WO1998010328A1 - Dispositif d'affichage et son procede de fabrication - Google Patents

Dispositif d'affichage et son procede de fabrication Download PDF

Info

Publication number
WO1998010328A1
WO1998010328A1 PCT/JP1997/003017 JP9703017W WO9810328A1 WO 1998010328 A1 WO1998010328 A1 WO 1998010328A1 JP 9703017 W JP9703017 W JP 9703017W WO 9810328 A1 WO9810328 A1 WO 9810328A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
display device
crystal layer
light
Prior art date
Application number
PCT/JP1997/003017
Other languages
English (en)
French (fr)
Inventor
Kanemitsu Kubota
Tomoko Koyama
Mutsumi Kimura
Original Assignee
Seiko Epson Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corporation filed Critical Seiko Epson Corporation
Priority to US09/068,312 priority Critical patent/US6147726A/en
Publication of WO1998010328A1 publication Critical patent/WO1998010328A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • G02F1/13471Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells in which all the liquid crystal cells or layers remain transparent, e.g. FLC, ECB, DAP, HAN, TN, STN, SBE-LC cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/02Function characteristic reflective
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/05Function characteristic wavelength dependent

Definitions

  • the present invention relates to a display device, and more particularly to a structure of a liquid crystal device using a composite multilayer film of a liquid crystal and a film, and a method of manufacturing the same.
  • the present invention also relates to a display device which controls reflection / transmission by the liquid crystal device.
  • a reflective liquid crystal display device In particular, in a reflective liquid crystal display device, light is absorbed by both the polarizing plate and the color filter, so that at most 1% or less of the external light incident on the display device is reflected and displayed. It was very dark, and it was far from bright and vivid color display such as printed matter display.
  • a voltage is applied to the multilayer film by the electrodes on the inner surfaces of the pair of substrates, the direction of the molecular axis of the liquid crystal molecules in the liquid crystal layer changes, and accordingly, the refractive index of the liquid crystal layer also changes. Therefore, the condition of the interference reflection is deviated, and the intensity of the reflected light also changes. In this way, light modulation by voltage becomes possible, and functions as a display device.
  • the reflection type color display device was superior to the conventional TN type and STN type reflection type display devices.
  • the second problem is that the interface between the photocurable resin and the liquid crystal layer should be flat (flat) in order to increase the intensity of interference reflection, but it has fine irregularities as shown in Conventional Example 2. Touching in shape. Therefore, not all incident light causes interference reflection, but some light is transmitted, which has been a problem in realizing a brighter reflective display device.
  • a conventional example 3 Japanese Patent Application Laid-Open No. HEI 4-1186863 discloses an example of a bright reflective color display device that does not use a polarizing plate but utilizes interference reflection. It is mentioned.
  • the liquid crystal layer and the SiO 2 layer are overlapped, and the thickness and refractive index of each layer are set so as to conform to the conditions of interference reflection, and a specific wavelength is selected. Causes reflection.
  • the refractive index of the liquid crystal layer changes in the same manner as described above, deviating from the interference reflection condition, and the intensity of the reflected light changes, thereby realizing the display function.
  • a layer for strained your interference reflector consists only 3 layers of S i 0 2 film / liquid crystal layer i 0 2 film, this can not be obtained charge amount of interference intensity of the reflected light
  • a reflective display device having sufficient brightness cannot be realized.
  • S i 0 2 film / liquid crystal layer / S i 0 2 film / liquid crystal layer / S i 0 2 film '-' and at least one 0 or more layers of the composite multilayer film is preferred, the conventional In the example, the formation of the composite multilayer film is extremely difficult.
  • the liquid crystal layer can not be formed directly S i 0 2 film, as is also shown in the conventional example, once to form a Subesa one layer over the entire surface, the S i 0 2 film thereon After the formation, the spacer is etched away except the peripheral portion, and liquid crystal is poured into the removed air bubble portion to form a liquid crystal layer.
  • the spacer is etched away except the peripheral portion, and liquid crystal is poured into the removed air bubble portion to form a liquid crystal layer.
  • the present invention has been made to solve the above-mentioned problem, and has a high uniformity of reflected light intensity. And a brighter display device, as well as a monochrome display with a white background and a black display, or a more conspicuous display device capable of a high contrast color display, and more than 10 layers required for its realization. It is an object of the present invention to provide a method for easily and accurately producing a composite multilayer film.
  • a composite multilayer film in which a film and a liquid crystal layer are alternately laminated a plurality of times is sandwiched between a pair of substrates, and a voltage is applied to the composite multilayer film to apply a voltage to the composite multilayer film. Controlling the light reflectance of the light.
  • a second invention is characterized in that a light scattering means is arranged outside one of the substrates, and a light absorbing means is provided outside the other substrate.
  • a third invention is characterized in that the liquid crystal layer is made of a nematic liquid crystal, a smectic liquid crystal, a nematic liquid crystal, a nematic polymer liquid crystal, a smectic polymer liquid crystal, or a mixture thereof.
  • a fourth invention is characterized in that the liquid crystal layer is made of discotic liquid crystal or a mixture of discotic liquid crystal and nematic liquid crystal.
  • the liquid crystal layer is composed of nematic liquid molecules, and the major axis of the liquid crystal molecules is arranged in a substantially horizontal direction with respect to the substrate or the film when no voltage is applied.
  • a sixth invention is characterized in that the liquid crystal layer is composed of nematic liquid crystal molecules, and the major axis of the liquid crystal molecules is arranged in a direction substantially perpendicular to the substrate or the film when no voltage is applied. I do.
  • a seventh invention is characterized in that the light absorbing means absorbs light in an arbitrary wavelength band or a wavelength band in a visible light region that passes through the composite multilayer film.
  • a composite multilayer film in which a film and a liquid crystal layer are alternately laminated a plurality of times is sandwiched between a pair of substrates having electrodes on the inner surface, and an intermediate portion having electrodes on both surfaces is provided at an intermediate portion of the composite multilayer.
  • One or a plurality of substrates are interposed, and a light scattering means is arranged outside one of the substrates, and a light absorbing means is arranged outside the other substrate.
  • the layer thicknesses of the liquid crystal layer and the film are set such that the composite multilayer film reflects light of at least a part of the wavelength of an incident visible light region when no voltage is applied. It is characterized by the following.
  • the layer thicknesses of the liquid crystal layer and the film are set such that the composite multilayer film reflects light of at least a part of the wavelength of the incident visible light region when a voltage is applied. It is characterized by the following.
  • the eleventh invention is characterized in that at least one of the refractive indices in the major axis and minor axis directions of the liquid crystal molecules of the liquid crystal layer is made to substantially match the refractive index of the film.
  • the layer thickness of the film and the layer thickness of the liquid crystal layer are made the same in each composite multilayer film, and the layer thickness of the liquid product layer and the film thickness between different composite multilayer films.
  • a plurality of the composite multilayer films different from each other are laminated to reflect a plurality of wavelengths of incident light.
  • the layer thickness of the film and the layer thickness of the liquid crystal layer are made the same in each composite multilayer film, and the layer thicknesses of the liquid crystal layer and the film are different between different composite multilayer films.
  • the composite liquid crystal layer and the film thickness are set such that the plural composite multilayer films different from each other are stacked, and the plural composite multilayer films reflect red light, green light, and blue light. It is characterized by becoming.
  • a fifteenth invention is characterized in that an electrode to which a voltage is independently applied is arranged for each of the composite multilayer films.
  • the liquid crystal layer is formed of nematic liquid crystal molecules, and is set so as to reflect light of a polarization component in a substantially major axis direction of the nematic liquid crystal molecules or in a direction substantially orthogonal to the major axis direction. Characterized in that it contains at least the composite multilayer film thus formed.
  • a sixteenth invention is characterized in that the film is an optically substantially uniaxial film or an elongated film.
  • the composite multilayer film is divided into two blocks, and the liquid crystal molecule length direction of the liquid crystal layer of the first block and the liquid crystal molecule length axis direction of the liquid crystal layer of the second block are substantially orthogonal to each other.
  • Forming a composite multilayer film in which the first and second blocks are laminated, at least It is also characterized by having.
  • An eighteenth invention is characterized in that electrodes for independently applying a voltage are arranged in the first and second blocks.
  • a material for the liquid crystal layer is applied to at least one of the film surfaces, and the film on which the liquid crystal material is applied is overlapped with a plurality of layers and integrated to form the composite multilayer film. It is characterized by having been formed.
  • a twentieth invention is characterized in that, when superimposed by the roller, the liquid crystal layers are integrated with each other by heating to a predetermined temperature to reduce the viscosity of the liquid crystal layer.
  • a twenty-first invention is characterized in that the film is subjected to a uniaxial stretching treatment in advance to have an alignment function for aligning liquid crystal molecules.
  • the film on which the liquid crystal material is applied is overlaid with a plurality of layer rollers, integrated, and further rolled with a rolling roller.
  • the composite multilayer film is formed by performing a stretching treatment and adjusting only the thickness of the film and the liquid crystal layer to predetermined values.
  • a twenty-third invention is characterized in that the film has conductivity.
  • a twenty-fourth invention is characterized in that the composite multilayer film is formed by laminating the liquid crystal layer and the film with at least 10 chips.
  • a twenty-fifth invention is characterized in that the composite waste film is formed by laminating at least 21 layers of the liquid crystal layer and the film.
  • a twenty-sixth invention is a display device comprising: a composite multilayer film in which films and liquid crystal chips are alternately laminated; and applying a voltage to the composite multilayer film to control light reflectance in the composite multilayer film.
  • the refractive index n Lcl ( ⁇ ) in the major axis direction and the refractive index ⁇ in the minor axis direction of the liquid crystal having a predetermined wavelength ( ⁇ ) of the liquid crystal used in the liquid crystal layer, and C 2 ⁇ );
  • the refractive index n F1 Un) and n F2 Un) in the X-axis direction and the ⁇ -axis direction orthogonal to each other in the film plane with respect to the light of the predetermined wavelength (person ⁇ ) In the question of at least one set of the film and liquid crystal layer adjacent to each other and the liquid product layer, the following conditions [1] and [2]
  • both the light of the X-axis direction component and the light of the Y-axis direction component of the light of the predetermined wavelength (An) are in a transmission state.
  • reflection occurs when the refractive index differs between the film and the liquid crystal layer.
  • the refractive index of a liquid crystal changes when the applied voltage is changed, so the reflection state must be generated by changing the voltage applied state.
  • optical modulation by voltage is possible.
  • a twenty-seventh aspect of the present invention provides a liquid crystal display device, comprising: n F1 Un ), n LC2 Un ), a thickness d LC of the liquid crystal layer, and a thickness d F of the film,
  • a liquid crystal display device comprising: n F1 Un ), n LC2 Un ), a thickness d LC of the liquid crystal layer, and a thickness d F of the film
  • the condition [3] when the condition [3] is satisfied, the reflection of light of the X-axis direction component of the light of the predetermined wavelength ( ⁇ ) by the film becomes strong, and when the condition [4] is satisfied. Reflection by the liquid crystal layer becomes stronger with respect to light of the X-axis direction component of light having a predetermined wavelength (An). It should be noted that the light having the predetermined wavelength (person n) in the Y-axis direction is in a transmitting state from the condition [2].
  • the major axis of the liquid crystal molecules used in the liquid crystal layer is oriented substantially horizontally (homogeneous orientation) with respect to the film at least in the vicinity of the film when no voltage is applied, and in the X-axis direction.
  • the composite multilayer film is oriented so as to be in a light transmitting state when no voltage is applied and in a light reflecting state when a voltage is applied. According to the present invention, when no voltage is applied, both the light of the X-axis direction component and the light of the Y-axis direction component of the light of the predetermined wavelength (person n) are in a light transmitting state.
  • a liquid product layer having a positive dielectric anisotropy (m ⁇ ) is preferably used.
  • a twenty-ninth aspect of the present invention provides the n Lcl n LC2 " n) n F1 ( An) and n F2 " n) , wherein at least a pair of adjacent films and a liquid crystal layer are formed as follows: 6) Conditions
  • the liquid crystal when the liquid crystal is oriented with almost no pretilt angle with respect to the film when no voltage is applied, when the voltage is not applied, the light of the X-axis direction component of the light of the predetermined wavelength (An) is applied. High transmittance is provided for both the light in the Y-axis direction and the light in the Y-axis direction.
  • a thirtieth invention is characterized in that the liquid product is oriented with little pretilt angle to the film when no voltage is applied.
  • the thirty- first invention is characterized in that n Lcl (/ l ) and n F 1 " n ) are set between the at least one pair of adjacent films and a liquid crystal layer by the following condition [7]:
  • the refractive index in the X-axis direction of the liquid crystal layer is smaller than the refractive index in the long-axis direction of the liquid crystal (n Lcl Un) . Therefore, within the range of the condition [7], by appropriately setting n LC l ( ⁇ ) and n 1 Un ) according to the pretilt angle, it is preferable to apply n F i ( ⁇ ) without applying a voltage.
  • the display device of the present invention gives ⁇ transmittance to light of the X-axis direction component of light of a predetermined wavelength (person n) when no voltage is applied when the liquid crystal is oriented with a pretilt angle. . It should be noted that a higher transmittance can be obtained from the condition [2] with respect to the light of the axial component.
  • a thirty-second invention is directed to a thirty-second invention, wherein the liquid crystal has a predetermined blur with respect to the film when no voltage is applied. It is characterized by being oriented at a tilt angle, preferably 1 to 40 degrees.
  • a thirty-third aspect of the present invention provides the liquid crystal display device, wherein n F1 Un ) is made substantially equal to an average refractive index of the liquid crystal layer in the X-axis direction with respect to light having the predetermined wavelength ( ⁇ ) when no voltage is applied, and n F2 (An) is substantially equal to the average refractive index in the ⁇ -axis direction of the liquid crystal layer with respect to light of the predetermined wavelength (person ⁇ ) when no voltage is applied. In this manner, when no voltage is applied, a high transmittance can be obtained for both the X-axis component light and the ⁇ -axis component light of the predetermined wavelength ( ⁇ ).
  • the n F1 ⁇ ) , the n LC1 is ⁇ ) , the n LC2 ( ⁇ ) , the thickness d LC of the liquid crystal layer, and the thickness d F of the film, between the pair of films and the liquid crystal layer, the following conditions [8] and [9]
  • the major axis of the liquid crystal molecules used in the liquid crystal layer is oriented in a direction substantially perpendicular to the film at least near the center of the liquid crystal layer in the laminating direction when no voltage is applied.
  • the composite multilayer film is in a light transmitting state when a voltage is applied, and is in a light reflecting state when no voltage is applied. According to the present invention, when a voltage is applied, both the light of the X-axis direction component and the light of the ⁇ direction component of the light of the predetermined wavelength (human ⁇ ) are in a light transmitting state, and no voltage is applied.
  • the light of the predetermined wavelength (person n) has a strong reflection with respect to the light of the X-axis direction component, and is in a transmission state with respect to the light of the Y-axis direction component.
  • a liquid crystal layer having a negative dielectric anisotropy ( ⁇ ⁇ ) ( ⁇ £ ⁇ ()) is preferably used.
  • the thirty-sixth invention provides the following (10 ) , wherein the n LC1 (person n) , n LC2 ( ⁇ ), and n F 1 ⁇ ) are provided between the at least one pair of adjacent films and a liquid crystal layer. Conditions 10 10 n LC 1 " ⁇ ) no n F 1" ⁇ )
  • voltage application Sometimes, light of a predetermined wavelength (eg, ⁇ ) is in a light transmitting state with respect to light in the X-axis direction, but liquid crystal molecules are often not completely horizontal to the film when a voltage is applied.
  • n F1 n n F1 n
  • the refractive index of the liquid crystal layer substantially equal to the average refractive index in the X-axis direction with respect to the light of the predetermined wavelength (An)
  • the light of the X-axis direction of the light of the predetermined wavelength (E n) is applied when a voltage is applied.
  • At least the film and the liquid crystal layer of an adjacent pair can be sufficiently transmitted.
  • a thirty-seventh invention is characterized in that n F1 Utl ) is substantially equal to an average refractive index of the liquid crystal layer in the X-axis direction with respect to light of the predetermined wavelength (person n) when a voltage is applied.
  • a thirty-eighth aspect of the present invention provides a liquid crystal display device, comprising: the n F 1 Un) , the n C 2 (An) , the thickness d LC of the liquid crystal layer, and the thickness d F of the film.
  • the X-axis direction component of light of a predetermined wavelength (person n)
  • the reflection by the liquid crystal layer becomes stronger with respect to the light of the X-axis direction component of the light having the predetermined wavelength (n) when the condition [12] is satisfied.
  • the light of the Y-axis direction component of the light having the predetermined wavelength (E n) is in a transmission state according to the condition [2].
  • a predetermined wavelength (e n) Reflection of at least one of the film and the liquid crystal layer with respect to the light of the X-axis direction component of the light is increased.
  • a thirty-ninth aspect is characterized in that a major axis of liquid crystal molecules used in the liquid crystal layer is oriented in a direction substantially perpendicular to the film near the film when no voltage is applied.
  • a fortieth aspect of the present invention provides a liquid crystal display device, wherein n LC2 Un ) and d are set at least between a pair of adjacent films and a liquid crystal layer by the following conditions (13) and (14):
  • the reflection of the light of the predetermined wavelength (person n) in the X-axis direction component by the film becomes strong. If the major axis of the liquid crystal molecules used in the liquid crystal layer is inclined at a predetermined angle from the perpendicular direction to the film near the film when no voltage is applied, the X of the liquid crystal layer is the refractive index of the axial direction is larger than the refractive index along the short axis of the liquid product rue 2 (e n).
  • a forty-first invention is characterized in that the major axis of the liquid crystal molecules used in the liquid crystal layer is at a predetermined angle from a direction perpendicular to the film near the film when no voltage is applied. It is characterized by being inclined at an angle of 1 to 40 degrees.
  • a forty-second invention is a display device comprising: a composite multilayer film in which films and liquid crystal layers are alternately laminated; and applying a voltage to the composite multilayer film to control light reflectance in the composite multilayer film.
  • the refractive index n LC1 in the major axis direction of the liquid crystal used in the liquid crystal layer with respect to light of a predetermined wavelength (person n) is n
  • the refractive index in the minor axis direction n LC2 Un is ).
  • both the X-axis component light and the ⁇ -axis component light of the predetermined wavelength ( ⁇ ) are in a transmission state.
  • reflection occurs when the refractive index differs between the film and the liquid crystal layer, and since the refractive index of the liquid crystal generally changes when the applied voltage is changed, the reflection state can be generated by changing the applied state of the voltage. Light modulation by voltage is possible.
  • the forty-third invention is characterized in that the n F1 (/ ln ), n LC1 (An ), the thickness d LC of the liquid crystal layer, the thickness d F of the film, the at least one pair of adjacent film and liquid crystal
  • n F1 / ln
  • n LC1 An
  • the thickness d LC of the liquid crystal layer the thickness d F of the film
  • the at least one pair of adjacent film and liquid crystal The following conditions [17] and [18]
  • the reflection of the light of the predetermined wavelength (person n) in the X-axis direction component by the film becomes strong, and when the condition of [18] is satisfied. Then, the reflection by the liquid crystal dust becomes stronger with respect to the X-axis direction component light of the predetermined wavelength ( ⁇ ). It should be noted that the light of the predetermined wavelength (person n) in the Y-axis direction is in a transmission state from the condition [16].
  • Forty-fourth invention is characterized in that, when no voltage is applied, the major axis of the liquid crystal molecules used in the liquid crystal layer is oriented in a substantially horizontal direction (homogeneous orientation) with respect to the film at least in the vicinity of the film and the X-axis direction.
  • the composite multi-layered film is configured to be in a light transmitting state when a voltage is applied and to a light reflecting state when no voltage is applied.
  • both the light of the X-axis direction and the light of the ⁇ -direction component of the light of the predetermined wavelength ( ⁇ ) are in a light transmitting state, and the light of the predetermined wavelength (An) is not applied when no voltage is applied. Reflection becomes stronger for light in the X-axis direction, and light is transmitted for light in the Y-axis direction.
  • a liquid crystal layer having a positive dielectric anisotropy ( ⁇ ) ( ⁇ > 0) is preferably used.
  • n LC1 n) , n LC2 ′′ ⁇ ) and n F1 ⁇ ) may be defined as follows, based on the question of the at least one pair of adjacent films and the liquid crystal layer:
  • the light of a predetermined wavelength e.g., ⁇
  • the refractive index in the X-axis direction of the liquid crystal layer is larger than the refractive index n LC2 ( ⁇ ⁇ ) of the liquid crystal in the short axis direction.
  • n LC2 ( ⁇ ⁇ ) and n f , ( ⁇ ) according to the applied voltage within the range of the condition [19], preferably n n F 1 Un ) is made substantially equal to the average refractive index of the liquid crystal layer in the X-axis direction for light of a predetermined wavelength ( ⁇ ) when a voltage is applied, so that light of a predetermined wavelength (e ⁇ ) can be obtained.
  • Light of the X-axis direction component can be sufficiently transmitted through at least the pair of adjacent films and the liquid crystal layer. It should be noted that a transmittance higher than the condition [16] is obtained for the light of the ⁇ -axis direction component.
  • a forty-sixth invention is directed to the liquid crystal display device, wherein the nFlUn ) Characterized in that the refractive index is substantially equal to the average refractive index in the X-axis direction for light having a wavelength of
  • the display device When the liquid crystal is oriented with almost no pretilt angle with respect to the film when no voltage is applied, the display device is capable of emitting light of a predetermined wavelength (input n) in the X-axis direction. Therefore, when no voltage is applied, the reflection by at least one of the film and the liquid waste becomes strong.
  • a forty-eighth invention is characterized in that the liquid crystal is oriented with almost no pretilt angle to the film when no voltage is applied.
  • a forty-ninth aspect of the present invention provides the liquid crystal display device according to the above (22) and (23), wherein the n LC1 (An ) and d! ⁇ Are at least between the pair of adjacent films and the liquid crystal layer.
  • the reflection of the light of the predetermined wavelength ( ⁇ ) by the film with respect to the light of the X-axis direction component is increased.
  • the liquid crystal is applied with no pressure
  • the refractive index in the X-axis direction of the liquid crystal layer is smaller than the refractive index n Lcl ( ⁇ ) in the long-axis direction of the liquid crystal. Therefore, within the range of the condition [23], by appropriately setting ru CI ( ⁇ ) and d LC according to the pretilt angle, the X-axis component of the light of a predetermined wavelength (person n) is obtained.
  • the reflection of the light by the liquid crystal layer can be enhanced.
  • the light of the predetermined wavelength (An) in the Y-axis direction is in a transmission state from the condition [16].
  • a fiftieth invention is characterized in that the liquid crystal is oriented at a predetermined pretilt angle, preferably 1 to 40 degrees, with respect to the film when no voltage is applied.
  • the major axis of the liquid crystal molecules used in the liquid crystal layer is oriented in a direction substantially perpendicular to the film at least near the center of the liquid crystal layer in the laminating direction when no voltage is applied. (Home pick opening alignment), and the composite multilayer film is in a light transmitting state when no voltage is applied, and is in a light reflecting state when a voltage is applied.
  • both the light of the X-axis direction component and the light of the Y-axis direction component of the light of the predetermined wavelength (E n) are in a light transmitting state.
  • the reflection of the light of the person n) in the X-axis direction becomes strong, and the light of the Y-axis direction is transmitted.
  • the liquid crystal layer preferably has a negative dielectric anisotropy ( ⁇ ) ( ⁇ £ ⁇ 0).
  • the fifty-second invention is characterized in that ⁇ is C 1 " n ), n LC2 Ull) , n F , ( ⁇ ) and n de 2 " n) are interposed between the at least one pair of adjacent films and the liquid crystal layer.
  • the major axis of the liquid crystal molecules used in the liquid crystal layer when the major axis of the liquid crystal molecules used in the liquid crystal layer is oriented in a direction substantially perpendicular to the film near the film when no voltage is applied, a predetermined wavelength is applied when no voltage is applied. Both the X-axis component light and the ⁇ -axis component light of (human ⁇ ) have high light transmittance.
  • the major axis of liquid crystal molecules used in the liquid crystal layer is oriented in a direction substantially perpendicular to the film near the film when no voltage is applied. It is characterized by the following.
  • n LC2 (An ) and n F1 (An) are provided between the at least one pair of adjacent films and a liquid crystal layer, under the following condition (25):
  • n F1 ( ⁇ ) is set to an average refractive index in the X-axis direction with respect to light of a predetermined wavelength (human ⁇ ) of the liquid crystal layer when no voltage is applied.
  • a predetermined wavelength human ⁇
  • the display device of the present invention has a structure in which the major axis of the liquid crystal molecules used in the liquid crystal layer is oriented at a predetermined angle from the vertical direction with respect to the film near the film when no voltage is applied.
  • a high transmittance is given to light of a predetermined wavelength (human ⁇ ) in the X-axis direction when no voltage is applied. It should be noted that a higher transmittance than the condition [16] can be obtained for the light of the blue component.
  • a fifty-fifth invention is characterized in that the major axis of the liquid crystal molecules used in the liquid crystal layer is at a predetermined angle from a direction perpendicular to the film, preferably 1 degree to 40 degrees, in the vicinity of the film when no voltage is applied. It is characterized by being tilted and oriented.
  • n F1 Un is made substantially equal to an average refractive index of the liquid crystal layer in the X-axis direction with respect to light of the predetermined wavelength (person n) when no voltage is applied
  • NF2 (An ) is substantially equal to an average refractive index of the liquid crystal layer in the Y-axis direction with respect to light of the predetermined wavelength (person n) when no voltage is applied.
  • the reflection of the light of the predetermined wavelength (E n) by the film with respect to the light of the X-axis direction component is increased.
  • the liquid crystal molecules are not completely horizontal with respect to the film.
  • n LC1 Un n LC1 Un
  • d LC should be appropriately adjusted according to the applied voltage.
  • n F1 Un the n F1 Un
  • d F the person n are converted into the following conditions (28): (28) (l / 8 + k / 2)- ⁇ ⁇ n F1 Un) -d F
  • n F2 Un the n F2 Un
  • d F the n F2 Un
  • n the n F2 Un
  • d F the n F2 Un
  • n the n F2 Un
  • d F the n F2 Un
  • n the n F2 Un
  • d F the n F2 Un
  • n the n F2 Un
  • d F the n F2 Un
  • n the n F2 Un
  • the ⁇ , n LC2 n) and d LC are defined by the following condition (30): (30) (l / 8 + m / 2)-An ⁇ n LC2 Un) -d LC
  • a sixty-first invention is directed to the above-mentioned person n, n Lcl Un) , and d LC by the following [31] condition [31] (l / 8 + m / 2) ⁇ ⁇ n Lcl Un) d LC
  • n 0 or an integer.
  • a sixty-second invention is characterized in that any one of the twenty-sixth to sixty-first inventions is satisfied between a plurality of films of the composite multilayer film and a plurality of liquid crystal layers.
  • a predetermined wavelength of the liquid crystal used for the liquid crystal layer is required.
  • the refractive index n Lcl ( ⁇ ) in the major axis direction and the refractive index ru C2 Un in the minor axis direction with respect to the light of (human ⁇ ) and the thickness d LC of the liquid crystal layer are substantially the same between the plurality of liquid crystal layers.
  • the X-axis refractive index n F1 ( ⁇ ) , the 2- axis refractive index n F2 ⁇ ) of the film with respect to the light of the predetermined wavelength (person n), and the film thickness d F are defined as a plurality of films. It is preferable that they are substantially the same between them.
  • a thirty-sixth finding is that at least two of the composite multilayer films satisfying any of the requirements of the twenty-sixth to sixty-second inventions are laminated for the ⁇ -wave and the S-wave of the light having the predetermined wavelength ( ⁇ ).
  • a display device wherein a voltage is applied to the laminated composite multilayer film to control the light reflectance of the laminated composite multilayer film. According to the present invention, since transmission and reflection can be controlled for both the ⁇ wave and the S wave of the light having the predetermined wavelength (human ⁇ ), a display device with higher contrast can be realized.
  • the composite multilayer film is provided in a laminated manner, and a voltage is applied to the laminated composite multilayer films to control the light reflectance of the laminated composite multilayer films.
  • the plurality of composite multilayer films satisfying the above conditions are stacked and provided, and a voltage is applied to the stacked multiple multilayer films to control the light reflectance of the stacked multiple multilayer films. It is characterized by the following.
  • the plurality of composite multilayer films each include a plurality of films and a plurality of liquid crystal layers, and a predetermined wavelength of a liquid crystal used for the liquid crystal layer (
  • the refractive index n Lcl in the long axis direction for the light of the person n) is n
  • the refractive index r ⁇ C2 ( ⁇ ) in the short axis direction and the thickness d LC of the liquid crystal layer are the same as the plural in the same composite multilayer film.
  • n F1 ( ⁇ ) and the refractive index in the ⁇ -axis direction with respect to light of the predetermined wavelength ( ⁇ ) of the film It is preferable that n F2 ( ⁇ ) and the thickness d F of the film be substantially the same between a plurality of liquid crystal layers in the same composite multilayer film and different between different composite multilayer films.
  • n LC1 ( ⁇ ) and n LC2 ( ⁇ ) are as follows: J 3) n I ( ⁇ ) Z n LC2 " ⁇ ) ⁇ 1
  • a sixty-eighth invention is directed to the composite multilayer film, wherein the total number of the number of layers of the film and the number of layers of the liquid crystal layer, or the number of layers of the film and the number of layers of the liquid crystal layer in the plurality of stacked composite multilayer films
  • the total number of layers is 100 or more.
  • the total number of layers of the film and the number of liquid crystal layers is 100 or more. Then, a display device having a high reflectance can be obtained.
  • n LC1 Un) and n LC2 “ n) satisfy the following [34]:
  • the total number of the film and the liquid crystal layer in the plurality of laminated composite multilayer films is about 100 to 400.
  • L is a multiple of 3).
  • a white display can be easily realized by satisfying the reflection conditions for red light, green light and blue light, respectively. Can be.
  • a seventy-first invention is directed to a seventy-first aspect of the present invention, wherein the light having the plurality of different predetermined wavelengths ( ⁇ two persons, person 2... ⁇ -, Light of person L, 4 ⁇ L ⁇ 8), and light of 4 to 8 different predetermined wavelengths (person n, two, one, two, ..., person L, 4 ⁇ L ⁇ 8) And n C1 () and n LC2 " n) force 5 , the following [35]
  • the total number of layers of the film and the number of liquid crystal layers in the plurality of stacked composite multilayer films is about 100 to 300.
  • the seventy-third invention is directed to the light of a plurality of different predetermined wavelengths (e.g., ⁇ 2 ⁇ 1, human 2 AL), light of at least one wavelength is light of a wavelength in the infrared region.
  • a plurality of different predetermined wavelengths e.g., ⁇ 2 ⁇ 1, human 2 AL
  • light of at least one wavelength is light of a wavelength in the infrared region.
  • the reflection wavelength shifts to the shorter wavelength side. Therefore, if the reflection wavelength range from clear front view is extended to the infrared region, white reflection can be realized even if the display is viewed from either the front or oblique directions.
  • FIG. 1 is a view for explaining a first embodiment of the display device according to the present invention.
  • FIG. 2 is a diagram for explaining a display principle according to the present invention.
  • FIG. 3 is a view for explaining a second embodiment of the display device according to the present invention.
  • FIG. 4 is a view for explaining a third embodiment of the display device according to the present invention.
  • FIG. 5 is a diagram for explaining a fourth embodiment of the display device according to the present invention.
