WO1998022557A1 - Additive zur inhibierung der gashydratbildung - Google Patents

Additive zur inhibierung der gashydratbildung Download PDF

Info

Publication number
WO1998022557A1
WO1998022557A1 PCT/EP1997/006158 EP9706158W WO9822557A1 WO 1998022557 A1 WO1998022557 A1 WO 1998022557A1 EP 9706158 W EP9706158 W EP 9706158W WO 9822557 A1 WO9822557 A1 WO 9822557A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomers
polymers
mol
gas
gas hydrate
Prior art date
Application number
PCT/EP1997/006158
Other languages
English (en)
French (fr)
Inventor
Peter Klug
Michael Feustel
Volker Frenz
Original Assignee
Clariant Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clariant Gmbh filed Critical Clariant Gmbh
Priority to EP97950130A priority Critical patent/EP0946688A1/de
Publication of WO1998022557A1 publication Critical patent/WO1998022557A1/de
Priority to NO992224A priority patent/NO992224D0/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/22Hydrates inhibition by using well treatment fluids containing inhibitors of hydrate formers

Definitions

  • Gas hydrates are crystalline inclusion compounds of gas molecules in water that form under certain temperature and pressure conditions (low temperature and high pressure).
  • the water molecules form cage structures around the corresponding gas molecules.
  • the lattice structure formed from the water molecules alone is thermodynamically unstable, the lattice is only stabilized by the inclusion of gas molecules and an ice-like connection is formed which, depending on the pressure and gas composition, also exists above the freezing point of water (up to over 25 ° C) can.
  • An overview of the subject of gas hydrates can be found in Sloan, Clathrate Hydrates of Natural Gases, M. Dekker, New York, 1990.
  • the gas hydrates that form from water and the natural gas components methane, ethane, propane, isobutane, n-butane, nitrogen, carbon dioxide and hydrogen sulfide are of particular importance.
  • the existence of these gas hydrates is a major problem, particularly in today's natural gas production, especially when wet gas or multi-phase mixtures of water, gas and alkane mixtures are exposed to low temperatures under high pressure.
  • gas hydrate formation can also lead to problems when drilling to open up new gas or oil deposits with the appropriate pressure and temperature conditions.
  • the formation of gas hydrate in gas pipelines or in the transport of multi-phase mixtures can be suppressed by using larger amounts (double-digit percentages in relation to the water phase) of lower alcohols, such as methanol, glycol or diethylene glycol.
  • lower alcohols such as methanol, glycol or diethylene glycol.
  • the addition of these additives causes the thermodynamic limit of gas hydrate formation to be shifted to lower temperatures and higher pressures (thermodynamic inhibition).
  • the addition of these thermodynamic inhibitors causes greater safety problems (flash point and toxicity of the alcohols), logistical problems (large storage tanks, recycling of these solvents) and correspondingly high costs, especially in offshore production.
  • thermodynamic inhibitors Today, attempts are therefore being made to replace thermodynamic inhibitors by adding additives (use amount ⁇ 2%) in the temperature and pressure ranges in which gas hydrates can form, which either delay gas hydrate formation over time (threshold hydrate inhibitors, kinetic inhibition) or make the gas hydrate agglomerates small and pumpable so that they can be transported through the pipeline (so-called agglomerate inhibitors or anti-agglomerates).
  • thermodynamic inhibitors In addition to the known thermodynamic inhibitors, a large number of monomeric and polymeric classes of substances which represent kinetic or agglomerate inhibitors have been described in the patent literature as gas hydrate inhibitors.
  • EP-A-309210 discloses i.a. Sodium polyacrylates, sodium polymethacrylates and polyacrylamides.
  • WO 95/32356 describes polymers for use as gas hydrate inhibitors which contain monomers with a cyclic or acyclic amide group; Polymers with cyclic amide groups can additionally contain ionic groups, preferably anionic groups.
  • strongly polar zwitterionic polymers which contain both anionic and cationic groups are also particularly suitable. These can effectively prevent the formation of gas hydrates in low doses and, in contrast to the polyacrylates and polymethacrylates listed in EP-A-309210, are insensitive to saline water phases.
  • the invention thus relates to the use of polymers which are composed of one or different anionic monomers and one or different cationic monomers and, if appropriate, also of nonionic monomers, as additives for preventing the formation, growth and / or agglomeration of gas hydrate crystals in a mixture of water and petroleum / natural gas components in the production or transportation of petroleum and / or natural gas.
  • These zwitterionic polymers contain, in different proportions, both monomers with anionic polarity and also cationic polarity, as well as optionally also nonionic monomers.
  • the polymerization is preferably carried out as solution polymerization in water or as precipitation polymerization, as described in DE-A-4034642.
  • Polymers whose anionic building blocks are monomers with at least one polymerizable double bond and with carbon, sulfonic and / or phosphonic acid groups are particularly suitable.
  • Suitable anionic monomers for the purposes of the invention are all anionic molecules with one or more polymerizable double bonds, e.g. Vinyl sulfonate, methyl lyl sulfonate, sodium 2-acrylamido-2-methyl-1-propane sulfonate (AMPS), styrene sulfonic acid, acrylic acid, methacrylic acid (or its salts), vinyl phosphonate, acrylic acid and sodium 2-acrylamido-2-methyl- are preferred 1-propane sulfonate (AMPS).
