WO1998001895A1 - Method of production of semiconductor integrated circuit device - Google Patents

Method of production of semiconductor integrated circuit device Download PDF

Info

Publication number
WO1998001895A1
WO1998001895A1 PCT/JP1996/001889 JP9601889W WO9801895A1 WO 1998001895 A1 WO1998001895 A1 WO 1998001895A1 JP 9601889 W JP9601889 W JP 9601889W WO 9801895 A1 WO9801895 A1 WO 9801895A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
circuit device
integrated circuit
semiconductor integrated
plasma
Prior art date
Application number
PCT/JP1996/001889
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Yunogami
Takao Kumihashi
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1996/001889 priority Critical patent/WO1998001895A1/en
Priority to AU63197/96A priority patent/AU6319796A/en
Publication of WO1998001895A1 publication Critical patent/WO1998001895A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present invention relates to a technology for manufacturing a semiconductor integrated circuit device, and more particularly to a technology effective when applied to end point detection of a plasma process.
  • the technology that monitors the progress and end point of etching by measuring the emission spectrum intensity of the reaction product generated by etching is a technology that can accurately detect minute patterns in the deep submicron LSI manufacturing process. This technology is indispensable for dry etching.
  • Plasma etching as described above is indispensable.
  • FRAM ferroelectric non-volatile memory
  • F RAIV [case, the capacitor insulating film P ZT (P b Z r X T i,.
  • the conductive film for the upper electrode deposited on the capacitive insulating film of DRAM or FRAM is also easy to grow a crystal on the high (strong) dielectric film as described above, and has a high (strong) dielectric film or its structure. It is required to use a conductive material having chemical resistance to the material, such as Pt.
  • a conductive material having chemical resistance to the material such as Pt.
  • the end point of the etching is detected by observing the emission of plasma transmitted through a quartz glass window installed on the chamber wall of the etching apparatus by an optical system equipped with a lens and a light sensor. A method is used in which this light is converted into an electric signal and analyzed.
  • the end point detecting device includes a sensor assembly including a plurality of optical sensors responsive to different spectral portions of the optical spectrum generated by the plasma discharge, and a plurality of optical sensors generated from the plurality of optical sensors.
  • a computer system that mathematically combines the digitized data of the optical channels to form a complex function, and changes the R-coefficient of each optical channel so that the etching gas and the etching material are different. It monitors end-point status of multiple processes and other etching conditions.
  • the sensor assembly includes a probe section extending into the chamber through an opening in the chamber wall of the plasma etching apparatus, and a housing section surrounding the optical sensor and the analog circuit.
  • a cylindrical body with a plurality of holes acting as light guides for transmitting radiation is provided.
  • Each of the plurality of holes has a truncated cone shape having an axis slightly bent at a predetermined angle from the horizontal, and the inner wall thereof reflects electromagnetic radiation of a predetermined frequency.
  • Japanese Patent Application Laid-Open No. 61-2075853 discloses an apparatus for etching a wafer surface by forming plasma between a lower electrode on which a wafer is mounted and an upper electrode at a ground potential.
  • the reflected light of the light applied to the scribe line on the wafer surface is collected on the image sensor through the mesh of the upper electrode, and the image of the scribe line is formed.
  • a method is disclosed in which an image signal is extracted, and an integrated value thereof is monitored in accordance with an etching process, whereby the end point of the etching is detected with high accuracy and automatically.
  • Japanese Patent Application Laid-Open No. 59-17072 describes an apparatus for etching a wafer surface by forming plasma between a lower electrode on which a wafer is mounted and an upper electrode at a ground potential. It discloses a technique for preventing reaction products and the like in the chamber from adhering to the surface of a condenser lens installed outside the window of the chamber wall.
  • the window installed on the chamber wall of this etching device is composed of a pinhole that transmits light, a condensing chamber installed outside the chamber wall, and a lens installed inside the chamber.
  • An inert gas such as nitrogen is introduced into the light chamber to make the inside of the light chamber a positive pressure with respect to the chamber.
  • Japanese Patent Application Laid-Open No. H5-206076 discloses that an observation window made of quartz glass or the like provided on a chamber wall is provided with an adhering substance for removing reaction products and the like adhering to the inside of the observation window to eliminate fogging.
  • a plasma processing apparatus e provided with a removing means is disclosed.
  • This adhering matter removing means has a heating means such as a ceramic heater formed in the periphery of the observation window along the circumferential direction thereof. If the etching processing is being performed, the adhering matter removing means is driven after the processing. By heating the observation window to a predetermined temperature, reaction products and the like are prevented from adhering to the surface of the observation window.
  • the etching time must be managed and a method of etching for a predetermined time must be adopted. In such a case, the overetching amount has to be set large, that is, the etching time must be set long in order to prevent the etching residue.
  • the over-etching amount is increased, it is necessary to increase the thickness of the underlying film.
  • the thickness of the capacitor insulating film is increased in order to increase the over-etching amount of the conductive film for the upper electrode.
  • the thickness of the lower electrode conductive film is increased to increase the amount of over-etching of the capacitive insulating film, and the thickness of the base insulating film is increased to increase the over-etching amount of the lower electrode conductive film. Need to be thicker.
  • connection holes As the thickness of the underlying insulating crotch increases, connection holes (connection holes) having a high aspect ratio must be formed in this insulating film. Accordingly, it becomes difficult to embed a metal such as A1 or TIN in the connection hole.
  • An object of the present invention is to reliably determine the end point of etching from emission of plasma even in the case of performing etching accompanied by generation of a reaction product even when the adhesion coefficient is large L, the reaction product or the vapor pressure is low, and the reaction product is generated. It is to provide the technology that can do it.
  • a method of manufacturing a semiconductor integrated circuit device includes: a plasma processing unit configured to form a plasma near a semiconductor wafer to perform a plasma processing on a surface of the semiconductor wafer; When etching the surface of a semiconductor wafer on which a predetermined thin film is formed by using an etching apparatus having a plasma monitor for monitoring the state of the thin film, at least a reaction generated in the plasma processing unit by the etching of the thin film.
  • the source side of the product has a high aspect ratio
  • a pore collecting plate formed with a plurality of pores is arranged on an optical path of light emission of the plasma incident on the plasma monitor, and light emission of the plasma transmitted through the hole collecting plate is detected by the plasma monitor. It is something to do.
  • the plasma emission can reach the plasma monitor without being blocked by the reaction product, so that the adhesion coefficient is large, the reaction product and vapor pressure are low, and etching involving the generation of the reaction product occurs. In this case, the end point of the etching can be reliably determined.
  • a semiconductor integrated circuit device includes a TFT liquid crystal, and a wafer includes a substrate used for manufacturing a TFT liquid crystal.
  • “about the same” for numerical values, etc. refers to a range of about 1 to 4 times as large as the one to be compared.
  • FIG. 1 is a main part configuration diagram of a plasma etching apparatus used in the first embodiment of the present invention
  • FIG. 2 is an enlarged perspective view of a thin tube assembly attached to the plasma etching apparatus shown in FIG. 1
  • FIG. FIG. 4 is an explanatory view showing a method of manufacturing a thin tube aggregate plate
  • FIG. 4 is a plan view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention
  • FIG. FIG. 6 is a sectional view of a principal part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to one embodiment.
  • FIG. 1 is a main part configuration diagram of a plasma etching apparatus used in the first embodiment of the present invention
  • FIG. 2 is an enlarged perspective view of a thin tube assembly attached to the plasma etching apparatus shown in FIG. 1
  • FIG. 4 is an explanatory view showing a method of manufacturing a thin tube aggregate plate
  • FIG. 4 is a
  • FIG. 6 is a principal part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 7 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device [B] according to a first embodiment of the present invention.
  • FIG. 9 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device.
  • FIG. 10 is a fragmentary cross-sectional view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment.
  • FIG. 10 is a sectional view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 11 is a partial sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 12 is a first embodiment of the present invention.
  • FIG. 13 is a cross-sectional view of a main part of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device as an example.
  • FIG. 13 is a main part of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 14 is a sectional view of a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 15 is a cross-sectional view of a main part of a semiconductor substrate illustrating a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 17 shows a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 18 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • FIG. 19 is a sectional view of the first embodiment of the present invention.
  • FIG. 20 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to an embodiment
  • FIG. 20 is an enlarged cross-sectional view of a main part of a thin tube collecting plate
  • FIG. 22 is a graph showing the change over time in the intensity of the plasma.
  • Reference numeral 23 denotes a cross section of a main part of a semiconductor substrate in a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention.
  • 124 denotes a semiconductor integrated circuit according to the first embodiment of the present invention.
  • FIG. 25 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device K according to a first embodiment of the present invention.
  • FIG. 26 is a plan view of a principal part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a second embodiment of the present invention.
  • FIG. 27 is a third embodiment of the present invention.
  • FIG. 28 is a fragmentary plan view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a third embodiment of the present invention;
  • FIG. 29 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a fourth embodiment of the present invention.
  • FIG. 30 is a fifth embodiment of the present invention. Fragmentary cross-sectional view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device is, 3 1 is a sectional view showing another embodiment of a capillary collection plate. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a main part configuration diagram of a plasma etching apparatus used in the present embodiment.
  • Alumite coating which is a plasma processing unit of plasma etching equipment 100
  • a flat lower electrode 102 and an upper electrode 103 are arranged inside a chamber 101 made of A1 which has been subjected to the brushing.
  • the lower electrode 102 connected to the RF power supply 104 is connected to a part of the upper electrode 103 connected to the ground potential c, which is the stage on which the semiconductor substrate (wafer) 1 as a sample is mounted.
  • a gas introduction pipe 105 for supplying a reaction gas such as chlorine or a plasma stabilizing gas such as Ar is provided in a chamber 101.
  • a wall plate 106 for preventing a reaction product 118 of the plasma etching from adhering to the inner wall of the channel 101 is provided.
  • a baffle plate 107 is provided below the lower electrode 102.
  • the wall plate 106 has such a structure that it can be easily removed from the chamber 101 in order to periodically remove the reaction product 118 attached to its inner wall.
  • a vacuum pump 108 for evacuating the inside of the chamber 101 to a pressure of is provided.
  • a rotating magnet 109 is provided outside the chamber 101, and an upper electrode 100 is formed by a magnetic field generated by the rotating magnet 109 and an RF bias applied by an RF power source 104.
  • a high density plasma 114 is formed between 3 and the lower electrode 102.
  • a thin disk-shaped thin tube collecting plate 110 is attached by fixing means such as a clamp 111.
  • the thin tube collecting plate 110 is a thin slice of a bundle of fine quartz glass tubes, and the light that hits the surface is mainly transmitted through the inside of each fine glass tube and the back side. It is structured to reach.
  • a transparent quartz glass window 112 is attached to a wall surface of the champer 101 facing the thin tube collecting plate 110 by fixing means such as a clamp 111.
  • An O-ring 113 is fitted in a gap between the quartz glass window 112 and the wall surface of the chamber 101 so that the airtightness inside the chamber 101 is maintained.
  • This plasma monitor section has the intensity of plasma emission transmitted through the thin tube collecting plate 110 and the quartz glass window 112. It consists of a light emission detection monitor 115 that detects the degree of light, a monochromator 116 that selects light of a desired wavelength out of the plasma light emission, and a pen recorder 117 that records the light emission intensity of the plasma.
  • FIG. 2A is an enlarged view of the thin tube collecting plate 110 attached to the wall plate 106 of the plasma etching apparatus 100.
  • the thin tube collecting plate 110 is made of a quartz glass disk having a diameter of 25 mm and a thickness of 0.24 mm, and has a diameter of 1 mm penetrating to the back surface on the front surface. Many 0 pores are formed. Each of these pores is composed of a quartz glass capillary as shown in Fig. 2 (b).
  • the thin tube collecting plate 110 having such a structure for example, "Hamamatsu Photonics Co., Ltd. (HAMAMATSU PHOTONICS KK)" manufactured by "Micro Caviar Replate (registered trademark), Model J5 () 22-n” or the like is used. can do.
  • the thin tube collecting plate 110 In order to manufacture the thin tube collecting plate 110, as an example, a large number of elongated columnar quartz glass thin tubes as shown in FIG. 3 (a) are prepared. Next, as shown in Fig. 3 (b), these quartz glass tubes are bundled and bonded to form a glass tube assembly. For the bonding between the glass tubes, molten glass of the same material as the tubes is used. Next, as shown in FIG. 3 (c), the glass thin tube aggregate is thinly sliced into a thin tube aggregate plate 110.
  • the thin tube made of glass that constitutes the pores of the thin tube collecting plate 110 has a ratio (aspect ratio) of the length (L) to the diameter ( ⁇ ) of 1
  • the aspect ratio should be at least 5 or more, preferably as high as possible.
  • the higher the aspect ratio of the glass tube the lower the probability of reaction product particles of plasma etching coming into the tube, so that it is possible to more reliably prevent the light transmittance from lowering.
  • the aspect ratio is set to about 1 or less, the reaction product accumulates inside the tubule after a short use, and the light does not pass through.
  • the aspect ratio is 24.
  • the diameter ( ⁇ ) of the thin tube is also an important factor. If the diameter ( ⁇ ) force is 1 m or less, the thin tube may be blocked by the reaction product attached near the opening. On the other hand, If the diameter ( ⁇ ) is L or a thin tube, the length (L) must be increased in order to ensure a sufficient aspect ratio. Considering that the thin tube collecting plate 110 is attached to the inside of the chamber 101 of 00, the thickness of the thin tube collecting plate 110 is preferably several cm or less. Therefore, the capillary has a diameter ( ⁇ ) of 1 ⁇ ! It should be within the range of ⁇ 1 mm.
  • the diameter ( ⁇ ) of the glass capillary is desirably at least as large as this wavelength ( ⁇ ) (0 ⁇ ). Further, in relation to the ⁇ -uniform process (1) of the reaction product particles, it is desirable that the diameter ( ⁇ ) is equal to or less than the average free process (1) (0 ⁇ 1).
  • the aperture ratio of the narrow tube plywood 110 (the ratio of the area of the holes to the area of the light receiving section) is another factor to be considered. If the aperture ratio is small, the amount of light transmitted through the thin plate decreases. Therefore, a high-numerical-diameter thin-tube assembly plate that ensures an aperture ratio of at least about 10% or more should be used.