  • FIG. 6 is a view for explaining a fifth embodiment of the display device according to the present invention.
  • FIG. 7 is a view for explaining a sixth embodiment of the display device according to the present invention.
  • FIG. 8 is a view for explaining a seventh embodiment of the display device according to the present invention.
  • FIG. 9 is a view for explaining an eighth embodiment of the display device according to the present invention.
  • FIG. 10 is a view for explaining a ninth embodiment of the display device according to the present invention.
  • FIG. 11 is a view for explaining a method for producing a composite multilayer film used in the display device according to the present invention.
  • FIG. 12 is a view for explaining another method for manufacturing a composite multilayer film used for the display device according to the present invention.
  • FIG. 13 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the fourteenth embodiment of the display device according to the present invention.
  • FIG. 14 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the fifteenth embodiment of the display device according to the present invention.
  • FIG. 15 is a view for explaining the relationship between the applied voltage and the alignment state of the liquid crystal molecules in the fourteenth embodiment to the twenty-first embodiment of the display device according to the present invention.
  • FIG. 16 shows the display device according to the fourteenth to twenty-first embodiments of the display device according to the present invention.
  • FIG. 4 is a diagram for explaining a relationship between an applied voltage and an alignment state of liquid crystal molecules.
  • FIG. 17 illustrates the relationship between the cell thickness direction and the refractive index of the liquid crystal in the fourteenth embodiment to the twenty-first embodiment of the display device according to the present invention, with the applied voltage as a parameter.
  • FIG. 18 is a view for explaining the structure of the display device according to the 14th embodiment of the present invention.
  • FIG. 19 is a view for explaining a display device according to a 14th embodiment of the present invention.
  • FIG. 19A is a view showing the cell thickness direction and the refraction of liquid crystal in the display device of the 14th embodiment.
  • FIG. 19B is a diagram for explaining the relationship between the applied voltage and the applied voltage as a parameter, and
  • FIG. 19B is a diagram illustrating the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device of the fourteenth embodiment. It is a diagram for explaining.
  • FIG. 20 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the fourteenth embodiment of the present invention.
  • FIG. 21 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the fourteenth embodiment of the present invention.
  • FIG. 22 is a view for explaining the structure of the display device g of the fifteenth embodiment of the present invention.
  • FIG. 23 is a view for explaining a display device according to a fifteenth embodiment of the present invention.
  • FIG. 23A is a diagram showing the cell direction and the refraction of liquid crystal in the display device according to the fifteenth embodiment.
  • FIG. 23B is a diagram for explaining the relationship between the applied voltage and the applied voltage as a parameter, and
  • FIG. 23B is a diagram showing the relationship between the number of layers of the composite multilayer film and the 1,000-reflectance in the display device of the fifteenth embodiment.
  • FIG. 23A is a diagram showing the cell direction and the refraction of liquid crystal in the display device according to the fifteenth embodiment.
  • FIG. 23B is a diagram for explaining the relationship between the applied voltage and the applied voltage as a parameter
  • FIG. 23B is a diagram showing the relationship between the number of layers of the composite multilayer film and the 1,000-reflectance in the display device of the fifteenth embodiment.
  • FIG. 24 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the fifteenth embodiment of the present invention.
  • FIG. 25 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the fifteenth embodiment of the present invention.
  • FIG. 26 is a view for explaining the structure of the display device according to the 16th embodiment of the present invention.
  • FIG. 27 is a view for explaining the display device of the 16th embodiment of the present invention.
  • FIG. 27A is a view showing the cell thickness direction and the refraction of the liquid crystal in the display device of the 16th embodiment.
  • FIG. 27B is a diagram for explaining the relationship between the reflectance and the applied voltage as a parameter, and
  • FIG. 27B is a diagram illustrating the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device of the 16th embodiment. It is a diagram for explaining.
  • FIG. 28 is a view for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the sixteenth embodiment of the present invention.
  • FIG. 29 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the sixteenth embodiment of the present invention.
  • FIG. 30 is a view for explaining the structure of the display device according to the seventeenth embodiment of the present invention.
  • FIG. 31 is a diagram for explaining the display device of the seventeenth embodiment of the present invention.
  • FIG. 31A is a diagram showing the cell thickness direction and the refraction of the liquid crystal in the display device of the seventeenth embodiment.
  • FIG. 31B is a diagram for explaining the relationship between the reflectance and the applied voltage as a parameter, and
  • FIG. 31B is a diagram showing the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device of the seventeenth embodiment. It is a diagram for explaining.
  • FIG. 32 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the seventeenth embodiment of the present invention.
  • FIG. 33 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the seventeenth embodiment of the present invention.
  • FIG. 34 is a view for explaining the structure of the display device according to the eighteenth embodiment of the present invention.
  • FIG. 35 is a view for explaining the display device of the eighteenth embodiment of the present invention.
  • FIG. 35A is a diagram showing the cell thickness direction and the refraction of the liquid crystal in the display device of the eighteenth embodiment.
  • FIG. 35B is a diagram for explaining the relationship between the reflectance and the applied voltage as a parameter, and
  • FIG. 35B is a diagram illustrating the relationship between the number of layers of the composite multilayer film and the solar reflectance in the display device of the eighteenth embodiment. It is a diagram for explaining.
  • FIG. 36 shows the number of layers of the composite multi-layer film in the display device according to the eighteenth embodiment of the present invention. It is a figure for explaining the relation of the cross reflection.
  • FIG. 37 is a view for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the eighteenth embodiment of the present invention.
  • FIG. 38 is a view for explaining the structure of the display device according to the ninth embodiment of the present invention.
  • FIG. 39 is a view for explaining the display device according to the nineteenth embodiment of the present invention.
  • FIG. 39A is a diagram showing the cell thickness direction and the refraction of the liquid crystal in the display device according to the nineteenth embodiment.
  • FIG. 39B is a diagram for explaining the relationship between the reflectance and the applied voltage as a parameter, and
  • FIG. 39B is a diagram illustrating the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device of the ninth embodiment. It is a diagram for explaining.
  • FIG. 40 is a diagram for explaining the relationship between the number of layers of the composite multi-layer calendar and the horizontal reflectance in the display device according to the nineteenth embodiment of the present invention.
  • FIG. 41 is a view for explaining the relationship between the number of layers of the composite multilayer film and the thousand-fold reflectance in the display device according to the nineteenth embodiment of the present invention.
  • FIG. 42 is a view for explaining the structure of the display device according to the nineteenth embodiment of the present invention.
  • FIG. 43 is a view for explaining a display device according to a 20th embodiment of the present invention.
  • FIG. 43A is a diagram showing the cell thickness direction and the refraction of the liquid crystal in the display device according to the 20th embodiment.
  • FIG. 43B is a diagram for explaining the relationship between the applied voltage and the applied voltage as a parameter;
  • FIG. 43B is a graph showing the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device of the 20th embodiment. It is a figure for explaining a relation.
  • FIG. 44 is a view for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the 20th embodiment of the present invention.
  • FIG. 45 is a diagram for explaining the relationship between the number of layers of the composite multilayer film and the flat reflectance in the display device according to the twenty-first embodiment of the present invention.
  • FIG. 46 is a view for explaining the structure of the display device according to the 21st embodiment of the present invention.
  • FIG. 47 is a diagram showing the number of layers and the number of layers of a composite multilayer film in the display device according to the twenty-first embodiment of the present invention. It is a figure for explaining the relation of the cross reflection.
  • FIG. 48 is a view for explaining the relationship between the number of layers of the composite multilayer film and the interference reflectance in the display device according to the twenty-first embodiment of the present invention.
  • FIG. 49 is a diagram for explaining the relationship between the total number of layers of the composite multilayer film and the interference reflectance in the display device according to the twenty-first embodiment of the present invention.
  • FIG. 1 is a diagram showing a basic structure of a display device according to the present invention and a display principle thereof, that is, a diagram showing a basic structure of a light modulation element for controlling reflection / transmission.
  • 1 and 2 are made of a transparent plastic plate or a transparent plastic film or a transparent glass plate, and the lower substrate, and 3 and 4 are transparent electrode layers formed on the upper and lower substrates 1 and 2, respectively. Consisting of indium oxide, tin oxide, or a mixture thereof.
  • 8, 9, 10 and 11 are liquid crystal layers
  • 5, 6 and 7 are plastic films (hereinafter simply referred to as films), and the liquid crystal layers 8, 9, 10 and 11 and the films 5, 6, and 7 alternately overlap to form a composite multilayer film 18.
  • Reference numeral 12 denotes a peripheral seal portion for bonding and fixing the upper and lower substrates 1 and 2, and the display device of the present invention is basically configured as described above.
  • the liquid crystal layers 8, 9, 10, and 11 use nematic liquid crystals having a positive dielectric anisotropy, and the major axes of the liquid crystal molecules are substantially water-based on the surfaces of the films 5, 6, and 7. It is oriented flat.
  • FIGS. 2 (a) and 2 (b) show the display principle of the present invention. Films 5, 6, 7 and liquid crystal layers 8, 9, 10 and 11 are extracted and shown. . Therefore, the figure numbers correspond to each film and each liquid crystal layer in FIG. FIG. 2 (a) shows the region 13 in FIG. 1, ie, the region where no voltage is applied between the upper and lower electrodes 3 and 4 (more specifically, the region where the voltage is applied below the threshold voltage of the liquid crystal).
  • FIG. 2 (a) shows the region 13 in FIG. 1, ie, the region where no voltage is applied between the upper and lower electrodes 3 and 4 (more specifically, the region where the voltage is applied below the threshold voltage of the liquid crystal).
  • FIG. 1 shows the region 13 in FIG. 1, ie, the region where no voltage is applied between the upper and lower electrodes 3 and 4 (more specifically, the region where the voltage is applied below the threshold voltage of the liquid crystal).
  • the liquid crystal molecules are The liquid crystal layer is almost horizontally aligned, and the refractive index of the liquid crystal layer in the long axis direction of the liquid crystal molecules is ru ci .
  • Fig. 2 (b) shows the region 14 in Fig. 1, that is, the region where the voltage is applied between the upper and lower electrodes 3 and 4 (more specifically, the region where the saturation voltage of the liquid crystal is applied.
  • the state of voltage application in each embodiment and each example may be considered to be the same state.
  • the liquid crystal molecules are oriented substantially perpendicular to the film surface, and the refractive index of the liquid crystal layer is n LC2 in the minor axis direction of the liquid crystal molecules. Due to the general properties of nematic liquid crystals, the refractive index of the liquid crystal layer changes depending on whether or not a voltage is applied.
  • n LC2 n F (n F is the refractive index of the film) ⁇ ⁇ ⁇ (2)
  • the liquid crystal molecules are not arranged perpendicular to the film surface in all of the layers of the liquid crystal layer, and the liquid crystal molecules close to the film surface have a horizontal component in the film surface.
  • the average refractive index of the liquid crystal layer at this time does not become n LC2, made it larger refractive index than "n LC2" ( “n LC2 "> n LC2).
  • n F of the film is « n LC2 >>
  • the incident light 16 is transmitted most strongly.
  • the film has a slight birefringence (the refractive index in the X-axis direction is n F1 , and the refractive index in the Y-axis direction is n F2 .
  • the X-axis direction is the liquid crystal molecule adjacent to the film). Is the major axis direction, and the Y axis direction is the same minor axis direction.
  • the wavelength can be reduced as shown in Figs. 1 and 2 (a). Of the incident light 15 is reflected most strongly by interference.
  • the intensity of the reflected light 17 increases as the number of liquid crystal layers and films increases, in other words, as the number of layers of the composite multilayer film increases. Although only seven layers in total of the film and the liquid crystal layer are drawn in the drawings of the present embodiment, preferably, ten or more layers are good.
  • a nematic liquid crystal material having a positive dielectric anisotropy and a film material satisfy equation (2), equation (2), or equation (2), 'and equation (2),,,,,, If each of them is selected, the thickness of the liquid crystal layer and the thickness of the film are adjusted so as to satisfy the equations (3) and (4), and the liquid crystal layer and the film are alternately stacked, preferably 10 or more layers, the voltage becomes It can be seen that a light modulation element that transmits incident light when voltage is applied and reflects incident light when no voltage is applied is functioning as a display device. Further, it is apparent that the display device described above does not use a polarizing plate that absorbs light, and is a bright display device that effectively utilizes light. Furthermore, since the interface between the film and the liquid crystal layer is flat, it can be seen that the interference reflection intensity is superior in brightness as compared with the conventional example 1.
  • a nematic liquid crystal material is used for the liquid crystal layer.
  • any material having a condition of birefringence, a change in the direction of liquid crystal molecules by an electric field, and a change in the refractive index due to the electric field can be used.
  • materials such as smectic liquid crystals, chiral smectic liquid crystals, polymer liquid crystals in which nematic liquid crystal molecules or smectic liquid crystal molecules are bonded to a single polymer chain, and materials such as mixtures of the above liquid crystals and polymer liquid crystals are also used.
  • the molecular direction of only the discotic liquid crystal itself may be controlled by an electric field, but in particular, if a liquid crystal in which a nematic liquid crystal and a discotic liquid crystal are mixed is used, the viscosity decreases, and the molecular axis is more easily adjusted according to the electric field. Can be turned around.
  • a light absorbing layer may be disposed outside the lower substrate 2 to display zero wavelength light in a no-voltage application region and absorb transmitted light in a voltage application region.
  • a display device with a high contrast which does not require a polarizing plate and provides a black display, can be realized.
  • FIG. 31 and 32 are upper and lower substrates, respectively, and have transparent electrode films 33 and 34 on the surfaces facing each other.
  • 23, 24, 25, and 26 are liquid crystal layers, respectively, 27, 28, and 29 are films, and each liquid crystal layer and each film have a structure in which they are alternately overlapped as shown in the figure.
  • Reference numeral 35 denotes a peripheral seal portion made of epoxy resin or the like and fixing the upper and lower substrates.
  • a nematic liquid crystal material having a positive dielectric anisotropy is used for the liquid crystal layers 23, 24, 25, and 26, and is substantially horizontally aligned with respect to each film surface.
  • the birefringence of the nematic liquid crystal material is set to n, and C1 '(the major axis direction of the liquid crystal molecules), nLC2 , (the minor axis direction of the liquid crystal molecules), and set to be nLC1 ,> nLC2 '.
  • the films 27, 28 and 29 are uniaxial birefringent films, and the refractive index in the X-axis direction is! ! ', The refractive index of the Y-axis direction n F2' and, n F 1 '> n F2 , and set to be.
  • the stretching direction is the X axis
  • the direction orthogonal to the X axis is the Y axis.
  • the above nematic liquid crystal The molecules are arranged horizontally with respect to each surface of each of the films 27, 28, and 29, and the molecular long axis direction is arranged in the X-axis direction of the film.
  • the conditions are set so that the incident light 36 having a wavelength of 0 is transmitted in the no-voltage application region 40. That is, for wavelength 0,
  • n LCi , n F1 , ⁇ ⁇ ⁇ (5)
  • n F1 '-d F ' (l / 4 + k / 2) ⁇ ⁇ ⁇ ⁇ (6),
  • each liquid crystal layer (d LC ′) and the thickness of each film (d F ′) are set so as to satisfy the above condition, in the no-voltage application region 40, the incident light 36 of wavelength 0 is transmitted, In the voltage application region 39, the incident light 37 having a wavelength of 0 is reflected and becomes a reflected light 38.
  • the number of liquid crystal layers and films of the composite multilayer film 30 should be at least 10 or more. Is preferred.
  • the display device reflects incident light when a voltage is applied and transmits the incident light when no voltage is applied, and it is possible to display a pattern inverted from that of the first embodiment. Become.
  • a light absorbing layer may be arranged outside the lower substrate 32, and the area where no voltage is applied absorbs the transmitted light to display black, and In this case, a display with no wavelength is displayed, and a display device with a high contrast without a polarizing plate can be realized.
  • FIG. 4 shows a third embodiment of the present invention, in which reference numerals 41, 42 denote upper and lower substrates, respectively, and reference numerals 43, 44 denote respective upper and lower substrates 41, 42, which are formed on opposite surfaces of each other.
  • the transparent electrode 45 is made of epoxy resin, etc. It is.
  • Liquid crystal layers 46, 47, 48, and 49 are laminated with films 50, 51, and 52 alternately to form a composite multilayer film 57.
  • a nematic liquid crystal material is used for the liquid crystal layers 46, 47, 48, and 49, and the molecular arrangement of the nematic liquid crystal material is such that the upper and lower substrates 41, 42, and And film
  • the major axis of the liquid crystal molecules is oriented substantially perpendicularly to each of the planes 50, 51, and 52 (the homeoscopic big array). If a liquid crystal material having a negative dielectric anisotropy is selected as the nematic liquid crystal, the liquid crystal molecules in the voltage application region 54 where a substantially saturated voltage is applied between the upper and lower electrodes 43 and 44 are disposed on the upper and lower substrates. It is oriented substantially horizontally on each side of 41, 42 and films 50, 51, 52.
  • nematic liquid crystal material the molecular long axis direction of the refractive index n Lcl ,, the direction of, n LC2 the refractive index of the molecular minor axis direction, and set so that (n LCI ',> n L ') , Incident light 55, 56 wavelength 0
  • n F1 n F2 ⁇ ⁇ ⁇ (7)
  • n F1 ,,, n F2 ' are the refractive indices of the films 50, 51, 52 in the X-axis and Y-axis directions, respectively.
  • the liquid crystal layer 46, 47, 48, 49 and the film 50 are the liquid crystal layer 46, 47, 48, 49 and the film 50.
  • n LC] 5 '-d LC " (1/4 + m / 2) ⁇ 0 ⁇ ⁇ ⁇ (8)
  • n FI "-d F " (l / 4 + k / 2) E 0 ⁇ ⁇ ⁇ (8) '
  • (d LC ,, and d F , are the thicknesses of the liquid crystal layers 46, 47, 48, 49 and the films 50, 51, 52, respectively, and k and m are 0 or any integer).
  • the incident light 56 having a wavelength of 0 in the voltage application area 54 is stronger by the composite multilayer film 57. Interference reflected. As described above, it can be seen that switching of reflection / transmission of incident light becomes possible depending on whether or not a voltage is applied, and that the device functions as a display device.
  • a light absorbing layer may be provided outside the lower substrate 42.
  • the transmitted light is absorbed in the no-voltage application region to display a black display, and in the voltage application region, light having a wavelength of 0 is displayed.
  • a display device with a high contrast without a polarizing plate can be realized.
  • the three embodiments have been described.
  • a bright display device in which the wavelength band of the interference reflection wavelength ( ⁇ ) is broadened is desirable.
  • each composite multilayer film that satisfies the above-mentioned interference reflection conditions in the wavelength range of each color such as red, green, blue, etc., and use a multi-composite multilayer film that superimposes them. Good. Further, a bright display device can be realized even if a composite multilayer film having continuously changing the thickness of each of the liquid crystal layer and the film, preferably 100 layers or more, is used. Furthermore, if a discotic liquid crystal is used instead of the nematic liquid crystal used in the above-described embodiment, a substantially uniform refractive index of the light (refraction for each polarized light of incident light) can be obtained in a state where the film is oriented substantially horizontally.
  • the refractive index of one of the liquid crystal layers and the refractive index of the film are made to match with respect to the wavelength 0.
  • the incident light is transmitted, it is preferable to realize a refractive index that satisfies each of the above expressions in the visible light wavelength range.
  • the wavelength dispersion of the refractive index of the film material and It is also important to match the wavelength dispersion of the refractive index of the liquid crystal material as much as possible when selecting each material.
  • the film material is fixed, and (2), (2) ', (5), (5) It is realistic to adjust the refractive index of the liquid crystal material by the component mixing ratio so as to satisfy Equation (7).
  • FIG. 1 4 8 1 4 9, 1 5 0, 1 5 1 are liquid crystal layers, 1 4 5, 1 4 6 and 1 4 7 are film layers, which alternately overlap to form a composite multilayer film 15 9. ing.
  • the refractive indices and thicknesses of the liquid crystal layers 148, 149, 150 and 151 and the films 145, 146 and 147 are determined by the equations (1), (2) and (2) as described in the first embodiment.
  • ′, (3) and (4) are composite multilayer films 159 which are set so as to substantially satisfy the conditions.
  • Reference numeral 152 denotes a light scattering portion formed of a light scattering layer or a light scattering plate formed on the upper substrate 142.
  • the 153 is a light absorbing portion formed of a light absorbing layer or a light absorbing plate formed below the lower substrate 141.
  • the operation of this embodiment is as follows. First, the light 156 incident on the no-voltage application region 154 is interference-reflected as shown in the first embodiment, and the reflected light becomes the scattered light 158 in the light scattering section 152. Will be released. Therefore, the reflected light is not easily reflected by a mirror surface but is easily scattered and reflected by light, such as reflected light by a paper surface. On the other hand, in the voltage application region 155, the incident light 157 is transmitted as it is as described in the first embodiment, reaches the light absorbing unit 153, and is absorbed. Therefore, the color of the light absorbing portion 153 is observed in the voltage application region 155.
  • the thicknesses of the liquid crystal layers 148, 149, 150, and 151 are all the same, and the thicknesses of the films 145, 146, and 147 are all the same.
  • the transmission / reflection voltage control could not be performed, in order to satisfy the above-mentioned reflection conditions in the entire visible light wavelength range, each narrow wavelength range ( ⁇ , 1, person 2,..., Person ⁇ ), the composite multilayer film of the above embodiment is provided so as to satisfy the interference reflection condition, and ⁇ composite multilayer films having different wavelengths for interference reflection are laminated.
  • the combination of the thickness of each liquid crystal layer and the film should be changed along the light traveling direction to increase the total number of layers.
  • each composite multilayer film that satisfies the interference reflection condition is prepared, and a multiple composite multilayer film obtained by superimposing them is formed into a composite multilayer film. It is also possible to display black on a white background (or white on a black background). In this case, needless to say, the light absorbing section 153 needs to be black.
  • a plurality of composite multilayer films satisfying the conditions of interference reflection corresponding to each wavelength region of visible light do not cause light absorption by the polarizing plate unlike the conventional example.
  • the interface between the liquid crystal layer and the film layer is flat, so the interference reflection strength is high. It is possible to provide a reflective display device having a high degree of brightness and a bright white / black display appearance. Further, a multiple composite multilayer film in which a plurality of composite multilayer films having different interference pitches described above are stacked can also be easily obtained by the above-described method.
  • FIG. 6 shows an example in which characters, figures, and the like of many colors such as black, red, and blue are displayed on a white background on the fifth embodiment.
  • 6 1 and 6 2 are upper and lower substrates having a transparent electrode on the inner surface
  • 6 3 is a composite multilayer film in which a liquid crystal layer and a film layer are alternately stacked as described above, which has been described in the fourth embodiment.
  • the combination of the thickness of the liquid crystal layer and the thickness of the film is made different in the vertical direction of the composite multilayer film 63, and is set so as to satisfy the interference reflection condition with respect to the wavelength light in the entire visible light region.
  • the composite multilayer film 63 almost satisfies the expressions (1), (2), (2) ′, (3), and (4) described in the first embodiment.
  • FIG. 6 only seven layers including the liquid crystal layer and the film layer are illustrated due to space limitations.
  • the visible light region is required. Since a composite multilayer film that reflects and reflects a plurality of wavelengths in a plurality of layers is provided for each wavelength to be reflected and is laminated, the total number of liquid crystal layers and film layers is at least 100 or more. Is preferred.
  • Reference numerals 64, 65, and 66 denote light-absorbing portions, each of which comprises a light-absorbing layer or a light-absorbing plate of different colors of black, red, and blue. 64, 65, and 66 may be black, red, and green filters, and a light reflection layer 68 may be formed thereunder. 67 is a light scattering part.
  • the composite multilayer film 63 interference-reflects light in the visible light wavelength range, and exhibits almost white W.
  • the incident light is transmitted as it is, and is absorbed by the light absorbing portions (filter portions) 64, 65, and 66 having different colors arranged at the lower portion.
  • the wavelength band that has passed through and is reflected by the reflective layer 68 appears as an indication of a different color (in the figure, red light and green light are reflected). Since the black light absorbing portion 64 absorbs light transmitted through the multi-layered structure, black display is performed in this portion when a voltage is applied. Therefore, it is possible to display black, red, green, etc.
  • the light absorbing portion may be arranged on the inner surface of the lower substrate as red, blue, and green color filters.
  • the reflection layer may use the electrode of the lower substrate 62 as a reflection electrode, or the reflection layer may be arranged outside the lower substrate.
  • FIG. 7 shows a sixth embodiment of the present invention, in which 71 and 72 each have a transparent electrode on the inner surface, a lower substrate, 74 is a light absorbing portion, and 73 is a light scattering portion.
  • Reference numerals 80 and 81 each denote a composite multilayer film in which a liquid crystal layer and a film layer are alternately laminated, and as described above, satisfy the interference reflection condition in a desired wavelength region when no voltage is applied.
  • the refractive index and the film thickness of each layer are set.
  • 77 is a film layer, which may be the same material and thickness as the films constituting the composite multilayer films 80 and 81 or different materials and thicknesses.
  • Transparent electrode layers 78 and 79 are formed on the upper and lower surfaces of the film layer 77, respectively.
  • the driving voltage can be reduced to about half.
  • one film layer 77 having a transparent electrode layer is sandwiched in the middle part.
  • the driving voltage can be further reduced, and the display drive by a semiconductor IC driver with low withstand voltage becomes possible.
  • the thing is clear.
  • the configuration connected to the electrodes 75 and 78 and the configuration connected to the electrodes 76 and 79 indicate the driving circuit (the same applies to the embodiments described later).
  • the two driving circuits may separately drive the two composite multilayer films. If driven separately, the reflection intensity can be controlled in two stages.
  • the electrode layer can be easily inserted into the intermediate portion, low-voltage driving can be performed, and the following embodiments will be described.
  • a reflection type color display device can be easily realized.
  • FIG. 8 shows a seventh embodiment according to the present invention, which is a concrete example of a bright reflective color display device. It is an example.
  • Reference numerals 91 and 92 respectively have transparent electrode films 108 and 109 on the upper and lower substrates facing each other.
  • 93 is a black light absorbing portion
  • 94 is a light scattering portion.
  • Reference numeral 95 denotes a composite multilayer film, which comprises a composite multilayer film of a liquid crystal layer and a film layer as described above.
  • the refractive index and the layer thickness of each of the liquid crystal layer and the film layer are set so that red light is selectively interference-reflected when no voltage is applied, and is transmitted when a voltage is applied. .
  • the composite multilayer film 95 is shown as having a three-layer structure, but in practice, a composite multilayer film 95 having 10 or more layers is preferable in order to obtain good interference reflection. .
  • the composite multilayer films 96 and 97 each selectively reflect and reflect green and blue when no voltage is applied, and transmit when a voltage is applied, so that the refractive indices of the liquid crystal layers and the film layers are different.
  • the layer thickness is set.
  • Reference numerals 98 and 99 denote intermediate film substrates having transparent electrodes 100 and 101 and 102 and 103 on the upper and lower surfaces, respectively.
  • a multi-composite multilayer film including three composite multilayer films of the red light selective reflection layer 95, the green light selective reflection layer 96, and the blue light selective reflection layer 97 is used.
  • the intermediate film substrates 98, 990 between the composite multilayer films of each color, it is possible to apply a voltage to each composite multilayer film 95, 96, 97 independently. Red, green, and blue can be controlled freely. As shown in FIG.
  • the display area 110 since no voltage is applied to the red light selective reflection layer 95 and the green light selective reflection layer 96, the color light interferes and reflects, and the blue light Since a voltage is applied to the selective reflection layer 97, the blue light is transmitted as it is, and is absorbed by the lower black light absorbing portion 93. Therefore, it is shown that red and green light are reflected, and the reflected light 106 becomes yellow.
  • a voltage is applied to both the red light selective reflection layer 95 and the green light selective reflection layer 96, and red and green light are transmitted therethrough, and light is absorbed by the black light absorbing portion 93.
  • the blue light is reflected and reflected in the blue light selective reflection layer 97 without applying a voltage. Therefore, the display area 111 shows blue.
  • the red composite multilayer film 95 that selectively reflects red light, the green composite multilayer film 96 that selectively reflects green light, and the blue composite multilayer film 9 that selectively reflects blue light 9 7 are laminated, and the transparent electrode layers 98, 99 are arranged with each composite multilayer film interposed therebetween, so that the light transmittance / reflectance can be controlled independently for each color.
  • White in this embodiment The display is performed when no voltage is applied to all of the three composite multilayer films 95, 96, and 97, and the red, blue, and green lights are both reflected to form a white display. In the case of a black display, the voltage is applied to the three composite reflective films 95, 96, and 97.
  • the incident light is transmitted and absorbed by the light absorbing portions 93 to produce a black display.
  • a bright full-color reflective display device capable of freely expressing not only black on a white background but also red, blue, green or a mixed color thereof on a white background becomes possible.
  • the composite multilayer film corresponding to red, green, and blue is used.
  • the combination of colors can be freely selected, such as cyan, magenta, and yellow.
  • FIG. 9 shows an eighth embodiment of the present invention, wherein 1 12 and 1 26 have transparent electrodes on the inner surface, upper and lower substrates, 1 13 is a black light absorbing portion, 1 1 4 is a light scattering portion.
  • Reference numeral 115 denotes a composite multilayer film having a structure in which a nematic liquid crystal layer 123 and a film layer 124 are alternately laminated.
  • the liquid crystal layer 123 is aligned with the major axis of the liquid crystal molecules, and the molecular axis is aligned substantially horizontally with the surface of the film layer 124 (homogeneous alignment).
  • the method of aligning the major axes of liquid crystal molecules and orienting the liquid crystal molecules horizontally to the substrate surface can be easily achieved by a combination of a common resin and a rubbing process as a method for manufacturing an existing liquid crystal display device.
  • the film layer 124 is formed into a stretched film as described later, the liquid crystal molecules on the surface have a property that the long axes are aligned in the stretching direction, so that no special orientation treatment is required.
  • a liquid product layer having the above orientation can be realized.
  • the refractive index differs between the major axis direction and the minor axis direction of the liquid crystal molecules.
  • the incident polarization component parallel to the paper and the incident polarization component perpendicular to the paper are The refractive index of the liquid crystal layer.
  • the refractive index of the liquid crystal molecular long axis direction (n L cl) and the refractive index of the film (n F) is selected liquid crystal material and the film material so as to match. Therefore, when no voltage is applied, of the incident light 1 18, the polarized light component 1 19 parallel to the paper surface passes through the composite multilayer film 1 15 and is absorbed by the lower black light absorbing section 1 13 .