  • AMPS 2-acrylamido-2-methyl-1-propane sulfonate
  • Maleic anhydride is also to be regarded as an anionic monomer in the context of the invention, since after polymerization it can easily be converted into anionic polymer building blocks by saponification or formation of half-esters or half-amides. Of these monomer units, one or more are independently present in the polymer in concentrations of 1-99, preferably 10-90 mol%.
  • quaternary ammonium salts with polymerizable double bonds such as dimethyldiallylammonium chloride (DADMAC), dibutyldiallylammonium chloride (DADBAC), diallylpiperidinium bromide, triethylallylammonium bromide, allyltrimethylammonium bromide and analogous derivatives of, for example, trimethyl acid and methacrylate ammonium ethyl acrylate (chloride or methosulfate), trimethylammonium ethyl methacrylate, N- (3-trimethylammonium propyl) acrylamide or N- (3-trimethyl!
  • DADMAC dimethyldiallylammonium chloride
  • DADBAC dibutyldiallylammonium chloride
  • diallylpiperidinium bromide triethylallylammonium bromide
  • allyltrimethylammonium bromide and analogous derivatives of, for example, trimethyl acid and methacrylate
  • ammonium propyl) methacrylamide (MAPTAC).
  • vinyl monomers which contain amine functions or can release them after modification, for example diallylamine, triallylamine or vinylformamide. These monomer units are present in the polymer at 1-99, preferably at 10-90 mol%.
  • these polymers may also contain nonionic groups;
  • vinyl monomers such as acrylic acid esters and amides, vinyl acetate, ⁇ -olefins, allypolyglycols or allyl-alkylpolyglycols, vinyl ethers such as isobutyl vinyl ether or methyl vinyl ether and N-alkyl acetamides are suitable for this.
  • monomers with a cyclic or acyclic amide grouping such as e.g. Vinyl pyrrolidone, vinyl caprolactam, vinyl N-methylacetamide (VIMA) and acrylamide.
  • the molecular weight of these polymers can be varied within a wide range; the polymers have molecular weights of about 1000 to> 10 7 , preferably molecular weights of about 10,000 to about 1,000,000.
  • the products can in principle be used as an anhydrous pure substance, but advantageously they are generally used as aqueous solutions in order to ensure convenient metering at low viscosity.
  • the polymers can be used alone or in combination with other known gas hydrate inhibitors. Typical use concentrations based on 100% active substance are 0.01-2% by weight, especially concentrations between 0.02-1% by weight (200-10000 ppm). Mixtures of the abovementioned polymers with polymers containing amide groups, such as polyvinylpyrrolidone, polyvinylcaprolactam, polyacrylolylpyrrolidine and with polymers made from vinylpyrrolidone and vinylcaprolactam (for example VC 713, product from International Specialty Products) and with alkylpolyglycosides, hydroxyethyl cellulose, carboxymethyl ammonium compounds and with unsubstituted ammonium cellulose as well as (quartary methyl ammonium compounds) as well as (quartary methyl ammonium compounds) and also esterquats) and amine oxides.
  • polymers containing amide groups such as polyvinylpyrrolidone, polyvinylcaprolactam, polyacrylo
  • Example 2 As can be shown in the test examples below, the formation of gas hydrate without an inhibitor sets in quickly under the test conditions and leads to a sharp increase in torque, so that the formation of large hydrate agglomerates can be concluded.
  • the zwitterionic polymers are effective over a wide molecular weight range of approximately 10000-1000000 (Examples 2-5).
  • AMPS / DADMAC polymers with a higher DADMAC content also behave similarly (Example 6).
  • Example 7 shows that polymers with other cationic constituents (MAPTAC) and nonionic component are also effective at a gas / water ratio of 6: 4 and a dosage of 1000 ppm.
  • MATAC polymers with other cationic constituents
  • nonionic component are also effective at a gas / water ratio of 6: 4 and a dosage of 1000 ppm.
  • the formation of gas hydrates can be observed compared to an uninhibited test, but these form smaller agglomerates, which cause a significantly lower torque.
  • the product acts as an agglomerate inhibitor.
  • test products were dissolved in 176 ml of deionized water in a steel stirred autoclave with temperature control and torque transducer at a volume ratio of gas and water phase of 6: 4 and a gas pressure of 47-51 bar was applied. From an initial temperature of 10 ° C., the mixture was cooled to 4 ° C. in the course of 6 hours, then to 2 ° C. in the course of 4 hours, stirred at 2 ° C. for 7 hours and heated to 10 ° C. again in the course of 4 hours. A decrease in pressure according to the thermal expansion of the gas is first observed.
  • the measured pressure decreases, an increase in the measured torque being observed; further growth and increasing agglomeration of these hydrate nuclei quickly leads to a further increase in the measured torque without an inhibitor.
  • the reaction mixture is warmed up, the gas hydrates decompose again, so that the starting state is reached again at the end of the experiment.
  • the K value given in the examples means the intrinsic viscosity of the polymer solution and represents a measure of the average molecular weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung bezieht sich auf die Verwendung von Polymeren, die aus einem oder verschiedenen anionischen Monomeren und aus einem oder verschiedenen kationischen Monomeren sowie gegebenenfalls auch aus nichtionischen Monomeren aufgebaut sind, als Additive zur Verhinderung der Bildung, des Wachstums und/oder der Agglomeration von Gashydratkristallen in einer Mischung Wasser und Erdöl-/Erdgasbestandteilen bei der Förderung oder dem Transport von Erdöl und/oder Erdgas.