  • the thin tube collecting plate 110 is not limited to the one using the quartz glass tube as described above, and may be configured as a composite plate of fine tubular objects made of various materials. Further, the present invention is not limited to the dense structure of tubular objects. For example, a thin plate made of a metal such as glass, A], or Cu is used to form a large number of fine holes to form a pore aggregate plate. Is also good. At this time, the diameter and the aspect ratio of the pores and the opening ratio of the pore-aggregating plate must satisfy the conditions described above.
  • FIG. 4 is a plan view showing a layout of a memory cell of the DRAM of the present embodiment.
  • This DRAM memory cell employs a two-intersection cell and a CB (Capacitor Over Bitlinc) structure in which a capacitance element for storing information is arranged above a bit line.
  • the transistor of each memory cell (MISFET for memory cell selection) is connected to the peripheral circuit via the bit line BL.
  • the bit line BL is connected to one of the semiconductor regions 8 (source region, drain region) of the memory cell selection MISFET through the connection hole 14.
  • the operation of the memory cell selection MISFET is controlled by the word line WL (gate electrode 6). This word line WL (gate electrode 6) is connected to peripheral circuits Have been.
  • the information storage capacitive element C disposed above the bit line BL is connected to the other one of the semiconductor regions 8 (source region and drain region) of the MISFET for selecting a memory cell through the connection hole 13.
  • the information storage capacitor C is connected to the peripheral circuit via the plate electrode 26.
  • the first feature of this planar layout is that one plate electrode 26 is arranged for two word lines WL. With such a layout, the capacity of the plate electrode 26 can be made smaller than that of a normal DRAM, so that the potential of the plate electrode 26 can be easily controlled by a peripheral circuit.
  • the number of plates and poles 26 may be one for one word line WL, or one for three word lines WL. However, if the number of plate electrodes 26 with respect to the word line WL increases, it becomes difficult to increase the degree of integration, and if the number decreases, the capacitance a of the plate electrode 26 increases and control by peripheral circuits becomes difficult.
  • the appropriate number of plate poles 26 varies depending on the use of the DRAM.
  • the second feature of this planar layout is that the plate electrode 26 extends in the same direction as the word line WL (gate electrode 6).
  • the potential of the plate electrode 26 is controlled by the peripheral circuit, the potential can be controlled in synchronization with the potential of the lead line WL.
  • FIG. 5 a cross-sectional view taken along the line A—A ′ in FIG. 4
  • a semiconductor substrate 1 made of ⁇ ⁇ single-crystal silicon is prepared.
  • a field oxide film 2 is formed on the surface by a selective oxidation (LOCOS) method
  • a p-type impurity (B) is ion-implanted into the semiconductor substrate 1 to form a p-type well 3.
  • p-type impurities (B) are ion-implanted into the p-type well 2 to form p-type channel stopper debris 4
  • a gate oxide film 5 is formed on the surface by a thermal oxidation method.
  • a gate electrode 6 (a common line WL) of the memory cell selecting MISFET is formed.
  • the gate electrode 6 (lead line WL) is formed, for example, by depositing a polycrystalline silicon film on the semiconductor substrate 1 by a CVD method, then depositing a TiN film and a W film by a sputtering method, and further forming a cap insulating film. Silicon nitride film 7 is deposited by plasma CVD, and then these films are etched using a photoresist as a mask. Is formed by patterning.
  • the polycrystalline silicon film that forms part of the gate electrode 6 (word line WL) is doped with an n-type impurity (P) to reduce its resistance.
  • P n-type impurity
  • an n-type impurity (P) is ion-implanted into the p-type well 2 and the n-type impurity (P) of the MIS FET for memory cell selection is injected into the p-type well 2 on both sides of the gate electrode 6 (word line WL).
  • Form semiconductor regions 8, 8 source region, drain region).
  • a side wall spacer 9 is formed on the side wall of the gate electrode 6 (word line WL).
  • the sidewall spacer 9 is formed by processing a silicon nitride film deposited on the gate electrode 6 (lead line WL) by a plasma CVD method by anisotropic etching.
  • a silicon oxide film 10 and a BPSG (Boron-doped Phospho Silicate Glass) film 11 are deposited on the top of the MISFET for memory cell selection by the CVD method.
  • the BPS G film 11 is polished by a polishing (Chemical Mechanical Polishing; CMP) method to flatten its surface.
  • connection holes 13 and 14 are formed above one of the source region and the drain region (n-type semiconductor region 8) of the MISFET for memory cell selection. Then, a connection hole 14 is formed on the other (n-type semiconductor region 8).
  • the silicon nitride film 7 formed on the gate electrode 6 (word line WL) of the memory cell selection MISFET and the silicon nitride film 9 formed on the sidewalls are slightly etched. Therefore, the connection holes 13 and 14 having a small diameter can be formed by self-alignment (self-alignment) without providing a margin for matching the connection holes 13 and 14 with the gate electrode 6 (word line WL).
  • a plug 15 of polycrystalline silicon is embedded in the connection holes 13 and 14.
  • the plug 15 is formed by depositing a polycrystalline silicon film on the polycrystalline silicon film 12 by the CVD method and removing the polycrystalline silicon film and the polycrystalline silicon film 12 by etch-back. I do.
  • Polycrystalline silicon composing plug 15 The film is doped with an n-type impurity (P).
  • the plug 15 may be formed by embedding, for example, TiN, W, Ti, Ta, or the like, in addition to polycrystalline silicon.
  • a silicon oxide film 16 is deposited on the BPSG film 11 by a CVD method, and then the silicon oxide film 16 on the connection hole 14 is etched by using a photoresist as a mask.
  • a bit line BL is formed on the connection hole 14 as shown in FIG.
  • the bit line BL is formed by depositing a TiN film and a W film on the silicon oxide film 16 by a sputtering method, and further depositing a silicon nitride film 17 serving as a cap insulating film by a plasma CVD method. These films are patterned and formed by etching using a photoresist as a mask.
  • a side wall spacer 18 is formed on the side wall of the bit line BL.
  • the side walls 18 are formed by processing a silicon nitride film deposited on the bit line BL by a plasma CVD method by anisotropic etching.
  • a BPSG film 19 having a thickness of about 300 nm is deposited on the bit line BL by a CVD method and reflowed.
  • etching the silicon oxide film 16 By etching the silicon oxide film 16, a connection hole is formed above the connection hole 13 formed above the other of the source region and the drain region (the n-conducting region 8) of the memory cell selecting MI SFET Qt. Form 20.
  • connection holes 20 are self-aligned similarly to the connection holes 13 and 14. (Self-aligned).
  • connection hole 20 is formed by dry etching
  • a method used in the conventional technology that is, a method of controlling the etching time and etching for a predetermined time is used as a method of determining the end point of the etching.
  • the light emission of the plasma may be monitored to determine the etching end time.
  • the plasma etching apparatus 100 shown in FIG. 1 may be used.
  • a plug 21 is embedded in the connection hole 20.
  • the plug 21 is formed by depositing a TiN film and a W film on the 8-30 film 19 by, for example, a sputtering method, and then etching back these films.
  • the plug 21 can also be formed by embedding polycrystalline silicon, TiN, W, Ti, Ta, or the like.
  • an information storage capacitor is formed above the plug 21.
  • a barrier metal 22 is deposited on the BPSG film 19 using a sputtering method or the like, and then a barrier metal 22 is deposited on the parietal metal 22.
  • a Pt film 23a having a thickness of about 175 nm is deposited by a sputtering method.
  • the parity metal 22 is not always necessary, it is effective for suppressing the diffusion of the lower electrode material (Pt) of the information storage capacitor.
  • the material of the barrier metal 22 TiN, Ti, or the like is used, and the film thickness is about 20 ⁇ .
  • the upper electrode material of the information storage capacitive element is deposited on the capacitive insulating film 24.
  • the capacitor insulating film 24 is formed by depositing BST (CBa, Sr) TiO 3 ) as a strong dielectric material by a sputtering method, and has a film thickness of about 250 nm.
  • the Pt film 25a is deposited by a sputtering method and has a thickness of about 100 nm.
  • crystallization heat treatment may be performed after film formation, if necessary.
  • BS Ding as a capacitor insulating film material T a 2 0 5 is deposited by CVD, or the like may be used oxide silicon or silicon nitride.
  • the various ferroelectric materials for example, P b Z R_ ⁇ 3, L i Nb0 3, B i 4 T i 3 ⁇ I2, B aMgF 4, PLZT, Y 1 (S r B i, (N b, T a) , O 9 ) can also be used. These ferroelectric materials are In addition to sputtering, MOCVD, sol-gel, laser ablation, etc. can be used for deposition.
  • a photoresist 27 is formed on the Pt film 25a, which is an upper electrode material, and then the plasma etching apparatus 100 shown in FIG. 1 is used. Then, the Pt film 25a, the capacitive insulating film 24, the Pt film 23a and the barrier metal 22 are dry-etched.
  • a semiconductor substrate (wafer) 1 is placed on the lower electrode 102 of the plasma etching apparatus 100, and then chlorine is introduced into the chamber 101 through a gas introduction pipe 105. Introduce 40 scans of gas and 10 scans of Ar gas, and use a vacuum pump 108 to reduce the air / air inside the chamber 101 to 5 mTorr (the mean free path of the reaction product particles is (). ⁇ Several tens of cm).
  • the temperature of the gate electrode 102 on which the semiconductor substrate 1 is mounted is set to 30 ° C.
  • Plasma 114 is generated by an RF bias of M Hz / 1200 W, and the Pt film 25a is etched by ions and radicals generated in the plasma 114.
  • the plasma emission transmitted through the thin tube collecting plate 110 attached to the wall surface of the wall plate 106 and the quartz glass window 112 attached to the ⁇ surface of the chamber 101 The light of the desired wavelength is selected by the monochromator 1 16, the luminescence intensity is detected by the luminescence detection monitor 1 15 and recorded on the pen recorder 1 17.
  • the reaction product 118 As the etching of the Pt film 25a progresses, a large amount of the reaction product 118 having a large adhesion coefficient and a low vapor pressure is deposited on the surface of the upper electrode 103 and the inner wall of the wall plate 106. Adhere to. At this time, as shown in FIG. 20, the reaction product 118 also adheres to the surface of the thin tube collecting plate 110 attached to the wall surface of the wall plate 106, but the Since the reaction product 118 is unlikely to fly inside the glass tube with a high ratio, the plasma emission passes through the inside of the glass tube without being hindered by the reaction product 118, and the quartz glass window The light can pass through 112 and reach the plasma monitoring means.
  • 21 is a graph showing the temporal change of the light emission intensity of the plasma transmitted through the thin tube collecting plate 110 and the quartz glass window 112.
  • Etch 150 wafers as shown However, the decrease in luminescence intensity was about 40% even after running, and it was possible to maintain the intensity sufficiently higher than the luminescence intensity detection limit of the monitoring means (marked with ⁇ ). If this graph is extrapolated, it can be estimated that about 100,000 wafers (40,000 lots) can be continuously detected for the end point.
  • etching was performed without attaching the thin tube collecting plate 110 (mark) only three wafers were etched, and a large amount of reaction products adhered to the surface of the quartz glass window 112 to emit light. The intensity attenuated to 1Z100 or less, making it impossible to detect the emission intensity.
  • the end point of the etching of the Pt film 25a can be determined from the waveform of a wavelength of 406 nm corresponding to the light emission considered to be that of Ti shown in FIG.
  • the Pt film 25a in the region not masked by the photoresist 27 is etched and gradually disappears, and the BST film, which is the insulating film 24 of the lower debris, begins to be etched, the-component of the film is removed. Since the light beams fly into the plasma and emit light, the intensity of light having a wavelength of 406 nm increases.
  • the capacitance insulating film 24, the Pt film 23a, and the barrier metal 22 are successively dry-etched in the manner described above to form the information storage capacitance element C as shown in FIG. .
  • the base film BPSG film
  • the etching conditions may be changed at any time by the above dry etching method. Can be known exactly. Furthermore, even if the number of processed wafers is large, the end point can be determined accurately, so that the maintenance time of the end point determining means is shortened, so that the operation rate of the apparatus is improved, and the throughput can be increased.
  • the dry etching method described above is used, and in the case of no dry processing, three wafers are processed.
  • the maintenance of the etching equipment was required every time, but it took about 7 hours to shut down the equipment and start up the maintenance equipment by mechanical polishing such as a quartz glass window.
  • the etching time was about 3 minutes for JF-taste, but it took 7 hours to process one wafer.
  • after the introduction of the dry etching method it is possible to process 40 lots (100 pieces) of wafers in a single maintenance, and to increase throughput by 50 times or more. Improvements have been achieved.
  • a lift such as a BPSG film is used to protect the information storage capacitor C.
  • An insulative insulating film 28 is deposited, and its surface is f-supported by chemical mechanical polishing (CMP) to expose the surface of the upper electrode 25.
  • CMP chemical mechanical polishing
  • a thin film made of an oxide such as Ti, Sr, or Ba compatible with the constituent material of the information storage capacitor C is deposited, and then the insulating film 28 May be deposited.
  • a CVD / silicon oxide film using an organic Si gas may be used instead of the insulating film 28 having a riff opening, or an organic insulating material such as polyimide resin may be used.
  • the planarization of the insulating film may be performed by an etch / etch method instead of the CMP method, and may not be particularly performed when the step due to the information storage capacitor C is small.
  • a plate electrode 26 common to a plurality of memory cells is formed on the insulating film 28.
  • the plate electrode material various conductive materials used in the conventional silicon LSI process, such as a polycrystalline silicon film and a W film, can be used. If the base is sufficiently flat, use a conductive material that can be formed by sputtering. If the base has a step, use a conductive material that can be formed by CVD. When the deposited conductive film is dry-etched to form a plate electrode 26, plasma emission is monitored by using the plasma etching apparatus 100 shown in FIG. 1 to obtain an etching end time. You may do it.
  • the DRAM memory cell of this embodiment is substantially completed.
  • FIG. 26 is a plan view showing the layout of the memory cell of the DRAM of this embodiment.
