てた次回の測定点Pi+2 における路面の横断勾配Rθi+2 及び同測定点Pi+2 における前回の測定点Pi+1 との高低差Hi+2 を上記演算式に従って求める。この操作が繰り返されることにより、距離Lごとの路面の縦断面プロフィールが測定される。
【0014】
本発明によれば、予め設定されるサンプリングのための上記距離Lを任意に決定できるため、外乱による影響の少ない距離を選定することにより実用上は十分な精度の計測が可能であり、しかも上記演算式が測定回ごとに逐次更新される2測定点間の純幾何学的な演算式に過ぎず、積分等の格別の操作が不用であるため、従来のごとく積分による誤差の発散も避けられ、設定距離Lごとの前回の測定との相対的で正確な縦断面プロフィールが計測できる。また、通常の計測であればGPSデータによる補正等は不用であるが、もし路面の絶対標高が必要な場合には、上記測定データに対してGPSの標高データを使って絶対的な標高に基づく横断面勾配と縦断面勾配を演算することもできる。
【0015】
請求項2に係る発明は、サンプリング間隔である前記所定の距離(L)を20〜30cmの範囲に設定するものである。路面の多様なラフネス測定装置から得られる平坦性指数を互いに関連付けて、統一的な路面のラフネスを把握するための指数として国際ラフネス指数(IRI)がある。このIRIは、縦断プロフィールのサンプリング間隔ごとの車体と車輪の相互変位の変化量(路面の修正勾配)の縦断プロフィール全長に対する平均値であり、縦断プロフィールの延長ごとにその値が求められ、そのサンプリング間隔はタイヤのエンベロープ特性を考慮して25cmと決められており、車速を80km/hを標準としている。かかる観点から、本発明にあっては計測車両の車速60〜100km/hに応じてサンプリング間隔(L)を20〜30cmの間に設定している。
【0016】
【発明の実施形態】
以下、本発明の好適な実施の態様を添付図面に基づいて具体的に説明する。
図1は本発明に係る計測装置類の車両に搭載するときの配置を模式的に示している。測定車両1の右左の前輪2R,2Lと後輪3R,3Lの各前後方向の接地点間を結ぶ右左の直線の直上に所定の上下間隔をあけて右左の車高センサ4R,4Lを固設している。また図示例では、前記右左の車高センサ4R,4Lを結ぶ直線上中央に傾斜計5が固設され、右側後輪3Rには走行距離センサ6が接触回転するように取り付けられている。前記車高センサ4R,4Lとしては、公知の光センサ或いは超音波センサなどが用いられ、前記傾斜計5には各種ジャイロが使われている。
【0017】
更に本実施例にあっては、測定車両1にはレーザヘッド7と、同ヘッド7から出射されるレーザビームを車両1の前方の路面上の車両1の走行中心線に直交する直線上にレーザビームを走査させるスキャナ8とが搭載され、車両1の前面にはレーザビームの走査線上の路面の反射光を受光して路面表面のわだち掘れとひび割れ状態を検出するわだち掘れセンサ9R,9L及びひび割れセンサ10R,10Lが取り付けられている。前記わだち掘れセンサ9R,9L及びひび割れセンサ10R,10Lは路面の左右半部の検出を分担すべく、それぞれ左右に設けられている。
【0018】
図2は本発明に係る測定装置による路面の延長方向形状の測定法の一例をフローチャートで示し、図3は路面の横断勾配の測定方法の説明図、図4は同縦断勾配の測定方法の説明図である。ただし、同図ではわだち掘れセンサ9及びひび割れセンサ10による路面の横断方向のうねり等の検出手順は省略している。
なお、測定車両1の左右に配される各センサ類によるデータの演算は、右左のそれぞれについてなされるが、その演算手順は右左で相違しないため、以下の説明ではその一方の演算手順について説明することにする。
【0019】
図2によれば、先ず最初の測定点P0 において車高センサ4R,4Lにより路面から各センサ4R,4Lまでの距離(車高)H0R,H0Lを計測すると共に、傾斜計5により車両のローリング角α0 及びピッチング角β0 を検出する。これらのデータのうち、左右の路面から車高センサ4R,4Lまでの車高H0R,H0Lのそれぞれのデータと車両のローリング角α0 及びピッチング角β0 とが車両に装備する演算装置11に入力され、
i =l・tanαi (車幅方向一端の相対車高)
i =HiL−(HiR−ai )(車幅方向他端の相対車高)
Rθi =tan-1(bi /l)
=tan-1〔{HiR−(HiL−ai )}/l〕
i+1 =Lsinβi
但し、Rθ:路面の横断勾配角度
l :左右車高検出手段間の距離
i :l・tanαi (車幅方向一端の相対車高)
i :Bi−(Ai−ai )(車幅方向他端の相対車高)
i+1 :測定点Pi+1 における前回の測定点Pi との路面高低差
i :0〜n(サンプリング回)
上記演算式を使って車高を補正して、車両1の左右両端におけるそれぞれの路面に対する相対高さa0 ,b0 (ただし、Lは0である。)を求める。
【0020】
次に、車高センサ4R,4L間の距離をlとして、前記演算装置11により前記相対高さa0 ,b0 から下記の演算式を使って路面の横断勾配角度Rθ0 を算出して路面の横断勾配形状を求め、記憶部12に格納する。
【0021】
続いて、測定車両1を予め設定された距離Lを走行させて、最初の測定点P0 の上記相対高さa0 ,b0 を基準として、第2の測定点P1 における車両1の左右両端の路面に対する相対高さa1 ,b1 を前述の演算式を使って算出すると共に、車両1の左右両端部における前回の測定点P0 と第2の測定点P1 との路面高低差h1 を、
演算式 h1 =Lsinβ0
を使って算出する。
【0022】
本実施例では、前記距離Lは25cmに設定されており、同距離が極めて短いため、最初の縦断勾配角度は傾斜計5により検出される最初の測定点P0 におけるピッチング角β0 に等しいとして取り扱う。こうして得られた第2測定点P1 における車両1の左右両端の路面に対する相対高さa1 ,b1 と、車両1の右左両端部における前回の測定点P0 と第2の測定点P1 との路面高低差h1 とから、第2測定点P1 の横断面形状及び縦断面形状が求められて、路面の延長方向形状が確定する。以上のサンプリング及び演算操作を繰り返すことにより、第3〜第n回の測定が順次なされて、図5に示すように延長方向の路面形状が測定される。
【0023】
図6(a)及び(b)は、水準測量により得られた実測値をプロットして書かれた路面延長方向の変化の状態と、本発明装置による演算結果に基づく路面延長方向の変化の状態とを対比して示した線図である。これらの図から、本発明装置による演算結果が実測値に近似していることが理解できる。
【0024】
以上の説明からも理解できるように、本発明の路面の延長方向形状の測定装置によれば、路面の延長方向における横断面プロフィール及び縦断面プロフィールを演算するにあたり、積分演算が不用であるため各データの誤差の発散がなく、しかも測定のサンプリング間隔(L)を任意に設定し得るため測定誤差も少なくでき、路面の延長方向における短いうねりから長い周期のうねりまで高精度の測定が可能となる。また、鉛直上下変位が不正確な場合や、衛星からの電波が建物や立橋などにより受信できずGPSデータが得られないようなときにも、延長方向の形状の測定が可能になる。
【0025】
また、本実施例によればレーザビームを車両の進行方向と直交する路面上を走査させることにより、路面の幅方向のうねりを逐次測定するようにしているため、更に正確な路面性状を測定し得る。その結果、路面の3次元形状が得られ、本発明の路面性状の測定車両のわだち掘りデータを横断勾配の算出結果で補正し、縦断勾配の算出結果(延長方向形状)上に結ぶことにより正確な路面の3次元形状が得られ、道路補修時の工事量算出や車両の乗り心地評価のため路面データ等の利用が可能である。なお、こうした路面の幅方向のうねり(わだち掘れ形態やひび割れ形態)の測定は、例えば特開昭61−112918号公報により提案された測定装置により実施が可能である。
【0026】
更に本発明にあっては、鉛直上下変位やGPSデータを使って高さ補正をすることが可能である。具体的には、上述のようにして算出された相対的な路面高低差H1 をGPSの標高データにより標高補正して、図7(a)及び(b)に示すように絶対的な標高高低差を得ることもでき、例えば立体地図等をの作成するにあたって有効である。
【図面の簡単な説明】
【図1】本発明の延長方向形状測定装置類を搭載した車両の各種センサ類の配置図である。
【図2】本発明装置による演算手順を示すフローチャートである。
【図3】本発明装置により路面の横断勾配角度を算出する方法例を示す説明図である。
【図4】本発明装置による延長方向形状を求めるための説明図である。
【図5】本発明装置により得られる各測定点の高低差を結んで得られる路面の延長方向形状を示す説明図である。
【図6】水準測量による実測値と本発明装置による演算値とをプロットして得られる対比線図である。
【図7】本発明装置による相対的な高低差データをGPSデータを使って補正して得られる路面延長方向の標高差を対比して示す線図である。
【符号の説明】
1 測定車両
2L,2R 左右の前輪
3L,3R 左右の後輪
4L,4R 左右の車高センサ
5 傾斜計
6 走行距離センサ
7 レーザヘッド
8 スキャナ
9L,9R 左右のわだち掘れセンサ
10L,10R 左右のひび割れセンサ
11 演算装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-vehicle measuring apparatus that can obtain a highly accurate measurement result by finely calculating the shape of a road surface in the extending direction from a vehicle attitude and vehicle height sensor measurement data based on a relatively simple arithmetic expression.