Description

Beschreibung
Additive zur Inhibierung der Gashydratbildung
Gashydrate sind kristalline Einschlußverbindungen von Gasmolekülen in Wasser, die sich unter bestimmten Temperatur- und Druckverhältnissen (niedrige Temperatur und hoher Druck) bilden. Hierbei bilden die Wassermoleküle Käfigstrukturen um die entsprechenden Gasmoleküle aus. Das aus den Wassermolekülen gebildete Gittergerüst alleine ist thermodynamisch instabil, erst durch die Einbindung von Gasmolekülen wird das Gitter stabilisiert und es entsteht eine eisähnliche Verbindung, die in Abhängigkeit von Druck und Gaszusammensetzung auch über den Gefrierpunkt von Wasser (bis über 25 °C) hinaus existieren kann. Ein Überblick über das Thema Gashydrate ist in Sloan, Clathrate Hydrates of Natural Gases, M. Dekker, New York, 1990 zu finden.
In der Erdöl- und Erdgasindustrie sind insbesondere die Gashydrate von großer Bedeutung, die sich aus Wasser und den Erdgasbestandteilen Methan, Ethan, Propan, Isobutan, n-Butan, Stickstoff, Kohlendioxid und Schwefelwasserstoff bilden. Insbesondere in der heutigen Erdgasförderung stellt die Existenz dieser Gashydrate ein großes Problem dar, besonders dann, wenn Naßgas oder Mehrphasengemische aus Wasser, Gas und Alkangemischen unter hohem Druck niedrigen Temperaturen ausgesetzt werden. Hier führt die Bildung der Gashydrate aufgrund ihrer Unlöslichkeit und kristallinen Struktur zu Blockierung verschiedenster Fördereinrichtungen, wie Pipelines, Ventilen oder Produktionseinrichtungen, in denen über längere Strecken bei niedrigeren Temperaturen Naßgas oder Mehrphasengemische transportiert werden, wie dies speziell in kälteren Regionen der Erde oder auf dem Meeresboden vorkommt.
Außerdem kann die Gashydratbildung auch beim Bohren zur Erschließung neuer Gas- oder Erdöllagerstätten bei entsprechenden Druck- und Temperaturverhältnissen zu Problemen führen. Um solche Probleme zu vermeiden, kann die Gashydratbildung in Gaspipelines oder beim Transport von Mehrphasengemischen durch Einsatz von größeren Mengen (zweistellige Prozentbeträge bezüglich der Wasserphase) an niederen Alkoholen, wie Methanol, Glykol, oder Diethylenglykol unterdrückt werden. Der Zusatz dieser Additive bewirkt, daß die thermodynamische Grenze der Gashydratbildung nach niedrigeren Temperaturen und höheren Drücken verlagert wird (thermodynamische Inhibierung). Durch den Zusatz dieser thermodynamischen Inhibitoren werden allerdings größere Sicherheitsprobleme (Flammpunkt und Toxizität der Alkohole), logistische Probleme (große Lagertanks, Recycling dieser Lösungsmittel) und dementsprechend hohe Kosten, speziell in der offshore-Förderung, verursacht.
Heute versucht man deshalb, thermodynamische Inhibitoren zu ersetzen, indem man in den Temperatur- und Druckbereichen, in denen sich Gashydrate bilden können, Additive (Einsatzmenge < 2 %) zusetzt, die die Gashydratbildung entweder zeitlich hinauszögern (threshold hydrate inhibitors, kinetische Inhibierung) oder die Gashydratagglomerate klein und pumpbar gestalten, so daß diese durch die Pipeline transportiert werden können (sog. Agglomerat-Inhibitoren oder Anti-Agglomerates).
Als Gashydratinhibitoren wurden in der Patentliteratur neben den bekannten thermodynamischen Inhibitoren eine Vielzahl monomerer als auch polymerer Substanzklassen beschrieben, die kinetische oder Agglomeratinhibitoren darstellen.
Die EP-A-309210 offenbart zu diesem Zwecke u.a. Natriumpolyacrylate, Natriumpolymethacrylate sowie Polyacrylamide.
Besondere Wirksamkeit zeigen, wie in US 5420370, WO 93/25798, WO 94/24413, US 5432292 und WO 95/19408 beschrieben, vorwiegend nichtionische Polymere und Copolymere von vinylischen Monomeren mit cyclischer Amidstruktur, besonders von Vinylpyrrolidon und Vinylcaprolactam. In WO 95/32356 werden Polymere zur Verwendung als Gashydratinhibitoren beschrieben, die Monomere mit einer cyclischen oder acyclischen Amidgruppierung enthalten; dabei können Polymere mit cyclischen Amidgruppierungen zusätzlich ionische Gruppen, bevorzugt anionische Gruppen enthalten.