  • the refractive index of the liquid crystal layer 123 is n LC 2 , (n L cl > n LC 2 ) which is different from the refractive index (n F ) of the film layer.
  • the thickness of the film layer (d F ) and the thickness of the liquid crystal layer (d and c ) are
  • n F -d F (l / 4 + k / 2) ⁇ (9)
  • the interference reflection conditions described above operate on light having a wavelength
  • a multi-overlap composite multilayer film in which a plurality of composite multilayer films in which the combination of the liquid crystal layer thickness and the film layer thickness is changed is stacked.
  • a display device with a wide interference reflection wavelength range and a bright white background that covers the entire visible light wavelength range can be realized.
  • FIG. 10 shows a ninth embodiment of the present invention, in which 130 and 131 each have a transparent electrode on the inner surface thereof, a lower substrate, 132 is a black light absorbing portion, and 135 is a light scattering portion.
  • a composite multilayer film 133 has a structure in which a nematic liquid crystal layer having a positive dielectric anisotropy (hereinafter, simply referred to as a nematic liquid crystal layer in the present embodiment) 143 and a film 142 are alternately stacked.
  • a nematic liquid crystal layer having a positive dielectric anisotropy hereinafter, simply referred to as a nematic liquid crystal layer in the present embodiment
  • 134 is also a composite multilayer film, also a nematic liquid crystal layer
  • liquid crystal molecules in the liquid crystal layer 143 are oriented homogeneously such that the major axis direction is substantially horizontal to the surface of each film 142 and substantially parallel to the paper surface.
  • the major axis direction of the liquid crystal molecules is substantially horizontal with respect to the surface of each film 145.
  • the liquid crystal layer is homogeneously oriented in a direction substantially perpendicular to the paper surface, that is, a direction substantially perpendicular to the long axis of the liquid crystal molecules of the liquid crystal layer 143.
  • Said nematic liquid crystal layer has a birefringence, now, the refractive index for polarized light parallel to the long axis of the liquid crystal molecules n LC1, and the refractive index and r C2 with respect to the vertical polarization in the long axis.
  • the refractive index in the X-axis direction is n F1
  • the refractive index in the Y-axis direction is n F2 , (n F1 ⁇ n F2 ).
  • the X-axis direction is substantially coincident with the long-axis direction of the adjacent liquid crystal molecules having the homogeneous alignment. Therefore
  • the incident light 141 passes through the composite multilayer films 133 and 134.
  • the liquid crystal molecules are not arranged vertically to the film surface in all of the liquid crystal layers, and the liquid crystal molecules close to the film surface are horizontally aligned with the film surface.
  • the average refractive index of the liquid crystal layer at this time does not become r ⁇ C2, greater than iu C2, it becomes smaller than the RIL C 1. Therefore, when the refractive index n FI in the X-axis direction of the film is equal to the average refractive index ⁇ n LC2 >> in the X-axis direction when the voltage of the liquid crystal layer is applied to the incident light 141, the incident light 141 is transmitted most strongly. I do.
  • n F1 -d F (l / 4 + k / 2) ⁇
  • Liquid crystal layer ⁇ , 144 thickness, d F is the film layer 142, 145 in thickness, incoming to the wavelength of the incident light 138, 141, k, m is 0 or any integer
  • the refractive indices and thicknesses of the liquid crystal layers 143 and 144 and the refractive indices and thicknesses of the film layers 142 and 145 are set so as to satisfy the equations (11), (11) ', (12) and (12),
  • the incident light 138 of the wavelength is reflected by the composite multilayer film 133 with the polarization component parallel to the paper surface. (Reflected light 139).
  • the polarization component of the incident light 138 perpendicular to the paper surface passes through the composite multilayer film 133 to satisfy the expression (11), and reaches the composite multilayer film 134.
  • the wavelength range of reflected light can be expanded. It is possible to obtain white reflected light.
  • the liquid crystal molecules constituting the liquid crystal layers 143 and 144 are nematic liquid crystal materials having positive dielectric anisotropy, they are substantially perpendicular to the respective surfaces of the films 142 and 145.
  • the major axes of the liquid crystal molecules are aligned. Therefore, for all polarized light, the expressions (11) and (11) ′ are satisfied, and the incident light 141 passes through the composite multilayer films 133 and 134 and is absorbed by the lower black light absorbing portion 132.
  • almost perfect black display (white display is also possible on a black background) is expressed on a white background that scatters and reflects almost all polarized light of incident light. This makes it possible to create a bright reflective display device, such as a black display on paper.
  • the double composite multilayer film in which two composite multilayer films satisfying the interference reflection condition with respect to the two polarization axes perpendicular to and parallel to the paper surface shown in the embodiment of ⁇ 9, respectively, is described above. It can be easily understood that a display device with higher contrast can be realized by using each of the composite multilayer films described in the first to seventh embodiments.
  • a film 136 having upper and lower electrode layers 137 and 138 is inserted as an intermediate electrode layer between the composite multilayer films 133 and 134.
  • the display operation can be performed at a lower voltage.
  • any film material used in the present invention may be used as long as it is substantially transparent and can be made into a thin film.
  • poly It can be selected from resins with various refractive indexes, such as ethylene naphthalate resin, polyester resin, polycarbonate resin, cellulose resin, and polyethersulfone resin.
  • the liquid crystal material can change the direction of the liquid crystal molecule axis by applying an electric field, such as a nematic liquid crystal, a smectic liquid crystal, a polymer liquid crystal including these liquid crystal molecules, and a mixture of these liquid crystals. Anything can be used as long as the refractive index of the liquid crystal layer changes as a result.
  • the discotic liquid crystal is particularly preferable because it has a high interference reflection ability in a state in which the liquid crystal layer is oriented parallel to the layer surface. May be mixed).
  • the liquid crystal molecules constituting the liquid crystal layer used there were determined to have a long axis of about 90 ° with respect to horizontal / vertical depending on whether or not voltage was applied between the upper and lower substrates. This was described in terms of the axial displacement.
  • the molecular axis displacement of T is ideal depending on whether or not a voltage is applied to the entire liquid crystal molecule 9 (T is ideal, and depending on the applied voltage, the average displacement is 80 ° or less.
  • the gist of the present invention is that if the refractive index of the liquid crystal layer constituting the composite multilayer film changes by applying a voltage, even if the molecular displacement is 80 ° or less.
  • the interference reflected light intensity can be compensated for by increasing the number of layers of the composite multilayer film, it is clear that the display performance shown in each embodiment can be obtained.
  • the display drive voltage can be further improved by inserting a plurality of substrates having electrodes in the middle of the composite multilayer film and applying a voltage to each of the resulting divided composite multilayer films.
  • a voltage to each of the resulting divided composite multilayer films.
  • V F / (£ LC + e F ) ⁇ ⁇ V 0 ⁇ ⁇ -(1 3)
  • V 0 voltage applied between upper and lower electrodes
  • the above effect can be realized by mixing a plastic having conductivity such as polyacetylene or polyparaphenylene into the film.
  • FIG. 11 shows an embodiment of the method for producing the above-mentioned composite multilayer film, in which 1101 is held in a pot 111 by a liquid crystal material.
  • Reference numeral 1102 denotes a first roller which rotates in the direction of the arrow 1109 and winds up the liquid crystal material 1101 in the rotational direction while uniformly coating the liquid crystal material 1101 on the first roller surface.
  • Reference numeral 1103 denotes a second roller provided to keep the thickness of the coated liquid crystal layer constant, and is attached as necessary.
  • Reference numeral 1105 denotes a plastic film (hereinafter simply referred to as a film) material constituting the composite multilayer film, and a contact portion between the first roller 111 and the third roller 111
  • the liquid crystal material 111 is uniformly applied on the surface of the film 1105.
  • the thickness of the liquid crystal layer can be controlled by adjusting the gap between the first roller 1102 and the third roller 111.
  • Others As a method of controlling the film thickness, it is also possible to precisely control the viscosity of the liquid crystal material. Precise thickness control becomes possible. Of course, in combination with a solvent system, a step of removing the solvent is required after coating the liquid crystal layer.
  • the number of rollers must be further increased so as to make the liquid crystal layer thickness uniform and not to trap air bubbles when laminating films.
  • a method of heating the liquid crystal with a uniform heat source to lower the viscosity of the liquid crystal and applying the liquid and bonding them together with a roller, a composite multilayer film more suitable for the purpose can be obtained, but the existing high-precision multilayer film manufacturing process is referred to It is easy to understand.
  • each film thickness required for each film constituting the composite multilayer film and the liquid crystal layer in the above-described embodiment is one-fourth of the visible light wavelength, that is, 0.2 to 0.2 m.
  • a very thin thickness is required.
  • the composite multilayer film can be obtained more easily by using the method shown in FIG.
  • FIG. 12 shows another embodiment of the method for producing the above-mentioned composite multilayer film.
  • reference numeral 1201 denotes a relatively thick film formed by the method of FIG. ⁇ M or more) Composite multilayer film
  • the composite multilayer film is stretched at the first-stage rolling rollers 1202 and 1203. Further, the stretched composite multilayer film 1206 is stretched by the second-stage rolling rollers 112 and 125.
  • the stretching treatment many times as described above, the thickness of the liquid crystal layer and the film of the initial composite multilayer film 201 is gradually reduced, and a desired thin layer can be easily obtained.
  • the composite multilayer film thus prepared is cut into a predetermined size, sandwiched between the upper and lower substrates 1 and 2 together with a liquid crystal material, and the peripheral portion is sealed with an epoxy adhesive or the like as shown in FIG.
  • a display device having a composite multilayer film as shown in FIG. 1 can be completed relatively easily.
  • a liquid crystal layer coated and applied on a plastic film (hereinafter simply referred to as a film) is defined as a unit composite film of a composite multilayer film, and the unit composite film is formed into 10 or more layers.
  • the thickness of the film can be freely selected, and the thickness of the liquid crystal layer can be controlled relatively easily and precisely by controlling the liquid crystal viscosity by a roll coating method or a temperature or a solvent at the time. Can be easily set.
  • the above-mentioned composite multilayer film in which the thickness of the film layer and the liquid crystal layer is controlled can easily change the thickness of each layer, and can satisfy the interference reflection condition in a wide wavelength band. And a bright reflective display device having a white background color.
  • both the film and the liquid crystal layer must have an extremely thin film thickness of 0.2 zm or less.
  • the film coated with the liquid crystal material is overlaid with a multilayer, a roller, or the like.
  • the composite multilayer film is subjected to stretching treatment in multiple stages with a rolling roller, whereby a composite multilayer film having a desired thickness can be realized very easily and a precise film thickness control can be realized. Uruguchi-It becomes possible.
  • this stretching process has the effect of aligning the molecular axis direction of the film polymer, which has the effect of aligning the orientation direction of the liquid crystal molecules in the liquid crystal layer coated on the film. Since a uniform liquid crystal layer can be obtained, the wavelength of the interference reflected light can be precisely and easily controlled, and a uniform and bright reflective display device can be obtained.
  • an alignment material such as polyimide on the film in advance and dry it, and to uniformly align the liquid crystal molecules in a desired direction even by the general rotating brush rubbing method in the conventional production of liquid crystal displays. It is possible.
  • a transparent electrode can be easily formed on the film, and if a film having an electrode layer is inserted in the middle of the composite multilayer film, the lowering is possible. Voltage drive is enabled. Also, if the film with the electrode layer is sandwiched above and below each composite multilayer film block showing selective interference reflection of red, green, blue, etc., and the above blocks are integrated together, they are displayed independently. Drive Thus, a reflection type full-color display device can be realized.
  • FIG. 13 is an example of a composite multilayer film that interferes and reflects the wavelength of incident light of 450 nm.
  • FIG. 13 (a) is a diagram schematically illustrating the lamination of the composite multilayer film
  • FIG. 13 (b) is a diagram showing the results of measuring the interference reflectance near 45 Onm while changing the number of layers.
  • the orientation of the liquid crystal molecules was substantially horizontal with respect to the substrate, and the number of liquid crystal layers whose orientation was set to be perpendicular to the paper and the number of liquid crystal layers which were set to be parallel were provided so as to be almost the same.
  • the thicknesses of the liquid crystal layer and the film layer were set so as to satisfy the equations (3) and (4) for a wavelength of 45 Onm.
  • Fig. 13 (b) shows the wavelength on the horizontal axis and the reflectivity on the vertical axis
  • A shows 21 composite multilayer films consisting of the liquid crystal layer and the film layer. Since the liquid crystal layer is disposed, the number of liquid crystal layers is one more than the combination of the liquid crystal layer and the film.
  • the total number of layers is twice that of a composite multilayer film having liquid crystal layers oriented in different directions.
  • the total number of layers is twice as large.
  • B is 41 layers
  • C is 61 layers
  • D is 81 layers
  • E is 101 layers. It shows the reflectivity for a layer.
  • the liquid crystal molecules in the liquid crystal layer are oriented in the direction parallel to the film surface, and the refractive index is 7, which is different from the film refractive index of 1.5. I do.
  • 21 layers or more are preferable, 41 layers or more, and 61 layers or more are more preferable.
  • FIG. 14 shows an example in which a composite multilayer film that interference-reflects wavelengths of incident light of 450 nm, 550 nm, 650 nm, and 750 nm respectively is further laminated.
  • Fig. 14 (a) is a diagram schematically illustrating the lamination of a composite multilayer film corresponding to four wavelengths
  • FIG. 7 is a diagram showing the results of measuring interference reflectance near each wavelength by changing the number of layers.
  • the composite multilayer film corresponding to the four wavelengths has a thickness of the liquid crystal layer and the film layer of 450 nm, 550 nm, 650 nm and 750 nm. Each was set to satisfy equations (3) and (4).
  • the horizontal axis represents wavelength
  • the vertical axis represents reflectance.
  • the four composite multilayer films corresponding to each wavelength include the above-described composite multilayer film including a liquid crystal layer whose orientation is set in a direction perpendicular to the paper surface and the same composite multilayer film including a liquid crystal layer whose orientation is set in a horizontal direction.
  • a to E in the figure show, in each of the composite multilayer films that interfere and reflect each wavelength, a composite multilayer film including a liquid crystal layer whose orientation is set in the direction perpendicular to the plane of the drawing and a liquid crystal whose orientation is also set in the horizontal direction.
  • the number of each layer of the composite multilayer film including the layers is shown. Therefore, the total number of layers is almost eight times the number of layers A to E.
  • A is a composite multilayer film composed of a liquid crystal layer and a film layer that reflects each wavelength in a total of 21 layers.
  • B represents 41 layers
  • C represents 61 layers
  • D represents 81 layers
  • E represents the reflectance in the case of 101 layers.
  • a composite multilayer film including a liquid crystal layer whose orientation is set in the vertical direction to the above-mentioned paper surface and a liquid crystal layer whose orientation is also set in the horizontal direction It is understood that the number of layers of the composite multilayer film containing is preferably 21 or more layers, more preferably 41 or more layers, and even more preferably 61 or more layers.
  • FIGS. 15A to 15C and FIGS. 16A and B show general relations between the applied voltage and the alignment state of liquid crystal molecules in the display devices of the 14th to 21st embodiments.
  • FIGS. 15A, B, and C, and FIGS. 16A and B show 0.5 V, 1.0 V, and 1.5 V, respectively, in the liquid crystal layer. It schematically shows the alignment state of the liquid crystal when V, 2.0 V, and 2.5 V are applied.
  • the liquid crystal used for the liquid crystal layer is a nematic liquid crystal having a positive dielectric anisotropy, and when no voltage is applied, the liquid crystal is horizontal to the film or the substrate.
  • the structure has a uniform orientation (homogeneous orientation)
  • the reflectance of the display element was simulated.
  • the display element having such a structure as shown in FIGS. 15A to 15C and FIGS. 16A and B, as the applied voltage is increased, the liquid crystal gradually tilts. It is not uniform in the thickness direction of the cell, and the inclination is small near the film or substrate, and large at the center of the cell. Therefore, as shown in FIG.
  • the liquid crystal has a refractive index distribution in the cell in the thickness direction according to the applied voltage.
  • the reflectance was simulated assuming that the liquid crystal layer had such a refractive index distribution.
  • the refractive index distribution in FIG. 17 is for a cell thickness of 0.1 ⁇ m.
  • FIG. 18 is a diagram for explaining the structure of the display device according to the fourteenth embodiment of the present invention.
  • incident light having wavelengths of 450 nm, 550 nm, 650 nm, and 75
  • Four reflective multilayers that reflect heat are laminated.
  • the composite multilayer film that interferes and reflects light of each wavelength includes a composite multilayer film 200 for P-waves and a composite multilayer film 300 for S-waves.
  • the composite multilayer film 200 for P-wave the film 201 and the liquid crystal layer 211 are alternately laminated, and in each of the liquid crystal layers 211, the long axis of the liquid crystal molecules when no voltage is applied is set. The orientation direction was assumed to be substantially horizontal to the film 201 and parallel to the paper.
  • the film 301 and the liquid crystal layer 311 are alternately laminated, and each liquid crystal layer 311 has a length of liquid crystal molecules when no voltage is applied.
  • the orientation direction of the axis was assumed to be substantially horizontal to the film 301 and perpendicular to the paper.
  • Thousands of light of each wavelength in the composite multilayer film that reflects and reflects the number of layers of the composite multilayer film 200 for P-wave 200 and the liquid crystal layer 211 and the number of layers of the composite multilayer film 300 for S-wave 300 and the liquid crystal layer 311 are as follows. I assumed the same. Also, between the composite multilayer films that interfere and reflect light of each wavelength, the number of layers of the composite multilayer film 200 for P-wave 200 and the liquid crystal layer 211 and the film 301 of the composite multilayer film 200 for S-wave are The number of liquid crystal layers 311 was the same. Note that the structure of the composite multilayer film that reflects and reflects light of each wavelength is the same in the fifteenth to twenty-fifth embodiments.
  • the X-axis direction is the long-axis direction of the liquid crystal molecules adjacent to the film, and the Y-axis direction is also the short-axis direction.
  • a composite multilayer film that interferes and reflects light of four wavelengths The thicknesses of the liquid crystal layer and the film were set to satisfy the equations (3) and (4) for wavelengths of 450 nm, 550 nm, 650 nm, and 750 nm, respectively.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 19A, and assuming that the liquid crystal layer has such a refractive index distribution, the reflectance of the display device is obtained, and the applied voltage is obtained.
  • Fig. 19B, Fig. 20A, Fig. 20B, Fig. 21A, Fig. 21B It was shown to.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that reflects and reflects light of each wavelength is 21 X 2 (A), 41 2 (B), 61 x 2 (C), and 81 2 (D ) And 101 x2 (E).
  • B, C, D, and E the same applies to B, C, D, and E.
  • the number of composite multilayer films for P-wave or S-wave is 21 indicates that the liquid crystal layer is 11 layers and the film is 10 layers for each of P wave and S wave. In this way, the total number of the composite multilayer film of the liquid crystal layer and the film becomes 21 (odd number) because the liquid crystal layer is arranged at both ends of the composite multilayer film, Due to one more layer.
  • B, C, D, and E the same applies to B, C, D, and E.
  • FIG. 22 is a view for explaining the structure of the display device according to the fifteenth embodiment of the present invention.
  • two composite multilayer films each of which reflects incident light having a wavelength of 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, and 75 Onm, are laminated. I have.
  • the respective structures of the seven composite multilayer films are the same as in the case of the fourteenth embodiment described with reference to FIG. 18B.
  • n F2 1.52.
  • the composite multilayer film that reflects and interferes with light of seven wavelengths has a liquid crystal layer and film thickness of 450 nm wavelength, 50 Onm wavelength, 550 nm Wavelengths of 600 nm, 650 nm, 700 nm, and 750 nm were set to satisfy the equations (6) and (6) '.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 23A.
  • the liquid crystal layer is determined to have such a refractive index distribution, and the reflectance of the display device is obtained.
  • Fig. 23B, Fig. 24A, Fig. 24B, Fig. 25A, Fig. 25B It was shown to.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that reflects and reflects light of each wavelength is 11 X 2 ( F ), 21 x 2 (A), 31 x 2 (G), and 41 x 2 (B
  • the reflectance is required.
  • the contents of the number of layers in each case are the same as in the case of the fourteenth embodiment.
  • the liquid crystal has a refractive index of 1.8 in the major axis direction and 1.52 in the minor axis direction, and has a higher birefringence than the fourteenth embodiment. Is obtained. In each composite multilayer film that interferes and reflects light of each wavelength, even if the number of P-wave or S-wave composite multilayer films is 11, a practically sufficient reflectivity is obtained, and 21 layers are obtained. In this case, it can be seen that the reflectance is 80% or more, which is higher than that of high-quality paper.
  • FIG. 26 is a view for explaining the structure of the display device according to the sixteenth embodiment of the present invention.
  • nine incident light beams having wavelengths of 400 nm, 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, 750 nm, and 800 nm interfere with each other.
  • a composite multilayer film is laminated.
  • the respective structures of the nine composite multilayer films are the same as in the case of the fourteenth embodiment described with reference to FIG. 18B.
  • the refractive index in the major axis direction of the liquid crystal molecules is 1.8
  • the relationship between the arrangement direction of the liquid crystal molecules and the arrangement of the film is the same as in the case of the fourteenth embodiment.
  • the composite multilayer film that reflects and reflects nine wavelengths of light has a thickness of 400 nm, 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, The wavelengths of 700 nm, 750 ⁇ m, and 800 nm were set to satisfy equations (3) and (4), respectively.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 27A.
  • the reflectance of the display device is obtained by assuming that the liquid crystal layer has such a refractive index distribution.
  • Fig. 27B, Fig. 28A, Fig. 28B, Fig. 29A, Fig. 29B It was shown to.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that reflects and reflects light of each wavelength is 5 x 2 (H), 11 x 2 ( F ), 15 x 2 (I), and 21 x 2 ( For case A), the reflectivity is required.
  • the contents of the number of layers in each case are the same as in the case of the fourteenth embodiment.
  • FIG. 30 is a view for explaining the structure of the display device according to the seventeenth embodiment of the present invention.
  • the display device of the seventeenth embodiment wavelengths of 450 nm, 550 nm, It has four composite multilayer films that reflect and reflect incident light at 650 nm and 750 nm, respectively.
  • the structure of each of the four composite multilayer films is the same as that of the fourteenth embodiment described with reference to FIG. 18B.
  • the refractive index in the major axis direction of the liquid crystal molecules is r ⁇ -1.8
  • n K2 1.52.
  • the composite multilayer film which reflects and reflects light of four wavelengths, makes the thickness of the liquid crystal layer and film different for wavelengths of 450 nm, 550 nm, 650 nm, and 750 nm (3) , (4) was set.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 31A.
  • the reflectance of the display device is obtained by assuming that the liquid crystal layer has such a refractive index distribution.
  • Fig. 31B, Fig. 32A, Fig. 32B, Fig. 33A, Fig. 33B It was shown to.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that reflects and reflects light of each wavelength is 5 x 2 (H), 11 x 2 ( F ), 15 x 2 (I) and 21 x 2 (H).
  • the reflectivity is obtained for x 2 (A).
  • the contents of the number of layers in each case are the same as in the case of the fourteenth embodiment.
  • FIG. 34 is a view for explaining the structure of the display device according to the eighteenth embodiment of the present invention.
  • the display device of the eighteenth embodiment wavelengths of 450 nm, 500 nm, It has seven composite multilayer films that interfere and reflect incident light of 550 nm, 600 nm, 650 nm, 700 nm, and 750 nm respectively.
  • the structure of each of the seven composite multilayer films can be the same as that of the fourteenth embodiment described with reference to FIG. 18B.
  • the refractive index in the major axis direction of the liquid crystal molecules was r ⁇ ⁇ 1.8
  • the composite multilayer film which interferes and reflects the light of seven wavelengths, makes the thickness of the liquid crystal layer and the film 450 nm wavelength, 500 nm wavelength, 550 nm wavelength, 600 nm, 65 Onm wavelength, 700 nm wavelength.
  • the wavelength was set to satisfy the equations (3) and (4) for the wavelength of 750 nm.
  • films having a refractive index of about 1.5 as in this embodiment, and for example, polyethylene, polyester, polycarbonate, and the like are preferably used.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 35A.
  • the reflectance of the display device is determined by assuming that the liquid product layer has such a refractive index distribution.
  • Voltage ⁇ For 5V, 1.OV, 1.5V, 2.OV and 2.5V, Fig. 35B, Fig. 36A, Fig. 36B, Fig. 37A, Fig. 37 B.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that reflects and reflects light of each wavelength is 11 X 2 ( F ), 21 x 2 (A), 31 x 2 (G), and 41 x 2 (B ) And 51 x2 (J).
  • the contents of the number of layers in each case are the same as in the case of the fourteenth embodiment.
  • the refractive index becomes smaller than 1.8, so that the degree of interference reflection at each wavelength gradually decreases, and the transmittance increases. Even if the coming force s and the voltage are applied to 2.0V and 2.5V, the reflectivity does not become zero. This is because, as shown in Fig. 35A, the refractive index of the liquid crystal when a voltage is applied is This is because it does not become equal to the refractive index of the liquid crystal in the minor axis direction.
  • FIG. 38 is a view for explaining the structure of the display device according to the nineteenth embodiment of the present invention.
  • seven composite multilayer films each of which reflects incident light having a wavelength of 450 nm, 500 nm, 550 nm, 600 nm, 650 nm, 700 nm, and 75 Onm, are laminated. ing.
  • the respective structures of the seven composite multilayer films are the same as in the case of the fourteenth embodiment described with reference to FIG. 18B.
  • the composite multilayer film that interferes and reflects the light of seven wavelengths, the thickness of the liquid crystal layer and the film is 45 Onm wavelength, 500 nm wavelength, 55 Onm wavelength, 600 nm, 65 Onm wavelength, 70 Onm wavelength , 750 nm were set to satisfy the equations (3) and (4), respectively.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 39A, and assuming that the liquid crystal layer has such a refractive index distribution, the reflectivity of the display device is obtained.
  • Fig. 39B, Fig. 40A, Fig. 40B, Fig. 41A, Fig. 41B It was shown to.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that interferes with each wavelength is 11 x 2 ( F ), 21 x 2 (A), 31 x 2 (G), 41 x 2 For (B) and 51 x 2 (J), the reflectivity was determined.
  • the contents of the number of layers in each case are the same as in the case of the fourteenth embodiment.
  • the liquid crystal molecules in the liquid crystal layer are oriented almost horizontally and the refractive index is r ⁇ 1.8; the refractive index of the film is 1.58, so that interference reflection occurs at each wavelength. It is.
  • the index of refraction becomes smaller than 1.8, so the degree of interference reflection at each wavelength gradually decreases, and the transmittance increases. I do.
  • the reflectance becomes almost zero.
  • the average refractive index of the liquid crystal layer becomes almost equal to 1.58 of the refractive index of the film.
  • FIG. 42 is a view for explaining the structure of the display device according to the twentieth embodiment of the present invention.
  • seven composite multilayer films that respectively reflect and reflect incident light having wavelengths of 450 nm, 500 nm, 550 nm, 600 nra, 650 nm, 700 nm, and 750 nm are laminated. ing.
  • the structure of each of these seven composite multilayer films is the same as that of the twentieth embodiment described with reference to FIG. 18B.
  • the refractive index in the minor axis direction is n 2 1.52
  • the wavelength and the wavelength of 750 nm were set so as to satisfy the equations (3) and (4), respectively.
  • the refractive index distribution in the thickness direction in the cell is as shown in Fig. 43A, and assuming that the liquid crystal layer has such a refractive index distribution, the reflectance of the display device is obtained, and the applied voltage is obtained.
  • Fig.43B For the cases of 0.5V, 1.0V, 1.5V, 2.0V and 2.5V, see Fig.43B, Fig.44A, Fig.44B, Fig.45A, and Fig.45B respectively. Indicated.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the number of layers of each composite multilayer film that reflects and reflects each wavelength is 11 ⁇ 2), 212 (A), 31 ⁇ 2 (G), 412 (B) and 5
  • the reflectivity is determined.
  • the contents of the number of chips in each case are the same as in the case of the fourteenth embodiment.
  • the refractive index of the film is 1.6.
  • the refractive index becomes smaller than 1.8, so that the degree of interference reflection at each wavelength gradually decreases, and the transmittance increases. .
  • the applied voltage is 2.0 V
  • the reflectance is almost 0, and when the applied voltage is further increased to 2.5 V, the reflectance increases conversely.
  • the applied voltage is 2.0 V
  • the reflectance is almost 0, and when the applied voltage is further increased to 2.5 V, the reflectance increases conversely.
  • FIG. 46 is a view for explaining the structure of the display device according to the twenty-first embodiment of the present invention.
  • the composite multilayer film composed of a liquid crystal layer and a film is formed while the formulas (3) and (4) are almost satisfied with respect to the adjacent liquid crystal layer and the film.
  • the display was constructed by continuously changing the wavelength of the reflected light from 450 nm to 750 nm.
  • the composite multilayer film that interferes and reflects light of each wavelength includes a composite multilayer film for P-wave and a composite multilayer film for S-wave, respectively.
  • the liquid crystal layer of the composite multilayer film for P-wave It is assumed that the orientation of the long axis of the liquid crystal molecules when no voltage is applied is almost horizontal to the film and parallel to the paper, and the liquid crystal layer of the composite multilayer film for S-wave The orientation of the major axis of the liquid crystal molecules was assumed to be almost horizontal to the film and perpendicular to the paper.
  • the composite multilayer film that reflects and reflects light of each wavelength the number of composite multilayer films and liquid crystal layers for P-waves and the number of composite multilayer films and liquid crystal layers for S-waves are different. I assumed the same.
  • the refractive index n, in the major axis direction of the liquid crystal molecules, and the refractive index n 2 in the minor axis direction, 1.6 / 1.5, 1.55 / 1.4, 1.7 / 1.5, 1.15 / 1.3, and the reflectance distribution of each display device when voltage is applied is the fourth.
  • 7 Figures A, 47B, and 48As48B show the results.
  • each film uses a birefringent film, the refractive index in the X-axis direction is equal to the refractive index in the major axis direction of the adjacent liquid crystal molecules, and the refractive index in the Y-axis direction is also that of the adjacent liquid crystal molecules.
  • the refractive index in the short axis direction is set to be equal to the refractive index in the short axis direction.
  • the horizontal axis is wavelength and the vertical axis is reflectivity.
  • the total number of liquid crystal layers and films in a composite multilayer film that reflects and reflects light from 450 nm to 750 nm is 51 x 2 (a), 101 2 (b), and 151 x 2 ( c), 201 2 (d), 2512 (e), 301x2 (f), 351x2 (g), 401 x2 (h), 4512 (i) and 501x2 (j) I am looking for.
  • Fig. 49 shows the relationship between the total number of layers and the reflectivity, with the birefringence as a parameter. According to this, if the birefringence is 1.1 or more and the total number of layers is 100 or more, it is understood that a reflectance higher than that of the conventional TN liquid crystal can be obtained.
  • the simulation was performed on the assumption that the liquid crystal was oriented horizontally (homogeneous orientation) with respect to the film or the substrate when no voltage was applied.
  • the principle is the same even if the structure is such that the liquid crystal is oriented almost perpendicularly to the film or substrate (homeotropic big-alignment) when applied.
  • the refractive index of the film is close to the refractive index in the long axis direction of the liquid crystal, light is reflected when no voltage is applied, and light is transmitted when voltage is applied, and the refractive index of the film is the short axis of the liquid crystal.
  • the refractive index is close to the direction, light is transmitted when no voltage is applied, and light is reflected when a voltage is applied.
  • a bright display device can be obtained without using a polarizing plate.
  • a bright white / black display that could not be obtained, and a bright reflective color display device can be realized.
  • a type display device is obtained.
  • the display device of the present invention can be used as a display device that operates with a small amount of electric power, such as a watch, a calculator, a cellular phone, a small portable device, and an information transmission medium such as various home appliances.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Description