[0002]
[Prior art]
Conventionally, a cross-sectional profile, a vertical cross-sectional profile, and a crack of a road surface are measured by a measuring device mounted on the vehicle in order to grasp the road surface property. For example, according to Japanese Patent Laid-Open No. 10-168810, distance measuring means for measuring the distance of a vehicle to a road surface, vertical acceleration measuring means for measuring acceleration in the vertical direction, and acceleration measured by the vertical acceleration measuring means. Integrating means for obtaining a displacement in the vertical direction by integrating the above, attitude measuring means for measuring the attitude angle of the vehicle, attitude angle measured by the attitude measuring means and distance measured by the distance measuring means A vehicle is equipped with a measuring device having a means for calculating a vertical distance to the road surface, and using the difference between the calculated vertical distance and the displacement obtained by the integrating means to obtain the longitudinal profile. The road profile of the road is measured.
[0003]
As the distance measuring means, for example, laser light or ultrasonic waves are used, and the distance between the vehicle and the road surface is measured by detecting the reflection. In addition to the triaxial gyro, the attitude measuring means uses a triaxial accelerometer, GPS, or a speed sensor instead of GPS. The X, Y, and Z accelerations output from the three-axis accelerometer are converted into accelerations of respective coordinates of N (north direction), E (east direction), and D (center direction of the earth) that are inertial coordinates by coordinate conversion means. These N, E, and D accelerations are integrated to determine each speed, and the N, E, and D speeds are further integrated to calculate vertical displacement H and N, E positions (movement distances). The increase in error due to the integration of the N and E positions obtained by integrating the N and E velocities is corrected by comparing with the N and E positions of GPS, for example.
[0004]
According to the profile measuring apparatus for a longitudinal section of a road disclosed in this publication, in addition to measuring the unevenness of the road surface such that the vehicle body moves up and down with respect to the road surface, the road surface where the vehicle body runs along the road surface with an inclination. Therefore, it is possible to accurately measure the vertical undulations of the road, so that an accurate road profile can be obtained.
[0005]
[Problems to be solved by the invention]
In other words, the method for measuring the profile of the longitudinal section of the road is based on the vertical vertical displacement obtained from the three-axis accelerometer and the three-axis gyro, and each data obtained by the roll angle, the pitch angle, the gyro mounting height, and the distance measuring means between the road vehicles. The value obtained by subtracting the height in the vertical direction obtained by calculating from is used as the road profile. For this reason, the data obtained depends on the accuracy of vertical vertical displacement by the three-axis gyro, but this vertical vertical displacement changes to the acceleration obtained by the three-axis accelerometer. Using the Z angular acceleration data, the matrix change is updated and input to the coordinate conversion means. Then, the vertical acceleration output from the coordinate conversion means is double-integrated (converted into velocity and then converted into displacement) to calculate the vertical vertical displacement, and thus various problems as listed below. Occurs.
[0006]
(1) In order to reduce the divergence of 3-axis gyro data generated by integration, it is necessary to use a high-pass filter as described in the above publication. In this case, the accurate road surface waviness period of the longitudinal profile obtained by the frequency range to be adopted is limited, and it is impossible to measure a gentle slope. For example, if the cut-off frequency of the high-pass filter is 0.4 Hz or less, a road surface waviness period of 69 m or more cannot be measured from a vehicle traveling at a speed of 100 km / h.
[0007]