Viele von diesen Additiven sind allerdings bisher nicht wirksam genug oder nicht in ausreichender Menge oder nur zu hohen Preisen erhältlich; andererseits sind einige Additive, speziell Polyacrylate wegen ihrer Salzwasserunverträglichkeit nur unter nichtsalinen Einsatzbedingungen wirksam.
Aufgabe der vorliegenden Erfindung war es also, neue effektive Additive zu finden, die die Bildung von Gashydraten verlangsamen (kinetische Inhibitoren) bzw. die Gashydratkristalle klein und pumpbar halten (Anti-Agglomerates), um die zur Zeit noch verwendeten thermodynamischen Inhibitoren (Methanol und Glykole), die beträchtliche Sicherheitsprobleme und Logistikprobleme verursachen, ersetzen zu können.
Wie nun überraschenderweise gefunden wurde, sind neben den oben angeführten nichtionischen Polymeren zur Gashydratinhibierung auch stark polare zwitterionische Polymere, die sowohl anionische als auch kationische Gruppen enthalten, besonders geeignet. Diese können in niedriger Dosierung die Bildung von Gashydraten effektiv unterbinden und sind im Gegensatz zu den in EP-A- 309210 aufgeführten Polyacrylaten und Polymethacrylaten gegenüber salinen Wasserphasen unempfindlich.
Gegenstand der Erfindung ist somit die Verwendung von Polymeren, die aus einem oder verschiedenen anionischen Monomeren und aus einem oder verschiedenen kationischen Monomeren sowie gegebenenfalls auch aus nichtionischen Monomeren aufgebaut sind, als Additive zur Verhinderung der Bildung, des Wachstums und/oder der Agglomeration von Gashydratkristallen in einer Mischung aus Wasser und Erdöl-/Erdgasbestandteilen bei der Förderung oder dem Transport von Erdöl und/oder Erdgas. Diese zwitterionischen Polymere enthalten, in unterschiedlichen Anteilen, sowohl Monomere mit anionischer Polarität, als auch kationischer Polarität, sowie zusätzlich gegebenenfalls auch nichtionische Monomere. Sie können u.a. durch radikalische Polymerisation nach den Verfahren der Lösungspolymerisation, Substanzpolymerisation, Emulsionspolymerisation, inversen Emulsionspolymerisation, Fällungspolymerisation oder Gelpolymerisation aus den Monomeren erzeugt werden. Vorzugsweise wird die Polymerisation als Lösungspolymerisation in Wasser oder als Fällungspolymerisation durchgeführt, wie dies in DE-A-4034642 beschrieben ist.
Besonders geeignet sind Polymere, deren anionische Bausteine Monomere mit mindestens einer polymerisationsfähigen Doppelbindung und mit Carbon-, Sulfon- und/oder Phosphonsäuregruppen darstellen.
Als anionische Monomere im Sinne der Erfindung sind alle anionischen Moleküle mit einer oder mehreren polymerisationsfähigen Doppelbindungen geeignet, z.B. Vinylsulfonat, Methai lylsulfonat, Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS), Styrolsulfonsäure, Acrylsäure, Methacrylsäure (bzw. deren Salze), Vinylphosphonat, bevorzugt sind Acrylsäure und Natrium-2-acrylamido-2-methyl- 1 -propansulfonat (AMPS). Als anionisches Monomer im Sinne der Erfindung ist auch Maleinsäureanhydrid anzusehen, da sich dieses nach Polymerisation leicht durch Verseifung oder Bildung von Halbestern oder Halbamiden in anionische Polymerbausteine überführen läßt. Von diesen Monomereinheiten sind im Polymer eine oder mehrere unabhängig voneinander in Konzentrationen von 1-99, bevorzugt zu 10-90 Mol-% vertreten.