明 細 書 表示装置及びその製造方法
〔技術分野〕
本発明は表示装置に関し、 特に液晶とフィルムの複合多層膜を用いた液晶装置 の構造及びその製造方法に関するものである。 また、 この液晶装置により反射/ 透過を制御する表示装置に関するものである。
〔背景技術〕
従来、 反射型液晶表示装置は、 微少電力で動作する表示装置として、 ウォッチ、 電卓、 セルラー、 小型携帯機器、 各種家庭電器製品等の情報伝達媒体として大き な発展、 普及を遂げてきた。 表示モードも T N (ツイステイ ド -ネマチック) 型、 S T N (スーパーッイスティ ド 'ネマチック) 型、 強誘電型等、 多種発明されて きた。 しかし、 これらは全て偏光板を使用するものであり、 現実的には、 液晶素 子への入射光の約 6 0 %は該偏光板により、 吸収されてしまうため暗い画面とな り、 理想的な反射型表示、 例えば白色背景に黒表示といった見易さからは遠いも のであった。
特に反射型力ラ一液晶表示装置では、 偏光板とカラーフィル夕一双方による光 吸収のため、 最大でも表示装置に入射する入射外光の 1 ◦%以下の光を反射して 表示することになり、 非常に暗く、 印刷物表示のような、 明るい鮮やかなカラー 表示には、 遠く及ばないものであった。
最近、 上述した欠点を解決し、 偏光板を使わず明るいカラーディスプレイを実 現する方法として、 従来例 1 (特開平 6— 2 9 4 9 5 2号公報) が提案され、 注 目されている。 この提案では、 液晶材料と光硬化性樹脂からなる高分子材料とを 混合したものを、 一対の基板間に挿入し、 上、 下 2方向よりレーザ一光を照射し、 該 2本のレーザー光の干渉パターンにより、 液晶と高分子材料の混合層中に光の 強弱縞を得る。 そして、 この強弱縊パターンに応じ、 層状に高分子光硬化樹脂を 光硬化させ、 高分子光硬化性樹脂層/液晶層/高分子光硬化性樹脂層/液晶層 / - · ·の多層膜を実現し、 複合多層膜干渉反射の原理に従い、 特定波長域の光 を干渉反射させる。 そして上記一対の基板内面の電極により多層膜に電圧を印加 すると液晶層に於いては、 液晶分子の分子軸方向が変わり、 それに伴い、 液晶層 の屈折率も変化する。 従って、 上記干渉反射の条件から外れ、 反射光強度も変わ る。 このようにして電圧による光変調が可能となり、 表示装置として機能する。 上述した表示装置では、 偏光板を全く用いないため、 明るい色を出す事ができる とともに、 照射レーザー光の波長、 又は照射角度を変える事により、 干渉ピッチ を自由に選択でき、 光の干渉ピッチを自由に選択できるため、 任意の色の表示色 を実現でき、 特に反射型カラー表示装置としては、 従来の T N型、 S T N型の反 射型力ラ一表示装置に比べ優れたものであった。
しかし、 上述した表示装置の欠点として、 例えば従来例 2 ( A S I A D I S P L A Y , 9 5 P 6 0 3〜6 0 6 ) に示されるように、 2本のレーザー光の 干渉により、 光硬化性樹脂の層を作るため、 その干渉ピッチは極めて精度の高い ものとなり、 千渉反射光の波長幅が非常に狭く、 従って色は鮮やかであるが、 反 射型表示としては明るさに欠けるものであった。 通常、 反射型表示の背景色とし ては、 白色が最も望ましく、 このためには可視光の広い波長域にわたって、 干渉 反射の条件を充たすようにする必要があるが、 _ht己従来例 1、 2では、 その構造 から、 層の上下で ΐ·渉ピッチを連続的に変える事は、 極めて困難で、 明るい白色 表示を得る事に問題があった。 第 2の問題としては、 光硬化樹脂と液晶層との境 界面は、 干渉反射の強度を上げるためにフラッ ト (平面的) が望ましいが、 従来 例 2に示されるように細かい凹凸を持った形で接している。 従って、 全ての入射 光が干渉反射をおこすという事ではなく、 一部の光が透過してしまい、 より明る い反射型表示装置を実現する上で問題となっていた。
次にもう一つの従来例として従来例 3 (特開平 4一 1 7 8 6 2 3 ¾公報) が、 やはり偏光板を使わず、 干渉反射を利用した明るい反射型カラ一表示装置の例と して挙げられる。 本従来例に於いては、 液晶層と S i 0 2 層を重ね合わせ、 各層 の厚みと屈折率とを、 干渉反射の条件に適合するように設定し、 特定波長の選択 反射を生じさせる。 ここに上下電極間に電圧を印加すると、 前述と同様に液晶層 の屈折率が変わり、 上記干渉反射条件から離脱して、 反射光強度が変わるため、 表示機能が具現化できるものである。 本従来例の問題点は、 まず、 干渉反射をお こさせる層が S i 02膜/液晶層 i 02膜のわずか 3層からなり、 これでは充 分な干渉反射光強度が得られず、 ほとんどの入射光が透過して、 下部の光吸収層 に吸収されてしまうため、 充分な明るさをもつた反射型表示装置は実現できない。 反射光強度を上げるには、 S i 02膜/液晶層/ S i 0 2膜/液晶層/ S i 0 2 膜 ' · ' と少なくとも 1 0層以上の複合多層膜が好ましいが、 本従来例では、 そ の複合多層膜の形成は極めて困難である。 つまり液晶層の上に、 直接 S i 0 2膜 を形成する事ができず、 本従来例にも図示されている通り、 一旦スベーサ一層を 全面に形成し、 その上に S i 02膜を形成した後、 該スベーサーを周辺部のみを 残して、 それ以外の部分をエッチング除去し、 その除去された空泡部に液晶を注 入し、 液晶層を形成している。 これらは液晶層の上に、 直接 S i 02膜を形成す る事ができない理由から生ずる困難さで、 この構造で 1 0層以上の複合多層膜を 製造する事は現実的でない事は明らかである。 更に本従来例では、 オーバ一エツ チング除去された空泡部に液晶を注入しているため、 液晶分子軸方向を揃えるた めの配向処理ができず、 注入された液晶の分子軸方向は、 バラバラのドメイン状 になっていると考えられる。 通常、 干渉反射光の強度を上げるためには、 液晶層 の厚みと屈折率を精度よくコントロールする事が重要であり、 本従来例では上述 した様に、 屈折率の精密なコントロールが困難で、 充分な干渉反射光の強度が得 られず、 均一で明るい反射型の表示装置の実現には問題があった。
以上のように、 従来の技術においては、 反射型液晶表示装置として、 可視光波 長域の広い波長帯で干渉反射の条件を充たすことが困難な事、 そして、 全ての入 射光が干渉反射をおこすという事ではなく、 一部の光が透過してしまい、 より明 るい反射型表示装置を実現する上で問題があり、 また、 屈折率の精密なコント口 ールが困難で、 充分な干渉反射光の強度が得られず、 均一で明るい反射型の表示 装置の実現には問題があった。
本発明は上述の課題を解決するためになされたもので、 反射光強度の高い均一 で明るい表示装置、 更には背景が白色で黒色表示となるモノクロ表示、 またはコ ントラストの高いカラ一表示が可能なより見易い表示装置を実現するとともに、 その実現のために必要な 1 0層以上の複合多層膜を、 より簡便に精度よく製造で きる方法を提供する事を目的とする。
〔発明の開示〕
本発明の第 1の発明は、 一対の基板間にフィルムと液晶層とを交互に複数回積 層した複合多層膜を挟持し、 前記複合多層膜に電圧を印加して該複合多層膜にお ける光反射率を制御することを特徴とする。
第 2の発明は、 一方の前記基板の外側に光散乱手段を配置し、 他方の前記基板 の外側に光吸収手段を具備したことを特徴とする。
第 3の発明は、 前記液晶層はネマチック液晶、 もしくはスメクチック液晶、 も しくはネマチック液晶、 もしくはネマチック型高分子液晶、 もしくはスメクチッ ク型高分子液晶、 もしくはそれらの混合物からなることを特徴とする。
第 4の発明は、 前記液晶層はデイスコティック液晶、 もしくはディスコテイツ ク液晶とネマチック液晶との混合物からなることを特徴とする。
第 5の発明は、 前記液晶層はネマチック液品分子からなり、 H.っ該液晶分子の 長軸は、 電圧無印加時に前記基板又は前記フィルムに対しほぼ水平方向に配列さ せてなることを特徴とする。
第 6の発明は、 前記液晶層はネマチック液晶分子からなり、 iJっ該液晶分子の 長軸は、 電圧無印加時に前記基板又は前記フィルムに対しほぼ垂直方向に配列さ せてなることを特徴とする。
第 7の発明は、 前記光吸収手段は、 前記複合多層膜を透過する任意の波長帯域 もしくは可視光領域の波長帯域の光を吸収することを特徴とする。
第 8の発明は、 内面に電極を有する一対の基板間にフィルムと液晶層とを交互 に複数回積層した複合多層膜を挟持し、 該複合多層脱の中間部に、 両面に電極を 有する中間基板を一 もしくは複数層介在させ、 一方の前記基板の外側に光散乱 手段、 他方の前記基板の外側に光吸収手段を配置してなることを特徴とする。 第 9の発明は、 電圧無印加時に、 前記複合多層膜が、 入射する可視光領域の少 なくとも一部の波長の光を反射するように、 前記液晶層及び前記フィルムの層厚 を設定したことを特徴とする。
第 1 0の発明は、 電圧印加時に、 前記複合多層膜が、 入射する可視光領域の少 なくとも一部の波長の光を反射するように、 前記液晶層及び前記フィルムの層厚 を設定したことをを特徴とする。
第 1 1の発明は、 前記液晶層の液晶分子の長軸及び短軸方向の屈折率のうち、 少なくとも一つの屈折率を前記フィルムの屈折率と略一致させたことを特徴とす o
第 1 2の発明は、 それそれの複合多層膜内では前記フィルムの層厚と前記液晶 層の層厚をそれそれ同一にし且つ異なる複合多層膜間では前記液品層及び前記フ イルムの層厚を互いに異ならせた複数の前記複合多層膜を積層し、 入射光の複数 の波長を反射するようにしたことを特徴とする。
第 1 3の発明は、 それそれの複合多層膜内では前記フィルムの層厚と前記液晶 層の層厚をそれそれ同一にし旦っ異なる複合多層膜間では前記液晶層及び前記フ イルムの層厚を互いに異ならせた複数の前記複合多層膜を積層し、 前記複数の複 合多層膜を赤色光、 緑色光、 青色光を反射するように、 前記液晶層及び前記フィ ルムの層厚が設定されてなることを特徴とする。
第 1 4の発明は、 前記各複合多層膜毎に独立に電圧印加する電極を配置したこ とを特徴とする。
第 1 5の発明は、 前記液晶層はネマチック液晶分子からなり、 該ネマチック液 晶分子の略長軸方向、 もしくは該長軸方向と略直交する方向の偏光成分の光を、 反射するように設定された複合多層膜を、 少なくとも含むことを特徴とする。 第 1 6の発明は、 前記フィルムは光学的に略一軸性を持ったフィルム、 又は延 伸させたフィルムであることを特徴とする。
第 1 7の発明は、 前記複合多層膜を 2つのブロックに分割し、 第 1のブロック の液晶層の液晶分子長蚰方向と第 2のプロックの液晶層の液晶分子長軸方向とを ほぼ直交させ、 前記第 1及び第 2のブロックを積層した複合多層膜を、 少なくと も有したことを特徴とする。
第 18の発明は、 前記第 1及び第 2のブロックに独立に電圧印加する電極を配 置したことを特徴とする。
第 19の発明は、 前記フィルム面の少なくとも一面に前記液晶層の材料を塗布 し、 前記液晶材料が塗布されたフィルムを、 複数層口一ラーで重ね合わせ、 一体 化させて前記複合多層膜を形成したことを特徴とする。
第 20の発明は、 前記ローラ一で重ね合わせる際に、 定められた温度に加熱し て、 前記液晶層の粘度を下げた状態で、 一体化させたことを特徴とする。
第 21の発明は、 前記フィルムに予め一軸延伸処理を施し、 液晶分子を配向さ せる配向機能を持たせておいたことを特徴とする。
第 22の発明は、 前記フィルム面上に前記液晶層の材料を塗布し、 前記液晶材 料が塗布されたフィルムを、 複数層ローラ一で重ね合わせ、 一体化させた後、 更 に圧延ローラーで延伸処理を施し、 フィルムの厚みと液晶層の みとを、 所定の 値に合わせ込むことにより前記複合多層膜を形成したことを特徴とする。
第 23の発明は、 前記フィルムに導電性を付与させたことを特徴とする。 第 24の発明は、 前記複合多層膜は、 前記液晶層と前記フィルムを少なくとも 10屑以上積層して構成することを特徴とする。
第 25の発明は、 前記複合多屑膜は、 前記液晶層と前記フィルムを少なくとも 21層以上積層して構成することを特徴とする。
第 26の発明は、 フィルムと液晶屑とが交互に積層された複合多層膜を備え、 前記複合多層膜に電圧を印加して前記複合多層膜における光反射率を制御する表 示装置であって、 前記液晶層に使用される液晶の所定の波長 (λη) の光に対す る長軸方向の屈折率 nLcl (λη) および短軸方向の屈折率 ηし C 2 η) と、 前記フ イルムの前記所定の波長 (人 η) の光に対する前記フィルム面内の互いに直交す る X軸方向と Υ軸方向のそれそれの屈折率 nF1 Un)および nF2 Un)とを、 前記 複合多層膜の前記フイルムと液晶層のうちの少なくとも隣り合う一組のフィルム と液品層との問において、 下記 〔1〕 および 〔2〕 の条件
〔1〕 n LC 1 (λη) = n F \ (Λη) は (λη) ^ n F 1 は nい 〔2〕 nLC2 ( n) =nF2 "n)であって、
n LC 1 (Λη) > nLC2 n) n F l (An) > n F2 (Λη)
を満たすようにしたことを特徴とする。 この発明によれば、 〔1〕および〔2〕 の条件を満たす場合に、 所定の波長 (An) の光の X軸方向成分の光および Y軸 方向成分の光に対して共に透過状態となる。 なお、 反射はフィルムと液晶層との 間で屈折率が異なれば生じ、 また、 液晶は一般に印加電圧を変えると屈折率が変 わるから、 反射状態は電圧の印加状態を変えることによって生じさせることがで き、 電圧による光変調が可能である。
第 27の発明は、 前記 nF1 Un)と、 nLC2 Un) と、 前記液晶層の厚み d LCと、 前記フィルムの厚み dF とを、 前記少なくとも隣り合う一組のフィルムと液晶層 との問において、 下記 〔3〕 および 〔4〕 の条件
3 nF1 Un) -dF= (l/4+k/2) ' 入 n
4 n C 2 (Λη) - dLC≤ (l/4+m/2) · 入 n
又は n n) · dLC= (l/4+m/2) ' 人 n
(ここで、 k mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする。 この発明によ れば、 〔3〕の条件を満たす場合に所定の波長(λη )の光の X軸方向成分の光 に対してフィルムによる反射が強くなり、 〔4〕 の条件を満たす場合に所定の波 長 (An) の光の X軸方向成分の光に対して液晶層による反射が強くなる。 なお、 前記所定の波長 (人 n) の光の Y軸方向成分の光に対しては条件 〔2〕 より透過 状態となる。
第 28の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくとも前記フィルム近傍において前記フィルムに対しほぼ水平方向に配向 (ホモジニヤス配向) しかつ前記 X軸方向に配向するようにし、 前記複合多層膜 が電圧無印加時に光透過状態となり電圧印加時に光反射状態となるようにしたこ とを特徴とする。 この発明によれば、 電圧無印加時に所定の波長 (人 n) の光の X軸方向成分の光および Y軸方向成分の光に対して共に光透過状態となり、 電圧 印加時に所定の波長 (え n) の光の X軸方向成分の光に対して反射が強くなり、 Y軸方向成分の光に対しては透過状態となる。また、液品層には誘電率異方性(厶 ε) が正 のものが好ましく使用される。
第 29の発明は、 前記 nLcl nLC2 "n) nF1 (An)および nF2 "n)を、 前記少なくとも隣り合う一組のフィルムと液晶層との間において、 下記 〔5〕 お よび 〔6〕 の条件
0 nLC1 (Λη) =^ n F i n)
Figure imgf000010_0001
を満たすようにしたことを特徴とする。 この発明によれば、 液晶が電圧無印加 時にフィルムに対してプレチルト角をほとんど有さないで配向している場合に、 電圧無印加時に所定の波長 (An) の光の X軸方向成分の光および Y軸方向成分 の光に対して共に高い透過率を与える。
第 30の発明は、 前記液品が電圧無印加時に前記フィルムに対してプレチルト 角をほとんど さないで配向していることを特徴とする。
第 3 1の発明は、 前記 nLcl (/ l) および nF 1 "n)を、 前記少なくとも隣り合 う一組のフィルムと液晶層との間において、 下記 〔7〕 の条件
リ nLc i ( π) >nF 1 (Λη)≤ 0. 96 · nLcl Un)
を満たすようにしたことを特徴とする。 液晶が電圧無印加時にフィルムに対し て所定のプレチルト角をもって配向している場合には、 液晶層の X軸方向の屈折 率は液晶の長軸方向の屈折率 nLcl Un) よりも小さくなる。 そこで、 条件 〔7〕 の範囲内において、 プレチル卜角に応じて nLC l (λη) と n 1 Un)とを適切に設 定することにより、 好ましくは nF i (Λη)を電圧無印加時における液晶層の所定の 波長 (λη) の光に対する X軸方向の平均的な屈折率とほぼ等しくすることによ り、 所定の波長 (An) の光のうち X軸方向成分の光を前記少なくとも隣り合う 一組のフィルムと液晶層とを十分に透過するようにすることができる。 従って、 この発明の表示装置は、 液晶がプレチルト角をもって配向している場合に電圧無 印加時に所定の波長 (人 n) の光の X軸方向成分の光に対して βい透過率を与え る。 なお、 Υ軸方向成分の光に対しては条件 〔2〕 より ¾い透過率が得られる。 第 32の発明は、 前記液晶が電圧無印加時に前記フィルムに対して所定のブレ チルト角、 好ましくは 1度から 40度、 をもって配向していることを特徴とする。 第 33の発明は、 前記 nF1 Un)を、 電圧無印加時における前記液晶層の前記所 定の波長 (λη) の光に対する前記 X軸方向の平均的な屈折率とほぼ等しくし、 且つ前記 nF2(An)を、電圧無印加時における前記液晶層の前記所定の波長(人 η ) の光に対する前記 Υ軸方向の平均的な屈折率とほぼ等しくしたことを特徴とする。 このようにすれば、 電圧無印加時において、 所定の波長 (λη) の光の X軸方向 成分の光および Υ軸方向成分の光に対して共に高い透過率が得られる。
第 34の発明は、 前記 nF1 η)と、 nLC1η)と、 nLC2 (λη)と、 前記液晶層 の厚み dLCと、 前記フィルムの厚み dFとを、 前記少なくとも隣り合う一組のフ イルムと液晶層との間において、 下記 〔8〕 および 〔9〕 の条件
〔8〕 nF1 Un)-dv = (l/4 + k/2) ' 人 n 、
〔9〕 nLC2 Un) - dLC≤ ( l/4+m/2) - λη
= {nLC2 (Λη) +0. 6 · (nLC1 n) - nLC2 (ln) )} · d Lc (ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする。 この発明によ れば、 〔8〕 の条件を満たす場合に所定の波長 (An) の光の X軸方向成分の光 に対してフィルムによる反射が強くなる。 また、 電圧印加時には、 液晶分子が完 全にフィルムに対して垂直にならない場合が多いが、 条件 〔9〕 の範囲内におい て、 印加電圧に応じて nLC2n) と dLCとを適切に設定することにより、 所定 の波長 (λη) の光の X軸方向成分の光に対する液晶層による反射を強くするこ とができる。 なお、 前記所定の波長 (人 η)の光の Υ軸方向成分の光に対しては 条件 〔2〕 より透過状態となる。
第 35の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくとも前記液晶層の前記積層方向での中央部付近において、 前記フィルムに 対しほぼ垂直方向に配向 (ホメオト口ビック配向) するようにし、 前記複合多層 膜が電圧印加時に光透過状態となり電圧無印加時に光反射状態となるようにした ことを特徴とする。 この発明によれば、 電圧印加時に所定の波長 (人 η) の光の X軸方向成分の光および Υ方向成分の光に対して共に光透過状態となり、 電圧無 印加時に所定の波長 (人 n) の光の X軸方向成分の光に対して反射が強くなり、 Y軸方向成分の光に対しては透過状態となる。また、液晶層には誘電率異方性(△ ε) が負 (△ £<()) のものが好ましく使用される。
第 36の発明は、 前記 nLC1 (人 n) 、 nLC2 ( η) および nF 1 η)を、 前記少な くとも隣り合う一組のフィルムと液晶層との間において、 下記 〔 10〕 の条件 レ 10 n LC 1 "η) ノ n F 1 "η)
N LC 1 ( η) 0. 6 ( Γ1し c 1 (え η)一 η LC2 (人 η) ノ を満たすようにしたことを特徴とする。 上記第 35の発明によれば、 電圧印加 時に所定の波長 (え η ) の光の X軸方向成分の光に対して光透過状態となるが、 電圧印加時には液晶分子が完全にフィルムに対して水平にならない場合が多い。 そこで、 第 36の発明のように、 条件 〔10〕 の範囲内において、 印加電圧に応 じて nLC1 "„) と n " とを適切に設定することにより、 好ましくは nF 1 n)を電圧印加時における液晶層の所定の波長 (An ) の光に対する X軸方向の 平均的な屈折率とほぼ等しくすることにより、 所定の波長(え n )の光のうち X 軸方向成分の光を電圧印加時に前記少なくとも隣り合う 組のフィルムと液晶層 とを十分に透過するようにすることができる。 なお、 前記所定の波長(λη )の 光の Υ軸方向成分の光に対しては条件 〔2〕 より透過状態となる。
第 37の発明は、 前記 nF1 Utl)を、 電圧印加時における前記液晶層の前記所定 の波長(人 n )の光に対する前記 X軸方向の平均的な屈折率とほぼ等しくしたこ とを特徴とする。
第 38の発明は、 前記 nF 1 Un)と、 nし C2 (An)と、 前記液晶層の厚み d LCと、 前記フィルムの厚み dF とを、 前記少なくとも隣り合う一組のフィルムと液晶層 との間において、 下記 〔 1 1〕 および 〔1 2〕 の条件
〔 1 1〕 nF1 Un) -dp = ( l/4 + k/2) ' 入 n 、
〔 1 2〕 nLC2 Un) - dLC= ( l/4+m/2) ' え n 、
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする。 この発明によ れば、 〔 1 1〕 の条件を満たす場合に所定の波長 (人 n) の光の X軸方向成分の 光に対してフィルムによる反射が強くなり、 〔12〕 の条件を満たす場合に所定 の波長 (え n) の光の X軸方向成分の光に対して液晶層による反射が強くなる。 なお、 前記所定の波長 (え n) の光の Y軸方向成分の光に対しては条件 〔2〕 よ り透過状態となる。 この表示装置は、 液晶層に使用される液晶分子の長軸が、 電 圧無印加時に、 フィルム近傍において、 フィルムに対してほぼ垂直方向に配向し ている場合に、 所定の波長 (え n) の光の X軸方向成分の光に対してフィルムお よび液晶層の少なくとも一方による反射が強くなる。
第 39の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィルム近傍において、 前記フィルムに対してほぼ垂直方向に配向している ことを特徴とする。
第 40の発明は、 前記 nLC2 Un) および d を、 前 i己少なくとも隣り合う一 組のフィルムと液晶層との間において、 下記 〔13〕 および 〔14〕 の条件
〔13〕 ηκι (Λη) -dF = ( l/4 + k/2) · λη 、
〔14〕 nLC2 Un) - dLC< ( l/4+m/2) - λη
= 1 · 1 n LC2 "n) ' ^ L c
(ここで、 k、 mは 0または整数である。 )
を満たすようにしたことを特徴とする。 この発明によれば、 〔13〕 の条件を 満たす場合に所定の波長 (人 n) の光の X軸方向成分の光に対してフィルムによ る反射が強くなる。 また、 液晶層に使用される液晶分子の長軸が、 電圧無印加時 に、 フィルム近傍において、 フィルムに対して垂直方向から所定の角度傾いて配 向している場合には、 液晶層の X軸方向の屈折率は液品の短軸方向の屈折率 rue 2 (え n)よりも大きくなる。 そこで、 条件 〔14〕 の範囲内において、 電圧無印加 時における液晶分子の垂直方向からの傾きに応じて nLC2 n)と dLCとを適切に 設定することにより、 所定の波長 (An) の光のうち X軸方向成分の光に対する 液晶層による電圧無印加時の反射を強くすることができる。 なお、 前記所定の波 長 (人 n) の光の Y軸方向成分の光に対しては条件 〔2〕 より透過状態となる。 第 41の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィルム近傍において、 前記フィルムに対して垂直方向から所定の角度、 好 ましくは 1度から 40度、 傾いて配向していることを特徴とする。
第 42の発明は、 フィルムと液晶層とが交互に積層された複合多層膜を備え、 前記複合多層膜に電圧を印加して前記複合多層膜における光反射率を制御する表 示装置であって、 前記液晶層に使用される液晶の所定の波長 (人 n) の光に対す る長軸方向の屈折率 nLC1n)および短軸方向の屈折率 nLC2 Un) と、 前記フィ ルムの前記所定の波長 (人 n) の光に対する前記フィルム面内の互いに直交する X軸方向と Y軸方向のそれそれの屈折率 nF 1 Un)および nF2 (λ η) とを、 前記複 合多層膜の前記フィルムと液晶層のうちの少なくとも隣り合う一組のフィルムと 液晶層との間において、 下記 〔15〕 および 〔16〕 の条件
15 j ί Fn)
Figure imgf000014_0001
Π L c 2 (え n) 、
〔16〕 nLC2 (Λη) ^ n 2 (Λη) ' ¾ T Π l c ! (人 n ) 〉 Tlし c 2 (人 n) を満たすようにしたことを特徴とする。 この発明によれば、 〔15〕および〔1 6〕の条件を満たす場合に、 所定の波長(λη )の光の X軸方向成分の光および Υ軸方向成分の光に対して共に透過状態となる。 なお、 反射はフィルムと液晶層 との間で屈折率が異なれば生じ、 また、 液晶は一般に印加電圧を変えると屈折率 が変わるから、 反射状態は電圧の印加状態を変えることによって生じさせること ができ、 電圧による光変調が可能である。
第 43の発明は、 前記 nF1 (/ln)と、 nLC1 (An) と、 前記液晶層の厚み d LCと、 前記フィルムの厚み dF とを、 前記少なくとも隣り合う一組のフィルムと液晶層 との間において、 下記 〔17〕 および 〔18〕 の条件
〔17〕 nK] Un) -dF = ( l/4+k/2) · λη、
〔18〕 nLC1 Un) - dL ≥ ( l/4+m/2) ' 入 n、
又は nLcl "n) · dLC= ( l/4+m/2) ' 人 n
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする。 この発明によ れば、 〔17〕 の条件を満たす場合に所定の波長 (人 n) の光の X軸方向成分の 光に対してフィルムによる反射が強くなり、 〔18〕 の条件を満たす場合に所定 の波長 (λη) の光の X軸方向成分の光に対して液晶屑による反射が強くなる。 なお、 前記所定の波長 (人 n) の光の Y軸方向成分の光に対しては条件 〔1 6〕 より透過状態となる。
第 44の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくとも前記フィルム近傍において前記フィルムに対しほぽ水平方向に配向 (ホモジニヤス配向) しかつ前記 X軸方向に配向するようにし、 前記複合多層膜 が電圧印加時に光透過状態となり電圧無印加時に光反射状態となるようにしたこ とを特徴とする。 この発明によれば、 電圧印加時に所定の波長 (λη) の光の X 軸方向成分の光および Υ方向成分の光に対して共に光透過状態となり、 電圧無印 加時に所定の波長 (An) の光の X軸方向成分の光に対して反射が強くなり、 Y 軸方向成分の光に対しては透過状態となる。 また、 液晶層には誘電率異方性 (Δ ε) が正 (Δ£>0) のものが好ましく使用される。
第 45の発明は、 前記 nLC1 n) 、 nLC2 "η)および nF 1 η)を、 前記少なく とも隣り合う一組のフィルムと液晶層との問において、 下記 〔1 9〕 の条件
1 9 J Π L C 2 (Λη) F 1 ( η)
= N LC2 (Λη) + 0. 6 ( ϋ LC 1 ( π)一 η L C 2 (え η) ) を満たすようにしたことを特徴とする。
第 44の発明によれば、 電圧印加時に所定の波長 (え η) の光の X軸方向成分 の光に対して光透過状態となるが、 電圧印加時には、 液晶分子が完全にフィルム に対して垂直にならない場合が多く、 その場合には、 液晶層の X軸方向の屈折率 は液晶の短蚰方向の屈折率 nLC2 (λ η)よりも大きくなる。 そこで、 第 45の発明 のように、 条件 〔 19〕 の範囲内において、 印加電圧に応じて nLC2 (λ η)と nf , (Λη) とを適切に設定することにより、 好ましくは、 nF 1 Un)を、 電圧印加時に おける液晶層の所定の波長 (λη) の光に対する X軸方向の平均的な屈折率とほ ぼ等しくすることにより、 所定の波長 (え η) の光のうち X軸方向成分の光を前 記少なくとも隣り合う一組のフィルムと液晶層とを十分に透過するようにするこ とができる。 なお、 Υ軸方向成分の光に対しては条件 〔 1 6〕 より高い透過率が 得られる。
第 46の発明は、 前記 nF l Un)を、 電圧印加時における前記液晶層の前記所定 の波長の光に対する前記 X軸方向の平均的な屈折率とほぼ等しくしたことを特徴 とする。
第 47の発明は、 前記 nF1 n)と、 nLC1 (An)と、 前記液晶層の厚み d LCと、 前記フィルムの厚み dF とを、 前記少なくとも隣り合う一組のフィルムと液晶層 との間において、 下記 〔20〕 および 〔21〕 の条件
〔20〕 nF1 (Λη) -dF = ( l/4 + k/2) · え n、
〔21〕 nLcl Un) - dLC= ( l/4+m/2) - An
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする。 この発明によ れば、 〔20〕 の条件を満たす場合に所定の波長 (え n) の光の X軸方向成分の 光に対してフィルムによる反射が強くなり、 〔21〕 の条件を満たす場合に所定 の波長 (人 n) の光の X軸方向成分の光に対して液晶層による反射が強くなる。 なお、 前記所定の波長 (え n) の光の Y軸方向成分の光に対しては条件 〔16〕 より透過状態となる。 この表示装置は、 前記液晶が電圧無印加時に前記フィルム に対してプレチルト角をほとんど有さないで配向している場合に、所定の波長(入 n) の光の X軸方向成分の光に対して電圧無印加時にフィルムおよび液品屑の少 なくとも一方による反射が強くなる。
第 48の発明は、 前記液晶が電圧無印加時に前記フィルムに対してプレチル卜 角をほとんど有さないで配向していることを特徴とする。
第 49の発明は、 前記 nLC1 (An) および d! ^を、 前記少なくとも隣り合う一- 組のフィルムと液晶層との間において、 下記 〔22〕 および 〔23〕 の条件
〔22〕 nF1 (λη) -dK = ( l/4 + k/2) · λη、
〔23〕 nLcl Un) - dLC > ( l/4+m/2) · λ n
≥ 0. 96 nLcl (Λη) · dしし- (ここで、 k、 mは 0または整数である。 )
を満たすようにしたことを特徴とする。 この発明によれば、 〔22〕 の条件を 満たす場合に所定の波長 (λη) の光の X軸方向成分の光に対してフィルムによ る反射が強くなる。 また、 液晶が Τ 圧無印加時にフィルムに対して所定のプレチ ルト角をもって配向している場合には、 液晶層の X軸方向の屈折率は液晶の長軸 方向の屈折率 nLcl ( η) よりも小さくなる。 そこで、 条件〔23〕の範囲内にお いて、 プレチルト角に応じて ruCI (λη) と dLCとを適切に設定することにより、 所定の波長 (人 n) の光のうち X軸方向成分の光に対する液晶層による反射を強 くすることができる。 なお、 前記所定の波長 (An) の光の Y軸方向成分の光に 対しては条件 〔1 6〕 より透過状態となる。