(2) When the vertical acceleration is double-integrated to determine the displacement, the change in the vertical acceleration of the vehicle is limited to alternating sine wave motion with a frequency exceeding 0.4 Hz. When the acceleration changes at a frequency of 0.4 Hz or less, the displacement output converges to zero with time.
[0008]
(3) On the other hand, when trying to correct the output (roll angle, pitch angle, vertical vertical displacement) data of the 3-axis gyro based on the data from GPS, the data from GPS is generally obtained only at intervals of 1 sec. In order to obtain highly accurate data using these data, only output data from a three-axis gyro corrected at intervals of 1 sec can be employed. Therefore, for example, if data for use in a longitudinal profile with high reliability is obtained from a vehicle having a vehicle speed of 36 km / h, only data at intervals of 10 m can be employed. This means that only measurement under limited conditions is effective in a measurement vehicle traveling on an actual road surface.
[0009]
(4) Furthermore, the vertical vertical displacement component of the gyro installed on the vehicle consists of harmonic components superimposed on each vertical vertical displacement component including road surface shape, vehicle tire, spring system, and 0.4 Hz. Since it cannot be the above AC sine wave motion, accurate measurement cannot be expected.
[0010]
The present invention has been made to solve the above-described problems in the conventional measuring apparatus of this type, and specifically, it is possible to easily swell road surfaces from a very short distance to a relatively long distance. An object of the present invention is to provide an in-vehicle measuring device having a road surface extending direction shape that can be accurately measured using an arithmetic expression.
[0011]
[Means for solving the problems and effects]
In order to achieve the above-mentioned object, the present inventors have examined what factors cause the above-described problem of the measuring device disclosed in the above publication. In the measuring device according to the publication, the vertical change that changes every moment as described above is used to calculate the amount of matrix change using the Z-axis angular acceleration data of the 3-axis gyro as the Z acceleration obtained from the 3-axis accelerometer. The vertical acceleration is obtained from the value and is calculated by double integration. In order to avoid error divergence due to double integration at this time, a high-pass filter is interposed as described above. Due to the high-pass filter, measurement conditions are limited.
[0012]
The invention according to claim 1 is provided with an inclination angle detecting means for measuring a rolling angle (α) and a pitching angle (β) of the vehicle, and both ends on the same straight line in the width direction of the vehicle. Vehicle height detection means for measuring Am, Bm), travel distance detection means for measuring the distance in the traveling direction of the vehicle, and various measurements detected by the detection means for each predetermined distance (L). It has a sampling means for sampling data and a scanner that scans a laser beam on the road surface. By inputting the measurement data,
i = tan −1 (b i / l)
= Tan -1 [{ HiL- ( HiR- ai )} / l]
h i + 1 = Lsin β i
However, R.theta i: cross slope angle of a road surface of each measurement point
l: Distance between left and right vehicle height detection means
a i : l · tan α i (relative vehicle height at one end in the vehicle width direction)
b i : H iL − (H iR −a i ) (relative vehicle height at the other end in the vehicle width direction)
h i + 1: the road surface height difference between the previous measurement point P i at the measurement point P i + 1
i: 0 to n (sampling times)
An in-vehicle measuring device for extending in the road surface direction has an extending direction shape calculating means for performing a crossing gradient calculation and a longitudinal gradient calculation in the road surface extension direction based on the above equation.
[0013]