Als kationische Monomere im Sinne der Erfindung sind alle kationischen Moleküle mit einer oder mehreren polymerisationsfähigen Doppelbindungen geeignet. Bevorzugt sind quartäre Ammoniumsalze mit polymerisationsfähigen Doppelbindungen wie Dimethyldiallylammoniumchlorid (DADMAC), Dibutyldiallylammoniumchlorid (DADBAC), Diallylpiperidiniumbromid, Triethylallylammoniumbromid, Allyltrimethylammoniumbromid sowie analoge Derivate von Acrylsäure und Methacrylsäure wie z.B. Trimethylammonium- ethylacrylat (Chlorid oder Methosulfat), Trimethylammonium-ethylmethacrylat, N- (3-Trimethylammoniumpropyl)-acrylamid oder N-(3-Trimethy!ammoniumpropyl)- methacrylamid (MAPTAC). Weiterhin sind auch vinylische Monomere geeignet, die Aminfunktionen enthalten oder nach Modifizierung freisetzen können, z.B. Diallylamin, Triallylamin oder Vinylformamid. Diese Monomereinheiten sind im Polymer zu 1-99, bevorzugt zu 10-90 Mol-% vertreten.
Zusätzlich zu den oben aufgeführten ionischen Monomeren können in diesen Polymeren auch nichtionische Gruppen enthalten sein; es eignen sich hierzu prinzipiell alle vinylischen Monomeren, wie Acrylsäureester und -amide, Vinylacetat, α-Olefine, Allypolyglykole oder Allyl-alkylpolyglykole, Vinylether wie Isobutylvinylether oder Methylvinylether und N-Alkylacetamide. Bevorzugt sind neben Vinylacetat Monomere mit einer cyclischen oder acyclischen Amidgruppierung wie z.B. Vinylpyrrolidon, Vinylcaprolactam, Vinyl-N-methylacetamid (VIMA) und Acrylamid.
Das Molekulargewicht dieser Polymeren kann in weiten Bereichen variiert werden; die Polymere weisen Molekulargewichte von ca. 1000 bis > 107, bevorzugt Molekulargewichte von ca. 10000 bis ca. 1000000 auf.
Die Produkte können prinzipiell als wasserfreie Reinsubstanz eingesetzt werden, vorteilhafterweise setzt man sie aber im allgemeinen als wäßrige Lösungen ein, um eine bequeme Dosierung bei niedriger Viskosität zu gewährleisten.
Besondere Wirksamkeit zeigen einerseits, wie den angeführten Beispielen entnommen werden kann, Polymere auf Basis Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS) und Diallyldimethylammoniumchlorid (DADMAC). Diese können, wie in DE-A-4034642 beschrieben, bei höheren Molekulargewichten (Beispiel 2) auch als Bohrspülmittel Verwendung finden. Die Wirksamkeit bei der Gashydratbekämpfung ist hierbei allerdings über einen weiten Molekulargewichtsbereich von ca. 10000-1000000 gegeben. Ebenfalls besonders geeignet sind Polymere aus Natrium-2-acrylamido-2- methyl-1 -propansulfonat (AMPS) und N-(3-Trimethylammoniumpropyl)- methacrylamid (MAPTAC) mit Acrylamid (Beispiel 7). Wie bei den vorgenannten Polymeren beobachtet man bei höherer Konzentration (1000 ppm) vollständige Inhibierung der Gashydratbildung, bei schärferen Meßbedingungen (geringere Konzentration oder höheres Gas-Wasser-Verhältnis) eine deutliche Verringerung der Hydratagglomeration.
Die Polymere können alleine oder in Kombination mit anderen bekannten Gashydratinhibitoren eingesetzt werden. Typische Einsatzkonzentrationen bezogen auf 100 % Wirksubstanz sind 0,01-2 Gew.-%, speziell Konzentrationen zwischen 0,02-1 Gew.-% (200-10000 ppm). Besonders geeignet sind auch Mischungen der vorstehend genannten Polymere mit Amidgruppen enthaltenden Polymeren wie Polyvinylpyrrolidon, Polyvinylcaprolactam, Polyacrylolylpyrrolidin sowie mit Polymeren aus Vinylpyrrolidon und Vinylcaprolactam (z.B. VC 713, Produkt von International Specialty Products) sowie mit Alkylpolyglykosiden, Hydroxyethylcellulose, Carboxymethylcellulose sowie mit quartären Ammoniumverbindungen (unsubstituiert sowie Esterquats) und Aminoxiden.
Die Wirksamkeit der Polymere wurde durch Autoklavenversuche mit Wasser-Gasgemischen untersucht.
Hierzu wird E-Wasser im Autoklaven mit ca. 50 bar eines Erdgases, das Struktur-Il-Hydrate bildet (vorwiegend Methan, Gehalt an n-Propan > 1 %) beaufschlagt und unter Rühren mit einem Temperaturprogramm (siehe unten) abgekühlt, wobei der Druckverlauf Keimbildung und Wachstum der Gashydrate beschreibt und das erzeugte Drehmoment, das ein Maß für die Hydratagglomerisation darstellt, über einen Drehmomentaufnehmer gemessen wird.