  • the memory cell of this DRAM is composed of two intersection cells and a C ⁇ B in which an information storage capacitor is arranged above the bit line. Structure and adopted.
  • the transistor of each memory cell (MISFET for selecting a memory cell) is connected to the peripheral circuit via a bit line BL.
  • the bit line BL is connected to one of the semiconductor regions 8 (source region and drain region) of the MISFET for memory cell selection through the connection hole 14.
  • Operation of the memory cell selecting MIS FET is controlled by a word line WL (gate electrode 6) c
  • the word line WL (gate electrode 6) is connected to the peripheral circuit.
  • the information storage capacitor C arranged above the bit line BL is connected to the other of the semiconductor regions 8 (source region and drain region) of the memory cell selection MISFET through the connection hole 13.
  • the information storage capacitor C is connected to the peripheral circuit via the plate electrode 26.
  • the first feature of this planar layout is that one plate electrode 26 is arranged for one bit line BL.
  • the capacitance of the plate electrode 26 can be made smaller than that of a normal DRAM, so that the potential of the plate electrode 26 can be easily controlled by a peripheral circuit.
  • the number of plate electrodes 26 may be one for two or more bit lines BL. However, when the number of the plate electrodes 26 with respect to the bit line BL is reduced, the capacitance of the plate electrode 26 is increased, so that control by the peripheral circuit becomes difficult.
  • the optimal number of plate ⁇ poles 26 depends on the application of DRAM.
  • the second feature of this planar layout is that the plate electrode 26 extends in the same direction as the bit line BL. This makes it possible to control the potential of the plate electrode 26 in synchronism with the potential of the bit line BL when controlling the potential of the peripheral circuit. Becomes
  • the memory cell of the DRAM of this embodiment can also be manufactured by the same method as in the first embodiment.
  • c characterized in this plane Reiau Bok is a plan view showing a layout of a memory cell of the DRAM of the present embodiment controls the information storing capacitor C in one play Bok electrode 26 with a larger area That is. With such a layout, it becomes easy to apply the reference potential required for the DRAM operation to the information storage capacitor C. In addition, if the driving capability of the peripheral PI path is made sufficiently large, operation as a nonvolatile memory is also possible. The number of the information storage capacitance elements C controlled by the plate name 26 may be adjusted according to the use of the memory.
  • FIG. 28 is a cross section taken along line AA ′ of FIG. 27!
  • the structure and manufacturing capability of the DRAM memory cell of the present embodiment are basically the same as those of the DRAM memory cell of the first embodiment except for the plate electrode 26.
  • the processing of the plate 3 ⁇ 4 electrode 26 is performed in the same manner as in the first embodiment, and may be adjusted to a required size.
  • FIG. 1 is a cross-sectional view showing a stage of creating one transistor and one capacity memory until the capacity is completed.
  • PZT a ferroelectric material
  • Pt is used for the capacitive electrode.
  • transistors are electrically separated by a field oxide film 2 on a semiconductor substrate 1.
  • the transistor is an MISTFET composed of a semiconductor region 8 (source region and drain region), a gate electrode 6 of polycrystalline silicon, and a gate oxide film 5 thereunder. After the upper part of the MISFET is flattened using the BP30 film 11, a capacity is formed.
  • the capacitor and the MISFET are electrically connected by a polycrystalline silicon plug 15 embedded in the-part of the BPSG film 11.
  • the capacitor is a three-dimensional capacitor formed on the lower electrode 23 of Pt.
  • the capacitor insulating film 24 of PZT is formed on the lower electrode 23, and the upper electrode of Pt is formed on the capacitor insulating film 24. 23 is formed to form a three-dimensional capacity. Also at the bottom In order to suppress the diffusion of Pt from the electrode 23 into the plug 15, a TiN parametal 22 is provided between the lower electrode 23 and the plug 15.
  • the lower electrode 23, the capacitive insulating film 24, and the fin electrode 25 can be formed using the various materials described in the first embodiment.
  • the manufacturing method is the same as that of the fourth embodiment. Even in the case of a memory using such a three-dimensional capacity, by using the plasma etching apparatus of the first embodiment, an accurate end point can be determined when etching the gate electrode 23 and the barrier metal 22. be able to.
  • FIG. 31 is a sectional view showing another embodiment of the thin tube collecting plate.
  • This thin tube collecting plate is formed by collecting tapered thin tubes 1 19 having a taper such that the diameter of the light receiving section is larger than the diameter of the other end and bundling them with quartz 120 to form a thin tube collecting plate. It is structured to be attached to the quartz glass window 1 1 2.
  • the light emission of the plasma enters from the large diameter side of the thin tube 119, passes through the quartz window 112, and is guided to the plasma monitor.
  • the thin tube 119 has a taper angle
  • the light emission of the plasma is collected while being reflected on the inner wall surface of the thin tube 119, so that the light receiving efficiency can be improved.
  • the variation in the light receiving efficiency is small because the adhered substance acts as a light reflection layer. No.
  • the thin tubes 1 19 can be made, for example, by stretching a quartz glass tube.
  • the thin tube 119 may be made of only quartz glass, but the inner wall of the thin tube 119 may be previously thinly coated with a substance having a high reflectance (for example, gold). Further, the thin tube 119 may be formed of metal. In this case, too, it can be created by stretching the metal tube. At that time, metal may be used instead of quartz 120 as a support as a support for binding the metal tubes.
  • the present invention is not limited to the etching using the magnetron RIE type plasma etching apparatus as shown in the above-described embodiment, but is applicable to various types of plasma etching apparatuses such as ECR, helicon, ICP, TCP, etc. It can be applied to etching.
  • Industrial applicability is not limited to the etching using the magnetron RIE type plasma etching apparatus as shown in the above-described embodiment, but is applicable to various types of plasma etching apparatuses such as ECR, helicon, ICP, TCP, etc. It can be applied to etching.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)
  • Semiconductor Memories (AREA)

Abstract

When the surface of a semiconductor wafer (1) having a predetermined thin film formed thereon is etched by using a plasma etching apparatus equipped with a plasma monitor for monitoring a plasma process in a chamber (10) by detecting the radiation from the plasma, a porous plate (110) having pores having a high aspect ratio is disposed in the optical path of the radiation from the plasma toward the plasma monitor, and the radiation passing through the porous plate (110) is detected by the plasma monitor so as to determine the end point of etching of the thin film.

Description

明 細 害 半導体集積回路装置の製造方法 技術分野  Method of manufacturing semiconductor integrated circuit device
本発明は、 半導体集積回路装置の製造技術に関し、 特に、 プラズマプロセスの 終点検出に適用して有効な技術に関するものである。 背景技術  The present invention relates to a technology for manufacturing a semiconductor integrated circuit device, and more particularly to a technology effective when applied to end point detection of a plasma process. Background art
エッチングにより生成する反応生成物の発光スぺク トル強度を測定することに よって、 エッチングの進行状況や終点をモニタする技術は、 ディープサブミクロ ン L S Iの製造工程において、 微細なパターンを高精度にドライエッチングする ために欠かせな 、技術となっている。  The technology that monitors the progress and end point of etching by measuring the emission spectrum intensity of the reaction product generated by etching is a technology that can accurately detect minute patterns in the deep submicron LSI manufacturing process. This technology is indispensable for dry etching.
例えば 0.25 以下のデザィンルールで製造される 256M bit〜 1 G bit D R AM(Dynamic Random Access Memory)の製造工程では、 微細化されたメモリセ ルの情報蓄積用容量素子 (キャパシ夕) を加工する際に上記のようなプラズマェ ツチングが不可欠となる。 また、 近年開発が進められている強誘電体不揮発性メ モリ(Ferro-electric RAM; FRAM) の製造工程においても、 情報蓄積用容量素子 の加工時に上記のようなプラズマエッチングが不可欠となる。  For example, in the manufacturing process of 256 Mbit to 1 Gbit DRAM (Dynamic Random Access Memory) manufactured with a design rule of 0.25 or less, when processing the information storage capacitor (capacity) of a miniaturized memory cell. Plasma etching as described above is indispensable. In the process of manufacturing ferroelectric non-volatile memory (Ferro-electric RAM; FRAM), which is being developed in recent years, plasma etching as described above is indispensable when processing information storage capacitors.
256M bit〜 1 G bit DR AMにおいては、 メモリセルの微細化に伴う蓄積電 荷量の減少を補う対策として、情報蓄積用容量素子の容量絶縁膜を T a 205 B ST ( (B a, S r) T i 0 3) といつた比誘電率が 20以上の高誘電体薄膜や 比誘電率が 1 00を超える強誘電体薄膜で構成することが要求される。 また、 F RAIV [の場合は、 容量絶縁膜を P ZT (P b Z r XT i ,.x 03), P b T i ◦ 3、 S r T i 03、 B a T i 03などの強誘電体薄膜で構成する。 そのため、 DRAMや F RAMの容量絶縁膜上に堆積する上部電極用導電膜も、 上記のような高 (強) 誘電体膜上に結晶成長させ易く、 かつ高 (強) 誘電体膜もしくはその構成材料に 対して化学反応耐性を有する、 例えば P tのような導電材料を使用することが要 求される。 P t膜や強誘電体薄膜をエッチングで加工する際には、 エッチング装置のチヤ ンバの内壁などに付着した反応生成物の影響でェッチング特性が経時的に変化す るために、 エッチングレートが刻々と変動する。 従って、 これらの材料をエッチ ングで加工する際には、 ウェハを 1枚処理する毎にプラズマの発光スぺク トル強 度をモニタしてエッチングの終点を判定する必要がある。 256M In bit~ 1 G bit DR AM, as a countermeasure to compensate for the decrease in the accumulated electric load volume due to miniaturization of the memory cell, a capacitor insulating film of the information storage capacitor T a 2 0 5 B ST ( (B a , S r) T i 0 3 ), it is required to be composed of a high dielectric thin film having a relative dielectric constant of 20 or more and a ferroelectric thin film having a relative dielectric constant of more than 100. Further, F RAIV [case, the capacitor insulating film P ZT (P b Z r X T i,. X 0 3), P b T i ◦ 3, S r T i 0 3, B a T i 0 3 And the like. Therefore, the conductive film for the upper electrode deposited on the capacitive insulating film of DRAM or FRAM is also easy to grow a crystal on the high (strong) dielectric film as described above, and has a high (strong) dielectric film or its structure. It is required to use a conductive material having chemical resistance to the material, such as Pt. When etching a Pt film or a ferroelectric thin film by etching, the etching rate changes every time because the etching characteristics change over time due to the reaction products attached to the inner wall of the chamber of the etching apparatus. And fluctuate. Therefore, when processing these materials by etching, it is necessary to determine the end point of the etching by monitoring the intensity of the plasma emission spectrum each time one wafer is processed.
プラズマエッチング工程において、 エッチングの終点を検出するには、 エッチ ング装置のチャンバ壁などに設置した石英製のガラス窓を透過したプラズマの発 光をレンズゃ光センサを備えた光学系により観測し、 この光を電気信号に変換し て分析する方式が採用されている。  In the plasma etching process, the end point of the etching is detected by observing the emission of plasma transmitted through a quartz glass window installed on the chamber wall of the etching apparatus by an optical system equipped with a lens and a light sensor. A method is used in which this light is converted into an electric signal and analyzed.
この種の終点検出装置については、 例えば口本国特許第 2 5 0 1 6 7 4号に開 示されたものがある。  An example of this type of end point detection device is disclosed in Japanese Patent No. 25017164.
この終点検出装置は、 プラズマ放電により生成される光スぺク トルの異なるス ぺク トル部分に応答する複数の光センサを含むセンサ組立体と、 上記複数の光セ ンサから生成される複数の光チャネルのディジタル化されたデータを数学的に結 合して複合関数を形成するコンピュータシステムとを含んでおり、 各光チャネル の Rみ係数を変化させることによって、 エッチングガスやエツチング材料が異な る複数のプロセスの終点状態やその他のエッチング状態の監視を行うようになつ ている。  The end point detecting device includes a sensor assembly including a plurality of optical sensors responsive to different spectral portions of the optical spectrum generated by the plasma discharge, and a plurality of optical sensors generated from the plurality of optical sensors. A computer system that mathematically combines the digitized data of the optical channels to form a complex function, and changes the R-coefficient of each optical channel so that the etching gas and the etching material are different. It monitors end-point status of multiple processes and other etching conditions.
上記センサ組立体は、 プラズマエッチング装置のチャンバ壁の開口部を通して チャンバ内に伸びるプローブ部と、 光センサおよびアナログ回路を囲むハウジン グ部とで構成されており、 プローブ部にはプラズマ放電からの電磁放射を通す光 ガイ ドとして作用する複数個の穴を備えた円筒状の筒体が設けられている。 複数 個の穴のそれぞれは、 水平から所定の角度だけ僅かに曲がった軸を有する切頭円 錐状をなしており、 その内壁は所定の周波数の電磁輻射を反射するようになって いる。  The sensor assembly includes a probe section extending into the chamber through an opening in the chamber wall of the plasma etching apparatus, and a housing section surrounding the optical sensor and the analog circuit. A cylindrical body with a plurality of holes acting as light guides for transmitting radiation is provided. Each of the plurality of holes has a truncated cone shape having an axis slightly bent at a predetermined angle from the horizontal, and the inner wall thereof reflects electromagnetic radiation of a predetermined frequency.
日本国特開昭 6 1 - 2 0 7 5 8 3号公報は、 ウェハを載置した下部電極と接地 電位とした上部電極との間にプラズマを形成してウェハ表面をエッチングする装 置において、 ウェハ表面に設けたスクライブラインに照射した光の反射光を上部 電極の網目を通してイメージセンサに集光することによりスクライブラインの画 像信号を抽出し、 その積分値をエッチングの過程に従ってモニタすることでエツ チングの終点を高精度、 かつ自動的に検出する方法を開示している。 Japanese Patent Application Laid-Open No. 61-2075853 discloses an apparatus for etching a wafer surface by forming plasma between a lower electrode on which a wafer is mounted and an upper electrode at a ground potential. The reflected light of the light applied to the scribe line on the wafer surface is collected on the image sensor through the mesh of the upper electrode, and the image of the scribe line is formed. A method is disclosed in which an image signal is extracted, and an integrated value thereof is monitored in accordance with an etching process, whereby the end point of the etching is detected with high accuracy and automatically.