Always using the previous (i-th) measurement point P i as a reference point, the road surface crossing gradient Rθ i and the measurement point P at the next (i + 1) -th measurement point P i + 1 when the vehicle travels a predetermined distance L. the height difference H i + 1 between the previous measurement point P i in the i + 1, each value using the arithmetic expression measurement data is input to the arithmetic apparatus mounted on a vehicle at the measurement point P i + 1 The profile of the road to the next measurement point P i + 1 with the previous measurement point P i as the reference point is calculated. In the next calculation, the road surface crossing gradient Rθ i + 2 and the same measurement at the next measurement point P i + 2 separated by a predetermined distance L on the road surface extension with the measurement point P i + 1 as a new reference point. The height difference H i + 2 between the point P i + 2 and the previous measurement point P i + 1 is obtained according to the above equation. By repeating this operation, the longitudinal profile of the road surface for each distance L is measured.
[0014]
According to the present invention, since the distance L for sampling set in advance can be determined arbitrarily, it is possible to measure with sufficient accuracy in practice by selecting a distance that is less affected by disturbances, and The calculation formula is only a purely geometric calculation formula between two measurement points that is updated sequentially every measurement, and no special operation such as integration is required. A longitudinal profile that is accurate relative to the previous measurement for each set distance L can be measured. In addition, correction by GPS data is unnecessary for normal measurement, but if absolute elevation of the road surface is required, it is based on absolute elevation using GPS elevation data for the measurement data. It is also possible to calculate the cross section gradient and the vertical section gradient.
[0015]
The invention according to claim 2 sets the predetermined distance (L) which is a sampling interval in a range of 20 to 30 cm. There is an International Roughness Index (IRI) as an index for associating flatness indexes obtained from various road surface roughness measuring devices with each other and grasping a uniform road surface roughness. This IRI is an average value of the amount of change in the mutual displacement of the vehicle body and the wheel at every sampling interval of the longitudinal profile (the corrected slope of the road surface) with respect to the entire longitudinal profile, and is obtained for each extension of the longitudinal profile. The interval is determined to be 25 cm in consideration of the tire envelope characteristics, and the standard vehicle speed is 80 km / h. From this point of view, in the present invention, the sampling interval (L) is set between 20 and 30 cm according to the vehicle speed of the measuring vehicle of 60 to 100 km / h.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Preferred embodiments of the present invention will be specifically described below with reference to the accompanying drawings.
FIG. 1 schematically shows an arrangement when measuring devices according to the present invention are mounted on a vehicle. Right and left vehicle height sensors 4R and 4L are fixedly provided at predetermined vertical intervals directly above the right and left straight lines connecting the front and rear contact points of the right and left front wheels 2R and 2L and the rear wheels 3R and 3L. is doing. In the illustrated example, an inclinometer 5 is fixed at the center of a straight line connecting the right and left vehicle height sensors 4R and 4L, and a travel distance sensor 6 is attached to the right rear wheel 3R so as to rotate. As the vehicle height sensors 4R and 4L, known optical sensors or ultrasonic sensors are used, and for the inclinometer 5, various gyros are used.
[0017]
Further, in the present embodiment, the measurement vehicle 1 has a laser head 7 and a laser beam emitted from the head 7 on a straight line perpendicular to the traveling center line of the vehicle 1 on the road surface in front of the vehicle 1. A scanner 8 for scanning the beam is mounted, and rudder sensors 9R and 9L for detecting the rubbing and cracking state of the road surface by receiving reflected light of the road surface on the scanning line of the laser beam on the front surface of the vehicle 1 and cracks. Sensors 10R and 10L are attached. The rutting sensors 9R and 9L and the crack sensors 10R and 10L are provided on the left and right sides in order to share the detection of the left and right half portions of the road surface.