Wie in den unten angeführten Versuchsbeispielen gezeigt werden kann, setzt die Gashydratbildung ohne Inhibitor unter den Versuchsbedingungen schnell ein und führt zu einer starken Drehmomentzunahme, so daß auf die Bildung großer Hydratagglomerate geschlossen werden kann. Dagegen führt der Zusatz von geringen Mengen (bei Beispiel 2: 900 ppm = 0,09 %) der Polymere über die gesamte Versuchsdauer zu einer völligen Inhibierung der Gashydratbildung; bei noch geringerer Einsatzkonzentration (450 ppm im Beispiel 2) wird trotz deutlicher Druckabnahme (d.h. Bildung von Hydratkeimen) zumindest eine deutliche Drehmomentverminderung beobachtet, was für eine Wirkung der Polymere als Agglomerisationsinhibitoren bei niedriger Dosierung spricht. Die zwitterionischen Polymere sind über einen weiten Molekulargewichtsbereich von ca. 10000-1000000 (Beispiele 2-5) wirksam. Auch AMPS/DADMAC-Polymere mit höherem DADMAC-Anteil verhalten sich ähnlich (Beispiel 6). Beispiel 7 zeigt, daß auch Polymere mit anderen kationischen Bestandteilen (MAPTAC) und nichtionischer Komponente bei einem Gas-Wasser-Verhältnis von 6 : 4 und einer Dosierung von 1000 ppm wirksam sind. Unter verschärften Versuchsbedingungen (höheres Gas-Wasser-Verhältnis von 8 : 2, d.h. geringerer Druckabfall bei der Gashydratbildung) ist im Vergleich zu einem uninhibierten Versuch zwar die Bildung von Gashydraten zu beobachten, diese bilden aber kleinere Agglomerate, die ein bedeutend geringeres Drehmoment verursachen. Auch hier wirkt das Produkt als Agglomerat-Inhibitor.
Beispiele:
Die Apparatur zur Messsung der Gashydratinhibierung wird in D. Lippmann, Dissertation, Techn. Universität Clausthal, 1995 beschrieben.
Die Versuchsprodukte wurden in einem Stahl-Rührautoklaven mit Temperatursteuerung und Drehmomentaufnehmer bei einem Volumenverhältnis von Gas- und Wasserphase von 6 : 4 in 176 ml E-Wasser gelöst und ein Gasdruck von 47-51 bar aufgedrückt. Von einer Anfangstemperatur von 10 °C wurde innerhalb 6 h auf 4 °C, dann innerhalb 4 h auf 2 °C gekühlt, 7 h bei 2 °C gerührt und innerhalb 4 h wieder auf 10 °C aufgeheizt. Dabei wird zunächst eine Druckabnahme gemäß der thermischen Ausdehnung des Gases beobachtet. Tritt die Bildung von Gashydratkeimen auf, so verringert sich der gemessene Druck, wobei ein Anstieg des gemessenen Drehmomentes zu beobachten ist; weiteres Wachstum und zunehmende Agglomerisation dieser Hydratkeime führt ohne Inhibitor schnell zu einem weiteren Anstieg des gemessenen Drehmomentes. Beim Aufwärmen des Reaktionsgemisches zerfallen die Gashydrate wieder, so daß am Ende des Versuchs wieder der Ausgangszustand erreicht wird. Der in den Beispielen angegebene K-Wert bedeutet die Eigenviskosität der Polymerlösung und stellt ein Maß für das mittlere Molekulargewicht dar.
Beispiel 1 :
Referenzversuch ohne Inhibitor
Beispiel 2:
Copolymer Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS)/Diallyldimethylammoniumchlorid (DADMAC) 76 : 24; K-Wert (0,5 % in Wasser) = 150
Beispiel 3:
Copolymer Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS)/DiaIlyldimethylammoniumchlorid (DADMAC) 76 : 24; K-Wert (0,5 % in Wasser) = 125
Beispiel 4:
Copolymer Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS)/Diallyldimethylammoniumchlorid (DADMAC) 76 : 24; K-Wert (0,5 % in Wasser) = 93
Beispiel 5:
Copolymer Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS)/Diallyldimethylammoniumchlorid (DADMAC) 76 : 24; K-Wert (0,5 % in Wasser) = 41
Beispiel 6:
Copolymer Natrium-2-acrylamido-2-methyl-1 -propansulfonat
(AMPS)/Diallyldimethylammoniumchlorid (DADMAC) 24 : 76, K-Wert (0,5 % in Wasser) = 86
Beispiel 7:
Copolymer N-(3-Trimethylammoniumpropyl)-methacrylamid (MAPTAC)/Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS)/Acrylamid ca. 20 : 65 : 15, K-Wert 0,5 % in Wasser = 150
Beispiel 8: ohne Inhibitor, Gas-Wasser-Verhältnis 8 : 2
Tabelle 1 : Ergebnisse der Beispiele 1 bis 8
Figure imgf000011_0001
Gas-Wasser-Verhältnis 8 : 2