第 50の発明は、 前記液晶が電圧無印加時に前記フィルムに対して所定のプレ チルト角、 好ましくは 1度から 40度、 をもって配向していることを特徴とする。 第 5 1の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくとも前記液晶層の前記積層方向での中央部付近において、 前記フィルムに 対しほぼ垂直方向に配向 (ホメオト口ピック配向) するようにし、 前記複合多層 膜が電圧無印加時に光透過状態となり電圧印加時に光反射状態となるようにした ことを特徴とする。 この発明によれば、 電圧無印加時に所定の波長 (え n) の光 の X軸方向成分の光および Y軸方向成分の光に対して共に光透過状態となり、 電 圧印加時に所定の波長 (人 n) の光の X軸方向成分の光に対して反射が強くなり、 Y軸方向成分の光に対しては透過状態となる。また、液晶層には誘電率異方性( Δ ε) が負 (Δ£<0) のものが好ましく使用される。
第 52の発明は、 前記 ηし C 1 "n) 、 nLC2 Ull) 、 nF , (λη)および nド 2 "n) を、 前記少なくとも隣り合う一組のフィルムと液晶層との間において、 下記 〔2 4〕 の条件
し 4〕 nF 1 Un) =nLC2 (λη) =nF2 (Αη)であって、
ηし C i ( n)〉 n LC2 (λη)
を満たすようにしたことを特徴とする。 この発明によれば、 液晶層に使用され る液晶分子の長軸が、 電圧無印加時に、 フィルム近傍において、 フィルムに対し てほぼ垂直方向に配向している場合に、 電圧無印加時に所定の波長(人 η )の光 の X軸方向成分の光および Υ軸方向成分の光に対して共に高い光透過率を与える。 第 53の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィルム近傍において、 前記フィルムに対してほぼ垂直方向に配向している ことを特徴とする。
第 54の発明は、 前記 nLC2 (An) および nF1 (An)を、 前記少なくとも隣り合 う一組のフィルムと液晶層との間において、 下記 〔25〕 の条件
υ〕 nLC2 ( η) ^ i_l F l (λη) = 1· 1 ^ ' η LC2 (Λη)
を満たすようにしたことを特徴とする。 液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 フィルム近傍において、 フィルムに対して垂直方向から所定の 角度傾いて配向している場合には、 液晶層の X軸方向の屈折率は液晶の短軸方向 の屈折率 nLC2η) よりも大きくなる。 そこで、 条件〔25〕の範囲内において、 電圧無印加時における液晶分子の垂直方向からの傾きに応じて iUC2 Un) と nF(λη)とを適切に設定することにより、 好ましくは、 nF1 (λη)を、 電圧無印加時 における液晶層の所定の波長 (人 η) の光に対する X軸方向の平均的な屈折率と ほぽ等しくすることにより、 所定の波長 (人 η) の光のうち X軸方向成分の光を 電圧無印加時に前記少なくとも隣り合う一組のフィルムと液晶層とを十分に透過 するようにすることができる。 従って、 この発明の表示装置は、 液晶層に使用さ れる液晶分子の長軸が、 電圧無印加時に、 フィルム近傍において、 フィルムに対 して垂直方向から所定の角度傾いて配向している場合に所定の波長 (人 η) の光 の X軸方向成分の光に対して電圧無印加時に高い透過率を与える。 なお、 Υ蚰方 向成分の光に対しては条件 〔16〕 より高い透過率が得られる。
第 55の発明は、 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィルム近傍において、 前記フィルムに対して垂直方向から所定の角度、 好 ましくは 1度から 40度、 傾いて配向していることを特徴とする。
第 56の発明は、 前記 nF1 Un)を、 電圧無印加時における前記液晶層の前記所 定の波長 (人 n) の光に対する前記 X軸方向の平均的な屈折率とほぼ等しくし、 且つ前記 nF2(An)を、電圧無印加時における前記液晶層の前記所定の波長(人 n) の光に対する前記 Y軸方向の平均的な屈折率とほぼ等しくしたことを特徴とする。 このようにすれば、 電圧無印加時において、 所定の波長 (人 η) の光の X軸方向 成分の光および Υ軸方向成分の光に対して共に ¾い透過率が得られる。
第 57の発明は、 前記 nF1 "n)と、 nし C1 "n)と、 nLC2"n)と、 前記液晶層 の厚み dLCと、 前記フィルムの厚み dF とを、 前記少なくとも隣り合う一組のフ イルムと液晶層との間において、 下記 〔26〕 および 〔27〕 の条件
〔26〕 nK1 Un)-dK = (l/4+k/2) · λη、
〔27〕 nLcl Un) - dLC≥ (l/4+m/2) - λη
= "t n LC 1 (Λη) ~ 0 · 6 · (nLci n) — n LC2 "n) )} ' ^ LC
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする。 この発明によ れば、 〔26〕 の条件を満たす場合に所定の波長 (え n) の光の X軸方向成分の 光に対してフィルムによる反射が強くなる。 また、 電圧印加時には、 液晶分子が 完全にフィルムに対して水平にならない場合が多いが、 条件 〔27〕 の範囲内に おいて、 印加電圧に応じて nLC1 Un)と dLCとを適切に設定することにより、 所 定の波長 (λη) の光の X軸方向成分の光に対する電圧印加時の液晶層による反 射を強くすることができる。 なお、 前記所定の波長 (え η) の光の Υ軸方向成分 の光に対しては条件 〔16〕 より透過状態となる。
第 59の発明は、 前記 nF1 Un) 、 dF および人 nを、 下記 〔28〕 の条件 〔28〕 ( l/8+k/2) - λη ≤nF1 Un) -dF
≤ (3/8+k/2) · λη
(ここで、 kは 0または整数である。 )
を満たすようにしたことを特徴とする。
第 60の発明は、 前記 nF2 Un) , dF およびえ nを、 下記 〔29〕 の条件 〔29〕 (l/8 + k/2) - λη≤ηΓ2 Un) -dF
≤ (3/8+k/2) · λη
(ここで、 kは 0または整数である。 )
を満たすようにしたことを特徴とする。
第 61の発明は、 前記 λη 、 nLC2 n)および dLCを、 下記 〔30〕 の条件 〔30〕 (l/8+m/2) - An ≤nLC2 Un) - dLC
≤ (3/8+m/2) . λη
(ここで、 mは 0または整数である。 ) を満たすようにしたことを特徴とする。
第 61の発明は、 前記人 n、 nLcl Un), および dLCを、 下記 〔31〕 の条件 〔31〕 (l/8+m/2) · λη ≤nLcl Un) · dLC
≤ ( 3/8 +m/2 ) . λη
(ここで、 mは 0または整数である。 )
を満たすようにしたことを特徴とする。 これら、 第 58乃至 61の発明の表示 装置のように、 反射する波長が所定の波長人 n に対して (1/8) λη程度ずれ ても、 反射の中心波長がずれるだけで反射そのものは行われる。
第 62の発明は、 前記複合多層膜の複数のフィルムと複数の液晶層との間で、 第 26乃至 61の発明のいずれかの要件を満たすようにしたことを特徴とする。 このように、 前記複合多層膜の複数のフィルムと複数の液晶層との間で、 第 26 乃至 61の発明のいずれかの要件を満たすようするには、 前記液晶層に使用され る液晶の所定の波長 (人 η) の光に対する長軸方向の屈折率 nLcl (λη)および短 軸方向の屈折率 ruC2 Un)と前記液晶層の厚み dLCとを複数の液晶層間でほぼ同 一とし、 前記フィルムの前記所定の波長(人 n )の光に対する前記 X軸方向の屈 折率 nF1 {Λη)と前記 Υ軸方向の屈折率 nF2 αη) と前記フィルムの厚み dF とを 複数のフィルム間でほぼ同一とすることが好ましい。
第 63の究明は、 前記所定の波長 (λη) の光の Ρ波および S波に対して、 第 26乃至 62の発明のいずれかの要件をそれそれ満たす少なくとも 2つの前記複 合多層膜を積層して設け、 前記積層された複合多層膜に電圧を印加して前記積層 された複合多層膜の光反射率を制御することを特徴とする表示装置が提供される。 この発明によれば、 前記所定の波長 (人 η) の光の Ρ波および S波の両方に対 して透過および反射を制御できるので、 よりコントラス卜の高い表示装置が実現 できる。
第 64の発明は、 複数の異なる所定の波長(人 η =人 1 、 え 2 · · ·, AL ) に対して、 第 27乃至 62の発明のいずれかに記載の条件をそれそれ満たす複数 の前記複合多層膜を積層して設け、 前記積層された複数の複合多層膜に電圧を印 加して前記積層された複数の複合多層膜の光反射率を制御することを特徴とする。 第 65の発明は、複数の異なる所定の波長(λη =人 1 、 人 2 · · ·、 ) の光のそれそれの P波と S波に対して、 第 26乃至 62の発明のいずれかに記載 の条件をそれそれ満たす前記複数の複合多層膜を積層して設け、 前記積層された 複数の複合多層膜に電圧を印加して前記積層された複数の複合多層膜の光反射率 を制御することを特徴とする。
これら、 第 64、 第 65の発明の表示装置においては、 前記複数の複合多層膜 が複数のフィルムと複数の液晶層とをそれそれ備え、 前記液晶層に使用される液 晶の所定の波長(人 n )の光に対する長軸方向の屈折率 nLcln)および短軸方 向の屈折率 r^C2 (λη)と前記液晶層の厚み dLCとを、 同一の複合多層膜内の複数 の液晶層間でほぼ同一とし、 異なる複合多層膜間では異ならせ、 前記フィルムの 前記所定の波長 (λη)の光に対する前記 X軸方向の屈折率 nF1 (λη)と前記 Υ軸 方向の屈折率 nF2 (λη)と前記フィルムの厚み dFとを、 同一の複合多層膜内の複 数の液晶層間でほぼ同一とし、 異なる複合多層膜間では異ならせることが好まし い。
第 66の発明は、 前記所定の波長 (人 n)に対して、 前記 nLC1 Un)および nL C2 n)が、 下記 〔32〕 の条件
C32〕 し C 1 (Λπ) / LC 2 (An) = 1 · 丄 0
を満たすようにしたことを特徴とする。
第 67の発明は、 前記複数の異なる所定の波長 (人 n=人 1 、 λ2 · · ·、 え L ) に対して、 前記 nLC1 (λη)および nLC2 (λη)が、 下記 〔33〕 の条件 J 3〕 n I (λη) Z n LC2 "η) ^ 1 · 丄 0
をそれそれ満たすようにしたことを特徴とする。 このように、 液晶の複屈折率 性を、 nし C 1n)/nLC2 (λη) 1. 10とすると、 フィルムと液晶層の層数を 少なくしても、 高い反射率が得られる。
第 68の発明は、 前記複合多層膜における前記フィルムの層数と前記液晶層の 層数との合計層数または前記積層された複数の複合多層膜における前記フィルム の層数と前記液晶層の層数との合計層数を 100以上としたことを特徴とする。 このように、 前記フィルムの層数と前記液晶層の層数との合計層数を 100以上 とすると、 反射率の高い表示装置が得られる。
第 69の発明は、 前記複数の異なる所定の波長 (人 η = λ 1 、 え 2 · · ·、 入 L) の光が、 3乃至 12の異なる所定の波長 (人 η =人 1 、 人 2 · · ·、 入 L, 3≤L≤ 12) の光であり、 前記 3乃至 12の異なる所定の波長 (λη = λ 1 、 え 2 - - ·, AL, 3≤L≤12)の光に対して、 前記 nLC1 Un)およ び nLC2"n)が、 下記 〔34〕 の条件
〔34〕 nLC1 (λη) / nLC2 (λη)≥ 1. 10
をそれそれ満たすようにし、 前記積層された複数の複合多層膜における前記フ イルムの層数と前記液晶層の層数との合計層数を約 100乃至 400としたこと を特徴とする。
第 70の発明は、前記 3乃至 12の異なる所定の波長(人 η二え 1 、 人 2 · · ·、 AL) の光が、 3の倍数の異なる所定の波長 (入 η =人 1 、 λ 2 · . - AL, 3≤L≤ 12. Lは 3の倍数) の光であることを特徴とする。 これら、 第 70、 第 71の発明の表示装置においては、 例えば、 赤色光、 緑色光および青色光の光 に対してそれそれ反射条件を満足させるようして、 白色表示を容¾に実現するこ とができる。
第 71の発明は、 前記複数の異なる所定の波長 (λη二人 1 、 人 2 . . ·、 入 L) の光が、 4乃至 8の異なる所定の波長 (人 η =人 1 、 λ 2 . · -、 人 L, 4≤L≤8) の光であり、 前記 4乃至 8の異なる所定の波長 (人 n 二人 1 、 え 2 · · ·、 人 L, 4≤L≤8) の光に対して、 前記 nし C 1 ( )および nLC2 "n)5、 下記 〔35〕 の条件
3〕 し (え n) / n LC2 "n) ≥= l ' 13
をそれぞれ満たすようにし、 前記積層された複数の複合多層膜における前記フ イルムの層数と前記液晶層の層数との合計層数を約 100乃至 300としたこと を特徴とする。
第 72の発明は、 前記複数の異なる所定の波長 (λη = λ 1 、 人 2 · · ·、 人 L ) の光が、 可視光であることを特徴とする。
第 73の発明は、 前記複数の異なる所定の波長の光(え η二 λ 1 、 人 2 · · ·、 A L )のうち、少なくとも 1つの波長の光を赤外線領域の波長の光としたことを 特徴とする。 表示装置を斜めから見ると、 反射波長は短波長側にシフ卜する。 従 つて、 正面明視からの反射波長域を赤外領域まで広げておけば、 正面および斜め 方向のいずれの方向から表示を見ても白色の反射が実現できる。 なお、 好ましく は、 約 1 2 0 0 nmまでシフ卜させておくことが好ましい。
〔図面の簡単な説明〕
第 1図は本発明に係る表示装置の第 1の実施例を説明するための図である。 第 2図は本発明に係る表示原理を説明するための図である。
第 3図は本発明に係る表示装置の第 2の実施例を説明するための図である。 第 4図は本発明に係る表示装置の第 3の実施例を説明するための図である。 第 5図は本発明に係る表示装置の第 4の実施例を説明するための図である。 第 6図は本発明に係る表示装置の第 5の実施例を説明するための図である。 第 7図は本発明に係る表示装置の第 6の実施例を説明するための図である。 第 8図は本発明に係る表示装置の第 7の実施例を説明するための図である。 第 9図は本発明に係る表示装置の第 8の実施例を説明するための図である。 第 1 0図は本発明に係る表示装置の第 9の実施例を説明するための図である。 第 1 1図は本発明に係る表示装置に使用する複合多層膜の製造方法を説明する ための図である。
第 1 2図は本発明に係る表示装置に使用する複合多層膜の他の製造方法を説明 するための図である。
第 1 3図は本発明に係る表示装置の第 1 4の実施例における複合多層膜の層数 と干渉反射率の関係を説明するための図である。
第 1 4図は本発明に係る表示装置の第 1 5の実施例における複合多層膜の層数 と干渉反射率の関係を説明するための図である。
第 1 5図は本発明に係る表示装置の第 1 4の実施例乃至第 2 1の実施例におけ る印加電圧と液晶分子の配向状態との関係を説明するための図である。
第 1 6図は本発明に係る表示装置の第 1 4の実施例乃至第 2 1の実施例におけ る印加電圧と液晶分子の配向状態との関係を説明するための図である。
第 1 7図は本発明に係る表示装置の第 1 4の実施例乃至第 2 1の実施例におけ るセル厚方向と液晶の屈折率との関係を印加電圧をパラメ一夕として説明するた めの図である。
第 1 8図は本発明の第 1 4の実施例の表示装置の構造を説明するための図であ る。
第 1 9図は本発明の第 1 4の実施例の表示装置を説明するための図であり、 第 1 9図 Aは、 第 1 4の実施例の表示装置におけるセル厚方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 1 9図 Bは、 第 1 4の実施例の表示装置における複合多層膜の層数と干渉反射率の関係を説明す るための図である。
第 2 0図は本発明の第 1 4の実施例の表示装置における複合多層膜の層数と千 渉反射率の関係を説明するための図である。
第 2 1図は本発明の第 1 4の実施例の表示装置における複合多層膜の層数と千 渉反射率の関係を説明するための図である。
第 2 2図は本発明の第 1 5の実施例の表示装 gの構造を説明するための図であ る。
第 2 3図は本発明の第 1 5の実施例の表示装置を説明するための図であり、 第 2 3図 Aは、 第 1 5の実施例の表示装置におけるセル^方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 2 3図 Bは、 第 1 5の実施例の表示装置における複合多層膜の層数と千涉反射率の関係を説明す るための図である。
第 2 4図は本発明の第 1 5の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 2 5図は本発明の第 1 5の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 2 6図は本発明の第 1 6の実施例の表示装置の構造を説明するための図であ 第 2 7図は本発明の第 1 6の実施例の表示装置を説明するための図であり、 代 2 7図 Aは、 第 1 6の実施例の表示装置におけるセル厚方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 2 7図 Bは、 第 1 6の実施例の表示装置における複合多層膜の層数と干渉反射率の関係を説明す るための図である。
第 2 8図は本発明の第 1 6の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 2 9図は本発明の第 1 6の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 3 0図は本発明の第 1 7の実施例の表示装置の構造を説明するための図であ る。
第 3 1図は本発明の第 1 7の実施例の表示装置を説明するための図であり、 第 3 1図 Aは、 第 1 7の実施例の表示装置におけるセル厚方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 3 1図 Bは、 第 1 7の実施例の表示装置における複合多層膜の層数と干渉反射率の関係を説明す るための図である。
第 3 2図は本発明の第 1 7の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 3 3図は本発明の第 1 7の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 3 4図は本発明の第 1 8の実施例の表示装置の構造を説明するための図であ る。
第 3 5図は本発明の第 1 8の実施例の表示装置を説明するための図であり、 第 3 5図 Aは、 第 1 8の実施例の表示装置におけるセル厚方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 3 5図 Bは、 第 1 8の実施例の表示装置における複合多層膜の層数と干涉反射率の関係を説明す るための図である。
第 3 6図は本発明の第 1 8の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 3 7図は本発明の第 1 8の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 3 8図は本発明の第 1 9の実施例の表示装置の構造を説明するための図であ る。
第 3 9図は本発明の第 1 9の実施例の表示装置を説明するための図であり、 第 3 9図 Aは、 第 1 9の実施例の表示装置におけるセル厚方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 3 9図 Bは、 第 1 9の実施例の表示装置における複合多層膜の層数と干渉反射率の関係を説明す るための図である。
第 4 0図は 本発明の第 1 9の実施例の表示装置における複合多暦膜の層数と 干涉反射率の関係を説明するための図である。
第 4 1図は本発明の第 1 9の実施例の表示装置における複合多層膜の層数と千 涉反射率の関係を説明するための図である。
第 4 2図は本発明の第 1 9の実施例の表示装置の構造を説明するための図であ る。
第 4 3図は本発明の第 2 0の実施例の表示装置を説明するための図であり、 第 4 3図 Aは、 第 2 0の実施例の表示装置におけるセル厚方向と液晶の屈折率との 関係を印加電圧をパラメ一夕として説明するための図であり、 第 4 3図 Bは、 第 2 0の実施例の表示装置における複合多層膜の層数と干-渉反射率の関係を説明す るための図である。
第 4 4図は本発明の第 2 0の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 4 5図は本発明の第 2 0の実施例の表示装置における複合多層膜の層数と干 涉反射率の関係を説明するための図である。
第 4 6図は本発明の第 2 1の実施例の表示装置の構造を説明するための図であ る。
第 4 7図は本発明の第 2 1の実施例の表示装置における複合多層膜の層数と千 渉反射率の関係を説明するための図である。
第 4 8図は本発明の第 2 1の実施例の表示装置における複合多層膜の層数と干 渉反射率の関係を説明するための図である。
第 4 9図は本発明の第 2 1の実施例の表示装置における複合多層膜の全層数と 干渉反射率の関係を説明するための図である。
〔発明を実施するための最良の形態〕
次に本発明の実施例を添付の図面を参照して説明する。
(第 1の実施例)
第 1図は、 本発明に係わる表示装置の基本構造及びその表示原理を示す図、 す なわち、 反射/透過を制御する光変調素子の基本構造を示す図である。 1及び 2 は、 透明プラスチック板、 もしくは透明プラスチックフィルム、 もしくは透明ガ ラス板からなる上、 下基板、 3および 4は、 該上、 下基板上 1、 2にそれそれ形 成された透明電極層で、 酸化インジウム、 酸化スズ、 又はそれらの混合物からな る。 8、 9、 1 0、 1 1は液晶層、 5、 6、 7はプラスチックフィルム (以下、 単にフィルムと呼ぶ) で、 該液晶層 8、 9、 1 0、 1 1と該フィルム 5、 6、 7 は交互に重なり合って複合多層膜 1 8を構成している。 1 2は上下の基板 1、 2 を接着固定する周辺シール部で、 以上より本発明の表示装置は基本的に構成され ている。 本実施の形態に於いては、 液晶層 8、 9、 1 0、 1 1は誘電異方性が正 のネマチック液晶を用い、 その液晶分子長軸はフィルム 5、 6、 7の面にほぼ水 平に配向させてある。
第 2図 (a ) 、 第 2図 (b ) は、 本発明の表示原理を示す図で、 フィルム 5、 6、 7、 液晶層 8、 9、 1 0、 1 1を抜き出して図示している。 従って、 第 1図 の各フィルム、 各液晶層に図番を対応させてある。 第 2図 (a ) は第 1図の 1 3 の領域すなわち上下の電極 3、 4間に電圧が印加されていない領域 (詳しくは液 晶のしきい値電圧以下の電圧印加状態の領域を示すと考えてもよい。 以下、 各実 施の形態および各実施例における電圧無印加の状態とは同様の状態であると考え てもよい。 ) の状態を示す図である。 ここでは、 液晶分子はフィルム面に対し、 ほぼ水平に配向した状態であり、 液晶層の液晶分子長軸方向の屈折率は ruciで ある。 第 2図 (b) は、 第 1図の 14の領域、 すなわち上下の電極 3、 4間に電 圧の印加されている領域 (詳しくは液晶の飽和電圧の印加状態の領域を示すと考 えてよい。 以下、 各実施の形態および各実施例における電圧印加の状態とは同様 の状態であると考えてもよい。 ) の状態を示す図である。 ここでは液晶分子はフ イルム面に対し略垂直に配向した状態で、 液晶層の屈折率は液晶分子短軸方向の 屈折率 nLC2である。 ネマチック液晶の一般的性質より、 電圧印加の有無により 液晶層の屈折率は変化し、
Figure imgf000028_0001
である。 そこで、
nLC2 = nF (nF はフィルムの屈折率) · · · (2)
(2) 式を充たすような液晶材料及びフィルム材を選定し、 上記液晶層 8、 9、 10、 11およびフィルム 5、 6、 7に使用すると第 1図、 第 2図 (b) に示す ように電圧印加領域 14では、 上記液晶層とフィルムとの境界では屈折率差がな く、 入射光 16はそのまま透過する。
実際には、 上述した様に、 液晶分子は上記液晶層の層内全てで、 フィルム面に 対して垂直に配列する事はなく、 フィルム面に近接した液晶分子はフィルム面に 水平な方向成分を持つ配列を取る。 従って、 この時の各液晶層の平均的な屈折率 は nLC2とはならず、 それよりも大きな屈折率《nLC2》 (《nLC2》 〉nLC2)と なる。 この場合にはフィルムの屈折率 nFを 《nLC2》 とした場合、 すなわち
《nLC2》 =nF · · · (2) '
の場合に入射光 16を最も強く透過する。
更に好ましくは、 フィルムには若干の複屈折性 (X軸方向の屈折率を nF1、 Y 軸方向の屈折率を nF2とする。 なおここで X軸方向とはフィルムに隣接する上記 液晶分子の長軸方向であり、 Y軸方向とは同短軸方向である。 ) を持たせ
《nLC2》 =nF · · ( 2 ) ,
nLc2 - nF2- · · )
とすれば、 入射光 16は、 表面、 裏面による反射損失を除き殆ど全て透過する。 次に電圧無印加領域 13に於いては、 文献 1 (応用光学 II、 鶴田匡夫著、 4— 3-3 (II)参照) に示すように、 次式 (3)、 (4)
nLC1'dLC= ( l/4+m/2) え 0 (dLCは液晶層 8、 9、 10、 11 の厚み、 人 0は入射光 15、 16の波長、 mは◦又は任意の整数) . . · (3) nF'dF= ( 1/4 + k/2 ) λ 0 (dFはフィルム 5、 6、 7の厚み、 k は 0又は任意の整数) · · · (4)
を充たすように、 液晶層 8、 9、 10、 11の厚みと、 フィルム 5、 6、 7の厚 みを設定すれば、 第 1図、 第 2図 (a) に示すように、 波長え 0の入射光 15を 最も強く干渉反射する。
又、 反射光 17の強度は、 上記液晶層及びフィルムの枚数の多い程、 言い換え れば上記複合多層膜の層数の多い程、 反射光 17の強度は増す。 本実施の形態の 図面ではフィルムと液晶層との合計で 7層しか描かれていないが、 好ましくは 1 0層以上が良い。
以上の様に、 正の誘電異方性を持つネマチック液晶材料とフィルム材料とを (2)式、 (2) , 式または (2) , ' 式および (2) , , , 式を充たす様にそ れそれ選定し、 (3)式、 (4) 式を充たす様に液晶層の厚みとフィルムの厚み とを合わせ込み、 上記液晶層とフィルムを交互に好ましくは 10層以上積み重ね れば、 電圧印加時には入射光が透過し、 電圧無印加時には入射光が反射する光変 調素子が出来、 表示装置として機能する事が判る。 そして、 上記表示装置では、 光を吸収する偏光板を使用せず、 光を有効に利用した明るい表示装置となる事も 明らかである。 更にフィルムと液晶層との境界面がフラッ トであるため、 従来例 1に比べ、 その干渉反射強度も明るさで優れている事も判る。
上述した第 1の実施例では、 液晶層としてネマチック液晶材料を用いたが、 複 屈折性を有し、 電界で液晶分子方向が変わり、 それにより屈折率が変化する条件 を備えた材料ならば何でも良く、 ネマチック液晶の他、 スメクチック液晶、 カイ ラルスメクチック液晶、 ネマチック液晶分子又はスメクチック液晶分子をポリマ 一鎖に結合させた高分子液晶、 更には上記液晶と高分子液晶の混合物などの材料 も液晶層として使用できる。 特に文献 2 (液晶、 基礎編、 岡野光治 ·小林駿介共著、 培風館、 1. 3参照) に示されるディスコティック液晶を用いれば、 光学的に負の一軸性を持った複屈 折性を有している事から、 フィルム層に略水平に配向させた時、 入射光に対する 屈折率が全ての偏光方向で一様となり、 より強い多層膜干渉反射が得られる。 こ の場合、 上記ディスコティック液晶そのものだけを電界で分子方向制御してもよ いが、 特にネマチック液晶とディスコティック液晶とを混合した液晶を用いれば、 粘度も下がり、 より容易に電界に従って分子軸の向きを変える事ができる。
尚、 本実施例を反射型表示装置として用いる場合、 下基板 2の外側に光吸収層 を配置してもよく、 電圧無印加領域で波長え 0光の表示、 電圧印加領域で透過光 が吸収されて黒色表示となる、 偏光板が不要でコントラス卜の高い表示装置が実 現できる。
(第 2の実施例)
次に本発明に係わる表示装置の第 2の実施例を第 3図により説明する。 31、 32は各々上、 下基板であり互に対向する面上に透明電極膜 33、 34をそれそ れ有する。 23、 24、 25、 26は各々液晶層で、 27、 28、 29は各々フ イルムで、 各液晶層と各フィルムは図示する様に、 交互に重なり合った構造をと り、 全体として複合多層膜 30を形成している。 35はエポキシ樹脂等からなり 上下基板を固着する周辺シール部である。 本実施の形態では、 誘電異方性が正の ネマチック液晶材料を上記液晶層 23、 24、 25、 26に使用し、 各フィルム 面に対しほぼ水平配向をさせている。
上記ネマチック液晶材料の複屈折率を nし C1' (液晶分子の長軸方向) 、 nLC2 ,(液晶分子の短軸方向) とし、 nLC1,〉nLC2 'となるように設定する。 一方、 フ イルム 27、 28、 29は一軸性の複屈折性を有するフィルムであり、 その屈折 率は X軸方向の屈折率を!! ' 、 Y軸方向の屈折率を nF2 'とし、 nF 1' >nF2, となるように設定する。 一般的にフィルムを延伸処理した場合、 多くのフィルム 材は延伸方向の光軸屈折率が大きく、 延伸方向と直交する方向の光軸屈折率が小 さくなる一軸性の複屈折性を示す事が知られている。 この場合、 延伸方向が上記 X軸であり、 該 X軸と直交する方向が Y軸となる。 そして、 上記ネマチック液晶 分子は各フィルム 27、 28、 29の各面に対し水平にかつその分子長軸方向を 上記フィルムの X軸方位に配列させてある。
さらに本実施の形態では、 電圧無印加領域 40で波長え 0の入射光 36が透過 するように条件を設定してある。 すなわち、 波長え 0に対して、
nLCi, = nF1, · · · (5)
nLC2 ^ nF2 · · · )
を充たす様に、 まず液晶材料、 及びフィルム材料を選定する。 次に電圧印加部で 波長 λθ の入射光 37が最も強く干渉反射をおこすように、 文献 1に従い ηし C 2,'dLC,= (l/4+m/2) Λ0· · · (6)
nF1' - dF'= (l/4+k/2) λθ · · · (6) ,
(d '及び dF 'はそれそれ液晶層 23、 24、 25、 26及びフィルム 27、 28、 29の厚み、 k, mは 0又は任意の整数)
の条件を充たす様に、 各液晶層の厚み (dLC') と各フィルムの厚み (dF')を設 定すれば、 電圧無印加領域 40では波長人 0の入射光 36は透過し、 電圧印加領 域 39では波長え 0の入射光 37は反射し、 反射光 38となる。
前述した様に、 本実施例に於いても反射光強度を上げて、 明るい表示装置を得 るためには、 複合多層膜 30の液晶層及びフィルムの層数を少なくとも 10層以 上にする事が好ましい。 以上の様に、 本実施の形態では電圧印加時に入射光を反 射し、 電圧無印加時に入射光を透過する表示装置で、 第 1の実施の形態とは、 逆 転したパターン表示が可能となる。
尚、 本実施例を反射型表示装置としても用いる場合、 下基板 32の外側に光吸 収層を配置してもよく、 電圧無印加領域は透過光が吸収されて黒色表示となり、 電圧印加領域では波長え 0光の表示となり、 偏光板が不要でコントラス卜の高い 表示装置が実現できる。
(第 3の実施例)