[0018]
FIG. 2 is a flowchart showing an example of a method for measuring the shape of the road surface in the extension direction by the measuring apparatus according to the present invention. FIG. 3 is an explanatory diagram of a method for measuring the cross gradient of the road surface. FIG. FIG. However, in the same figure, detection procedures such as waviness in the transverse direction of the road surface by the rutting sensor 9 and the crack sensor 10 are omitted.
Note that the calculation of data by the sensors arranged on the left and right of the measurement vehicle 1 is performed for each of the right and left, but the calculation procedure is not different between the right and left, so the following description will explain one calculation procedure. I will decide.
[0019]
According to FIG. 2, first, the distance (vehicle height) H 0R and H 0L from the road surface to each sensor 4R and 4L is measured by the vehicle height sensors 4R and 4L at the first measurement point P 0 , and the vehicle is measured by the inclinometer 5 The rolling angle α 0 and the pitching angle β 0 are detected. Of these data, the calculation device 11 is equipped with the vehicle height H 0R and H 0L data from the left and right road surfaces to the vehicle height sensors 4R and 4L, and the rolling angle α 0 and pitching angle β 0 of the vehicle. Entered in
a i = l · tan α i (relative vehicle height at one end in the vehicle width direction)
b i = H iL - (H iR -a i) ( relative vehicle height in the vehicle width direction end)
i = tan −1 (b i / l)
= Tan -1 [{ HiR- ( HiL- ai )} / l]
h i + 1 = Lsin β i
Where Rθ: road surface gradient angle l: distance between left and right vehicle height detection means a i : l · tan α i (relative vehicle height at one end in the vehicle width direction)
b i: Bi- (Ai-a i) ( relative vehicle height in the vehicle width direction end)
h i + 1: the road surface height difference i the last of the measuring point P i at the measurement point P i + 1: 0~n (sampling times)
The vehicle height is corrected using the above arithmetic expression, and the relative heights a 0 and b 0 (where L is 0) with respect to the respective road surfaces at the left and right ends of the vehicle 1 are obtained.
[0020]
Next, assuming that the distance between the vehicle height sensors 4R and 4L is l, the arithmetic unit 11 calculates the road surface cross-gradient angle Rθ 0 from the relative heights a 0 and b 0 using the following equation, and the road surface Is obtained and stored in the storage unit 12.
[0021]
Subsequently, the measurement vehicle 1 is caused to travel a preset distance L, and the left and right sides of the vehicle 1 at the second measurement point P 1 are set with reference to the relative heights a 0 and b 0 of the first measurement point P 0. The relative heights a 1 and b 1 with respect to the road surface at both ends are calculated using the above-described arithmetic expressions, and the road surface height difference between the previous measurement point P 0 and the second measurement point P 1 at the left and right ends of the vehicle 1 is calculated. h 1
Formula h 1 = Lsin β 0
Calculate using.
[0022]
In the present embodiment, the distance L is set to 25 cm, and the distance is extremely short. Therefore, the first longitudinal gradient angle is assumed to be equal to the pitching angle β 0 at the first measurement point P 0 detected by the inclinometer 5. handle. The relative heights a 1 and b 1 with respect to the road surfaces at the left and right ends of the vehicle 1 at the second measurement point P 1 thus obtained, and the previous measurement point P 0 and the second measurement point P 1 at the right and left ends of the vehicle 1 are obtained. From the road surface height difference h 1 , the cross-sectional shape and the vertical cross-sectional shape of the second measurement point P 1 are determined, and the extension shape of the road surface is determined. By repeating the above sampling and calculation operations, the third to n-th measurements are sequentially performed, and the road surface shape in the extending direction is measured as shown in FIG.