Claims

Patentansprüche:
1. Verwendung von Polymeren, die aus einem oder verschiedenen anionischen Monomeren und aus einem oder verschiedenen kationischen Monomeren sowie gegebenenfalls auch aus nichtionischen Monomeren aufgebaut sind, als Additive zur Verhinderung der Bildung, des Wachstums und/oder der Agglomeration von Gashydratkristallen in einer Mischung aus Wasser und Erdöl-/Erdgasbestandteilen bei der Förderung oder dem Transport von Erdöl und/oder Erdgas.
2. Verwendung der Polymeren nach Anspruch 1 , deren anionische Bausteine Monomere mit mindestens einer polymerisationsfähigen Doppelbindung und mit Carbon-, Sulfon- und/oder Phosphonsäuregruppen darstellen.
3. Verwendung der Polymeren nach Anspruch 1 oder 2, deren anionische Bausteine die Monomeren Vinylsulfonat, Methallylsulfonat, Natrium-2-acrylamido-2- methyl-1 -propansulfonat (AMPS), Acrylsäure, Methacrylsäure oder Vinylphosphonat oder Mischungen davon in Anteilen von 1-99, bevorzugt 10-90 Mol-% darstellen.
4. Verwendung der Polymeren nach mindestens einem der Ansprüche 1 bis 3, deren anionische Bausteine die Monomeren Natrium-2-acrylamido-2-methyl-1- propansulfonat (AMPS) und/oder Acrylsäure in Anteilen von 10-90 Mol-% darstellen.
5. Verwendung der Polymeren nach Anspruch 1 , deren kationische Bausteine quartäre Ammoniumsalze mit einem polymerisationsfähigen Rest am N-Atom in Anteilen von 1-99, bevorzugt von 10-90 Mol-% darstellen.
6. Verwendung der Polymeren nach Anspruch 1 oder 5, deren kationische Bausteine die Monomeren Dimethyldiallylammoniumchlorid (DADMAC), Trimethylammonium-ethylacrylat und/oder N-(3-Trimethylammoniumpropyl)- methacrylamid (MAPTAC) in Anteilen von 10-90 Mol-% darstellen.
7. Verwendung der Polymeren nach mindestens einem der Ansprüche 1 bis 6, wobei die Polymere außer aus kationischen und anionischen Monomeren auch aus nichtionischen Monomeren mit vinylischer Doppelbindung in Anteilen von 1-99, bevorzugt 10-90 Mol-% aufgebaut sind.
8. Verwendung der Polymeren nach Anspruch 7, deren nichtionische Bausteine acyclische und/oder cyclische Monomere mit einer Amidbindung darstellen.
9. Verwendung eines Polymers auf Basis von 80 bis 20 Mol-% Natrium-2-acrylamido-2-methyl-1 -propansulfonat (AMPS) und von 20 bis 80 Mol-% Dimethyldiallyammoniumchlorid (DADMAC) als Gashydratinhibitor gemäß Anspruch 1.
10. Verwendung eines Polymers auf Basis von Natrium-2-acrylamido-2-methyl-1- propansulfonat (AMPS), N-(3-Trimethylammoniumpropyl)-methacrylamid (MAPTAC) und Acrylamid als Gashydratinhibitor gemäß Anspruch 1.
11. Verwendung der Polymere nach mindestens einem der Ansprüche 1 bis 10 in Kombination mit weiteren als Gashydratinhibitoren wirksamen Substanzen, vorzugsweise quartären Ammoniumsalzen, Esterquats, Aminoxiden, Alkylpolyglukosiden, Polyvinylpyrollidon, Polyvinylcaprolactam und dessen Copolymere mit anderen Monomeren.
12. Verfahren zur Verhinderung der Bildung, des Wachstums und/oder der Agglomeration von Gashydratkristallen in einer Mischung aus Wasser und Erdöl- /Erdgasbestandteilen bei der Förderung oder dem Transport von Erdöl und/oder Erdgas, dadurch gekennzeichnet, daß Polymere, die aus einem oder verschiedenen anionischen Monomeren und aus einem oder verschiedenen kationischen Monomeren sowie gegebenenfalls auch aus nichtionischen Monomeren aufgebaut sind, in einer Konzentration, bezogen auf 100% Wirksubstanz, von 0,01 bis 2 Gew.- %, zu dieser Mischung zugegeben oder in die Förderstelle eingebracht werden.
PCT/EP1997/006158 1996-11-18 1997-11-06 Additive zur inhibierung der gashydratbildung WO1998022557A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP97950130A EP0946688A1 (de) 1996-11-18 1997-11-06 Additive zur inhibierung der gashydratbildung
NO992224A NO992224D0 (no) 1996-11-18 1999-05-07 Additiver til inhibering av gasshydratdannelse

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996147585 DE19647585A1 (de) 1996-11-18 1996-11-18 Additive zur Inhibierung der Gashydratbildung
DE19647585.6 1996-11-18

Publications (1)

Publication Number Publication Date
WO1998022557A1 true WO1998022557A1 (de) 1998-05-28

Family

ID=7811959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/006158 WO1998022557A1 (de) 1996-11-18 1997-11-06 Additive zur inhibierung der gashydratbildung

Country Status (4)

Country Link
EP (1) EP0946688A1 (de)
DE (1) DE19647585A1 (de)
NO (1) NO992224D0 (de)
WO (1) WO1998022557A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452848B2 (en) 2005-04-26 2008-11-18 Air Products And Chemicals, Inc. Amine-based gas hydrate inhibitors
CN103865505A (zh) * 2014-03-03 2014-06-18 中国石油大学(北京) 非离子复合型气体水合物防聚剂
WO2017182568A1 (en) 2016-04-21 2017-10-26 Basf Se Amphoteric polymer, process for production thereof, and use thereof, to treat aqueous dispersions
CN114853936A (zh) * 2021-02-04 2022-08-05 中国石油天然气集团有限公司 水合物抑制剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0424387D0 (en) * 2004-11-04 2004-12-08 Univ Heriot Watt Novel hydrate based systems