第 4図は本発明の第 3の実施例で、 41、 42はそれそれ上、 下基板、 43、 44はそれそれ該上、 下基板 41、 42の互いに対向する面上にそれそれ形成さ れた透明電極、 45はエポキシ樹脂等からなり上下基板を固着する周辺シール部 である。 46、 47、 48、 49は液晶層で、 フィルム 50、 51、 52とそれ それ交互に積層され、 複合多層膜 57を形成している。 本実施例に於いては、 液 晶層 46、 47、 48、 49にはネマチック液晶材料を用い、 該ネマチック液晶 材の分子配列は、 電圧無印加時に於いて、 上、 下基板 41、 42、 及びフィルム
50、 51、 52の各面に対して液晶分子の長軸を略垂直 (ホメオト口ビック配 列) に配向させておく。 そして、 上記ネマチック液晶として誘電異方性が負の液 晶材を選択すれば、 上記上下電極 43、 44間にほぼ飽和電圧が印加された電圧 印加領域 54では、 上記液晶分子は上、 下基板 41、 42及びフィルム 50、 5 1、 52の各面にほぼ水平に配向する。 上記ネマチック液晶材のその分子長軸方 向の屈折率を nLcl,, 、その分子短軸方向の屈折率を nLC2, , , (nLCI', >nL ' )となるように設定し、 入射光 55、 56の波長え 0に対して
nし ^nF1 =nF2 · · ■ ( 7 )
(nF1, , 、 nF2 ', はそれそれフィルム 50、 5 1、 52の X軸及び Y軸方向の 屈折率)
(7) 式を充たすように上記液晶層 46、 47、 48、 49と上記フィルム 50、
51、 52の材料を選択すれば、 電圧無印加領域 (詳しくは液晶のしきい値電圧 以下の電圧印加状態の領域) 53に於いては、 上記フィルムと液晶層の境界面に 於いては屈折率の差が殆どなく、 波長人 0の入射光 55はほぼ透過する。
ここでも前述したように入射光 55に対する液晶層 46、 47、 48、 49の 各層の層内にわたる平均屈折率《nLC2'' 》とフィルムの屈折率とを一致させる 事が、 最も強い透過光を得るために有効である。
更に入射光波長え 0 に対して、 下記 (8) 、 (8) ' 式を充たす様、 液晶層 厚、 フィルム厚を設定すれば、
nLC] 5 ' -dLC" = ( 1/4 +m/2) λ 0 ·■ · (8)
nFI" - dF" = ( l/4+k/2) え 0 · · · (8) '
(dLC,, 及び dF,, はそれそれ液晶層 46、 47、 48、 49及びフィルム 5 0、 5 1、 52の厚み、 k, mは 0又は任意の整数) 、
電圧印加領域 54にて波長え 0 の入射光 56は、 複合多層膜 57により強く 干渉反射される。 以上の様に、 電圧印加の有無により、 入射光の反射/透過のス イツチングが可能となり、 表示装置として機能する事が判る。
尚、 本実施例を反射型表示装置として用いる場合、 下基板 4 2の外側に光吸収 層を設けてもよい。 そうすると、 電圧無印加領域では透過光が吸収されて黒色表 示となり、 電圧印加領域では波長え 0の光の表示となり、 偏光板が不要でコント ラス卜の高い表示装置を実現できる。
以上、 3つの実施例を示したが、 表示装置としては干渉反射波長(え◦ )の波長 帯域を広げた明るい表示装置が望ましい。
最も望ましい白色反射光を得るためには、 赤、 緑、 青色等各色の波長域で、 前 記干渉反射条件を充たす各複合多層膜を用意し、 それらを重ね合わせた多重複合 多層膜を使用すれば良い。 又、 前記液晶層、 フィルムの各々厚みを連続的に変え、 好ましくは 1 0 0層以上とした複合多層膜を使用しても、 明るい表示装置の実現 は可能となる。 更に、 上記実施の形態に用いたネマチック液晶の代わりに、 特に ディスコティック液晶を用いれば、 フィルムにほぼ水平に配向した状態で、 ほぼ 均一な光の屈折率 (入射光の各偏光に対して屈折率がほぼ均一) をもっため、 よ り光反射率が高く明るい表示装置となる。 又、 前述した (2 )、 (2 ) ' 、 (5 ) 、 ( 5 ) , 、 ( 7 ) 式では波長え 0 に対して、 液晶層の一方の屈折率とフィルム の屈折率とを一致させ、 入射光が透過するようにさせたが、 可視光波長域で全て 上述した各式を充たす様な屈折率を実現する事が好ましいが、 そのためには、 フ ィルム材料の屈折率の波長分散と液晶材料の屈折率の波長分散とをできるだけ合 わせる事も、 各材料の選定にあたっては重要である。 しかし、 一般的には液晶と フィルムの波長分散を一致させる事は困難で、 その場合、 フィルム材を固定し、 干渉反射波長毎に (2 ) 、 (2 ) ' 、 (5 ) 、 ( 5 ) 5 ( 7 ) 式を充たす様に 液晶材の屈折率を成分調合比により調整する方法が現実的である。
(第 4の実施例)
次に、 本発明に係わる明るい反射型表示装置の第 4の実施例を第 5図を用いて 説明する。 1 4 8、 1 4 9、 1 5 0、 1 5 1は液晶層、 1 4 5、 1 4 6、 1 4 7 はフィルム層で、 それらは交互に重なり合って複合多層膜 1 5 9を形成している。 上記液晶層 148、 149、 150、 151とフィルム 145、 146、 147 の各層の屈折率と厚みは前述した第 1の実施例に示した様に、 式 (1)、 (2) 、 (2) ' 、 (3) 、 (4) をほぼ充たす様に設定された複合多層膜 159である。 152は上基板 142の上部に形成された光散乱層又は光散乱板からなる光散乱 部である。 153は下基板 141の下部に形成された光吸収層又は光吸収板から なる光吸収部である。 本実施の形態の動作は、 まず電圧無印加領域 154に入射 した光 156は第 1の実施の形態に示した様に干渉反射され、 該反射光は光散乱 部 152で散乱光 158となり、 外部に放出される。 従って鏡面のような反射光 ではなく、 紙面による反射光のような見易い散乱反射光となる。 一方、 電圧印加 領域 155では、 入射した光 157は前述の第 1の実施の形態に示した様に、 そ のまま透過し、 光吸収部 153迄到達して吸収される。 従って、 電圧印加領域 1 55では光吸収部 153の色が観察される。
本実施例では、 各液晶層 148、 149、 150、 151の厚みは全て等しく、 更に各フィルム 145、 146、 147の厚みも全て等しく設定してあるため、 限られた波長人 0 の光でしか透過/反射の電圧制御ができなかったが、 可視光 波長域全ての波長域で、 上記干涉反射条件を充たすためには、 上記広い可視光波 長域を構成する個々の狭い波長域 (λθ 、人 1 、人 2 、 · · ·、 人 η )毎に、 各々干渉反射条件を充たすよう上記した実施例の複合多層膜を設け、 干渉反射す る波長の異なる η個の複合多層膜を積層して、 各液晶層とフィルムの厚みの組み 合わせを光の進行方向に沿って変え、 トータルの層数を増やせばよい。 つまり、 前述した様に、 赤、 緑、 青色等の各色の波長域で、 前記干渉反射条件を充たす各 複合多層膜を用意して、 それらを重ね合わせた多重複合多層膜を複合多層膜 15 9として使用すれば、 白色背景に黒表示を表示する (又は黒色背景に白色表示す ること) 事も可能である。 この場合、 勿論、 光吸収部 153は黒色にしておく事 が必要である。
以上第 4の実施例によれば、 可視光の各波長域に対応した干渉反射の条件を充 たす複数の複合多層膜により、 従来例のように偏光板による光吸収がなく、 又、 従来例 1、 2と違い液晶層とフィルム層の境界面はフラッ トのため、 干渉反射強 度の高い、 明るい白/黒表示外観をもった反射型表示装置が提供できる。 更に上 述した干渉ピッチの異なる複数の複合多層膜を重ねた多重複合多層膜も、 前述し た方法により、 容易に得られる。
(第 5の実施例)
第 6図は、 第 5の実施例で、 白色の背景地上に黒、 赤、 青等、 多数の色の文字、 図形等を表示させる例である。
6 1、 6 2は内面に透明電極を有する上、 下基板、 6 3は前述した様に液晶層 とフィルム層とを交互に積み重ねた複合多層膜であり、 第 4の実施例にて説明し たように、 液晶層及びフィルムの厚みの組み合わせは複合多層膜 6 3の上下方向 で異ならせ、 可視光領域全体の波長光に対して干渉反射条件を充たす様に設定さ れている。また、複合多層膜 6 3は第 1の実施例で述べた式( 1 )、 (2 )、 ( 2 ) '、 ( 3 ) 、 (4 ) をほぼ満たす。 第 6図に於いては、 紙面の制約から液晶層とフィ ルム層とを合わせて 7層しか描かれていないが、 可視光波長域全てで充分な干涉 反射を行うためには、 可視光領域内の複数の波長を干渉反射する複合多層膜を反 射すべき波長毎に設け、 これを積層することになるので、 液晶層とフィルム層と を合わせた全層数を少なくとも 1 0 0層以上とすることが好ましい。 6 4、 6 5、 6 6は光吸収部でそれそれ黒、 赤、 綠色の色違いの光吸収層又は光吸収板からな る。 6 4、 6 5、 6 6を黒、 赤、 緑色のフィル夕とし、 その下に光反射層 6 8を 形成してもよい。 6 7は光散乱部である。 本実施例では、 電圧無印加領域に於い ては、 上記複合多層膜 6 3は可視光波長域の光を干渉反射し、 ほぼ白色 Wを呈す る。 一方、 電圧印加領域に於いては、 入射光はそのまま透過し、 下部に配された 異なった色調をもつ光吸収部 (フィルタ部) 6 4、 6 5、 6 6で吸収され、 この フィル夕部を透過し、 反射層 6 8により反射された波長帯域が、 異なった色の表 示として現れる (図中では赤色光と緑色光が反射されている) 。 なお、 黒の光吸 収部 6 4は多層莫層を透過した光を吸収するため、 この部分においては電圧印加 時には黒表示となる。 従って同一表示面上で白色地の背景に、 黒色、 赤色、 緑色 等を表示し図形/文字表現する事が可能である。 更に前記光吸収部 6 4、 6 5、 6 6を画素毎に赤、 青、 緑の光吸収部に置き換えれば、 フルカラーの反射型表示 装置にもなる事は明白である。
尚、 光吸収部を赤、 青、 緑のカラーフィル夕として下基板の内面に配置しても 構わない。 この場合、 反射層は下基板 6 2の電極を反射電極としてもよく、 また 反射層を下基板の外側に配置しても構わない。
(第 6の実施例)
第 7図は、 本発明の第 6の実施例で、 7 1、 7 2は内面に透明電極を有する上、 下基板、 7 4は光吸収部、 7 3は光散乱部である。 8 0、 8 1は、 それそれ液晶 層とフィルム層とが交互に積層してなる複合多層膜で、 前述した様に、 電圧無印 加時に於いて所望の波長域で干渉反射条件を充たす様に、 各層の屈折率及び膜厚 が設定されている。 7 7はフィルム層で、 上記複合多層膜 8 0、 8 1を構成する フィルムと同じ材質、 厚みでも、 違う材質、 厚みでも構わない。 上記フィルム層 7 7の上、 下面にはそれそれ透明電極層 7 8、 7 9が形成されている。 これによ り、 上下 2つの複合多層膜 8 0と 8 1とを別々に電圧印加できるため、 駆動電圧 が約半分に低減できる。 上述した例では、 透明電極層を有するフィルム層 7 7を 中間部に 1層挟んだが、 複数層挟めば、 更に駆動電圧が低減でき、 耐圧の低い半 導体 I Cドライバ一による表示駆動も可能となる事は明らかである。 図中、 電極 7 5と 7 8に接続された構成、 電極 7 6と 7 9に接続された構成は駆動回路を示 す (後述の実施例でも同様) 。 この 2つの駆動回路は 2つの複合多層膜を別々に 駆動してもよい。別々に駆動すれば、反射強度が 2段階に制御できる。また、別々 に駆動される複合多層膜をより多く設けてもよく、 この場合には反射強度がより 多レベルとなり階調表示が可能となる。 本実施例のように、 複合多層膜の間に電 極を有する中間フィルムを介在する構成は、 前述の全ての実施例と組み合わせる ことができる。
このように、 本発明では、 フィルム層を表示機能材の一つとして用いるため、 容易に中間部に電極層が挿入でき、 低電圧駆動が可能になるとともに、 以下の実 施の形態に示すように、 反射型カラー表示装置も容易に実現できる。
(第 7の実施例)
第 8図は、 本発明による第 7の実施例で、 明るい反射型カラー表示装置の具体 例である。 9 1、 9 2は上、 下基板で互に対向する面上に透明電極膜 1 0 8、 1 0 9をそれそれ有している。 9 3は黒色の光吸収部、 9 4は光散乱部である。 9 5は複合多層膜で、 前述した様に液晶層とフィルム層との複合多層膜からなる。 又、 該液晶層及び該フィルム層の各々の屈折率と層厚は、 前述した方法に従い、 電圧無印加時に赤色光を選択的に干渉反射し、 電圧印加時には透過するように設 定されている。 第 8図に於いては、 該複合多層膜 9 5は 3層構造のものとして図 示されているが、 実際は、 1 0層以上の複合多層膜 9 5が良好な干渉反射を得る ために好ましい。 同様に、 複合多層膜 9 6、 9 7は各々緑色、 青色を電圧無印加 時に選択的に干渉反射するように、 そして電圧印加時には透過するように、 各々 の液晶層とフィルム層の屈折率及び層厚が設定されている。 9 8、 9 9は各々上 下面に透明電極 1 0 0と 1 0 1及び 1 0 2と 1 0 3を有する中間フィルム基板で ある。 本実施の形態に於いては、 上述した通り、 赤色光選択反射層 9 5、 緑色光 選択反射層 9 6、 青色光選択反射層 9 7の 3つの複合多層膜からなる多重複合多 層膜を有し、 中間フィルム基板 9 8、 9 9を各色の複合多層膜間に挿入する事に より、 各々の複合多層膜 9 5、 9 6、 9 7を独立して電圧を印加する事が可能に なり、 赤色、 緑色、 青色を自由に表示制御できる。 第 8図に示す様に、 表示領域 1 1 0では、 赤色光選択反射層 9 5、 緑色光選択反射層 9 6、 は電圧が印加され ていないため、 それそれ色光を干渉反射し、 青色光選択反射層 9 7には電圧が印 加されていることにより、 青色光はそのまま透過し、 下部の黒色光吸収部 9 3で 吸収される。 よって、 赤色、 緑色光が反射し、 反射光 1 0 6は黄色となる事を示 している。 一方、 表示領域 1 1 1では、 赤色光選択反射層 9 5、 緑色光選択反射 層 9 6は共に電圧印加され、 それそれ、 赤及び緑色光が透過し、 黒色光吸収部 9 3で光吸収され、 青色光選択反射層 9 7では電圧無印加で青色光が干渉反射され る。 よって表示領域 1 1 1では青色を呈する。
上述した様に、 本実施例に於いては、 赤色光を選択反射する赤色複合多層膜 9 5、 緑色光を選択反射する緑色複合多層膜 9 6、 青色を選択反射する青色複合多 層膜 9 7を各々積層し、 各々の複合多層膜を挟んで、 透明電極層 9 8、 9 9を配 するため、 各色毎独立に光透過率/反射率を制御できる。 本実施の形態にて白色 表示する場合は、 3つの複合多層膜 9 5、 9 6、 9 7を共に電圧印加しない場合 であり、 赤、 青、 緑色光が共に反射して白色表示となる。 また、 黒色表示の場合 は、 3つの複合反射膜 9 5、 9 6、 9 7に電圧印加した状態であり、 この場合入 射光は透過して光吸収部 9 3に吸収されて黒色表示となる。 従って、 白色地に黒 は勿論、 白色地に赤、 青、 緑色又はそれらの混合色が自由に表現できる明るいフ ルカラー反射型表示装置が可能となる。 上述した例では、 赤、 緑、 青色に対応し た複合多層膜を用いたが、 勿論、 色の組み合わせは、 シアン、 マゼンダ、 イエロ 一等自由に選択できる。
(第 8の実施例)
第 9図は本発明の第 8の実施例で、 1 1 2、 1 2 6は内面に透明電極を有する 上、 下基板、 1 1 3は黒色の光吸収部、 1 1 4は光散乱部、 1 1 5は複合多層膜 でネマチック液晶層 1 2 3とフィルム層 1 2 4とが交互に積層された構造から構 成される。 ここでは液晶層 1 2 3は、 電圧無印加時に於いて、 液晶分子の長軸方 向を揃え、 しかもフィルム層 1 2 4の面にほぽ水平に分子軸が揃った (ホモジニ ヤス配向) 液晶層を使用している。 上述した、 液晶分子の長軸を揃え、 基板面に 水平に配向させる方法としては、 既存の液晶表示装置の製造方法として一般的な ボリイミ ド樹脂とラビング工程の組み合わせでも、 簡単に達成できるが、 本実施 の形態では後述する様にフィルム層 1 2 4を延伸した膜にすれば、 その面上の液 晶分子は長軸を延伸方向に揃えて並ぶ性質があり、 特別な配向処理をしなくとも、 上記配向をもった液品層を実現できる。 上記ネマチック液晶層では、 液晶分子の 長軸方向と短軸方向とでは屈折率が異なる。 今、 電圧無印加領域 1 1 7に於いて、 液晶分子の長軸が紙面に平行に向くように配向させた場合、 紙面に平行の入射偏 光成分と、 紙面に垂直の入射偏光成分とでは、 液晶層の屈折率が異なってくる。 本実施の形態では、 液晶分子長軸方向の屈折率 (n L c l )とフィルムの屈折率 (n F )とが一致する様に液晶材料とフィルム材料を選定する。 そのため、 電圧無印加 時においては、 入射光 1 1 8のうち、 紙面に平行な偏光成分 1 1 9は複合多層膜 1 1 5を透過し下部の黒色光吸収部 1 1 3にて吸収される。 一方、 紙面に垂直な 偏光成分 1 2 0に対しては、 液晶層 1 2 3の屈折率は n L C 2, ( n L c l > n L C 2 ) となり、 フィルム層の屈折率 (nF)とは異なる。 ここで、 フィルム層の厚み (d F)と液晶層の厚み (dし c)とを
nF-dF= (l/4+k/2) Λ (9)
Figure imgf000039_0001
(入は入射光の波長、 k, mは 0又は任意の整数)
(9)、 (9) , 式を充たす様に設定すれば、 波長 λの光に対する干渉反射の条 件を充たし、 反射光 127として反射する。 一方、 電圧印加領域 116に於いて は、 液晶層 123の液晶分子はフィルム層 124の面に対して略垂直に配向し、 入射光 125から見た液晶層 124の屈折率は、 全ての入射偏光面に対して (η LC3)となる。 ネマチック液晶の一般的な性質から、
nLC3 nLC2 · · · (10)
が成り立ち、 上記 (9) 式に従い、 波長えの入射光 125は全て反射し、 反射光
121、 122となる。
上述した干渉反射の条件は、 波長えの光に対して作用するが、 前述した様に、 液晶層厚とフィルム層厚の組み合わせを変えた複数の複合多層膜を重ねた多重複 合多層膜を複合多層膜 115の代わりに用いれば、 可視光波長域全てをカバ一す る干渉反射波長巾の広い白色背景の明るい表示装置が実現できる。
(第 9の実施例)
第 10図は、 本発明の第 9の実施例で、 130、 131はそれそれ内面に透明 電極を有する上、 下基板、 132は黒色の光吸収部、 135は光散乱部である。
133は複合多層膜で、 正の誘電異方性を持つネマチック液晶層 (以下、 本実施 の形態においては、 単にネマチック液晶層と呼ぶ) 143とフィルム 142を交 互に積み重ねた構造を有する。 134も複合多層膜で、 やはりネマチック液晶層
144とフィルム 145の積層構造から成る。
本実施の形態に於いては、 電圧無印加時には、 液晶層 143の液晶分子の長軸 方向は各フィルム 142の面にほぼ水平、 且つ紙面にほぼ平行になるようにホモ ジニヤス配向させてある。 一方、 液晶層 144では、 やはり電圧無印加時に於い ては、 液晶分子の長軸方向は各フィルム 145の面に対しては、 ほぼ水平方向で あるが、 紙面に対してはほぼ垂直の方向、 つまり上記 143の液晶層の液晶分子 長軸とは略直交する方向にホモジニヤス配向させてある。
上記ネマチック液晶層は複屈折性を有するが、 今、 液晶分子の長軸に平行な偏 光に対する屈折率を nLC1、そして該長軸に垂直な偏光に対する屈折率を r C2 とする。
更にフィルム 142、 145の屈折率は、 X軸方向の屈折率を nF1、 Y軸方向 の屈折率を nF2, (nF1≥nF2)とおく。 ここで、 X軸方向は隣接する上記ホモ ジニヤス配向を取る液晶分子の長軸方向と略一致させてある。 そこで
nF2 = nLC2 · · · (11)
nLC2≤nF1<nLC1 · · · (11)
となるようにフィルムの屈折率 nFい nF2を設定すれば入射光 141は複合多層 膜 133、 134を透過する。
なお、 前述した様に、 電圧印加時に液晶分子は上記液晶層の層内全てでフィル ム面に対して垂直に配列する事はなく、 フィルム面に近接した液晶分子は、 フィ ルム面に水平な方向成分を持つ配列を取る。 従って、 この時の各液晶層の平均的 な屈折率は r^C2とはならず、 iuC2よりも大きく、 riLC 1よりも小さな値となる。 従ってフィルムの X軸方向の屈折率 nFIは、 入射光 141に対する液晶層の電圧 印加時に於ける X軸方向の平均的な屈折率《nLC2》 と等しくした時に入射光 1 41は最も強く透過する。
次に電圧無印加時の反射条件として、
nLC]-dLC= (l/4+m/2) 入 · · · (12)
nF1-dF= (l/4+k/2) Λ · · · (12) '
((! は液晶層丄 、 144の厚み、 dFはフィルム層 142、 145の厚み、 入は入射光 138、 141の波長とする、 k, mは 0又は任意の整数)
(11) 、 (11) ' 、 (12) 、 ( 12) , 式を充たす様に液晶層 143、 1 44の屈折率と厚み、 及びフィルム層 142、 145の屈折率と厚みを設定すれ ば、 前述した説明に従い、 第 10図に示す通り、 電圧無印加領域 136に於いて は、 波長えの入射光 138は、 紙面に平行な偏光成分は複合多層膜 133で反射 (反射光 139) される。 そして、 入射光 138の紙面に垂直な偏光成分は、 複 合多層膜 133では (11)式を充たす為透過し、 複合多層膜 134に到達し、 そこで (12) 、 ( 12) ' 式より、 干渉反射を受け反射され、 反射光 140と なる。 従って、 波長人の入射光 138は電圧無印加領域 136では全て反射され る。 ここでも前述した通り、 複合多層膜 133、 134の層数を増やし、 尚且つ 各層厚の組み合わせの異なる複数の複合多層膜を重ね合わせた多重複合多層膜と すれば、 反射光波長域を拡大し、 白色反射光を得る事が可能である。
一方、 電圧印加領域 137に於いては、 液晶層 143、 144を構成する液晶 分子が正の誘電異方性を持つネマチック液晶材であるため、 フィルム 142、 1 45の各面に対し、 略垂直に該液晶分子の長軸を揃える。 従って全ての偏光に対 し、 (11) 、 ( 11 ) ' 式を充たし、 入射光 141は複合多層膜 133及び 1 34を透過し、 下部の黒色光吸収部 132にて光吸収される。 勿論、 この透過率 を上げるためには、 全ての可視光波長域に対しても (11) 、 (11) , 式を充 たすよう、 液晶層とフィルム層の屈折率を合わせ込む配慮が重要である。
以上の様に、 本実施例に於いては、 入射する光の全ての偏光に対して、 ほとん どを散乱反射する白色地に、 ほぼ完璧な黒色表示 (黒色地に白色表示も可能) を 表現でき、 まさに紙に黒色表示を描いたような明るい反射型表示装置が可能にな る。
又、 ^ 9の実施例で示した紙面に垂直と並行の 2つの偏光軸に対してそれそれ 干渉反射条件を充たす 2つの複合多層膜をペアにした二重複合多層膜を、 前述し た第 1乃至第 7の実施の形態に示した各複合多層膜の代わりに用いれば、 よりコ ン卜ラス卜の高い表示装置が実現できることは容易に理解できる。
第 10図に於いては、 第 6の実施の形態と同様に複合多層膜 133と 134の 中間に、 上、 下電極層 137、 138を有するフィルム 136を中間電極層とし て挿入してあるが、 これにより、 より低い電圧で表示動作をさせる事が可能にな る。
以上、 9つの実施例により本発明を説明してきたが、 本発明に用いたフィルム 材料は、 略透明で薄膜化できるフィルム材料ならば、 何でも良い。 例えば、 ポリ エチレンナフサレート樹脂、 ポリエステル樹脂、 ポリカーボネート樹脂、 セル口 ース系樹脂、 ポリエーテルサルホン系樹脂等、 種々の屈折率を持った樹脂から選 択できる。 液晶材料は、 前述した様に、 ネマチック液晶、 スメクチック液晶、 さ らにはこれらの液晶分子を含む高分子液晶、 さらにはこれらの液晶の混合物等、 電界印加により液晶分子軸の方向が変えられ、 それにより液晶層の屈折率が変化 すれば、 何でも良いが、 前述した通り、 特にディスコティック液晶は層面に平行 に配向した状態で干渉反射能力が高く、 より好ましい (ディスコティック液晶と 前述の液晶と混合してもよい) 。
更に、 前述した 9つの実施例に於いては、 そこで用いた液晶層を構成する液晶 分子は上、 下基板間の電圧印加の有無により、 該分子長軸は水平/垂直とほぼ 9 0 ° の軸方向の変位で説明した。 液晶層の電圧印加の有無による屈折率差の絶対 値が大きい程、 干渉反射の能力は高く、 複合多層膜の層数が少なくとも、 その表 示性能は高い。 し力 し、 実際には、 液晶分子全体の電圧印加有無による 9 (T の 分子軸変位は理想的で、 印加電圧にもよるが、 平均的に 8 0 ° あるいはそれ以下 の変位のケースの方が多いと推測される。 しかし、 本発明の主旨は、 前記複合多 層膜を構成する液晶層の屈折率が電圧印加によって変化すれば、 分子蚰変位が 8 0 ° あるいはそれ以下であっても、 複合多層膜の層数を増やす事により干渉反射 光強度を補えるため、 各実施の形態に示した表示性能が得られる事は明らかであ る。
また、 表示駆動の電圧については、 前述した様に、 複合多層膜の中間部に電極 を有する複数の基板を挿入し、 結果的に分割された複合多層膜にそれそれ電圧を 印加すれば、 より低い電圧で表示駆動させる事は可能であるが、 もう一つの方法 として、 フィルム層に多少なりとも導電性を付与させる事が、 より低い電圧での 表示駆動という目的を達成する上で有効な手段となる。
つまり、 通常の導電性のないフィルムを用いた場合、 液晶層全体に印加される 電圧 (V ) は、 ほぼ下記 ( 1 3 ) 式の通りとなる。
V = F / ( £ L C+ e F ) } · V 0 · · - ( 1 3 )
£ F :フィルムの誘電率 £ :液晶層の誘電率
V 0 :上、 下電極間に印加される電圧
通常、 液晶層の誘電率 (£ )は1 0〜 1 5、 フィルム層の誘電率は 3 〜 4で ある。 従って液晶層全体に印加される電圧 (V) は、 0 . 2 V 0 前後となり、 V 0 の 1 / 5前後に低減してしまう。 よって、 上述した様に、 フィルム層に多 少の導電性を付与させる事により、 V = V 0 とする事ができ、 上下電極間に印 加する電圧が殆どそのまま液晶層に印加される。 上記フィルムに導電性を付与す る方法としては、 ポリアセチレン系、 ポリパラフエ二レン系といった導電性を持 つプラスチックを前記フィルムに混入させる事により、 上記効果を実現できる。 以上、 本発明の構成について、 種々の実施例を挙げてきたが、 各実施例におい て説明された内容は、 他の実施例において適宜組み合わせて実施できることは言 うまでもない。 次に、 以上の実施例による表示装置の具体的な製造方法、 特に前 記複合多層膜の製造方法について説明する。
(第 1 0の実施例)
第 1 1図は、 上記複合多層膜の製造方法の実施例で、 1 1 0 1は液晶材料で壷 1 1 0 8内に保持されている。 1 1 0 2は第 1のローラ一で、 矢印 1 1 0 9の方 向に回転し、 液晶材 1 1 0 1を第 1のローラー面上に一様にコートしながら回転 方向に巻き上げる。 1 1 0 3は、 コートされた液晶層の厚みを一定に保つ為に設 けられた第 2のローラーで、 必要に応じ取り付ける。 1 1 0 5は前記複合多層膜 を構成する材料となるプラスチックフィルム (以下、 単にフィルムと呼ぶ) 材で、 第 1のローラ一 1 1 0 2と第 3のローラ一 1 1 0 4の接点部で液晶材 1 1 0 1が 上記フィルム 1 1 0 5の面上に均一-に塗布される。 液晶層の膜厚の制御は、 第 1 のローラ一 1 1 0 2と第 3のローラ一 1 1 0 4の間隙調整で可能である。 その他 やはり上記膜厚の制御法として、 液晶材の精密な粘度コントロールによっても可 能で、 その為に、 液晶層の温度管理、 又は液晶材料と溶媒の混合系による粘度管 理によっても液晶層の精密な厚みの管理は可能となる。 勿論、 溶媒系との組み合 わせでは、 液晶層をコーティングした後、 溶媒除去の工程が必要である。
次に同様な方法で、 やはり液晶屑が面上にコ一卜されたフィルム 1 1 1 0と前 述のフィルム 1 1 0 5と力 s、 第 4のローラ一 1 1 0 6と第五のローラ一 1 1 0 7 の間で重なり合わされ、 複合 4層膜が形成される。 同様の事を繰り返す事により、 1 0層以上の複合多層膜が容易に製造できる事は明らかである。
以上は、 基本的な製造方法の例であるが、 勿論、 液晶層厚の均一化、 更にはフ イルム同志の貼り合わせの際に気泡を抱き込まないように、 更にローラー数を増 やしたり、 均一熱源により加熱し液晶の粘度を下げて塗布しローラ一で張り合わ せるといった工夫をすれば、 更に目的に合った複合多層膜が得られるが、 既存の 精度の高い多層膜製造工程が参考になる事は容易に理解できる。
又、 前述した実施例に於ける複合多層膜を構成する各フィルム及び液晶層に要 求される各膜厚は、 可視光波長の 4分の 1、 つまり 0 . l / mから 0 . 2 m程 度の極薄の厚みが必要になる。 このためには第 1 1図に示した様な 0 . 2〃m以 下の厚みのフィルムを使用し、 液晶層をコートする際、 高い温度で粘度を下げた り、 溶媒に溶かして低粘性にした状態で塗布し、 極薄膜液晶層を得る事も可能で あるが、 第 1 2図に示す方法を用いれば、 更に容易に上記複合多層膜が得られる。
(第 1 1の実施例)
第 1 2図は、 上記複合多層膜の製造方法の他の実施例で、 1 2 0 1は第 1 1図 の方法で作成された比較的厚い (例えばフィルム、 液晶層単層の厚みが l〃m以 上) 複合多層膜、 上記複合多層膜は 1段目の圧延口一ラー 1 2 0 2、 及び 1 2 0 3で延伸される。 更に延伸された複合多層膜 1 2 0 6は 2段目の圧延ローラ一 1 2 0 4と 1 2 0 5とにより延伸される。 このように延伸処理を多数回行う事によ り、 当初の複合多層膜 1 2 0 1は徐々に液晶層、 フィルムの厚みを減じ、 所望の 薄層を得る事が容易に可能となる。 このようにして作成した複合多層膜を所定の サイズに切断し、 第 1図に示す様に上、 下基板 1、 2間に液晶材料とともに挟み 込み、 周辺部をエポキシ系接着剤等でシールすれば、 第 1図に示す様な複合多層 膜を有する表示装置が比較的容易に完成する。
以上本発明の各実施例に於いては、 ブラスチックフィルム (以下、 単にフィル ムと呼ぶ) 上に液晶層をコーティング塗布したものを複合多層膜の単位複合膜と し、 それを 1 0層以上ローラー等で重ねあわせる事により、 極めて容易に上記複 合多層膜を実現し、 そしてフィルムと液晶層の界面がフラッ トで、 干渉反射光強 度の高い反射型表示装置が提供できる。
又、 フィルムの厚みは自由に選択でき、 更に液晶層の厚みもロールコート法な らびに、 その際の温度又は溶剤等による液晶粘度のコントロールにより、 比較的 容易に精度よく管理できるため、 干渉反射の波長域も簡単に設定できる。 更に上 記、 フィルム層、 液晶層の厚みの管理された複合多層膜は、 層単位で厚みを変化 させる事も容易で、 広い波長帯域に於いて干渉反射条件を充たす事が可能になり、 任意の色、 そして白色の背景色を持った明るい反射型表示装置が容易に実現でき る。
又、 上記複合多層膜が可視光波長域で干渉反射条件を充たすためには、 フィル ム、 液晶層の各膜厚とも 0 . 2 zm以下の極めて薄い膜厚が要求されるが、 製造 方法として、 比較的厚い ( l〃m以上) フィルムを用い、 その上にロールコート 法等により液晶材料をコ一ティング塗布した後、 該液晶材料がコーティング塗布 されたフィルムを多層、 ローラー等で重ね合わせ、 比較的厚い複合多層膜を形成 した後に、 該複合多層膜を圧延ローラーで多段回、 延伸処理を施せば、 極めて容 易に所望の厚みを有する複合多層膜が実現できるとともに、 精密な膜厚コン卜口 —ルが可能になる。 更にこの延伸処理は、 フィルム高分子ポリマーの分子軸方向 を揃え、 それがこのフィルムの上にコーティングされた液晶層の液晶分子の配向 方向を揃える効果もあり、 液晶分子長軸の揃った屈折率の均一な液晶層が得られ るため、 干渉反射光の波長を、 精密にそして容易に制御でき、 均一で明るい反射 型表示装置が得られる。 勿論、 あらかじめ、 フィルム上にポリイミ ド等の配向材 を塗布そして乾燥し、 従来の液晶表示体製造で、 一般的な回転ブラシラビング法 によっても、 液晶分子を所望の方向に均一に配向させる事は可能である。