[0023]
6 (a) and 6 (b) show the state of change in the road surface extension direction written by plotting the actual measurement values obtained by leveling, and the state of change in the road surface extension direction based on the calculation result by the device of the present invention. FIG. From these figures, it can be understood that the calculation result by the device of the present invention approximates the actual measurement value.
[0024]
As can be understood from the above description, according to the measuring device for the shape of the road surface extension direction according to the present invention, since the integral calculation is unnecessary in calculating the cross-sectional profile and the vertical cross-sectional profile in the road surface extension direction, There is no divergence of data error, and the measurement sampling interval (L) can be set arbitrarily, so that the measurement error can be reduced, and high-accuracy measurement is possible from short undulation to long period undulation in the road surface extension direction. . Further, when the vertical vertical displacement is inaccurate, or when radio waves from a satellite cannot be received by a building or a standing bridge and GPS data cannot be obtained, the shape in the extension direction can be measured.
[0025]
Further, according to this embodiment, the laser beam is scanned on the road surface orthogonal to the traveling direction of the vehicle, so that the undulation in the width direction of the road surface is sequentially measured. Therefore, more accurate road surface properties are measured. obtain. As a result, a three-dimensional shape of the road surface is obtained, and the rutting data of the measurement vehicle of the road surface property of the present invention is corrected with the calculation result of the cross slope, and accurate by connecting it to the vertical slope calculation result (extension direction shape). A smooth three-dimensional shape of the road surface can be obtained, and road surface data and the like can be used for calculating the amount of construction during road repair and evaluating the ride comfort of the vehicle. Note that the measurement of the undulations in the width direction of the road surface (the form of rutting or cracking) can be performed by, for example, a measuring apparatus proposed in Japanese Patent Application Laid-Open No. 61-112918.
[0026]
Furthermore, in the present invention, height correction can be performed using vertical vertical displacement and GPS data. Specifically, the relative road surface height difference H 1 calculated as described above is corrected for altitude using GPS altitude data, and the absolute altitude level is reduced as shown in FIGS. 7 (a) and 7 (b). A difference can also be obtained, which is effective in creating a three-dimensional map, for example.
[Brief description of the drawings]
FIG. 1 is a layout view of various sensors of a vehicle equipped with an extension direction shape measuring device of the present invention.
FIG. 2 is a flowchart showing a calculation procedure by the apparatus of the present invention.
FIG. 3 is an explanatory view showing an example of a method for calculating a crossing gradient angle of a road surface by the device of the present invention.
FIG. 4 is an explanatory diagram for obtaining an extension direction shape by the apparatus of the present invention.
FIG. 5 is an explanatory view showing the shape in the extension direction of the road surface obtained by connecting the height differences of each measurement point obtained by the device of the present invention.
FIG. 6 is a contrast diagram obtained by plotting measured values obtained by leveling and calculated values obtained by the device of the present invention.
FIG. 7 is a diagram showing the difference in elevation in the road surface extension direction obtained by correcting relative height difference data by the apparatus of the present invention using GPS data, in comparison.
[Explanation of symbols]
1 Measurement Vehicles 2L, 2R Left and Right Front Wheels 3L, 3R Left and Right Rear Wheels 4L, 4R Left and Right Vehicle Height Sensor 5 Inclinometer 6 Travel Distance Sensor 7 Laser Head 8 Scanner 9L, 9R Left and Right Rutting Sensors 10L, 10R Left and Right Cracks Sensor 11 Computing device