日本国特開昭 5 9 - 1 7 0 2 7 2号公報は、 ウェハを載置した下部電極と接地 電位とした上部電極との間にプラズマを形成してウェハ表面をエッチングする装 置において、 チャンバ壁の窓の外側に設置した集光レンズの表面にチャンバ内の 反応生成物などが付着するのを防止する技術を開示している。  Japanese Patent Application Laid-Open No. 59-17072 describes an apparatus for etching a wafer surface by forming plasma between a lower electrode on which a wafer is mounted and an upper electrode at a ground potential. It discloses a technique for preventing reaction products and the like in the chamber from adhering to the surface of a condenser lens installed outside the window of the chamber wall.
このェッチング装置のチャンバ壁に設置された窓は、 光を透過するピンホール と、 チャンバ壁の外側に取り付けられた集光室と、 その内部に設 gされたレンズ とで構成されており、 集光室にはその内部をチャンバに対して陽圧とするために 窒素などの不活性ガスが導入される。 これにより、 チャンバ内で発生した反応ガ スゃプラズマがピンホールを通じて集光室に流入することがないので、 レンズ表 面の汚れを防し、でェッチングの終点を正確に検出することができる。  The window installed on the chamber wall of this etching device is composed of a pinhole that transmits light, a condensing chamber installed outside the chamber wall, and a lens installed inside the chamber. An inert gas such as nitrogen is introduced into the light chamber to make the inside of the light chamber a positive pressure with respect to the chamber. As a result, the reaction gas generated in the chamber does not flow into the focusing chamber through the pinhole, so that the lens surface can be prevented from being stained, and the end point of the etching can be accurately detected.
日本国特開平 5— 2 0 6 0 7 6号公報は、 チャンバ壁に設けた石英ガラスなど からなる観察窓に、 その内側に付着する反応生成物などを除去して曇りをなくす ための付着物除去手段を設けたプラズマ処理装 eを開示している。 この付着物除 去手段は、 観察窓の周辺部にその周方向に沿って形成されたセラミックヒータな どの加熱手段を有しており、 エツチング処理中ある 、は処理後にこの付着物除去 手段を駆動して観察窓を所定の温度に加熱することにより、 観察窓の表面に反応 生成物などが付着するのを防止している。  Japanese Patent Application Laid-Open No. H5-206076 discloses that an observation window made of quartz glass or the like provided on a chamber wall is provided with an adhering substance for removing reaction products and the like adhering to the inside of the observation window to eliminate fogging. A plasma processing apparatus e provided with a removing means is disclosed. This adhering matter removing means has a heating means such as a ceramic heater formed in the periphery of the observation window along the circumferential direction thereof. If the etching processing is being performed, the adhering matter removing means is driven after the processing. By heating the observation window to a predetermined temperature, reaction products and the like are prevented from adhering to the surface of the observation window.
ところで、 前述した P t膜や強誘電体薄膜のエッチング加工においては、 エツ チング装置のチャンバ内に、 付着係数が非常に大きく、 しかも蒸気圧が低い反応 生成物が発生し、 それがチャンバの内壁のみならず石英製のガラス窓の表面にも 付着するために、 ウェハを僅か 2〜 3枚程度処理しただけでガラス窓がプラズマ の発光を透過しなくなってしまうという問題があり、 これが P tや強誘電体材料 を D R A Mや F R A Mの情報蓄積用容量素子に適用する際の妨げとなっている。 ブラズマの発光からエツチングの終点を検出することができなし、場合は、 ェッ チング時間を管理して、 あらかじめ定める時間だけェッチングする方法を採用し なければならない。 その場合には、 エッチング残りを防止するためにオーバーェ ツチング量を多めに、 すなわちエッチング時間を長めに設定せざるを得ない。 ま P T/JP96/01889 By the way, in the above-mentioned etching of the Pt film and the ferroelectric thin film, a reaction product having a very large adhesion coefficient and a low vapor pressure is generated in the chamber of the etching apparatus, and the reaction product is formed on the inner wall of the chamber. In addition, since it adheres to the surface of a quartz glass window as well, there is a problem in that the glass window does not transmit the plasma light emission when only a few wafers are processed, and this causes Pt and This has hindered the application of ferroelectric materials to DRAM and FRAM information storage capacitors. If the end point of the etching cannot be detected from the light emission of the plasma, the etching time must be managed and a method of etching for a predetermined time must be adopted. In such a case, the overetching amount has to be set large, that is, the etching time must be set long in order to prevent the etching residue. Ma PT / JP96 / 01889
た、 オーバ一エッチング量を多くする場合には、 下地となる膜の膜厚を厚くして おく必要がある。 例えば 3層構造 (上部電極、 容量絶縁膜、 下部電極) の情報蓄 積用容量素子を形成する場合は、 上部電極用導電膜のオーバ一エッチング量を多 くするために容量絶縁膜の膜厚を厚く し、 容量絶縁膜のオーバーエッチング量を 多くするために下部電極用導電膜の膜厚を厚く し、 下部電極用導電膜のオーバ一 エツチング量を多くするために下地絶縁膜の膜厚を厚くする必要がある。 When the over-etching amount is increased, it is necessary to increase the thickness of the underlying film. For example, when forming an information storage capacitor having a three-layer structure (an upper electrode, a capacitor insulating film, and a lower electrode), the thickness of the capacitor insulating film is increased in order to increase the over-etching amount of the conductive film for the upper electrode. The thickness of the lower electrode conductive film is increased to increase the amount of over-etching of the capacitive insulating film, and the thickness of the base insulating film is increased to increase the over-etching amount of the lower electrode conductive film. Need to be thicker.
し力、し、 このように各膜を厚くすると、 以下のような弊害が生じる。  When the thickness of each film is increased in this manner, the following adverse effects occur.
( 1 ) メモリセルの面積が大きくなる。  (1) The area of the memory cell increases.
( 2 ) ^量絶縁膜が厚くなると、 メモリセルへのアクセス速度が低下する。  (2) The thicker the insulating film, the lower the access speed to the memory cell.
( 3 ) 強誘電体膜を厚く結晶成 βさせるのは技術的に困難である。  (3) It is technically difficult to make the ferroelectric film thick β.
( 4 ) 下地絶縁股が厚くなると、 この絶縁膜にァスぺク 卜比が大きい接続孔 (コ ン夕ク トホール) を形成しなければならなくなる。 また、 これに伴って接続孔の 内部に A 1や T i Nなどの金属を埋め込むことが 難になる。  (4) As the thickness of the underlying insulating crotch increases, connection holes (connection holes) having a high aspect ratio must be formed in this insulating film. Accordingly, it becomes difficult to embed a metal such as A1 or TIN in the connection hole.
( 5 ) 情報^積用容量素子の上部に絶縁膜を堆積する際、 下地段差が大きくなる ために絶縁膜の力バレ一ジが低下する。 また、 これに伴って絶縁膜の上部に堆積 する配線用導電膜のカバレージも低下する。  (5) When depositing an insulating film on top of an information storage capacitor, the power barrier of the insulating film is reduced due to a large base step. In addition, the coverage of the conductive film for wiring deposited on the insulating film is also reduced.
本発明の目的は、 付着係数が大き L、反応生成物や蒸気圧が低 t、反応生成物の発 生を伴うェッチングを行う場合においても、 ブラズマの発光からエツチングの終 点を確実に判定することのできる技術を提供することにある。  An object of the present invention is to reliably determine the end point of etching from emission of plasma even in the case of performing etching accompanied by generation of a reaction product even when the adhesion coefficient is large L, the reaction product or the vapor pressure is low, and the reaction product is generated. It is to provide the technology that can do it.
本発明の前記ならびにその他の目的と新規な特徴は、 明細書の記述および添付 図面から明らかになるであろう。 発明の開示  The above and other objects and novel features of the present invention will become apparent from the description of the specification and the accompanying drawings. Disclosure of the invention
本発明による半導体集積回路装置の製造方法は、 半導体ウェハの近傍にプラズ マを形成して前記半導体ウェハの表面をプラズマ処理するプラズマ処理部と、 前 記プラズマの発光を検出して前^プラズマ処理の状態をモニタするプラズマモニ 夕部とを備えたエッチング装置を用いて所定の薄膜が形成された半導体ウェハの 表面をェッチングするにあたり、 少なくとも前記薄膜のェッチングによつて前記 プラズマ処理部に発生する反応生成物のソース側が開孔された高ァスぺク ト比の 細孔が複数形成されてなる細孔集合板を、 前記プラズマモニタ部に入射する前記 ブラズマの発光の光路上に配置し、 この細孔集合板を透過したブラズマの発光を 前記プラズマモニタ部によって検出するようにしたものである。 これにより、 プ ラズマの発光が反応生成物に遮られることなくプラズマモニタ部に到達できるの で、 付着係数が大き L、反応生成物や蒸気圧が低 L、反応生成物の発生を伴うエッチ ングを行う場合においても、 エツチングの終点を確実に判定することが可能とな る。 A method of manufacturing a semiconductor integrated circuit device according to the present invention includes: a plasma processing unit configured to form a plasma near a semiconductor wafer to perform a plasma processing on a surface of the semiconductor wafer; When etching the surface of a semiconductor wafer on which a predetermined thin film is formed by using an etching apparatus having a plasma monitor for monitoring the state of the thin film, at least a reaction generated in the plasma processing unit by the etching of the thin film. The source side of the product has a high aspect ratio A pore collecting plate formed with a plurality of pores is arranged on an optical path of light emission of the plasma incident on the plasma monitor, and light emission of the plasma transmitted through the hole collecting plate is detected by the plasma monitor. It is something to do. As a result, the plasma emission can reach the plasma monitor without being blocked by the reaction product, so that the adhesion coefficient is large, the reaction product and vapor pressure are low, and etching involving the generation of the reaction product occurs. In this case, the end point of the etching can be reliably determined.
なお、 本願において半導体集積回路装置というときには、 T F T液晶を含むも のとし、 同様にウェハというときには T F T液晶の製造に用いる基板を含むもの とする。 また、 数値などに関して 「同程度」 というときは、 比較するものの 1 Z 4から 4倍程度の範囲を指すものとする。 図面の簡単な説明  In the present application, a semiconductor integrated circuit device includes a TFT liquid crystal, and a wafer includes a substrate used for manufacturing a TFT liquid crystal. In addition, “about the same” for numerical values, etc., refers to a range of about 1 to 4 times as large as the one to be compared. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の第 1実施例で使用するプラズマエッチング装置の要部構成図、 図 2は、 図 1に示すプラズマエッチング装置に取り付けられた細管集合板の拡大 斜視図、 図 3は、 細管集合板の製造方法を示す説明図、 図 4は、 本発明の第 1実 施例である半導体集積回路装置の製造方法を示す半導体基板の要部平面図、 図 5 は、 本発明の第 1実施例である半導体集積回路装置の製造方法を示す半導体基板 の要部断面図、 図 6は、 本発明の第 1実施例である半導体集積回路装置の製造方 法を示す半導体基板の要部断面図、 図 7は、 本発明の第 1実施例である半導体集 積 [B]路装置の製造方法を示す半導体基板の要部断面図、 1¾ 8は、 本発明の第 1実 施例である半導体集積回路装置の製造方法を示す半導体基板の要部断面図、 図 9 は、 本発明の第 1実施例である半導体集積回路装置の製造方法を示す半導体基板 の要部断面図、 図 1 0は、 本発明の第 1実施例である半導体集積回路装置の製造 方法を示す半導体基板の要部断面図、 図 1 1は、 本発明の第 1実施例である半導 体衆 ·積回路装置の製造方法を示す半導体基板の要部断面図、 図 1 2は、 本発明の 第 1実施例である半導体集積回路装置の製造方法を示す半導体基板の要部断面図、 図 1 3は、 本発明の第 1実施例である半導体集積回路装置の製造方法を示す半導 体基板の要部断面図、 図 1 4は、 本発明の第 1実施例である半導体集積回路装置 の製造方法を示す半導体基板の要部断面図、 図 1 5は、 本発明の第 1実施例であ る半導体集積回路装置の製造方法を示す半導体基板の要部断面図、 図 1 6は、 本 発明の第 1実施例である半導体集積回路装置:の製造方法を示す半導体基板の要部 断面図、 図 1 7は、 本発明の第 1実施例である半導体集積回路装置の製造方法を 示す半導体基板の要部断面図、 図 1 8は、 本発明の第 1実施例である半導体集積 回路装置の製造方法を示す半導体基板の要部断面図、 図 1 9は、 本発明の第 1実 施例である半導体集積回路装置の製造方法を示す半導体基板の要部断面図、 図 2 0は、 細管集合板の要部拡大断面図、 図 2 1は、 細管集合板を透過するプラズマ の発光強度の経時変化を示すグラフ、 図 2 2は、 プラズマの発光強度の経時変化 を示すグラフ、 図 2 3は、 本発明の第 1実施例である半導体集積回路装置の製造 '方法を^す半導体基板の要部断面^、 1 2 4は、 本発明の第 1実施例である半導 体集積回路装 Eの製造方法を示す半導体 ¾板の要部断而図、 図 2 5は、 本発明の 第 1実施例である半導体集積回路装 Kの製造方法を小 ·す半導体基板の要部断面図、 図 2 6は、 本発明の第 2 ¾施例である半導体集積回路装置の製造方法を示す半導 体基板の要部平面図、 図 2 7は、 本発明の第 3実施例である半導体集積回路装置 の製造方法を示す半導体基板の要部平面図、 図 2 8は、 本発明の第 3実施例であ る半導体集積回路装置の製造方法を示す半導体基板の要部断面図、 図 2 9は、 本 発明の第 4 ¾施例である半導体集積回路装置の製造方法を示す半導体基板の要部 断面図、 図 3 0は、 本発明の第 5実施例である半導体集積回路装置の製造方法を 示す半導体基板の要部断面図、 図 3 1は、 細管集合板の他の実施例を示す断面図 である。 発明を実施するための最良の形態 FIG. 1 is a main part configuration diagram of a plasma etching apparatus used in the first embodiment of the present invention, FIG. 2 is an enlarged perspective view of a thin tube assembly attached to the plasma etching apparatus shown in FIG. 1, and FIG. FIG. 4 is an explanatory view showing a method of manufacturing a thin tube aggregate plate, FIG. 4 is a plan view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention, and FIG. FIG. 6 is a sectional view of a principal part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to one embodiment. FIG. 6 is a principal part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 7 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device [B] according to a first embodiment of the present invention. FIG. 9 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device. FIG. 10 is a fragmentary cross-sectional view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment. FIG. 10 is a sectional view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 11 is a partial sectional view of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 12 is a first embodiment of the present invention. FIG. 13 is a cross-sectional view of a main part of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device as an example. FIG. 13 is a main part of a semiconductor substrate showing a method for manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 14 is a sectional view of a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 15 is a cross-sectional view of a main part of a semiconductor substrate illustrating a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. Sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 17 shows a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 18 is a sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. FIG. 19 is a sectional view of the first embodiment of the present invention. FIG. 20 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to an embodiment; FIG. 20 is an enlarged cross-sectional view of a main part of a thin tube collecting plate; FIG. FIG. 22 is a graph showing the change over time in the intensity of the plasma. Reference numeral 23 denotes a cross section of a main part of a semiconductor substrate in a method of manufacturing a semiconductor integrated circuit device according to a first embodiment of the present invention. 124 denotes a semiconductor integrated circuit according to the first embodiment of the present invention. FIG. 25 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device K according to a first embodiment of the present invention. FIG. 26 is a plan view of a principal part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a second embodiment of the present invention. FIG. 27 is a third embodiment of the present invention. FIG. 28 is a fragmentary plan view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a third embodiment of the present invention; FIG. 29 is a cross-sectional view of a main part of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device according to a fourth embodiment of the present invention. FIG. 30 is a fifth embodiment of the present invention. Fragmentary cross-sectional view of a semiconductor substrate showing a method of manufacturing a semiconductor integrated circuit device is, 3 1 is a sectional view showing another embodiment of a capillary collection plate. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳述するために、 添付の図面に従ってこれを説明する。 なお、 実 施例を説明するための全図において、 同一機能を冇するものは同一符号を付け、 その繰り返しの説明は省略する。  The present invention will be described in more detail with reference to the accompanying drawings in order to explain it in more detail. In all the drawings for describing the embodiments, components having the same function are denoted by the same reference numerals, and a repeated description thereof will be omitted.