更に、 上記複合多層膜の一方のベース材料としてフィルムを用いているため、 透明電極も容易にフィルム上に形成でき、 該複合多層膜の中間部に電極層を持つ フィルムを挿入すれば、 より低電圧の駆動が可能になる。 又、 赤、 緑、 青色等の 選択干渉反射を示す各複合多層膜のブロックの上下に、 それそれ該電極層を持つ フィルムを挟み、 上記各ブロックを重ねて一体化すれば、 各々独立に表示駆動が でき、 反射型のフルカラー表示装置が実現できる。
次に、 複合多層膜としてにおける液晶層とフィルムの積層数と反射率との関係 等を、 以下の実施例により説明する。
(第 12の実施例)
第 13図は 450 nmの入射光の波長を干渉反射する複合多層膜の例である。 第 13図 (a) は複合多層膜の積層を模式化した図であり、 第 13図 (b) は積 層数を変えて 45 Onm付近での干渉反射率を測定した結果の図である。液晶 (液 晶分子の長軸方向の屈折率 1^= 1. 7、 短軸方向の屈折率 n2= 1. 5) を用い、 フィルムとしてポリエチレン樹脂 (屈折率 nF= l . 5) を、 第 13図 (a) に 示されるように基板間に積層した。 電圧無印加時の液晶分子の配向は基板にほぼ 水平方向とし、 配向方向を紙面に垂直方向に設定した液晶層と平行方向に設定し た液晶層とをほぼ同数になるように設けた。 また、 液晶層とフィルム層の厚みは、 45 Onmの波長に対して(3) ( 4 )式を満たすように設定した。第 13図(b) は横軸が波長、 縦軸が反射率であり、 Aは液晶層とフィルム層を合計した複合多 層膜が 21層 (奇数になるのは、 複合多層膜の両側に液晶層が配置されるため、 液晶層とフィルムの組み合わせに対して液晶層が 1層多くなることによる。 又上 記層数は前記紙面に垂直方向に配向した液晶層を有する複合多層膜及び水平方向 に配向した液晶層を有する複合多層膜の各々の層数であり、 全層数はその 2倍と なる。 ) 、 Bは同じく 41層、 Cは 61層、 Dは 81層、 Eは 101層の場合の 反射率を示す。 電圧無印加の時、 液晶層の液晶分子はフィルム面に対して平行方 向に配向し、 屈折率が 7となりフィルムの屈折率 1. 5と異なるので、 45 Onmの波長を選択的に干渉反射する。 図から明かなように、 複合多層膜は
21層以上あれば好ましく、 さらに 41層以上、 さらには 61層以上あればより 好ましい事が判る。
(第 13の実施例)
第 14図は 450 nm、 550 nm、 650 nm, 750 nmの入射光の波長 をそれそれ干渉反射する複合多層膜を更に積層した例である。 第 14図 (a) は 4つの波長に対応する複合多層膜の積層を模式化した図であり、 第 14図 (b) は積層数を変えて各波長付近での干渉反射率を測定した結果の図である。液晶 (液 晶分子の長軸方向の屈折率 = 1 . 7、 短軸方向の屈折率 n 2 = 1 . 5 ) を用 い、 フィルムとしてポリエチレン樹脂 (屈折率 n F二 1 . 5 ) を、 第 1 4図 (a ) に示されるように基板間に積層した。 電圧無印加時の液晶分子の配向は基板にほ ぼ水平方向とし、 配向方向を紙面に垂直方向に設定した液晶層と平行方向に設定 した液晶層とをほぼ同数になるように設けた。 また、 4つの波長に対応する複合 多層膜は、 液晶層とフィルム層の厚みを 4 5 0 nmの波長、 5 5 0 nmの波長、 6 5 0 nmの波長、 7 5 0 nmの波長に対してそれそれ ( 3 ) ( 4 ) 式を満たす ように設定した。 第 1 4図 (b ) は横軸が波長、 縦軸が反射率である。 各波長に 対応する 4つの複合多層膜は、 上記紙面に垂直方向に配向を設定した液晶層を含 む複合多層膜と同じく水平方向に配向を設定した液晶層を含む複合多層膜とをそ れそれ有し、 図の A〜Eは、 各波長を干渉反射する各複合多層膜において、 上記 紙面に垂直方向に配向を設定した液晶層を含む複合多層膜及び同じく水平方向に 配向を設定した液晶層を含む複合多層膜の各々の層数を示す。 従って、 総層数は A~Eの層数のほぼ 8倍となる。 Aは各波長を干涉反射する液晶層とフィルム層 を合計した複合多層膜が 2 1層 (奇数になるのは、 複合多層膜の両側に液晶層が 配置されるため、 液晶層とフィルムの組み合わせに対して液晶層が 1層多くなる ことによる。 ) 、 Bは同じく 4 1層、 Cは 6 1層、 Dは 8 1層、 Eは 1 0 1層の 場合の反射率を示す。 電圧無印加の時、 液晶層の液晶分子はほぼ水平方向に配向 し、 屈折率が 1^ = 1 . 7となりフィルムの屈折率 1 . 5と異なるので、 各波長 を選択的に干渉反射する。 図から明かなように、 各波長を千渉反射する各複合多 層膜において、 上記紙面に垂直方向に配向を設定した液晶層を含む複合多層膜及 び同じく水平方向に配向を設定した液晶層を含む複合多層膜の各々の層数は 2 1 層以上あることが好ましく、 さらに 4 1層以上、 さらには 6 1層以上あればより 好ましい事が判る。
(第 1 4の実施例)
次に、 第 1 4乃至第 2 1の実施例として、 複合多層膜のフィルムと液晶層の屈 折率及びこれらの層数と反射率との関係を種々の構造の表示装置について調べた。 第 1 5図 A乃至第 1 5図 Cおよび第 1 6図 A、 Bは、 第 1 4の実施例乃至第 2 1の実施例の表示装置における印加電圧と液晶分子の配向状態との一般的な関係 を説明するための図であって、 第 1 5図 A、 B、 C、 第 1 6図 A、 Bは、 それそ れ液晶層に 0 . 5 V、 1 . 0 V、 1 . 5 V、 2 . 0 V、 2 . 5 Vを印加したとき の液晶の配向状態を模式的に示している。 第 1 4の実施例乃至第 2 1の実施例に おいては、 液晶層に使用する液晶を誘電率異方性が正のネマチック液晶とし、 電 圧無印加時に液晶がフィルムまたは基板に対し水平に配向 (ホモジニヤス配向) するような構造であるとして、 表示素子の反射率のシミュレーシヨンを行った。 このような構造の表示素子においては、 第 1 5図 A〜C、 第 1 6図 A、 Bに示す ように、 印加電圧を高くしていくと、 液晶は次第に傾いてくるが、 この傾きはセ ルの厚さ方向で一様ではなく、 フィルムまたは基板に近い部分では傾きは小さく、 セルの中央部においては傾きは大きくなる。 従って、 第 1 7図に示すように、 液 晶はセル内において、 その厚さ方向に、 印加電圧に応じた屈折率分布を持つよう になる。 第 1 4乃至第 2 1の実施例においては、 液晶層はこのような屈折率分布 を持っているとして反射率をシミュレーションした。 なお、 第 1 7図の屈折率分 布は、 セル厚 0 . 1〃mのものについてのものである。
第 1 8図は、 本発明の第 1 4の実施例の表示装置の構造を説明するための図で ある。 この第 1 4の実施例の表示装置においては、 第 1 8図 Aに示すように、 波 長 4 5 0 n m、 5 5 0 nm、 6 5 0 nm、 7 5 0 n mの入射光をそれそれ干涉反 射する 4つの複合多層膜を積層している。
各波長の光を干渉反射する複合多層膜は、 第 1 8図 Bに示すように、 それそれ P波用の複合多層膜 2 0 0と S波用の複合多層膜 3 0 0とを備えている。 P波用 の複合多層膜 2 0 0においては、 フィルム 2 0 1と液晶層 2 1 1とを交互に積層 し、 各液晶層 2 1 1においては、 電圧無印加時の液晶分子の長軸の配向方向は、 フィルム 2 0 1にほぼ水平であってしかも紙面に並行であるとした。 S波用の複 合多層膜 3 0 0においては、 フィルム 3 0 1と液晶層 3 1 1とを交互に楨層し、 各液晶層 3 1 1においては、 電圧無印加時の液晶分子の長軸の配向方向は、 フィ ルム 3 0 1にほぼ水平であってしかも紙面に垂直であるとした。 各波長の光を千 渉反射する複合多層膜内においては、 P波用の複合多層膜 200のフィルム 20 1と液晶層 211の層数と S波用の複合多層膜 300のフィルム 301と液晶層 311の層数とは同じとした。 また、 各波長の光を干渉反射する複合多層膜間に おいても、 P波用の複合多層膜 200のフィルム 201と液晶層 211の層数と S波用の複合多層膜 200のフィルム 301と液晶層 311の層数とは同じとし た。 なお、 この各波長の光を干渉反射する複合多層膜の構造は、 第 15乃至第 2 0の実施例おいても、 同様である。
第 14の実施例においては、 液晶分子の長軸方向の屈折率を 1^^ = 1. 7、 同じく短軸方向の屈折率を nLC2= 1. 5とし、 フィルムの X軸方向の屈折率を nF1= 1. 7、 Y軸方向の屈折率を nF2= 1. 5とした。 (ここで X軸方向は該 フィルムに隣接する上記液晶分子の長軸方向であり、 Y軸方向は同じく短軸方向 である。 ) 4つの波長の光をそれそれ干渉反射する複合多層膜は、 液晶層とフィ ルムの厚みを 450 nmの波長、 550 nmの波長、 650 nmの波長、 750 nmの波長に対してそれそれ (3)、 (4) 式を満たすように設定した。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 19図 Aのように なり、 液晶層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧 0. 5V、 1. 0V、 1. 5V、 2. 0Vおよび 2. 5 Vの場合について、 それそれ第 19図 B、 第 20図 A、 第 20図 B、 第 21図 A、 第 21図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、各波長の光を干渉反射する各複合多層膜の層数がそれそれ 21 X 2 (A)、 41 2 (B) 、 61 x2 (C) 、 81 2 (D)および 101 x2 (E) の場 合について反射率をそれそれ求めている。 ここで、 例えば Aの場合については、 21 x2とは、 各波長の光を干涉反射する各複合多層膜内において、 P波用の複 合多層膜の層数が 21であり、 S波用の複合多層膜の層数が 21であることを示 している。 従って、 本実施例の Aの場合では、 全層数は 21 X 2 x4= 168と なる。 B、 C、 D、 Eの場合も同様である。
なお、 例えば Aの場合については、 P波用または S波用の複合多層膜の層数が 21であるとは、 P波用、 S波用それそれについて、 液晶層が 11層、 フィルム が 10層であることを示す。 このように、 液晶層とフィルムを合計した複合多層 膜が 21層 (奇数) になるのは、 複合多層膜の両端には液晶層が配置されるため、 液晶層とフィルムの組み合わせに対して液晶層が 1層多くなることによる。 B、 C、 D、 Eの場合も同様である。
電圧無印加の時、 液晶層の液晶分子はほぼ水平方向に配向し、 X軸方向では液 晶層の屈折率 (nj及びフィルムの屈折率 (nF1)とも η, - η : 1. 7とな り透過状態となる。 同様に Υ軸方向でも液晶層の屈折率 (η2) 及びフィルムの 屈折率 (nF2)とも n2 = nF2= 1. 5となり透過状態となり、 全ての入射光 (P 波、 S波) は複合多層 S莫を透過する。 電圧を印加していくと、 第 19図 Aに示し たように、 屈折率が 1. 7よりも小さくなつていくので、 各波長の光を選択的に 干涉反射するようになる。
層数を増加させると、 反射率が増加するが、 反射率は普通の紙で約 70%、 上 質紙で約 80%程度であることを考慮すれば、 各波長の光を干涉反射する各複合 多層膜内において、 P波用または S波用の複合多層膜の層数が 21あれば、 実用 上十分な反射率が得られることがわかる。
(第 15の実施例)
第 22図は、 本発明の第 15の実施例の表示装置の構造を説明するための図で ある。 この第 15の実施例の表示装置においては、 波長 450 nm、 500 nm、 550 nm、 600nm、 650 nm、 700 nm、 75 Onmの入射光をそれ それ干渉反射する Ίつの複合多層膜を積層している。 この 7つの複合多層膜のそ れそれの構造は、 第 18図 Bを参照して説明した第 14の実施例の場合と同様で ある。
本実施例においては、 液晶分子の長軸方向の屈折率 1^ = 1. 8、 短軸方向の 屈折率 n2=l. 52とし、 フィルムの屈折率を nF1= 1. 8、 nF2= 1. 52 とした。 この場合、 液晶分子の配向方向とフィルムの配置との関係は第 14の実 施例の場合と同様である。 7つの波長の光をそれそれ干渉反射する複合多層膜は、 液晶層とフィルムの厚みを 450 nmの波長、 50 Onmの波長、 550 nmの 波長、 600nm、 650 nmの波長、 700 nmの波長、 750nmの波長に 対してそれそれ (6)、 (6) ' 式を満たすように設定した。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 23図 Aのように なり、 液晶層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧 0. 5V、 1. 0V、 1. 5V、 2. 0Vおよび 2. 5 Vの場合について、 それそれ第 23図 B、 第 24図 A、 第 24図 B、 第 25図 A、 第 25図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、各波長の光を干渉反射する各複合多層膜の層数がそれそれ 11 X 2 (F)、 21 x2 (A) 、 31 x2 (G)および 41 x2 (B) の場合について反射率を それそれ求めている。 ここで、 各場合の層数の内容については、 第 14の実施例 の場合と同様である。
電圧無印加の時、 液晶層の液晶分子はほぽ水平方向に配向し、 液晶層の屈折率 (nい n2) とフィルムの屈折率 (nFい nF2)との関係は、 1^ = 11^=1. 8、 n2 = nF2= 1. 52となり P波、 S波とも屈折率の差がなく透過状態となる。 電圧を印加していくと、 第 23図 Aに示したように、 屈折率が 1. 8よりも小さ くなつていくので、 各波長を選択的に干渉反射するようになる。
本実施例では、 液晶の屈折率が長軸方向で 1. 8、 短軸方向で 1. 52であり、 第 14の実施例よりも複屈折率性が高いので、 少ない層数で高い反射率が得られ ている。 各波長の光を干渉反射する各複合多層膜内において、 P波用または S波 用の複合多層膜の層数が 11の場合でも、 実用上十分な反射率が得られており、 21層の場合には、 80%以上と上質紙以上の反射率が得られていることがわか る。
(第 16の実施例)
第 26図は、 本発明の第 16の実施例の表示装置の構造を説明するための図で ある。 この第 16の実施例の表示装置においては、 波長 400 nm、 450 nm、 500 nm、 550 nm、 600 nm、 650 nm、 700 nm、 750 nm、 800 nmの入射光をそれそれ干渉反射する 9つの複合多層膜を積層している。 この 9つの複合多層膜のそれそれの構造は、 第 18図 Bを参照して説明した第 1 4の実施例の場合と同様である。
本実施例においては、 液晶分子の長軸方向の屈折率 1. 8、 短軸方向の 屈折率 n2= l. 52とし、 フィルムの屈折率を nF1= 1. 8、 nF2=l. 52 とした。 ここで液晶分子の配列方向とフィルムの配置との関係は第 14の実施例 の場合と同様である。 9つの波長の光をそれそれ干渉反射する複合多層膜は、 液 晶層とフィルムの厚みを 400 nm、 450 nmの波長、 500 nmの波長、 5 50nmの波長、 600 nm、 650 nmの波長、 700 nmの波長、 750 η mの波長、 800 nmの波長に対してそれそれ (3) 、 (4) 式を満たすように 設定した。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 27図 Aのように なり、 液晶層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧 0. 5V、 1. 0V、 1. 5V、 2. 0Vおよび 2. 5 Vの場合について、 それそれ第 27図 B、 第 28図 A、 第 28図 B、 第 29図 A、 第 29図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、 各波長の光を干渉反射する各複合多層膜の層数がそれそれ 5 X 2 (H) 、 1 1 x2 (F) 、 15 x2 (I) および 21 x2 (A)の場合について反射率を それそれ求めている。 ここで、 各場合の層数の内容については、 第 14の実施例 の場合と同様である。
電圧無印加の時、 液晶層の屈折率 (n^ n2) とフィルムの屈折率 (nFい ηκ 2)との関係は n, = nF1= 1. 8、 n2 = nF2= 1. 52となり P波、 S波とも屈 折率の差がなく透過状態となる。 電圧を印加していくと、 第 27図 Aに示したよ うに、 折率が 1. 8よりも小さくなつていくので、 各波長を選択的に干渉反射 するようになる。
(第 17の実施例)
第 30図は、 本発明の第 17の実施例の表示装置の構造を説明するための図で ある。 この第 17の実施例の表示装置においては、 波長 450 nm、 550 nm、 650nm、 750 nmの入射光をそれそれ干渉反射する 4つの複合多層膜を積 層している。 この 4つの複合多層膜のそれそれの構造は、 第 18図 Bを参照して 説明した第 14の実施例の場合と同様である。
本実施例においては、 液晶分子の長軸方向の屈折率 r^- 1. 8、 短軸方向の 屈折率 η2= 1 · 52とし、 フィルムの屈折率を nF1= 1. 8、 nK2= 1. 52 とした。 この場合、 液晶分子の配向方向とフィルムの配置との関係は第 14の実 施例の場合と同様である。 4つの波長の光をそれそれ干渉反射する複合多層膜は、 液晶層とフィルムの厚みを 450 nmの波長、 550 nmの波長、 650 nmの 波長、 750 nmの波長に対してそれそれ (3) 、 (4) 式を満たすように設定 した。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 31図 Aのように なり、 液晶層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧 0. 5V、 1. 0V、 1. 5V、 2. 0Vおよび 2. 5 Vの場合について、 それそれ第 31図 B、 第 32図 A、 第 32図 B、 第 33図 A、 第 33図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、 各波長の光を干渉反射する各複合多層膜の層数がそれそれ 5 X 2 (H) 、 1 1 x 2 (F) 、 15 x 2 (I) および 21 x 2 (A) の場合について反射率を それぞれ求めている。 ここで、 各場合の層数の内容については、 第 14の実施例 の場合と同様である。
電圧無印加の時、 液晶層の屈折率 (n^ n2) とフィルムの屈折率 (nF1、nF 2)との関係は、 !^ニ!! ニ丄 . 8、 n2 = nF2二 1. 52となり P波、 S波とも 屈折率の差がなく透過状態となる。 電圧を印加していくと、 第 31図 Aに示した ように、 屈折率が 1. 8よりも小さくなつていくので、 各波長を選択的に干渉反 射するようになる。
(第 18の実施例)
第 34図は、 本発明の第 18の実施例の表示装置の構造を説明するための図で ある。 この第 18の実施例の表示装置においては、 波長 450 nm、 500 nm、 550 nm、 600 nm、 650 nm、 700 nm、 750 nmの入射光をそれ それ干渉反射する 7つの複合多層膜を積層している。 この 7つの複合多層膜のそ れそれの構造は、 第 18図 Bを参照して説明した第 14の実施例の場合と同様で める。
本実施例においては、 液晶分子の長軸方向の屈折率 r^- 1. 8、 短軸方向の 屈折率 n2=l. 52とし、 フィルムの屈折率を nF1 = nF2= 1. 52とした。 7つの波長の光をそれそれ干渉反射する複合多層膜は、 液晶層とフィルムの厚み を 450 nmの波長、 500 nmの波長、 550 nmの波長、 600 nm、 65 Onmの波長、 700 nmの波長、 750 nmの波長に対してそれそれ ( 3 )、 (4) 式を満たすように設定した。 本実施例のように屈折率が 1. 5程度のフィ ルムは種類が多く、 例えば、 ポリエチレン、 ポリエステル、 ポリカーボネート等 が好ましく用いれられる。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 35図 Aのように なり、 液品層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧◦. 5V、 1. OV、 1. 5V、 2. OVおよび 2. 5 Vの場合について、 それそれ第 35図 B、 第 36図 A、 第 36図 B、 第 37図 A、 第 37図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、 各波長の光を干渉反射する各複合多層膜の層数がそれそれ 11 X 2 (F)、 21 x2 (A) , 31 x2 (G) 、 41 x2 (B) および 51 x2 (J) の場合 について反射率をそれそれ求めている。 ここで、 各場合の層数の内容については、 第 14の実施例の場合と同様である。
電圧無印加の時、 液晶層の液晶分子はほぼ水平方向に配向し、 屈折率が nl= 1. 8となるが、 フィルムの屈折率は 1. 52であるので、 各波長で干渉反射さ れる。 電圧を印加していくと、 第 35図 Aに示したように、 屈折率が 1. 8より も小さくなつていくので、 各波長の干渉反射の程度が次第減少し、 透過率が上昇 してくる力 s、 電圧を 2. 0V、 2. 5 Vとかけていっても、 反射率は 0にはなら ない。 これは、 第 35図 Aに示すように、 電圧を印加した場合の液晶の屈折率は、 液晶の短軸方向の屈折率に等しくはならないからである。
(第 19の実施例)
第 38図は、 本発明の第 19の実施例の表示装置の構造を説明するための図で ある。 この第 19の実施例の表示装置においては、 波長 450 nm、 500 nm、 550 nm、 600 nm、 650 nm、 700 nm、 75 Onmの入射光をそれ それ干涉反射する 7つの複合多層膜を積層している。 この 7つの複合多層膜のそ れそれの構造は、 第 18図 Bを参照して説明した第 14の実施例の場合と同様で ある。
本実施例においては、 液晶分子の長軸方向の屈折率
Figure imgf000055_0001
1. 8、 短軸方向の 屈折率 n2= l. 52とし、 フィルムの屈折率を nF1 = nF2= 1. 58とした。 7つの波長の光をそれそれ干渉反射する複合多層膜は、 液晶層とフィルムの厚み を 45 Onmの波長、 500 nmの波長、 55 Onmの波長、 600 nm、 65 Onmの波長、 70 Onmの波長、 750 nmの波長に対してそれそれ ( 3 ) 、 (4) 式を満たすように設定した。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 39図 Aのように なり、 液晶層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧 0. 5V、 1. 0V、 1. 5V、 2. OVおよび 2. 5 Vの場合について、 それそれ第 39図 B、 第 40図 A、 第 40図 B、 第 41図 A、 第 41図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、 各波長を干渉する各複合多層膜の層数がそれそれ 1 1 x 2 (F) 、 2 1 X 2 (A) 、 31 x 2 (G) 、 41 x 2 (B) および 5 1 x 2 (J) の場合につ いて反射率をそれそれ求めている。 ここで、 各場合の層数の内容については、 第 14の実施例の場合と同様である。
電圧無印加の時、 液晶層の液晶分子はほぼ水平方向に配向し、 屈折率が r^ 1. 8となる力;、 フィルムの屈折率は 1. 58であるので、 各波長で干渉反射さ れる。 電圧を印加していくと、 第 39図 Aに示したように、 屈折率が 1. 8より も小さくなつていくので、 各波長の干渉反射の程度が次第減少し、 透過率が上昇 する。 そして、 電圧を 2. 5Vと印加した場合に、 反射率はほぼ 0となる。 第 3 9図 Aに示すように、 電圧を 2. 5V印加した場合には、 液晶層の平均的な屈折 率はフィルムの屈折率の 1. 58にほほ'等しくなるからである。
(第 20の実施例)
第 42図は、 本発明の第 20の実施例の表示装置の構造を説明するための図で ある。 この第 20の実施例の表示装置においては、 波長 450 nm、 500 nm、 550 nm、 600 nra, 650 nm、 700 nm、 750 nmの入射光をそれ それ干渉反射する 7つの複合多層膜を積層している。 この 7つの複合多層膜のそ れそれの構造は、 第 18図 Bを参照して説明した第 20の実施例の場合と同様で ある。
本実施例においては、 液晶分子の長軸方向の屈折率 n,= 1. 8、 短軸方向の 屈折率 n2二 1. 52とし、 フィルムの屈折率を nF1 = nF2= 1. 6とした。 7 つの波長の光をそれそれ干渉反射する複合多層膜は、 液晶層とフィルムの厚みを 450 nmの波長、 500 nmの波長、 550 nmの波 £、 600 nm, 650 nmの波長、 700 nmの波長、 750 nmの波長に対してそれぞれ( 3 )、 (4) 式を満たすように設定した。
電圧を印加した場合のセル内の厚さ方向の屈折率分布は、 第 43図 Aのように なり、 液晶層はこのような屈折率分布を持つとして表示装置の反射率を求め、 印 加電圧 0. 5V、 1. 0V、 1. 5V、 2. 0Vおよび 2. 5 Vの場合について、 それぞれ第 43図 B、 第 44図 A、 第 44図 B、 第 45図 A、 第 45図 Bに示し た。
これらの図においては、 横軸が波長、 縦軸が反射率である。 これらの各図にお いては、 各波長を干渉反射する各複合多層膜の層数がそれぞれ 1 1 X 2 ) 、 21 2 (A) 、 31 X 2 (G) 、 41 2 (B) および 5 1 x 2 (J) の場合 について反射率をそれそれ求めている。 ここで、 各場合の屑数の内容については、 第 14の実施例の場合と同様である。
電圧無印加の時、 液晶層の液晶分子はほぼ水平方向に配向し、 屈折率が
1. 8となるが、 フィルムの屈折率は 1. 6であるので、 各波長で干渉反射され る。 電圧を印加していくと、 第 43図 Aに示したように、 屈折率が 1. 8よりも 小さくなつていくので、 各波長の干渉反射の程度が次第減少し、 透過率が上昇す る。 そして、 印加電圧を 2. 0Vとした場合に、 反射率はほぼ 0となり、 印加電 圧をさらに増加させて、 2, 5Vとすると、 反射率は逆に増加する。 第 43図 A に示すように、 電圧を 2. 0V印加した場合には、 液晶層の平均的な屈折率はフ イルムの屈折率の 1. 6にほぼ等しくなるから反射率がほぼ 0となり、 電圧を 2. 5 V印加した場合には、 液晶層の平均的な屈折率はフィルムの屈折率 1. 6より も小さくなるからまた反射率が増加している。 なお、 本実施例では、 第 19の実 例の場合よりもフィルムの屈折率を液晶の長軸方向の屈折率に近づけているので、 駆動電圧を下げることができる。
このように、 フィルムの屈折率を印加電圧によってきまる液晶の平均的な屈折 率にほぽ等しくすれば、 その印加電圧での反射率を小さくすることができる。 (第 21の実施例)
第 46図は、 本発明の第 21の実施例の表示装置の構造を説明するための図で ある。 この第 2 1の実施例の表示装置においては、 液晶層およびフィルムからな る複合多層膜を、 隣接する液晶層およびフィルムの問では、 (3) 、 (4) 式を ほぼ成立させながら、 干涉反射する波長を 450 nmから 750 nmまで連続的 変化させて表示装置を構成した。 なお、 各波長の光を干渉反射する複合多層膜は、 それそれ P波用の複合多層膜と S波用の複合多層膜を備えており、 P波用の複合 多層膜の液晶層においては、 電圧無印加時の液晶分子の長軸の配向方向は、 フィ ルムにほぼ水平であってしかも紙面に並行であるとし、 S波用の複合多層膜の液 晶層においては、 電圧無印加時の液晶分子の長軸の配向方向は、 フィルムにほぼ 水平であってしかも紙面に垂直であるとした。 各波長の光を干渉反射する複合多 層膜内においては、 P波用の複合多層膜のフィルムと液晶層の層数と S波用の複 合多層膜のフィルムと液晶層の層数とは同じとした。
本実施例においては、 液晶分子の長軸方向の屈折率 n,、 短軸方向の屈折率 n2 をそれぞれ、
Figure imgf000057_0001
1. 6/1. 5、 1. 55/1. 4、 1. 7/1. 5、 1. 15/1. 3、 とし、 それそれの表示装置の電圧印加時の反射率分布を第 4 7図 A、 47B、 48 As 48 Bにそれそれ示した。 なお、 フィルムはいづれも 複屈折性を有するフィルムを用い、 X軸方向の屈折率は隣接する液晶分子の長軸 方向の屈折率と等しくし、 Y軸方向の屈折率はやはり隣接する液晶分子の短軸方 向の屈折率と等しくなるように設定している。 これらの図においては、 横軸が波 長、 縦軸が反射率である。 これらの各図においては、 450 nmから 750 nm までの光を干渉反射する複合多層膜における液晶層とフィルムの全層数がそれそ れ 51 x2 (a) 、 101 2 (b) 、 151 x2 (c) 、 201 2 (d) 、 251 2 (e) 、 301x2 (f) 、 351x2 (g) 、 401 x2 (h) 、 451 2 ( i) および 501x2 ( j) の各場合について反射率をそれそれ求 めている。 ここで、 例えば aの場合、 51x2とは、 P波用の複合多層膜の層数 が 51であり、 S波用の複合多層膜の層数が 51であることを示している。 従つ て、 本実施例の場合では、 全層数は 51 X 2 = 102となる。 b乃至 jの場合も 同様である。
液晶の複屈折率性(二長軸方向の屈折率(n^ nLC1)Z短軸方向の屈折率(n 2、 nLC2) ) が大きい程、 また、 層数が多い程、 反射率が高くなつている。
第 49図には、 この複屈折率性をパラメ一夕として、 全層数と反射率との関係 を示している。 これによれば、 複屈折性が 1. 1以上で、 全層数が 100以上あ れば、 従来の T N液晶の反射率よりも高い反射率が得られることがわかる。
なお、 上記第 14乃至第 21の実施例においては、 電圧無印加時に液晶がフィ ルムまたは基板に対し水平に配向 (ホモジニヤス配向) するような構造であると してシミュレーションを行ったが、 電圧無印加時に液晶がフィルムまたは基板に 対しほぼ垂直に配向 (ホメオト口ビック配向) するような構造であっても、 その 原理は同じである。 ただ、 この場合には、 フィルムの屈折率が液晶の長軸方向の 屈折率に近い場合には、 電圧無印加で光反射、 電圧印加で光透過となり、 フィル ムの屈折率が液晶の短軸方向の屈折率に近い場合には、 電圧無印加で光透過、 電 圧印加で光反射となる。
以上、 説明した様に、 本発明にかかわる表示装置に於いては、 偏光板を使わず、 明るい表示装置が可能となり、 特に反射型表示装置として従来の液晶表示装置で は得られなかった明るい白/黒表示、 更には、 明るい反射型カラー表示装置が可 能となる。 又、 液晶をコ一ティングしたフィルム層を多層重ね合わせ、 更にそれ を延伸処理する事も可能で、 それにより所望の厚みを持った複合多層膜を容易に 作成でき、 比較的容易に上記明るい反射型表示装置が得られる。
〔産業上の利用の可能性〕
本発明は、 偏光板を使わず、 明るい表示を可能とする反射型表示装置を実現で き、 その表示色も白/黒表示、 更にはカラー表示が可能となる。 本発明の表示装 置は、 微少電力で動作する表示装置として、 ウォッチ、 電卓、 セルラー、 小型携 帯機器、 各種家庭電器製品等の情報伝達媒体などに用いることができる。