Claims (2)

車両のローリング角度(αi )、ピッチング角度(βi )を測定する傾斜角検出手段(5) と、
車両の巾方向同一直線上の両端に設置され、各路面までの距離(HiL,HiR)を測定する左右一対の車高検出手段(4L,4R) と、
車両の進行方向距離を測定する走行距離検出手段(6) と、
予め設定された所定の距離(L)ごとに前記各検出手段により検出される各種の計測データをサンプリングするサンプリング手段と、
上記計測データの入力により、以下の演算式に基づく路面延長方向の横断勾配演算及び縦断勾配演算を行う延長方向形状演算手段(11)と、
路面上にレーザビームを走査させるスキャナ(8) と、
を有してなることを特徴とする路面延長方向形状の車載測定装置。
Rθi =tan-1(bi /l)
=tan-1〔{HiL−(HiR−ai )}/l〕
i+1 =Lsinβi
但し、Rθi :測定点ごとの路面の横断勾配角度
l :右左車高検出手段間の距離
i :l・tanαi (車幅方向一端の相対車高)
i :HiL−(HiR−ai )(車幅方向他端の相対車高)
i+1 :測定点Pi+1 における前回の測定点Pi との路面高低差
i :0〜n(サンプリング回)
A tilt angle detecting means (5) for measuring a rolling angle (α i ) and a pitching angle (β i ) of the vehicle;
A pair of left and right vehicle height detection means (4L, 4R) installed at both ends on the same straight line in the width direction of the vehicle and measuring the distance ( HiL , HiR ) to each road surface;
Mileage detection means (6) for measuring the distance in the traveling direction of the vehicle;
Sampling means for sampling various measurement data detected by each of the detection means at a predetermined distance (L) set in advance;
With the input of the measurement data, an extension direction shape calculation means (11) for performing a crossing gradient calculation and a longitudinal gradient calculation in the road surface extension direction based on the following calculation formula,
A scanner (8) for scanning a laser beam on the road surface;
A vehicle-mounted measuring device having a shape extending in the road surface direction.
i = tan −1 (b i / l)
= Tan -1 [{ HiL- ( HiR- ai )} / l]
h i + 1 = Lsin β i
However, R.theta i: cross slope angle of a road surface of each measurement point
l: Distance between right and left vehicle height detection means
a i : l · tan α i (relative vehicle height at one end in the vehicle width direction)
b i : H iL − (H iR −a i ) (relative vehicle height at the other end in the vehicle width direction)
h i + 1: the road surface height difference between the previous measurement point P i at the measurement point P i + 1
i: 0 to n (sampling times)
前記所定の距離(L)が20〜30cmの範囲にある請求項1記載の車載測定装置。The in-vehicle measurement device according to claim 1, wherein the predetermined distance (L) is in a range of 20 to 30 cm.
JP09192199A 1999-03-31 1999-03-31 In-vehicle measuring device for road surface extension Expired - Lifetime JP4386985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09192199A JP4386985B2 (en) 1999-03-31 1999-03-31 In-vehicle measuring device for road surface extension