第 1実施例 First embodiment
図 1は、 本実施例で使用するプラズマエッチング装置の要部構成図である。 プラズマエッチング装置 1 0 0のプラズマ処理部であるアルマイトコ一ティン グを施した A 1製のチャンバ 1 0 1の内部には、 平板状の下部電極 1 0 2と上部 電極 1 0 3とが対向して配置されている。 R F電源 1 0 4に接続された下部電極 1 0 2は、 試料である半導体基板 (ウェハ) 1を載置するステージになっている c 接地電位に接続された上部電極 1 0 3の一部には、 チャンバ 1 0 1内に塩素など の反応ガスや A rなどのプラズマ安定化ガスを供給するガス導入管 1 0 5が設け られている。 FIG. 1 is a main part configuration diagram of a plasma etching apparatus used in the present embodiment. Alumite coating which is a plasma processing unit of plasma etching equipment 100 A flat lower electrode 102 and an upper electrode 103 are arranged inside a chamber 101 made of A1 which has been subjected to the brushing. The lower electrode 102 connected to the RF power supply 104 is connected to a part of the upper electrode 103 connected to the ground potential c, which is the stage on which the semiconductor substrate (wafer) 1 as a sample is mounted. A gas introduction pipe 105 for supplying a reaction gas such as chlorine or a plasma stabilizing gas such as Ar is provided in a chamber 101.
下部電極 1 0 2の周囲には、 プラズマエッチングの反応生成物 1 1 8がチャン / 1 0 1の内壁に付着するのを防ぐウォール板 1 0 6が設けられている。 また、 下部電極 1 0 2の下部にはバッフル板 1 0 7が設けられている。 ウォール板 1 0 6は、 その内壁に付着した反応生成物 1 1 8を定期的に取り除くために、 チャン バ 1 0 1から'容易に取り外せる構造になっている。 チャンノく 1 0 1の -端部には、 チャンバ 1 0 1の内部を任: の圧力に真空引きするための真空ポンプ 1 0 8が設 けられている。 チャンバ 1 0 1の外側には、 回転磁石 1 0 9が設けられており、 この回転磁石 1 0 9が形成する磁場と R F電源 1 0 4によって印加される R Fバ ィァスとにより、 上部電極 1 0 3と下部電極 1 0 2との間に高密度なプラズマ 1 1 4が形成されるようになっている。  Around the lower electrode 102, a wall plate 106 for preventing a reaction product 118 of the plasma etching from adhering to the inner wall of the channel 101 is provided. A baffle plate 107 is provided below the lower electrode 102. The wall plate 106 has such a structure that it can be easily removed from the chamber 101 in order to periodically remove the reaction product 118 attached to its inner wall. At the -end of the channel 101, a vacuum pump 108 for evacuating the inside of the chamber 101 to a pressure of is provided. A rotating magnet 109 is provided outside the chamber 101, and an upper electrode 100 is formed by a magnetic field generated by the rotating magnet 109 and an RF bias applied by an RF power source 104. A high density plasma 114 is formed between 3 and the lower electrode 102.
ド部電極 1 0 2の周囲に設けられたウォール板 1 0 6の壁面には、 薄い円板状 の細管集合板 1 1 0がクランプ 1 1 1などの固定手段によって取り付けられてい る。 後に詳述するように、 この細管集合板 1 1 0は、 微細な石英ガラス管の束を 薄くスライスしたもので、 表面に当たった光が主としてそれぞれの微細ガラス管 の内部を透過して裏面側に達する構造になっている。 この細管集合板 1 1 0と対 向するチャンパ' 1 0 1の壁面には、 透明な石英ガラス窓 1 1 2がクランプ 1 1 1 などの固定手段によって取り付けられている。 石英ガラス窓 1 1 2とチャンバ 1 0 1の壁面との隙間には 0リング 1 1 3が嵌合され、 チャンバ 1 0 1の内部の気 密が維持されるようになっている。  On the wall surface of the wall plate 106 provided around the gate electrode 102, a thin disk-shaped thin tube collecting plate 110 is attached by fixing means such as a clamp 111. As will be described in detail later, the thin tube collecting plate 110 is a thin slice of a bundle of fine quartz glass tubes, and the light that hits the surface is mainly transmitted through the inside of each fine glass tube and the back side. It is structured to reach. A transparent quartz glass window 112 is attached to a wall surface of the champer 101 facing the thin tube collecting plate 110 by fixing means such as a clamp 111. An O-ring 113 is fitted in a gap between the quartz glass window 112 and the wall surface of the chamber 101 so that the airtightness inside the chamber 101 is maintained.
石英ガラス窓 1 1 2の外側には、 プラズマエッチング時に下部電極 1 0 2と上 部電極 1 0 3との間に形成されるプラズマ 1 1 4の発光をモニタしてエッチング の終点などを判定するプラズマモニタ部が設けられている。 このプラズマモニタ 部は、 細管集合板 1 1 0と石英ガラス窓 1 1 2とを透過したプラズマの発光の強 度を検出する発光検出モニタ 1 1 5、 プラズマの発光のうち、 所望する波長の光 を選別するモノクロメータ 1 1 6、 プラズマの発光強度を記録するペンレコーダ 1 1 7などにより構成されている。 Outside the quartz glass window 112, the emission of plasma 114 formed between the lower electrode 102 and the upper electrode 103 during plasma etching is monitored to determine the end point of the etching, etc. A plasma monitor is provided. This plasma monitor section has the intensity of plasma emission transmitted through the thin tube collecting plate 110 and the quartz glass window 112. It consists of a light emission detection monitor 115 that detects the degree of light, a monochromator 116 that selects light of a desired wavelength out of the plasma light emission, and a pen recorder 117 that records the light emission intensity of the plasma.
図 2 ( a ) は、 上記プラズマエッチング装置 1 0 0のウォール板 1 0 6に取り 付けられた細管集合板 1 1 0の拡大図である。 特に限定はされないが、 この細管 集合板 1 1 0は、 直径 2 5 mm、 厚さ 0. 2 4 mmの石英ガラス製円板で構成され ており、 その表面には裏面側に貫通する直径 1 0 の細孔が多数形成されてい る。 これらの細孔のそれぞれは、 図 2 ( b ) に示すような石英ガラスの細管で構 成されている。 このような構造の細管集合板 1 1 0としては、 例えば浜松ホトニ クス株式会社 (HAMAMATSU PHOTONICS K. K.)製の 「マイクロキヤビラリプレ -ト (登録商標) 、 型式 J5()22-n」 などを利用することができる。  FIG. 2A is an enlarged view of the thin tube collecting plate 110 attached to the wall plate 106 of the plasma etching apparatus 100. Although not particularly limited, the thin tube collecting plate 110 is made of a quartz glass disk having a diameter of 25 mm and a thickness of 0.24 mm, and has a diameter of 1 mm penetrating to the back surface on the front surface. Many 0 pores are formed. Each of these pores is composed of a quartz glass capillary as shown in Fig. 2 (b). As the thin tube collecting plate 110 having such a structure, for example, "Hamamatsu Photonics Co., Ltd. (HAMAMATSU PHOTONICS KK)" manufactured by "Micro Caviar Replate (registered trademark), Model J5 () 22-n" or the like is used. can do.
細管集合板 1 1 0を製造するには、 一例として図 3 ( a ) に示すような細長い 円柱状の石英ガラス細管を多数用意する。 次に、 図 3 ( b ) に示すように、 これ らの石英ガラス細管を束ねて接着し、 ガラス細管集合休とする。 ガラス細管同士 の接着には、 この細管と同じ材質の溶融ガラスなどを使用する。次に、 図 3 ( c ) に示すように、 このガラス細管集合体を薄く輪切りにして細管集合板 1 1 0とす る。  In order to manufacture the thin tube collecting plate 110, as an example, a large number of elongated columnar quartz glass thin tubes as shown in FIG. 3 (a) are prepared. Next, as shown in Fig. 3 (b), these quartz glass tubes are bundled and bonded to form a glass tube assembly. For the bonding between the glass tubes, molten glass of the same material as the tubes is used. Next, as shown in FIG. 3 (c), the glass thin tube aggregate is thinly sliced into a thin tube aggregate plate 110.
細管集合板 1 1 0の細孔を構成するガラス製の細管 (図 2 C b ) 参照) は、 直 径 (ø ) に対する長さ (L ) の割合 (ァスぺク 卜比) を 1よりも大きくする必要 があり、 実用的には少なくとも 5以上、 好ましくはできるだけ高アスペク ト比と すべきである。 ガラス細管のァスぺク ト比を高くするほど細管の内部にプラズマ エッチングの反応生成物粒子が飛来する確率が低くなるので、 光透過能の低下を より確実に防ぐことができる。 他方、 アスペク ト比を 1程度もしくはそれ以下と した場合は、 短時間の使用で細管の内部に反応生成物が堆積し、 光が透過しなく なってしまう。 本実施例で使用する細管集合板 1 1 0は、 直径 1 0 mのガラス 細管の集合体をスライスして厚さ 0. 2 4 mm ( = 2 4 0 m ) にしたもので、 そ のァスぺク ト比は 2 4である。  The thin tube made of glass (see Fig. 2Cb) that constitutes the pores of the thin tube collecting plate 110 has a ratio (aspect ratio) of the length (L) to the diameter (ø) of 1 Should be large, and in practice, the aspect ratio should be at least 5 or more, preferably as high as possible. The higher the aspect ratio of the glass tube, the lower the probability of reaction product particles of plasma etching coming into the tube, so that it is possible to more reliably prevent the light transmittance from lowering. On the other hand, if the aspect ratio is set to about 1 or less, the reaction product accumulates inside the tubule after a short use, and the light does not pass through. The thin tube collecting plate 110 used in the present embodiment is obtained by slicing an aggregate of glass thin tubes having a diameter of 10 m to a thickness of 0.24 mm (= 240 m). The aspect ratio is 24.
また、 細管の直径 (ø ) も重要な要素であり、 直径 (ø )力 1 m以下のもの は、 開孔部付近に付着した反応生成物で細管が塞がってしまう虞れがある。 他方、 直径( Φ )が人き L、細管の場合は、十分なァスぺク ト比を確保するために長さ( L ) も大きく しなければならないが、 細管集合板 1 1 0をプラズマエッチング装置 1 00のチャンバ 101内に取り付けることを考慮すると、 細管集合板 1 1 0の厚 さは数 cm以下であることが望ましい。 従って、 細管は直径 (ø) 力 1 π!〜 1 mm程度の範囲内のものを使用すべきである。 The diameter (ø) of the thin tube is also an important factor. If the diameter (ø) force is 1 m or less, the thin tube may be blocked by the reaction product attached near the opening. On the other hand, If the diameter (Φ) is L or a thin tube, the length (L) must be increased in order to ensure a sufficient aspect ratio. Considering that the thin tube collecting plate 110 is attached to the inside of the chamber 101 of 00, the thickness of the thin tube collecting plate 110 is preferably several cm or less. Therefore, the capillary has a diameter (ø) of 1π! It should be within the range of ~ 1 mm.
他方、ブラズマ発光の波長( λ )との関係で規定すると、ガラス細管の直径( Φ ) は、 少なくともこの波長 (λ) と同程度以上 (0≥ス) であることが望ましい。 また、 反応生成物粒子の Ψ-均 由工程 ( 1 ) との関係では、 直径 (ø) をこの平 均自由工程 ( 1 ) と同程度以下 (0≤ 1 ) とすることが望ましい。  On the other hand, when specified in relation to the wavelength (λ) of the plasma emission, the diameter (Φ) of the glass capillary is desirably at least as large as this wavelength (λ) (0 ≥). Further, in relation to the Ψ-uniform process (1) of the reaction product particles, it is desirable that the diameter (ø) is equal to or less than the average free process (1) (0≤1).