Claims

求 の 範 囲
1 . 一対の基板間にフィルムと液晶層とを交互に複数回積層した梭合多層膜を 挟持し、 前記複合多層膜に電圧を印加して該複合多層膜における光反射率を制御 することを特徴とする表口示装置。
2 . —方の前記基板の外側に光散乱手段を配置し、 他方の前記基板の外側に光 吸収手段を具備したことを特徴とする請求項 1記載の表示装置。
3 . 前記液晶層はネマチック液晶、 もしくはスメクチック液晶、 もしくはネマ チック液晶、 もしくはネマチック高分子液晶、 もしくはスメクチック高分子液晶、 もしくはそれらの混合物からなることを特徴とする諳求項 1又は 2記載の表示装 置。
4 . 前記液晶層はディスコティック液晶、 もしくはディスコティック液晶とネ マチック液晶との混合物からなることを特徴とする請求項 1又は 2記載の表示装
5 . 前記液晶層はネマチック液晶分子からなり、 且つ該液晶分子の長軸は、 電 圧無印加時に前記基板又は前記フィルムに対しほぼ水平方向に配列させてなるこ とを特徴とする 求項 1又は 2記載の表示装置。
6 . 前記液晶層はネマチック液晶分子からなり、 且つ該液晶分子の長軸は、 電 圧無印加時に前記基板又は前記フィルムに対しほぼ垂直方向に配列させてなるこ とを特徴とする請求項 1又は 2記載の表示装置。
7 . 前記光吸収手段は、 前記複合多層膜を透過する任意の波長帯域もしくは可 視光領域の波長帯域の光を吸収することを特徴とする請求項 2記載の表示装置。
8 . 内面に電極を有する一対の基板間にフィルムと液晶層とを交互に複数回積 層した複合多層膜を挟持し、 該複合多層膜の中間部に、 両面に電極を有する中間 基板を一層もしくは複数層介在させ、 一方の前記基板の外側に光散乱手段、 他方 の前記基板の外側に光吸収手段を配置してなることを特徴とする表示装置。
9 . 電圧無印加時に、 前記複合多層膜が、 入射する可視光領域の少なくとも一 部の波長の光を反射するように、 前記液晶層及び前記フィルムの層厚を設定した ことを特徴とする請求項 1乃至 8のいずれかに記載の表示装置。
1 0 . 電圧印加時に、 前記複合多層膜が、 入射する可視光領域の少なくとも一 部の波長の光を反射するように、 前記液晶層及び前記フィルムの層厚を設定した ことをを特徴とする請求項 1乃至 8のいずれかに記載の表示装置。
1 1 . 前記液晶層の液晶分子の長軸及び短軸方向の屈折率のうち、 少なくとも 一つの屈折率を前記フィルムの屈折率と略一致させたことを特徴とする請求項 1 乃至 8のいずれかに記載の表示装置。
1 2 . それぞれの複合多層膜内では前記フィルムの層厚と前記液晶層の層厚を それそれ同一にし且つ異なる複合多層膜間では前記液晶層及び前記フィルムの層 厚を互いに異ならせた複数の前記複合多層膜を積層し、 入射光の複数の波長を反 射するようにしたことを特徴とする請求項 9、 1 0又は 1 1記載の表示装置。
1 3 . それぞれの複合多層膜内では前記フィルムの層厚と前記液晶層の層厚を それそれ同一にし且つ異なる複合多層膜間では前記液晶層及び前記フィルムの層 厚を互いに異ならせた複数の前記複合多層膜を積層し、 前記複数の複合多層膜を 赤色光、 緑色光、 青色光を反射するように、 前記液晶層及び前記フィルムの層厚 が設定されてなることを特徴とする請求項 9、 1 0又は 1 1記載の表示装置。
1 4 . 前記各複合多層膜毎に独立に電圧印加する電極を配置したことを特徴と する請求項 1 2又は 1 3記載の表示装置。
1 5 . 前記液晶層はネマチック液晶分子からなり、 該ネマチック液品分了-の略 長軸方向、 もしくは該長軸方向と略直交する方向の偏光成分の光を、 反射するよ うに設定された複合多層膜を、 少なくとも含むことを特徴とする請求項 1乃至 1 4のいずれかに記載の表示装置。
1 6 . 前記フィルムは光学的に略一軸性を持ったフィルム、 又は延伸させたフ イルムであることを特徴とする請求項 1 5記載の衷示装置。
1 7 . 前記複合多層膜を 2つのブロックに分割し、第 1のブロックの液晶層の 液晶分子長軸方向と第 2のブロックの液晶層の液晶分子長軸方向とをほぼ直交さ せ、 前記第 1及び第 2のブロックを積層した複合多層膜を、 少なくとも有したこ とを特徴とする請求項 1 5又は 1 6記載の表示装置。
1 8 . 前記第 1及び第 2のブロックに独立に電圧印加する電極を配置したこと を特徴とする請求項 1 7記載の表示装置。
1 9 . 請求項 1乃至 1 8記載のいずれかに記載の表示装置において、 前記フィ ルム面の少なくとも一面に前記液晶層の材料を塗布し、 前記液晶材料が塗布され たフィルムを、 複数層ローラ一で重ね合わせ、 一体化させて前記複合多層膜を形 成したことを特徴とする表示装置の製造方法。
2 0 . 前記ローラーで重ね合わせる際に、 定められた温度に加熱して、 前記液 晶層の粘度を下げた状態で、 一体化させたことを特徴とする請求項 1 9記載の表 示装置の製造方法。
2 1 . 前記フィルムに予め一軸延伸処理を施し、 液晶分子を配向させる配向機 能を持たせておいたことを特徴とする請求項 1 9記載の表示装置。
2 2 . 請求項 1乃至 2 1のいずれか記載の表 7 装置において、 前記フィルム面 上に前記液晶層の材料を塗布し、 前記液晶材料が塗布されたフィルムを、 複数層 ローラーで重ね合わせ、 一体化させた後、 更に圧延ローラーで延伸処理を施し、 フィルムの厚みと液晶層の厚みとを、 所定の値に合わせ込むことにより前記複合 多層膜を形成したことを特徴とするの表示装置の製造方法。
2 3 . 前記フィルムに導電性を付与させたことを特徴とする請求項 1乃至 1 8 のいずれかに記載の表示装置。
2 4 . 前記複合多層膜は、 前記液晶層と前記フィルムを少なくとも 1 0層以上 積層して構成することを特徴とする請求項 1乃至 1 8のいずれかに記載の表示装 置。
2 5 . 前記複合多層膜は、 前記液晶層と前記フィルムを少なくとも 2 1層以上 積層して構成することを特徴とする請求項 1乃至 1 8のいずれかに記載の表示装 置。
2 6 . フィルムと液晶層とが交互に積層された複合多層膜を備え、 前記複合多 層膜に電圧を印加して前記複合多層膜における光反射率を制御する表示装置であ つて、 前記液晶層に使用される液晶の所定の波長 (え n ) の光に対する長軸方向 の屈折率 n L C 1 U n )および短軸方向の屈折率 n L C 2 U n )と、 前記フィルムの前記 所定の波長 (人 n)の光に対する前記フィルム面内の互いに直交する X軸方向と Y軸方向のそれそれの屈折率 nF1 n)および nF2 αη)とを、 前記複合多層膜の 前記フイルムと液晶層のうちの少なくとも隣り合う一組のフイルムと液晶層との 間において、 下記 〔1〕 および 〔2〕 の条件
C 1 (λπ) ≤= N F 1 η)ヽ ヌ ILC 1 (λη) ^ N F i η)
〔2〕 nLC2 (Λη) nF2 n)でめつ nLci "n) >nLC2 "n)
n F 1 (An) > n F2 (Λη)
を満たすようにしたことを特徴とする表示装置。
27. 前記 nF1 (An)と、 nLC2 "n)と、 前記液晶層の厚み dLCと、 前記フィル ムの厚み d Fとを、 前記少なくとも隣り合う一組のフィルムと液晶層との間にお いて、 下記 〔3〕 および 〔4〕 の条件
〔3〕 nF1 Un) -dF = (l/4 + k/2) ' 人 n
〔4〕 n LC2 (Λη) • dLC≤ ( l/4+m/2) ·え n
又は nLC2 (λη) · dLC= ( l/4+m/2) - λη
(ここで、 k mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする請求項 26記載 の表示装置。
28. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくと も前記フィルム近傍において前記フィルムに対しほぼ水平方向かつ前記 X軸方向 に配向するようにし、
前記複合多層膜が電圧無印加時に光透過状態となり電圧印加時に光反射状態と なるようにしたことを特徴とする請求項 26または 27記載の表示装置。
9. 刖 ΰ己 nLCI "n) nLC2 ( nF 1 (λη)および nF2 "n)を、 前記少な くとも隣り合う一組のフィルムと液晶層との間において、 下記〔5〕および〔6〕 の条件
〔 Π LCn) ^ n F 1 "n)
C D -J n LC2 n) n F 2 "n)
を満たすようにしたことを特徴とする請求項 26乃至 28のいずれかに記載の
30. 前記液晶が電圧無印加時に前記フィルムに対してプレチル卜角をほとん ど有さないで配向していることを特徴とする請求項 28または 29記載の表示装 置。
31 · 前記 nLC1 "n)および nF1 Un)を、 前記少なくとも隣り合う一組のフィ ルムと液晶層との間において、 下記 〔7〕 の条件
〔7〕 ≥ 0. 96 • η Lc [ (λη)
を満たすようにしたことを特徴とする請求項 26乃至 28のいずれかに記載の
32. 前記液晶が電圧無印加時に前記フィルムに対して所定のプレチルト角を もって配向していることを特徴とする請求項 28または 31記載の表示装置。 33. 前記 nF1Ul を、電圧無印加時における前記液晶層の前記所定の波長(入 n)の光に対する前記 X軸方向の平均的な屈折率とほぼ等しくし、 且つ前記 nF2n)を、 電圧無印加時における前記液晶層の前記所定の波長 (人 n)の光に対す る前記 Y軸方向の平均的な屈折率とほぼ等しくしたことを特徴とする請求項 28 乃至 32のいずれかに記載の表示装置。
34. 前記 nF1 "n) と、 nLC】 (え と、 nLC2 "n)と、 前記液品層の厚み dL cと、 前記フィルムの厚み dF とを、 前記少なくとも隣り合う一組のフィルムと 液晶層との問において、 下記 〔8〕 および 〔9〕 の条件
〔8〕 nK1 Un) -dF = ( l/4+k/2) '人 n 、
〔9〕 nし C2 (λη) • dLC≤ ( 1/4+Π1/2) · λη
= (nLC2 (An) +0. 6 · ( Π LC J (Λη) ~ Π LC 2 (An) )} · ^ LC
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする請求項 28乃至 33のいずれかに記載の表示装置。
35. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくと も前記液晶層の前記積層方向での中央部付近において、 前記フィルムに対しほぽ 垂直方向に配向するようにし、 前記複合多層膜が電圧印加時に光透過状態となり電圧無印加時に光反射状態と なるようにしたことを特徴とする請求項 26または 27記載の表示装置。
36. 前記 nLC1 (ληい nLC2 n)および nF1 Un)を、 前記少なくとも隣り合 う一組のフィルムと液晶層との間において、 下記 〔1 0〕 の条件
10j nLC(Λη) > nF{λη)
= n LC 1 (λη) ~ 0. Ο · ( Γ1 LC J (λη) nLC2 (λη) ) を満たすようにしたことを特徴とする請求項 35記載の表示装置。
37. 前記 nF 1 (λη)を、 電圧印加時における前記液晶層の前記所定の波長の光 に対する前記 X軸方向の平均的な屈折率とほぼ等しくしたことを特徴とする請求 項 35または 36記載の表示装置。
38. 前記 nF1 η)と、 nLC2 (λη)と、 前記液晶層の厚み dLCと、 前記フィル ムの厚み d Fとを、 前記少なくとも隣り合う一組のフィルムと液晶層との間にお いて、 下記 〔1 1〕 および 〔12〕 の条件
〔1 1〕 nF1 Un) -dF = ( l/4+k/2) · λη、
〔12〕 nLC2 Un) - dLC= ( l/4+m/2) - λη
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする ^求項 35乃至 37のいずれかに記載の表示装置。
39. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィ ルム近傍において、 前記フィルムに対してほぽ垂直方向に配向していることを特 徴とする請求項 35乃至 38のいずれかに記載の表示装置。
40. 前記 nLC2 (λη)および dLCを、 前記少なくとも隣り合う一組のフィルム と液晶層との間において、 下記 〔 13〕 および 〔14〕 の条件
〔13〕 nF1 Un) -dK = ( l/4 + k/2) - λη ,
〔14〕 ηし C2 (Λη) • dLC< ( l/4+m/2) · λη
= 1 · 上 J nLC2 (え n) ' dLC
(ここで、 k、 mは 0または整数である。 )
を満たすようにしたことを特徴とする請求項 35乃至 37のいずれかに記載の 表示装置。
41. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィ ルム近傍において、 前記フィルムに対して垂直方向から所定の角度傾いて配向し ていることを特徴とする請求項 35、 36、 37または 40記載の表示装置。 42. フィルムと液晶層とが交互に積層された複合多層膜を備え、 前記複合多 層膜に電圧を印加して前記複合多層膜における光反射率を制御する表示装置であ つて、
前記液晶層に使用される液晶の所定の波長 (人 n) の光に対する長軸方向の屈 折率 nし C1 "n) および短軸方向の屈折率 nLC2n) と、 前記フィルムの前記所 定の波長 (人 n) の光に対する前記フィルム面内の互いに直交する X軸方向と Y 軸方向のそれそれの屈折率 nF1 n)および nF2 Un)とを、 前記複合多層膜の前 記フィルムと液晶層のうちの少なくとも隣り合う一組のフィルムと液晶層との間 において、 下記 〔15〕 および 〔16〕 の条件
l d〕 nF i (人 n)
Figure imgf000066_0001
tAn) ヽ
16 Π LC 2 (An) ^ n F 2 (Λη) つ 、 Γ1 L c [ (え") ノ Γ1し C 2 (An)
を満たすようにしたことを特徴とする表示装置。
43. 前記 nF1 (人 n)と、 nLC1 (λΙ))と、 前記液晶層の厚み dLCと、 前記フィル ムの厚み d Fとを、 前記少なくとも隣り合う一組のフィルムと液晶層との間にお いて、 下記 〔17〕 および 〔18〕 の条件
〔17〕 nF1 Un) -dF = ( l/4 + k/2) · λη 、
〔18〕 n LC I (Λη) • dし c ≥ ( l/4+m/2) ·入 n、
又は nLC1 "n) · dLC ( l/4+m/2) - λη (ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする請求頃 42記載 の表示装置。
44. 前記液晶層に使用される液品分子の長軸が、 電圧無印加時に、 少なくと も前記フィルム近傍において前記フィルムに対しほぼ水平方向かつ前記 X軸方向 に配向するようにし、 前記複合多層膜が電圧印加時に光透過状態となり電圧無印加時に光反射状態と なるようにしたことを特徴とする請求項 42または 43記載の表示装置。
45. 前記 nLC1 (ln)、 nLC2 (λη)および nF1 (λη)を、 前記少なくとも隣り合 う一組のフィルムと液晶層との間において、 下記 〔19〕 の条件
19 nLC2 (An) n F 1 (λη)
= n LC2 (λη) + 0. 6 (nLC ! (λη)― nLC2 (Λη) ) を満たすようにしたことを特徴とする請求項 44記載の表示装置。
46. 前記 nF1 n)を、 電圧印加時における前記液晶層の前記所定の波長の光 に対する前記 X軸方向の平均的な屈折率とほぼ等しくしたことを特徴とする請求 項 44または 45記載の表示装置。
47. 前記 nF1 <An)と、 nLcl (An)と、 前記液晶層の厚み dLCと、 前記フィル ムの厚み dFとを、 前記少なくとも隣り合う一組のフィルムと液晶層との間にお いて、 下記 〔20〕 および 〔21〕 の条件
〔20〕 nF1 (An)-dF = (l/4+k/2) · λη 、
〔21〕 nLC] Un) - dLC= ( l/4+m/2) - λη,
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする請求項 44乃至 46のいずれかに記載の表示装置。
48. 前記液晶が電圧無印加時に前記フィルムに対してプレチル卜角をほとん ど有さないで配向していることを特徴とする請求項 44乃至 47のいずれかに記 載の表示装置。
49. 前記 nLC1 (λη)および dLCを、 前記少なくとも隣り合う一組のフィルム と液晶層との間において、 下記 〔22〕 および 〔23〕 の条件
〔22〕 nF1 (λη) -dF = ( l/4 + k/2) - Λη ,
〔23〕 nLC1 Un) - dLC > (l/4+m/2) - λη
≥0· 96 nLC1 (λη) · dLC
(ここで、 k、 mは 0または整数である。 )
を満たすようにしたことを特徴とする請求項 44乃至 46のいずれかに記載の 表示装置。
50. 前記液晶が電圧無印加時に前記フィルムに対して所定のプレチルト角を もって配向していることを特徴とする請求項 44 45 46または 49記載の
51. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 少なくと も前記液晶層の前記積層方向での中央部付近において、 前記フィルムに対しほぼ 垂直方向に配向するようにし、
前記複合多層膜が電圧無印加時に光透過状態となり電圧印加時に光反射状態と なるようにしたことを特徴とする請求項 42または 43記載の表示装置。
02. 刖 s己 nLCi "n nLC2 ( ηΓ i "n)および nF2 (λη)を、 ¾s己少な くとも隣り合う一組のフィルムと液晶層との間において、 下記 〔24〕 の条件 し 24〕 nF1 n) ^nLC2 (Λη) =nF2 )であって、
C 1 (λη) > n LC2 (λη)
を満たすようにしたことを特徴とする請求項 42 43または 51記載の表示
53. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィ ルム近傍において、 前記フィルムに対してほぼ垂直方向に配向していることを特 徴とする請求項 51または 52記載の表示装置。
54. 前記 nLC2 (All) および nF1 (λ η)を、 前記少なくとも隣り合う一 $Rのフ イルムと液晶層との間において、 下記 〔25〕 の条件
20〕 Π C 2 (λη) \ nF l "n) = 1 · 12 · Π LC2 (λη)
を満たすようにしたことを特徴とする請求項 42 43または 51記載の表示
55. 前記液晶層に使用される液晶分子の長軸が、 電圧無印加時に、 前記フィ ルム近傍において、 前記フィルムに対して垂直方向から所定の角度傾いて配向し ていることを特徴とする請求項 51 52または 54記載の表示装置。
56. 前記 n F i Un)を、電圧無印加時における前記液晶層の前記所定の波長(人 n)の光に対する前記 X軸方向の平均的な屈折率とほぼ等しくし、 且つ前記 nF2 (λη)を、 電圧無印加時における前記液晶層の前記所定の波長 (人 η) の光に対す る前記 Υ軸方向の平均的な屈折率とほぼ等しくしたことを特徴とする請求項 5 1 乃至 55のいずれかに記載の表示装置。
57. 前記 nF え と、 nLcl "n)と、 nLC2n) と、 前記液晶層の厚み dし cと、 前記フィルムの厚み dFとを、 前記少なくとも隣り合う一組のフィルムと液 晶層との間において、 下記 〔26〕 および 〔27〕 の条件
〔26〕 nF1 n) -dK = ( l/4+k/2) · λη 、
〔27〕 nLcl Un) - dLC≥ ( l/4+m/2) - λη
= { n LC 1 (λη) "~ 0 - 6 (nLcl (人 n) — nし C2 (え n) )} " ^ L C
(ここで、 k、 mは 0または整数である。 )
の少なくとも一方の条件を満たすようにしたことを特徴とする請求項 5 1乃至 56のいずれかに記載の表示装置。
58. 前記 nF】 (え。)、 dF およびえ nを、 下記 〔28〕 の条件
〔28〕 ( l/8+k/2) - λη≤ηΓ1 ( η) -dF
≤ (3/8 + k/2) · λη
(ここで、 kは 0または整数である。 )
を満たすようにしたことを特徴とする請求項 26乃至 57のいずれかに記載の 表示装置。
59. 前記 nF2 n) 、 dFおよびえ nを、 下記 〔29〕 の条件
〔29〕 ( l/8+k/2) - λη≤ηΚ2 Un) -dF
≤ (3/8 + k/2) ' λη
(ここで、 kは 0または整数である。 )
を満たすようにしたことを特徴とする請求項 26乃至 57のいずれかに記載の 表示装置。
60. 前記え n、 nLC2 (λη)および dLCを、 下記 〔30〕 の条件
〔30〕 ( l/8+m/2) ' 人 n ≤nLC2n) · dLC
≤ (3/8+m/2) · λη
(ここで、 mは 0または整数である。 ) を満たすようにしたことを特徴とする請求項 26乃至 59のいずれかに記載の 表示装置。
61. 前記え n、 nLcl (ληい および dLCを、 下記 〔31〕 の条件
〔31〕 (l/8+m/2) - An≤nLC1 Un) - dLC
≤ (3/8+m/2) · An
(ここで、 mは 0または整数である。 )
を満たすようにしたことを特徴とする請求項 26乃至 60のいずれかに記載の
62. 前記複合多層膜の複数のフィルムと複数の液晶層との間で請求項 26乃 至 61のいずれかの要件を満たすようにしたことを特徴とする請求項 26乃至 6 1のいずれかに記載の表示装置。
63. 前記所定の波長 (人 n) の光の P波および S波に対して、 請求項 26乃 至 62のいずれかの要件をそれそれ満たす少なくとも 2つの前記複合多層膜を積 層して設け、 前記積層された複合多層膜に電圧を印加して前記積層された複合多 層膜の光反射率を制御することを特徴とする表示装置。
64. 複数の異なる所定の波長 (λη二人 1 、 え 2 . . ·、 え L )に対して、 請求項 26乃至 62のいずれかに記載の条件をそれそれ満たす複数の前記複合多 層膜を積層して設け、 前記積層された複数の複合多層膜に ¾圧を印加して前記積 層された複数の複合多層膜の光反射率を制御することを特徴とする表示装置。 65. 複数の異なる所定の波長 (入11 =人 1 、 ぇ2 · · - s AL ) の光の それそれの Ρ波と S波に対して請求項 26乃至 62のいずれかに記載の条件をそ れそれ満たす前記複数の複合多層膜を積層して設け、 前記積層された複数の複合 多層膜に電圧を印加して前記積層された複数の複合多層膜の光反射率を制御する ことを特徴とする表示装置。
66. 前記所定の波長 (人 η) に対して、 前記 nLcl (Αη)および nLC;iπ)力;、 下記 〔 32〕 の条件
J n LC 1 (人 n) / n LC2 (人 n) 1 · 丄 0
を満たすようにしたことを特徴とする請求項 26乃至 63のいずれかに記載の
67. 前記複数の異なる所定の波長 (人 n二え 1 、 λ2 · · ■、 )に対 して、 前記 nLC1 (え n)および nLC2 (/Ln)力 下記 〔33〕 の条件
〔33〕 nLC1 (え n)/nLC2n)≥ 1. 10
をそれそれ満たすようにしたことを特徴とする請求項 64または 65記載の表
68. 前記複合多層膜における前記フィルムの層数と前記液晶層の層数との合 計層数または前記積層された複数の複合多層膜における前記フィルムの層数と前 記液晶層の層数との合計層数を 100以上としたことを特徴とする請求項 26乃 至 67のいずれかに記載の表示装置。
69. 前記複数の異なる所定の波長 (λη=え 1 、 え 2 · · ·、 え L ) の光 が、 3乃至 12の異なる所定の波長 (/ln=/Ll 、 A2 ' ' '、 iL, 3≤L≤ 12)の光であり、前記 3乃至 12の異なる所定の波長(人 n二人 1 、 λ 2 · · ·、 AL, 3≤L≤ 12)の光に対して、 前記 nLcl Un) および nLC2 (λη)が、 下記 〔34〕 の条件
〔34〕 nLC] (λη) /nLC2 (λη)≥ 1. 10
をそれそれ満たすようにし、
前記積層された複数の複合多層膜における前記フィルムの層数と前記液晶層の 層数との合計層数を約 100乃至 400としたことを特徴とする請求項 64また は 65記載の表示装置。
70. 前記 3乃至 12の異なる所定の波長 (人 η =入 1、 人 2 · · ·、 入 L) の光が、 3の倍数の異なる所定の波長 (人] ι=λ1、 え 2 * ' *、 iL, 3≤L ≤ 12, Lは 3の倍数) の光であることを特徴とする請求項 69記載の表示装置。 71. 前記複数の異なる所定の波長 (λη =人 1、 λ 2 · · ·、 人 L) の光が、 4乃至 8の異なる所定の波長 (入 η=人 1、 人 2 · · · 人 L, 4≤L 8)の光 であり、 前記 4乃至 8の異なる所定の波長 (人 n =人 1、 人 2 · · ·、 人; L, 4 ≤L≤ 8)の光に対して、 前記 nし C 1 (え n)および nし C 2 U n) tK 下記 〔35〕 の 条件 35〕 nLci IO D C2 ( η) ^ 1 · 13
をそれそれ満たすようにし、
前記積層された複数の複合多層膜における前記フィルムの層数と前記液晶層の 層数との合計層数を約 100乃至 300としたことを特徴とする請求項 69記載 の表示装置。
72. 前記複数の異なる所定の波長 (λη = λ 1、 ん 2 · · ·、 AL) の光力 可視光であることを特徴とする請求項 64、 65、 67乃至 71記載の表示装置。 73. 前記複数の異なる所定の波長の光 (λη =人 1、 人 2 · · ·、 え L) の うち、 少なくとも 1つの波長の光を赤外線領域の波長の光としたことを特徴とす る請求項 64、 65、 67乃至 71のいずれかに記載の表示装置。
PCT/JP1997/003017 1996-09-05 1997-08-28 Dispositif d'affichage et son procede de fabrication WO1998010328A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/068,312 US6147726A (en) 1996-09-05 1997-08-28 Reflective display using multiple liquid crystal layers for controlable reflection

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8/235618 1996-09-05
JP23561896 1996-09-05
JP8/330075 1996-12-10
JP33007596A JP3564905B2 (ja) 1996-09-05 1996-12-10 表示装置

Publications (1)

Publication Number Publication Date
WO1998010328A1 true WO1998010328A1 (fr) 1998-03-12

Family

ID=26532234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/003017 WO1998010328A1 (fr) 1996-09-05 1997-08-28 Dispositif d'affichage et son procede de fabrication

Country Status (4)

Country Link
US (1) US6147726A (ja)
JP (1) JP3564905B2 (ja)
TW (1) TW482926B (ja)
WO (1) WO1998010328A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6356323B1 (en) * 2000-08-11 2002-03-12 Eastman Kodak Company Color display using cholesteric liquid crystals
RU2225025C2 (ru) * 2000-12-06 2004-02-27 ОПТИВА, Инк. Жидкокристаллическое устройство отображения информации
JP2003140183A (ja) * 2001-08-22 2003-05-14 Sharp Corp 反射型液晶表示装置
US6998196B2 (en) * 2001-12-28 2006-02-14 Wavefront Technology Diffractive optical element and method of manufacture
TW200416454A (en) * 2002-08-02 2004-09-01 Chelix Technologies Inc Flexible electrically switchable glazing structure and methods of forming same
IL158339A0 (en) * 2003-10-09 2004-05-12 Magink Display Technologies Structurally supported lcd media
FR2863060B1 (fr) * 2003-12-02 2006-10-20 Pascal Joffre Modulateur a cristal liquide, application a un polariseur et procedes de fabrication
JP4143569B2 (ja) * 2004-05-14 2008-09-03 キヤノン株式会社 カラー表示装置
TWI380070B (en) * 2007-01-17 2012-12-21 Taiwan Tft Lcd Ass Optical film and manufacturing method thereof and substrate structure and display panel using the optical film
US8209841B2 (en) * 2007-06-05 2012-07-03 I2Ic Corporation Method of manufacturing multicolored illuminator
JP2013534941A (ja) * 2010-06-10 2013-09-09 ダウニング,エリザベス,エイ. オプティカル効果提供媒体およびその使用、オプティカル効果提供媒体を用いて作成される光反応特性を有する物品
US9429787B2 (en) * 2012-02-29 2016-08-30 Boe Technology Group Co., Ltd. Transparent display unit
WO2019067969A1 (en) 2017-09-29 2019-04-04 Nike Innovate C.V. STRUCTURALLY COLORED ARTICLES AND METHODS OF MAKING AND USING STRUCTURALLY COLORED ARTICLES
US11597996B2 (en) 2019-06-26 2023-03-07 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
US11612208B2 (en) 2019-07-26 2023-03-28 Nike, Inc. Structurally-colored articles and methods for making and using structurally-colored articles
WO2021080913A1 (en) 2019-10-21 2021-04-29 Nike, Inc. Structurally-colored articles
EP4107007B1 (en) 2020-05-29 2023-08-30 Nike Innovate C.V. Structurally-colored articles and methods for making and using structurally-colored articles
US11129444B1 (en) 2020-08-07 2021-09-28 Nike, Inc. Footwear article having repurposed material with concealing layer
US11241062B1 (en) 2020-08-07 2022-02-08 Nike, Inc. Footwear article having repurposed material with structural-color concealing layer
US11889894B2 (en) 2020-08-07 2024-02-06 Nike, Inc. Footwear article having concealing layer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112726A (ja) * 1989-09-26 1991-05-14 Toyota Motor Corp 車両用パワーユニット
JPH03279903A (ja) * 1990-03-28 1991-12-11 Nitto Denko Corp 積層位相差板及び液晶パネル
JPH0437715A (ja) * 1990-06-01 1992-02-07 Sharp Corp 液晶表示装置
JPH04371927A (ja) * 1991-06-21 1992-12-24 Nec Corp カラー表示素子およびその駆動方法
JPH05196943A (ja) * 1992-01-22 1993-08-06 Seiko Epson Corp 表示素子
JPH06222339A (ja) * 1993-01-27 1994-08-12 Kyocera Corp 液晶表示装置
JPH0792483A (ja) * 1993-09-20 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> 光学素子およびその形成方法ならびに光学装置
JPH07134213A (ja) * 1993-11-11 1995-05-23 Fuji Photo Film Co Ltd 光学補償シートの製造方法
JPH07143499A (ja) * 1993-11-18 1995-06-02 Nippon Telegr & Teleph Corp <Ntt> 撮像装置
JPH0887003A (ja) * 1994-09-19 1996-04-02 Sharp Corp 液晶表示素子およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2846943B2 (ja) * 1990-11-14 1999-01-13 日本電信電話株式会社 表示装置およびその製造方法
KR100230354B1 (ko) * 1992-11-26 1999-11-15 윤종용 광산란형 액정 표시 장치의 제조 방법
US5751452A (en) * 1993-02-22 1998-05-12 Nippon Telegraph And Telephone Corporation Optical devices with high polymer material and method of forming the same
JP3202831B2 (ja) * 1993-04-09 2001-08-27 日本電信電話株式会社 反射形カラー液晶ディスプレイの製造方法
GB2293249A (en) * 1994-09-09 1996-03-20 Sharp Kk Polarisation sensitive device and a method of manufacture thereof

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03112726A (ja) * 1989-09-26 1991-05-14 Toyota Motor Corp 車両用パワーユニット
JPH03279903A (ja) * 1990-03-28 1991-12-11 Nitto Denko Corp 積層位相差板及び液晶パネル
JPH0437715A (ja) * 1990-06-01 1992-02-07 Sharp Corp 液晶表示装置
JPH04371927A (ja) * 1991-06-21 1992-12-24 Nec Corp カラー表示素子およびその駆動方法
JPH05196943A (ja) * 1992-01-22 1993-08-06 Seiko Epson Corp 表示素子
JPH06222339A (ja) * 1993-01-27 1994-08-12 Kyocera Corp 液晶表示装置
JPH0792483A (ja) * 1993-09-20 1995-04-07 Nippon Telegr & Teleph Corp <Ntt> 光学素子およびその形成方法ならびに光学装置
JPH07134213A (ja) * 1993-11-11 1995-05-23 Fuji Photo Film Co Ltd 光学補償シートの製造方法
JPH07143499A (ja) * 1993-11-18 1995-06-02 Nippon Telegr & Teleph Corp <Ntt> 撮像装置
JPH0887003A (ja) * 1994-09-19 1996-04-02 Sharp Corp 液晶表示素子およびその製造方法

Also Published As

Publication number Publication date
JP3564905B2 (ja) 2004-09-15
JPH10133224A (ja) 1998-05-22
US6147726A (en) 2000-11-14
TW482926B (en) 2002-04-11

Similar Documents

Publication Publication Date Title
WO1998010328A1 (fr) Dispositif d&#39;affichage et son procede de fabrication
KR100511582B1 (ko) 반사판, 반사판의 제조 방법, 액정 장치, 전자기기
JP4138759B2 (ja) 液晶表示装置および電子機器
EP0946671B1 (en) Liquid crystal film structures with phase-retardation surface regions formed therein
KR101068771B1 (ko) 투명 디스플레이 장치
JP6521748B2 (ja) 画像表示装置の画像表示部表面に用いられるハーフミラーの製造方法、ハーフミラー、および画像表示機能付きミラー
KR20020077439A (ko) 액정 디스플레이 라미네이트와 그 제조방법
US6888612B2 (en) Liquid crystal film structures with phase-retardation surface regions formed therein
CN1971700A (zh) 显示元件及具有该显示元件的显示装置
JPH09510300A (ja) 電気光学的カラーデバイス
TW201643524A (zh) 液晶光學元件
JP4853476B2 (ja) 光学素子、偏光板、位相差板、照明装置、および液晶表示装置
JP4994451B2 (ja) 液晶表示装置
JPH1031210A (ja) 反射型カラー表示装置
JP3879195B2 (ja) 液晶装置及び液晶装置の製造方法
JP4196527B2 (ja) 液晶表示素子
WO1997013174A1 (fr) Affichage a cristaux liquides
CN114902126A (zh) 液晶装置
JP2605064B2 (ja) 液晶表示素子
JPH0887003A (ja) 液晶表示素子およびその製造方法
JP2002202526A (ja) 液晶表示素子
JPH09160066A (ja) 反射型液晶表示デバイス
US20110109822A1 (en) Liquid crystal display element, method of manufacturing the same, and liquid crystal display device
JP5180579B2 (ja) 液晶光学装置
JPH08283719A (ja) 液晶デバイス

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09068312

Country of ref document: US

122 Ep: pct application non-entry in european phase