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309210A1 (de) * 1987-09-21 1989-03-29 Conoco Phillips Company Hemmung von Hydrat-Formierung
WO1996008636A1 (en) * 1994-09-15 1996-03-21 Exxon Research & Engineering Company Surface active agents as gas hydrate inhibitors
GB2301825A (en) * 1996-03-28 1996-12-18 Exxon Production Research Co A polymer for inhibiting hydrate formation
EP0789132A1 (de) * 1996-02-07 1997-08-13 Institut Francais Du Petrole Verfahren zum Inhibieren oder Verzögeren der Formation, des Wuchs und/oder der Agglomerierung von Hydraten

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0309210A1 (de) * 1987-09-21 1989-03-29 Conoco Phillips Company Hemmung von Hydrat-Formierung
WO1996008636A1 (en) * 1994-09-15 1996-03-21 Exxon Research & Engineering Company Surface active agents as gas hydrate inhibitors
EP0789132A1 (de) * 1996-02-07 1997-08-13 Institut Francais Du Petrole Verfahren zum Inhibieren oder Verzögeren der Formation, des Wuchs und/oder der Agglomerierung von Hydraten
GB2301825A (en) * 1996-03-28 1996-12-18 Exxon Production Research Co A polymer for inhibiting hydrate formation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452848B2 (en) 2005-04-26 2008-11-18 Air Products And Chemicals, Inc. Amine-based gas hydrate inhibitors
CN103865505A (zh) * 2014-03-03 2014-06-18 中国石油大学(北京) 非离子复合型气体水合物防聚剂
CN103865505B (zh) * 2014-03-03 2016-12-07 中国石油大学(北京) 非离子复合型气体水合物防聚剂
WO2017182568A1 (en) 2016-04-21 2017-10-26 Basf Se Amphoteric polymer, process for production thereof, and use thereof, to treat aqueous dispersions
CN114853936A (zh) * 2021-02-04 2022-08-05 中国石油天然气集团有限公司 水合物抑制剂及其制备方法

Also Published As

Publication number Publication date
DE19647585A1 (de) 1998-05-20
NO992224L (no) 1999-05-07
EP0946688A1 (de) 1999-10-06
NO992224D0 (no) 1999-05-07

Similar Documents

Publication Publication Date Title
EP0933415B1 (de) Additive zur Inhibierung der Gashydratbildung
DE10114638C1 (de) Additive zur Inhibierung der Gashydratbildung und deren Verwendung
EP1050567B1 (de) Additive zur Inhibierung der Gashydratbildung
DE10307729B3 (de) Additive zur Inhibierung der Gashydtratbildung
EP1339947B1 (de) Additive zur inhibierung der gashydratbildung
EP0914407B1 (de) Verfahren zur inhibierung der gashydratbildung
EP2445984A1 (de) Additive zur inhibierung der gashydratbildung
DE19622944A1 (de) Polymer zur Inhibierung von Hydratbildung
US20130123147A1 (en) Polymers having acid and amide moieties, and uses thereof
EP3371282A1 (de) Mit hochkonzentrierter sole formulierte, reibungsreduzierende zusammensetzungen
NO327648B1 (no) Fremgangsmate for a hemme vekst og/eller agglomerering og eventuelt hemme dannelse av hydrater i en produksjonseffluent
DE69631891T2 (de) Verfahren zur hemmung der bildung von hydraten
JPH11509184A (ja) 水和物の形成を抑制する方法
DE102005006421A1 (de) Polymere und ihre Herstellung und Verwendung als Gashydratinhibitoren
EP1449940B1 (de) Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit
DE102005054038A1 (de) Pyroglutaminsäureester mit verbesserter biologischer Abbaubarkeit
DE10307730B3 (de) Verwendung von Verbindungen als Korrosions- und Gashydratinhibitoren mit verbesserter Wasserlöslichkeit und erhöhter biologischer Abbaubarkeit und diese Verbindungen
DE60019755T2 (de) Verfahren zum vermeiden oder zurückhalten von gashydrat-bildung
WO1998022557A1 (de) Additive zur inhibierung der gashydratbildung
DE102005007287B4 (de) Verwendung von Polyestern als Gashydratinhibitoren
DE69727076T2 (de) Ein verfahren zur vermeidung oder hemmung von gashydraten
EP2576644B1 (de) Additive zur inhibierung der gashydratbildung
CA2544453C (en) Alcohol compatible copolymer
DE10163260C1 (de) Additive, Verwendung und Verfahren zur Inhibierung der Gashydratbildung
DE10122613C1 (de) Additive zur Inhibierung der Gashydratbildung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BY JP NO RU UA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997950130

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997950130

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997950130

Country of ref document: EP