さらに、 細管 合板 1 10の開口率 (受光部の面積に占める孔の面積の割合) も考慮すべき要素である。 この開口率が小さいと細^を透過する光量が低下する ので、 少なくとも 1 0%程度以上の開口率が確保されるような高開口数の細管集 合板とすべきである。  In addition, the aperture ratio of the narrow tube plywood 110 (the ratio of the area of the holes to the area of the light receiving section) is another factor to be considered. If the aperture ratio is small, the amount of light transmitted through the thin plate decreases. Therefore, a high-numerical-diameter thin-tube assembly plate that ensures an aperture ratio of at least about 10% or more should be used.
細管集合板 1 10は、 上記のような石英ガラス管を使用したものに限定される ものではなく、 種々の材料からなる微細な管状物の椠合板として構成することが できる。 また、 管状物の密集構造に限定されるものではなく、 例えばガラスや A 】、 C uなどの金属からなる薄板に多数の微細な孔を形成して細孔集合板とした ものを使用してもよい。 その際、 細孔の径およびァスぺク ト比、 細孔集合板の開 门率は、 前述した条件を満たす必要がある。  The thin tube collecting plate 110 is not limited to the one using the quartz glass tube as described above, and may be configured as a composite plate of fine tubular objects made of various materials. Further, the present invention is not limited to the dense structure of tubular objects. For example, a thin plate made of a metal such as glass, A], or Cu is used to form a large number of fine holes to form a pore aggregate plate. Is also good. At this time, the diameter and the aspect ratio of the pores and the opening ratio of the pore-aggregating plate must satisfy the conditions described above.
次に、 半導体メモリの一種である DRAMに適用した本実施例の製造方法を説 明する。  Next, a description will be given of a manufacturing method of this embodiment applied to a DRAM which is a kind of semiconductor memory.
図 4は、 本実施例の DRAMのメモリセルのレイァゥ卜を示す平面図である。 この DRAMのメモリセルは、 2交点セルと、 情報蓄積用容量素子をビッ 卜線の 上部に配^する C OB (Capacitor Over Bitlinc)構造とを採用している。 各メモリセ ルのトランジスタ (メモリセル選択用 M I S F E T) は、 ビッ ト線 BLを介して 周辺回路に接続されている。 ビッ ト線 BLは、 接続孔 14を通じてメモリセル選 択用 M I SFETの半導体領域 8 (ソース領域、 ドレイン領域) の一方に接続さ れている。 メモリセル選択用 M I S FETの動作は、 ワード線 WL (ゲ一卜電極 6 ) により制御される。 このワード線 WL (ゲ一卜電極 6) は、 周辺回路に接続 されている。 ビッ ト線 BLの上部に配置された情報蓄積用容量素子 Cは、 接続孔 1 3を通じてメモリセル選択用 M I S FETの半導体領域 8 (ソース領域、 ドレ イン領域) の他方に接続されている。 情報蓄積用容量素子 Cは、 プレート電極 2 6を介して周辺回路に接続されている。 FIG. 4 is a plan view showing a layout of a memory cell of the DRAM of the present embodiment. This DRAM memory cell employs a two-intersection cell and a CB (Capacitor Over Bitlinc) structure in which a capacitance element for storing information is arranged above a bit line. The transistor of each memory cell (MISFET for memory cell selection) is connected to the peripheral circuit via the bit line BL. The bit line BL is connected to one of the semiconductor regions 8 (source region, drain region) of the memory cell selection MISFET through the connection hole 14. The operation of the memory cell selection MISFET is controlled by the word line WL (gate electrode 6). This word line WL (gate electrode 6) is connected to peripheral circuits Have been. The information storage capacitive element C disposed above the bit line BL is connected to the other one of the semiconductor regions 8 (source region and drain region) of the MISFET for selecting a memory cell through the connection hole 13. The information storage capacitor C is connected to the peripheral circuit via the plate electrode 26.
この平面レイアウトの第 1の特徴は、 2本のワード線 WLに対して 1本のプレ ―ト電極 26を配置したことである。 このようなレイァゥ卜とすることにより、 プレート電極 26の容量を通常の DRAMよりも小さくできるので、 プレー卜電 極 26の電位を周辺回路で制御することが容易になる。 プレート^極 26の本数 は、 1本のワード線 WLに対して 1本にしてもよいし、 3本のワード線 WLに対 して 1本にしてもよい。 ただし、 ワード線 WLに対するプレート電極 26の本数 が多くなると集積度を上げるのが難しくなり、 逆に少なくなるとプレート電極 2 6の容 aが大きくなつて周辺回路による制御が難しくなる。 プレー卜 極 26の 本数は、 DRAMの用途によってその敁適数が変わってくる。  The first feature of this planar layout is that one plate electrode 26 is arranged for two word lines WL. With such a layout, the capacity of the plate electrode 26 can be made smaller than that of a normal DRAM, so that the potential of the plate electrode 26 can be easily controlled by a peripheral circuit. The number of plates and poles 26 may be one for one word line WL, or one for three word lines WL. However, if the number of plate electrodes 26 with respect to the word line WL increases, it becomes difficult to increase the degree of integration, and if the number decreases, the capacitance a of the plate electrode 26 increases and control by peripheral circuits becomes difficult. The appropriate number of plate poles 26 varies depending on the use of the DRAM.
この平面レイアウトの第 2の特徴は、 プレート電極 26をワード線 WL (ゲ一 卜' 極 6) と同一方向に延在したことである。 これにより、 プレー卜電極 26の 電位を周辺回路で制御する際に、 その電位をヮ-ド線 WLの電位に同期させて制 御することが可能となる。  The second feature of this planar layout is that the plate electrode 26 extends in the same direction as the word line WL (gate electrode 6). Thus, when the potential of the plate electrode 26 is controlled by the peripheral circuit, the potential can be controlled in synchronization with the potential of the lead line WL.
この DRAMのメモリセルを製造するには、 まず図 5 (図 4の A— A' 線に沿 つた断面図) に すように、 ρ·型の単結晶シリコンからなる半導体基板 1を用意 し、 その表面に選択酸化 (LOCOS) 法でフィールド酸化膜 2を形成した後、 半導体基板 1に p型不純物 (B) をイオン注入して p型ゥエル 3を形成する。 続 いて、 p型ゥエル 2に p型不純物 (B) をイオン注人して p型チャネルストッパ 屑 4を形成した後、 フィ一ルド酸化膜 2で囲まれた p型ゥエル 3の活性領域の表 面に熱酸化法でゲ一卜酸化膜 5を形成する。  To manufacture this DRAM memory cell, first, as shown in FIG. 5 (a cross-sectional view taken along the line A—A ′ in FIG. 4), a semiconductor substrate 1 made of ρ · single-crystal silicon is prepared. After a field oxide film 2 is formed on the surface by a selective oxidation (LOCOS) method, a p-type impurity (B) is ion-implanted into the semiconductor substrate 1 to form a p-type well 3. Then, after p-type impurities (B) are ion-implanted into the p-type well 2 to form p-type channel stopper debris 4, the active region of the p-type well 3 surrounded by the field oxide film 2 is formed. A gate oxide film 5 is formed on the surface by a thermal oxidation method.
次に、 図 6に示すように、 メモリセル選択用 M I SFETのゲ一卜電極 6 (ヮ 一ド線 WL) を形成する。 ゲ一ト電極 6 (ヮード線 WL) は、 例えば半導体基板 1上に CVD法で多結晶シリコン膜を堆積し、 次いでスパッタリング法で T i N 膜と W膜とを堆積し、 さらにキヤップ絶緣膜となる窒化シリコン膜 7をプラズマ C VD法で堆積した後、 フォ トレジストをマスクにしたエッチングでこれらの膜 をパターニングして形成する。 ゲート電極 6 (ワード線 WL) の一部を構成する 多結晶シリコン膜には、 その抵抗値を低減するために n型の不純物 (P) をドー プする。 Next, as shown in FIG. 6, a gate electrode 6 (a common line WL) of the memory cell selecting MISFET is formed. The gate electrode 6 (lead line WL) is formed, for example, by depositing a polycrystalline silicon film on the semiconductor substrate 1 by a CVD method, then depositing a TiN film and a W film by a sputtering method, and further forming a cap insulating film. Silicon nitride film 7 is deposited by plasma CVD, and then these films are etched using a photoresist as a mask. Is formed by patterning. The polycrystalline silicon film that forms part of the gate electrode 6 (word line WL) is doped with an n-type impurity (P) to reduce its resistance.
次に、 図 7に示すように、 p型ゥエル 2に n型不純物 (P) をイオン注入して ゲート電極 6 (ワード線 WL) の両側の p型ゥエル 2にメモリセル選択用 M I S FETの n型半導体領域 8、 8 (ソース領域、 ドレイン領域) を形成する。 次に、 図 8に示すように、 ゲート電極 6 (ワード線 WL) の側壁にサイ ドウォ 一ルスぺ一サ 9を形成する。 サイドウォールスぺーサ 9は、 ゲート電極 6 (ヮ一 ド線 W L ) の上部にブラズマ C V D法で堆積した窒化シリコン膜を異方性ェッチ ングで加工して形成する。  Next, as shown in FIG. 7, an n-type impurity (P) is ion-implanted into the p-type well 2 and the n-type impurity (P) of the MIS FET for memory cell selection is injected into the p-type well 2 on both sides of the gate electrode 6 (word line WL). Form semiconductor regions 8, 8 (source region, drain region). Next, as shown in FIG. 8, a side wall spacer 9 is formed on the side wall of the gate electrode 6 (word line WL). The sidewall spacer 9 is formed by processing a silicon nitride film deposited on the gate electrode 6 (lead line WL) by a plasma CVD method by anisotropic etching.
次に、 図 9に示すように、 メモリセル選択用 M I S F E Tの上部に C VD法で 酸化シリコン膜 1 0と B P S G (Boron-doped Phospho Silicate Glass)膜 1 1とを堆 積した後、 化学的機械研磨 (Chemical Mechanical Polishing; CMP) 法で BPS G 膜 1 1を研磨してその表面を平坦化する。  Next, as shown in Fig. 9, a silicon oxide film 10 and a BPSG (Boron-doped Phospho Silicate Glass) film 11 are deposited on the top of the MISFET for memory cell selection by the CVD method. The BPS G film 11 is polished by a polishing (Chemical Mechanical Polishing; CMP) method to flatten its surface.
次に、 図 1 0に示すように、 BP SG膜 1 1上に C VD法で多結品シリコン膜 12を堆嵇した後、 フォ トレジストをマスクにして多結晶シリコン膜 12、 BP 〇膜1 1、 酸化シリコン膜 1 0およびゲ一卜酸化膜 5をエッチングすることに より、 メモリセル選択用 M I S F E Tのソース領域、 ドレイン領域の一方 (n型 半導体領域 8) の上部に接続孔 1 3を形成し、 他方 (n型半導体領域 8) の上部 に接続孔 14を形成する。 このとき、 メモリセル選択用 M I SFETのゲート ¾ 極 6 (ワード線 WL) の上部に形成された窒化シリコン膜 7と側壁に形成された 窒化シリコンのサイ ドウオールスぺ一サ 9は、 わずかにエッチングされるだけな ので、 接続孔 1 3、 14とゲート電極 6 (ワード線 WL) との合わせ余裕を設け なくとも、 微細な径の接続孔 13、 14が自己整合 (セルファライン) で形成で さる。  Next, as shown in FIG. 10, after depositing a polycrystalline silicon film 12 on the BP SG film 11 by CVD method, using a photoresist as a mask, the polycrystalline silicon film 12 and the BP film 1 are deposited. 1. By etching the silicon oxide film 10 and the gate oxide film 5, a connection hole 13 is formed above one of the source region and the drain region (n-type semiconductor region 8) of the MISFET for memory cell selection. Then, a connection hole 14 is formed on the other (n-type semiconductor region 8). At this time, the silicon nitride film 7 formed on the gate electrode 6 (word line WL) of the memory cell selection MISFET and the silicon nitride film 9 formed on the sidewalls are slightly etched. Therefore, the connection holes 13 and 14 having a small diameter can be formed by self-alignment (self-alignment) without providing a margin for matching the connection holes 13 and 14 with the gate electrode 6 (word line WL).
次に、 図 1 1に示すように、 接続孔 1 3、 14の内部に多結晶シリコンのブラ グ 15を埋め込む。 このプラグ 15は、 前記多結晶シリコン膜 1 2の上部に CV D法で多結晶シリコン膜を堆積し、 この多結品シリコン膜と多結品シリコン膜 1 2とをエッチバックで除去して形成する。 プラグ 1 5を構成する多結晶シリコン 膜には n型の不純物 (P) をドープする。 プラグ 1 5は多結晶シリコンの他、 例 えば T i N、 W、 T i、 T aなどを埋め込んで形成してもよい。 Next, as shown in FIG. 11, a plug 15 of polycrystalline silicon is embedded in the connection holes 13 and 14. The plug 15 is formed by depositing a polycrystalline silicon film on the polycrystalline silicon film 12 by the CVD method and removing the polycrystalline silicon film and the polycrystalline silicon film 12 by etch-back. I do. Polycrystalline silicon composing plug 15 The film is doped with an n-type impurity (P). The plug 15 may be formed by embedding, for example, TiN, W, Ti, Ta, or the like, in addition to polycrystalline silicon.
次に、 図 1 2に示すように、 BPSG膜 1 1の上部に CVD法で酸化シリコン 膜 16を堆積し、 次いでフォ トレジス卜をマスクにしたエッチングで接続孔 14 の上部の酸化シリコン膜 16を除去した後、 図 1 3に示すように、 接続孔 14の 上部にビッ ト線 BLを形成する。 ビッ ト線 BLは、 酸化シリコン膜 1 6の上部に スパッタリング法で T i N膜と W膜とを堆積し、 さらにキヤップ絶縁膜となる窒 化シリコン膜 17をプラズマ CVD法で堆積した後、 フォ 卜レジストをマスクに したエツチングでこれらの膜をパターニングして形成する。  Next, as shown in FIG. 12, a silicon oxide film 16 is deposited on the BPSG film 11 by a CVD method, and then the silicon oxide film 16 on the connection hole 14 is etched by using a photoresist as a mask. After the removal, a bit line BL is formed on the connection hole 14 as shown in FIG. The bit line BL is formed by depositing a TiN film and a W film on the silicon oxide film 16 by a sputtering method, and further depositing a silicon nitride film 17 serving as a cap insulating film by a plasma CVD method. These films are patterned and formed by etching using a photoresist as a mask.