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09192199A JP4386985B2 (en) 1999-03-31 1999-03-31 In-vehicle measuring device for road surface extension

Publications (2)

Publication Number Publication Date
JP2000283745A JP2000283745A (en) 2000-10-13
JP4386985B2 true JP4386985B2 (en) 2009-12-16

Family

ID=14040058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09192199A Expired - Lifetime JP4386985B2 (en) 1999-03-31 1999-03-31 In-vehicle measuring device for road surface extension

Country Status (1)

Country Link
JP (1) JP4386985B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520469A (en) * 2017-09-18 2019-03-26 北京凌云智能科技有限公司 Vehicle attitude measuring device and attitude measurement method

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3720259B2 (en) * 2000-12-25 2005-11-24 財団法人鉄道総合技術研究所 Railway track curve shape data acquisition device
JP4691325B2 (en) * 2004-06-04 2011-06-01 修一 亀山 Evaluation method of road surface
US7581329B2 (en) * 2007-04-25 2009-09-01 The Boeing Company Dynamic percent grade measurement device
JP2009098092A (en) * 2007-10-19 2009-05-07 Harmonic Drive Syst Ind Co Ltd Relative height detector
JP5808656B2 (en) * 2011-11-29 2015-11-10 株式会社アスコ Three-dimensional laser measurement system and road profile profile creation method
CN106643445B (en) * 2016-12-30 2019-04-16 亿嘉和科技股份有限公司 A kind of track roughness measurement method
CN109211150A (en) * 2018-08-07 2019-01-15 中国地质大学(武汉) A kind of roughness measurement method and apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520469A (en) * 2017-09-18 2019-03-26 北京凌云智能科技有限公司 Vehicle attitude measuring device and attitude measurement method

Also Published As

Publication number Publication date
JP2000283745A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
EP0575327B1 (en) A method and an apparatus for measuring curvature and crossfall of ground surfaces
JP3074464B2 (en) Road profile measurement device
AU2018246236B2 (en) Track geometry measurement system with inertial measurement
CN104195930B (en) Surface evenness detecting system based on multisensor and method
CN110108255B (en) Universal mobile data acquisition and processing tunnel detection system for multiple scanners
CN109532937A (en) A kind of vehicle-mounted Metro Clearance detection method and its detection system
JP2005315675A (en) Road surface flatness measuring device
JP4386985B2 (en) In-vehicle measuring device for road surface extension
CN204023380U (en) Based on the pavement flatness checking device of multisensor
CN111895996A (en) High-speed track detection system and method
CN115597535A (en) High-speed magnetic suspension track irregularity detection system and method based on inertial navigation
CN111877108A (en) Road flatness measuring method based on line laser
JP2000338865A (en) Data gathering device for digital road map
CN110657788B (en) Dynamic detection method for smoothness of crane track
CN114162170B (en) Track measurement system and measurement method
JP6674544B2 (en) Inspection device and inspection method
CN212300369U (en) High-speed track detection system
CN110658543A (en) High-speed railway track geometric parameter detection method based on non-contact measurement
CN209492415U (en) Rail net detection system and detection vehicle
JPS60233211A (en) Measurement of longitudinal displacement of road surface
JP7210184B2 (en) Road profile measuring instrument
JPH11100809A (en) Road shape measuring method
CN107907076A (en) Road surface power spectrum measurement method
JPH0781858B2 (en) Vehicle position and attitude angle measuring device
RU210793U1 (en) DEVICE FOR DETERMINING THE LONGITUDINAL MICROPROFILE OF THE ROAD COVERING

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090930

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131009

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term