次に、 図 14に示すように、 ビッ ト線 B Lの側壁にサイ ドウォールスぺーサ 1 8を形成する。 サイ ドウオールスぺ一サ 1 8は、 ビッ ト線 B Lの上部にプラズマ C V D法で堆積した窒化シリコン膜を異方性ェッチングで加工して形成する。 次に、 図 1 5に示すように、 ビッ ト線 B Lの上部に C VD法で膜厚 300 nm 程度の BP SG膜 19を堆積してリフローした後、 フォ トレジストをマスクにし て B P S G膜 19および酸化シリコン膜 1 6をエッチングすることにより、 メモ リセル選択用 M I SFETQ tのソ一ス領域、 ドレィン領域の他方 ( n 導体 領域 8) の上部に形成された前記接続孔 1 3の上部に接続孔 20を形成する。 こ のとき、 ビッ 卜線 B Lの上部の窒化シリコン膜 17および側壁のサイ ドウオール スぺーサ 1 8がェッチングストツパとなるので、 接続孔 20は、 前記接続孔 13、 14と同様、 自己整合 (セルファライン) で形成される。  Next, as shown in FIG. 14, a side wall spacer 18 is formed on the side wall of the bit line BL. The side walls 18 are formed by processing a silicon nitride film deposited on the bit line BL by a plasma CVD method by anisotropic etching. Next, as shown in FIG. 15, a BPSG film 19 having a thickness of about 300 nm is deposited on the bit line BL by a CVD method and reflowed. By etching the silicon oxide film 16, a connection hole is formed above the connection hole 13 formed above the other of the source region and the drain region (the n-conducting region 8) of the memory cell selecting MI SFET Qt. Form 20. At this time, since the silicon nitride film 17 on the upper part of the bit line BL and the sidewall spacers 18 on the side walls serve as etching stoppers, the connection holes 20 are self-aligned similarly to the connection holes 13 and 14. (Self-aligned).
上記接続孔 20をドライエツチングで形成する際、 エツチングの終点判定法と しては、 従来の技術でも用いられている方法、 すなわちエッチング時間を管理し て、 あらかじめ定める時間だけエッチングする方法を採用してもよいが、 プラズ マの発光をモニタしてエッチング終了時間を求めるようにしてもよい。 その際、 前記図 1に示すプラズマエッチング装置 100を使用してもよい。  When the connection hole 20 is formed by dry etching, a method used in the conventional technology, that is, a method of controlling the etching time and etching for a predetermined time is used as a method of determining the end point of the etching. Alternatively, the light emission of the plasma may be monitored to determine the etching end time. At this time, the plasma etching apparatus 100 shown in FIG. 1 may be used.
次に、 図 1 6に示すように、 接続孔 20の内部にプラグ 21を埋め込む。 ブラ グ 21は、 8? 30膜1 9の上部に例えばスパッタリング法で T i N膜と W膜と を堆積した後、 これらの膜をエッチバックして形成する。 プラグ 21は多結晶シ リコン、 T i N、 W、 T i、 Taなどを埋め込んで形成することもできる。 次に、 プラグ 21の上部に情報蓄積用容量素子を形成する。 情報蓄積用容量素 子を形成するには、 まず図 17に示すように、 B P S G膜 1 9の上部にスパッ夕 リング法などを用いてバリアメタル 22を堆積した後、 パ'リアメタル 22の上部 にスパッタリング法で膜厚 175 nm程度の P t膜 23 aを堆積する。 このパ'リ ァメタル 22は必ずしも必要ではな 、が、情報蓄積用容量素子の下部電極材料( P t ) の拡散を抑えるのに有効である。 バリアメタル 22の材料としては T i Nや T iなどを使用し、 膜厚は 20 ηιη程度とする。 Next, as shown in FIG. 16, a plug 21 is embedded in the connection hole 20. The plug 21 is formed by depositing a TiN film and a W film on the 8-30 film 19 by, for example, a sputtering method, and then etching back these films. The plug 21 can also be formed by embedding polycrystalline silicon, TiN, W, Ti, Ta, or the like. Next, an information storage capacitor is formed above the plug 21. To form the information storage capacitor element, first, as shown in FIG. 17, a barrier metal 22 is deposited on the BPSG film 19 using a sputtering method or the like, and then a barrier metal 22 is deposited on the parietal metal 22. A Pt film 23a having a thickness of about 175 nm is deposited by a sputtering method. Although the parity metal 22 is not always necessary, it is effective for suppressing the diffusion of the lower electrode material (Pt) of the information storage capacitor. As the material of the barrier metal 22, TiN, Ti, or the like is used, and the film thickness is about 20 ηιη.
次に、 図 18に示すように、 P t膜 23 aの上部に情報蓄積用容量素子の容量 絶縁膜 24を堆積した後、 容量絶縁膜 24の上部に情報蓄積用容量素子の上部電 極材料である P t膜 25 aを堆毡する。 容量絶縁膜 24は強誘 ¾体材料である B S T ( CB a, S r ) T i O 3)をスパッタリング法で堆積し、 膜厚は 250 nm 程度とする。 P t膜 25 aはスパッタリング法で堆積し、 膜厚は 100 nm程度 とする。 容量絶縁膜 24の材料によっては、 成膜後に必要に応じて結晶化熱処理 を行う。 Next, as shown in FIG. 18, after depositing the capacitive insulating film 24 of the information storage capacitive element on the Pt film 23a, the upper electrode material of the information storage capacitive element is deposited on the capacitive insulating film 24. Deposit Pt film 25a. The capacitor insulating film 24 is formed by depositing BST (CBa, Sr) TiO 3 ) as a strong dielectric material by a sputtering method, and has a film thickness of about 250 nm. The Pt film 25a is deposited by a sputtering method and has a thickness of about 100 nm. Depending on the material of the capacitive insulating film 24, crystallization heat treatment may be performed after film formation, if necessary.
本実施例では、 情報蓄積用容量素子の電極材料として P tを使用し、 容量絶縁 胶材料として B S Tを使用する場合について説明するが、 これによつて本発明が 限定されるものではない。  In this embodiment, a case will be described in which Pt is used as an electrode material of an information storage capacitor and BST is used as a capacitor insulating material. However, the present invention is not limited thereto.
F RAMなどへの適用も考慮すると、 電極材料としては P tの他、 I r、 I r 02、 Rh、 Rh〇2、 O s、 O s〇 2、 Ru、 Ru〇 2、 Re、 R e〇 3、 Pd、 A uあるいはこれらの積層膜を用いることができる。 Ru〇 2や I 1" 02などは1^1 OCVD法を用いて堆積することにより、 カバレージの良好な薄膜を形成するこ とができる。 また、 その上部に酸素に対するバリア性の高い Ru、 I rなどを積 層することにより、 膜の耐酸化性を向上させることができる。 さらに、 容量絶縁 膜の界面での酸化を抑えることができれば、 上部電極材料として W、 A】、 T i N、 Ta、 C u、 A gあるいはこれらの積層膜などを用いることもできる。 Considering also be applied to such F RAM, other P t as the electrode material, I r, I r 0 2 , Rh, Rh_〇 2, O s, O S_〇 2, Ru, Ru_〇 2, Re, R E_〇 3, Pd, can be used a u or a laminated film. By such Ru_〇 2 and I 1 "0 2 is deposited using 1 ^ 1 MOCVD method, a good film coverage can and forming child. Also, high barrier property against oxygen thereon Ru, It is possible to improve the oxidation resistance of the film by laminating Ir, etc. Furthermore, if oxidation at the interface of the capacitive insulating film can be suppressed, W, A], T i N , Ta, Cu, Ag, or a laminated film of these materials can also be used.
容量絶縁膜材料としては BS丁の他、 CVD法で堆積する T a 205、酸化シリ コンあるいは窒化シリコンなどを用いてもよい。 また各種強誘電体材料、 例えば P b Z r〇 3、 L i Nb03、 B i 4T i 3I2、 B aMgF 4、 PLZT、 Y 1 (S r B i , (N b, T a ), O 9)などを用いることもできる。 これらの強誘電体材料は、 スパッタリング法の他、 M O C V D法、 ゾル—ゲル法、 レーザアブレーシヨン法 などを用 L、て堆積することができる。 Other BS Ding as a capacitor insulating film material, T a 2 0 5 is deposited by CVD, or the like may be used oxide silicon or silicon nitride. The various ferroelectric materials, for example, P b Z R_〇 3, L i Nb0 3, B i 4 T i 3 〇 I2, B aMgF 4, PLZT, Y 1 (S r B i, (N b, T a) , O 9 ) can also be used. These ferroelectric materials are In addition to sputtering, MOCVD, sol-gel, laser ablation, etc. can be used for deposition.
次に、 図 1 9に示すように、 上部電極材料である P t膜 2 5 aの上部にフォ ト レジスト 2 7を形成した後、 前記図 1に示すプラズマエッチング装置 1 0 0を使 用して P t膜 2 5 a、 容量絶縁膜 2 4、 P t膜 2 3 aおよびバリアメタル 2 2を ドライエッチングする。  Next, as shown in FIG. 19, a photoresist 27 is formed on the Pt film 25a, which is an upper electrode material, and then the plasma etching apparatus 100 shown in FIG. 1 is used. Then, the Pt film 25a, the capacitive insulating film 24, the Pt film 23a and the barrier metal 22 are dry-etched.
このドライエッチングを行うには、 まずプラズマエッチング装置 1 0 0の下部 電極 1 0 2上に半導体基板 (ウェハ) 1を載置した後、 チャンバ 1 0 1の内部に ガス導入管 1 0 5を通じて塩素ガス 4 0 scanと A rガス 1 0 scanとを導入し、 真空ポンプ 1 0 8によってチャンバ 1 0 1の内部の/空度を 5 mTorr (反応生成 物粒子の平均自由工程が (). 1 mm〜数 1 0 cmとなるような^空度)に保つ。半導 体基板 1を載置したド部電極 1 0 2の温度は、 3 0 °Cに設定する。 そして、 1分 間に 2 4回転する回転磁石 1 0 9によって形成される磁場および R F電源 1 0 4 を通じて上部電極 1 0 3と下部電極 1 0 2との間に印加される 1 3. 5 6 M Hz/ 1 2 0 0 Wの R Fバイアスによりプラズマ 1 1 4を発生させ、 このプラズマ 1 1 4中で発生したイオンとラジカルとによって P t膜 2 5 aをエッチングする。 このとき、 ウォール板 1 0 6の壁面に取り付けられた細管集合板 1 1 0とチヤ ンバ 1 0 1の^面に取り付けられた石英ガラス窓 1 1 2とを透過したプラズマの 発光のうち、 所望する波長の光をモノクロメータ 1 1 6で選別し、 その発光の強 度を発光検出モニタ 1 1 5で検出してペンレコーダ 1 1 7に記録する。  In order to perform this dry etching, first, a semiconductor substrate (wafer) 1 is placed on the lower electrode 102 of the plasma etching apparatus 100, and then chlorine is introduced into the chamber 101 through a gas introduction pipe 105. Introduce 40 scans of gas and 10 scans of Ar gas, and use a vacuum pump 108 to reduce the air / air inside the chamber 101 to 5 mTorr (the mean free path of the reaction product particles is (). ~ Several tens of cm). The temperature of the gate electrode 102 on which the semiconductor substrate 1 is mounted is set to 30 ° C. Then, a magnetic field formed by the rotating magnet 109 rotating 24 times per minute and an RF power supply 104 applied between the upper electrode 103 and the lower electrode 102 via the RF power source 13.56 Plasma 114 is generated by an RF bias of M Hz / 1200 W, and the Pt film 25a is etched by ions and radicals generated in the plasma 114. At this time, of the plasma emission transmitted through the thin tube collecting plate 110 attached to the wall surface of the wall plate 106 and the quartz glass window 112 attached to the ^ surface of the chamber 101, The light of the desired wavelength is selected by the monochromator 1 16, the luminescence intensity is detected by the luminescence detection monitor 1 15 and recorded on the pen recorder 1 17.
P t膜 2 5 aのエツチングが進行すると、 上部電極 1 0 3の表面やウォール板 1 0 6の内壁には、 付着係数が大きく、 かつ蒸気圧が低い反応生成物 1 1 8が大 量に付着する。 その際、 図 2 0に示すように、 ウォール板 1 0 6の壁面に取り付 けられた細管集合板 1 1 0の表面にも反応生成物 1 1 8が付着するが、 ァスぺク ト比の高いガラス細管の内部には反応生成物 1 1 8が飛来し難いので、 プラズマ の発光は反応生成物 1 1 8に妨げられることなくガラス細管の内部を透過し、 さ らに石英ガラス窓 1 1 2を透過してプラズマモニタ手段に達することができる。 図 2 1は、 細管集合板 1 1 0と石英ガラス窓 1 1 2とを透過したプラズマの発 光強度の経時変化を示すグラフである。 図示のように、 ウェハを 1 5 0枚エッチ ングしても発光強度の減袞は 4 0 %程度であり、 モニタ手段の発光強度検出限界 より十分に高い強度を維持することができた (〇印) 。 このグラフを外揷すると- 約 1 0 0 0枚(4 0ロッ ト)のウェハを連続して終点検出可能と見積もることがで きる。 他方、 細管集合板 1 1 0を取り付けずにエッチングした場合 (口印) は、 ウェハをわずか 3枚エッチングしただけで石英ガラス窓 1 1 2の表面に多量の反 応生成物が付着して発光強度が 1 Z 1 0 0以下に減衰し、 発光強度を検出するこ とができなくなった。 As the etching of the Pt film 25a progresses, a large amount of the reaction product 118 having a large adhesion coefficient and a low vapor pressure is deposited on the surface of the upper electrode 103 and the inner wall of the wall plate 106. Adhere to. At this time, as shown in FIG. 20, the reaction product 118 also adheres to the surface of the thin tube collecting plate 110 attached to the wall surface of the wall plate 106, but the Since the reaction product 118 is unlikely to fly inside the glass tube with a high ratio, the plasma emission passes through the inside of the glass tube without being hindered by the reaction product 118, and the quartz glass window The light can pass through 112 and reach the plasma monitoring means. FIG. 21 is a graph showing the temporal change of the light emission intensity of the plasma transmitted through the thin tube collecting plate 110 and the quartz glass window 112. Etch 150 wafers as shown However, the decrease in luminescence intensity was about 40% even after running, and it was possible to maintain the intensity sufficiently higher than the luminescence intensity detection limit of the monitoring means (marked with 〇). If this graph is extrapolated, it can be estimated that about 100,000 wafers (40,000 lots) can be continuously detected for the end point. On the other hand, when etching was performed without attaching the thin tube collecting plate 110 (mark), only three wafers were etched, and a large amount of reaction products adhered to the surface of the quartz glass window 112 to emit light. The intensity attenuated to 1Z100 or less, making it impossible to detect the emission intensity.
P t膜 2 5 aのエッチングの終点は、 図 2 2に示す T iのものと思われる発光 に対応する波長 4 0 6 nmの波形から決めることができる。 フォ トレジスト 2 7 でマスクされていない領域の P t膜 2 5 aがエッチングされて次第に消失し、 下 屑の容 ft絶縁膜 2 4である B S T膜がエッチングされ始めると、 膜の -成分であ る丁 iがプラズマ中に飛来して発光するために、 波長 4 0 6 nmの光の強度が大 きくなる。 そして、 B S T膜の ·出面積が大きくなるにつれて波長 4 0 6 nmの 光の強度が増大し、 P t膜 2 5 aが完全に消失して B S T膜が露出した時点で発 光強度は一定になる。 そこで、 この点を P tエッチングの終了点であると判定す る。  The end point of the etching of the Pt film 25a can be determined from the waveform of a wavelength of 406 nm corresponding to the light emission considered to be that of Ti shown in FIG. When the Pt film 25a in the region not masked by the photoresist 27 is etched and gradually disappears, and the BST film, which is the insulating film 24 of the lower debris, begins to be etched, the-component of the film is removed. Since the light beams fly into the plasma and emit light, the intensity of light having a wavelength of 406 nm increases. Then, as the emission area of the BST film increases, the intensity of light having a wavelength of 406 nm increases, and the emission intensity becomes constant when the Pt film 25a completely disappears and the BST film is exposed. Become. Therefore, this point is determined to be the end point of the Pt etching.
その後、 引き続いて容量絶縁膜 2 4、 P t膜 2 3 aおよびバリアメタル 2 2を 上記の要領で順次ドライエッチングすることにより、 図 2 3に示すような情報蓄 積用容量素子 Cを形成する。  Thereafter, the capacitance insulating film 24, the Pt film 23a, and the barrier metal 22 are successively dry-etched in the manner described above to form the information storage capacitance element C as shown in FIG. .
上記したドライエッチング方法によれば、 情報蓄積用容量素子 Cを構成する各 薄膜のェッチング終点を正確に判定することが可能となるので、 情報蓄嵇用容量 素子 Cの形成時に下地膜 (B P S G膜 1 9 ) を削り過ぎてしまうという問題がな くなる。 また、 各薄膜の材料が異なるので薄膜毎にエッチング条件を変えること がスループッ トゃフォ トレジス卜との選択比の観点から望ましいが、 上記ドライ エッチング方法により、 どの時点でエッチング条件を変更すればよいかを正確に 知ることができる。 さらに、 ウェハの処理枚数が多くても正確に終点判定ができ るので、 終点判定手段のメンテナンスの時間も短くなる結果、 装置の稼働率が向 上し、 スループッ トを上げることができる。  According to the above-described dry etching method, it is possible to accurately determine the etching end point of each thin film constituting the information storage capacitance element C. Therefore, when forming the information storage capacitance element C, the base film (BPSG film) is formed. This eliminates the problem of overcutting 9). Also, since the material of each thin film is different, it is desirable to change the etching conditions for each thin film from the viewpoint of the selectivity with the throughput-to-resist, but the etching conditions may be changed at any time by the above dry etching method. Can be known exactly. Furthermore, even if the number of processed wafers is large, the end point can be determined accurately, so that the maintenance time of the end point determining means is shortened, so that the operation rate of the apparatus is improved, and the throughput can be increased.
従来、 上記ドライエツチング方法を用し、なかつた場合にはウェハを 3枚処理す る毎にエッチング装置のメンテナンスが必要であつたが、 そのメンテナンスには 装置の立ち下げ—石英ガラス窓などの機械的研磨によるメンテナンスー装置立ち 上げと 7時間程度を要していた。 エッチング時間は JF-味 3分程度であるのにゥェ ハ 1枚の処理に 7時間掛かっていたわけである。 これに対し、 上記ドライエッチ ング方法を導入した後は、 1度のメンテナンスでウェハを連続 4 0ロッ ト ( 1 0 0 0枚) 処理することができるようになり、 5 0倍以上のスループッ ト向上を達 成できた。 Conventionally, the dry etching method described above is used, and in the case of no dry processing, three wafers are processed. The maintenance of the etching equipment was required every time, but it took about 7 hours to shut down the equipment and start up the maintenance equipment by mechanical polishing such as a quartz glass window. The etching time was about 3 minutes for JF-taste, but it took 7 hours to process one wafer. On the other hand, after the introduction of the dry etching method, it is possible to process 40 lots (100 pieces) of wafers in a single maintenance, and to increase throughput by 50 times or more. Improvements have been achieved.
次に、 情報蓄積用容量素子 Cのヒ部のフォ 卜レジスト 2 7をアツシングで除去 した後、 図 2 4に示すように、 情報蓄積用容量素子 Cを保護するために B P S G 膜のようなリフ口一性の絶縁膜 2 8を堆積し、 化学的機械研磨 (C M P ) 法でそ の表面を f坦化して上部電極 2 5の表面を露出させる。 この場合、 完全な平坦化 は必須ではないが、 後のて程でこの h部に形成する配線の信頼性を高めるために は、 絶縁膜 2 8を極力平坦化しておくことが ¾ましい。 情報蓄積用容量素子じの 保護効果を高めるために、 情報蓄積用容量素子 Cの構成材料と相性のよい T i、 S r、 B aなどの酸化物からなる薄膜を堆積した後に絶縁膜 2 8を堆積してもよ い。 また、 リフ口一性の絶縁膜 2 8に代えて有機 S iガスを用いた C V D ·酸化 シリコン膜を用いてもよく、 ポリイミ ド樹脂などの有機系絶縁物を用いてもよい。 絶^膜の平识化は C M P法に代えてェッチ / ック法-で行つてもよいし、 情報蓄積 用容量素子 Cによる段差が小さい場合には、 特に行わなくともよい。  Next, after removing the photoresist 27 at the fin of the information storage capacitor C by asking, as shown in FIG. 24, a lift such as a BPSG film is used to protect the information storage capacitor C. An insulative insulating film 28 is deposited, and its surface is f-supported by chemical mechanical polishing (CMP) to expose the surface of the upper electrode 25. In this case, complete planarization is not indispensable, but it is preferable to planarize the insulating film 28 as much as possible in order to increase the reliability of the wiring formed in the h portion in a later step. In order to enhance the protection effect of the information storage capacitor, a thin film made of an oxide such as Ti, Sr, or Ba compatible with the constituent material of the information storage capacitor C is deposited, and then the insulating film 28 May be deposited. Further, a CVD / silicon oxide film using an organic Si gas may be used instead of the insulating film 28 having a riff opening, or an organic insulating material such as polyimide resin may be used. The planarization of the insulating film may be performed by an etch / etch method instead of the CMP method, and may not be particularly performed when the step due to the information storage capacitor C is small.
次に、 図 2 5に示すように、 絶鉍膜 2 8の上部に複数のメモリセルに共通のプ レート電極 2 6を形成する。 プレート電極材料としては、 多結晶シリコン膜や W 膜など、 従来のシリコン L S Iプロセスで用いられている各種導電材料を使用す ることができる。 下地が十分に平坦化されている場合にはスパッタリング法で成 膜可能な導電材料を使用し、 下地に段差がある場合には C V D法で成膜可能な導 電材料を使用するようにする。 また、 堆積した導電膜をドライエッチングしてプ レ一卜電極 2 6を形成する際、 前記図 1に示すプラズマエッチング装置 1 0 0を 使用し、 ブラズマの発光をモニタしてエツチング終了時間を求めるようにしても よい。 その際、 エッチングの反応生成物の付着係数が小さいか、 あるいは蒸気圧 が高いために石英ガラス窓 1 1 2の表面に多量の反応生成物が付着する虞れのな い場合は、 必ずしも細管 ¾合板 1 1 0を使用しなくともよい。 Next, as shown in FIG. 25, a plate electrode 26 common to a plurality of memory cells is formed on the insulating film 28. As the plate electrode material, various conductive materials used in the conventional silicon LSI process, such as a polycrystalline silicon film and a W film, can be used. If the base is sufficiently flat, use a conductive material that can be formed by sputtering. If the base has a step, use a conductive material that can be formed by CVD. When the deposited conductive film is dry-etched to form a plate electrode 26, plasma emission is monitored by using the plasma etching apparatus 100 shown in FIG. 1 to obtain an etching end time. You may do it. At this time, there is no danger that a large amount of reaction products will adhere to the surface of the quartz glass window 112 due to a small adhesion coefficient of the reaction products of the etching or a high vapor pressure. In such a case, it is not always necessary to use the capillary tube plywood 110.
以上の工程により、 本実施例の DRAMのメモリセルが略完成する。 実際の D RAMは、 プレート電極 26の上部にさらに 2層程度の配線を形成してメモリセ ルと周辺回路とを接続する必要があること、 また半導体基板 1を樹脂などで/、°ッ ケージングする必要があることはいうまでもない。  Through the above steps, the DRAM memory cell of this embodiment is substantially completed. In an actual DRAM, it is necessary to form about two more layers of wiring above the plate electrode 26 to connect the memory cell and peripheral circuits, and to package the semiconductor substrate 1 with resin or the like. Needless to say, it is necessary.
第 2 施例 Second example
図 26は、 本実施例の DRAMのメモリセルのレイァゥトを示す平面図である c この DRAMのメモリセルは、 2交点セルと、 情報蓄積用容量素子をビッ ト線の 上部に配置する C〇B構造とを採用している。 各メモリセルのトランジスタ (メ モリセル選択用 M I S F E T) は、 ビッ ト線 B Lを介して周辺回路に接続されて いる。 ビッ ト線 BLは、 接続孔 1 4を通じてメモリセル選択用 M I S FETの半 導体領域 8 (ソース領域、 ドレイン領域) の一方に接続されている。 メモリセル 選択用 M I S FETの動作は、 ワード線 WL (ゲート電極 6) により制御される c このワード線 WL (ゲート電極 6) は、 周辺回路に接続されている。 ビッ ト線 B Lの上部に配置された情報蓄積用容量素子 Cは、 接続孔 1 3を通じてメモリセル 選択用 MI S FETの半導体領域 8 (ソース領域、 ドレイン領域) の他方に接続 されている。 情報蓄積用容量素子 Cは、 プレート電極 26を介して周辺回路に接 続されている。 FIG. 26 is a plan view showing the layout of the memory cell of the DRAM of this embodiment. C The memory cell of this DRAM is composed of two intersection cells and a C〇B in which an information storage capacitor is arranged above the bit line. Structure and adopted. The transistor of each memory cell (MISFET for selecting a memory cell) is connected to the peripheral circuit via a bit line BL. The bit line BL is connected to one of the semiconductor regions 8 (source region and drain region) of the MISFET for memory cell selection through the connection hole 14. Operation of the memory cell selecting MIS FET is controlled by a word line WL (gate electrode 6) c The word line WL (gate electrode 6) is connected to the peripheral circuit. The information storage capacitor C arranged above the bit line BL is connected to the other of the semiconductor regions 8 (source region and drain region) of the memory cell selection MISFET through the connection hole 13. The information storage capacitor C is connected to the peripheral circuit via the plate electrode 26.
この平面レイァゥ卜の第 1の特徴は、 1本のビッ 卜線 B Lに対して 1本のプレ —卜電極 26を配置したことである。 このようなレイアウトとすることにより、 プレー卜電極 26の容量を通常の DRAMよりも小さくできるので、 プレート電 極 26の電位を周辺回路で制御することが容易になる。 プレート電極 26の本数 は、 2本またはそれ以上の本数のビッ ト線 B Lに対して 1本にしてもよい。 ただ し、 ビッ ト線 BLに対するプレー卜電極 26の本数が少なくなるとプレート電極 26の容量が大きくなつて周辺回路による制御が難しくなる。 プレート ^極 26 の本数は、 DRAMの用途によってその最適数が変わってくる。  The first feature of this planar layout is that one plate electrode 26 is arranged for one bit line BL. With such a layout, the capacitance of the plate electrode 26 can be made smaller than that of a normal DRAM, so that the potential of the plate electrode 26 can be easily controlled by a peripheral circuit. The number of plate electrodes 26 may be one for two or more bit lines BL. However, when the number of the plate electrodes 26 with respect to the bit line BL is reduced, the capacitance of the plate electrode 26 is increased, so that control by the peripheral circuit becomes difficult. The optimal number of plate ^ poles 26 depends on the application of DRAM.
この平面レイァゥ卜の第 2の特徴は、 プレート電極 26をビッ 卜線 B Lと同一 方向に延在したことである。 これにより、 プレート電極 26の電位を周辺回路で 制御する際に、 その電位をビッ 卜線 B Lの電位に同期させて制御することが可能 となる。 The second feature of this planar layout is that the plate electrode 26 extends in the same direction as the bit line BL. This makes it possible to control the potential of the plate electrode 26 in synchronism with the potential of the bit line BL when controlling the potential of the peripheral circuit. Becomes
本実施例の DRAMのメモリセルも、 前記実施例 1と ( 様の方法によって製造 することができる。  The memory cell of the DRAM of this embodiment can also be manufactured by the same method as in the first embodiment.
第 3実施例 Third embodiment
図 27は、 本実施例の DRAMのメモリセルのレイアウトを示す平面図である c この平面レイァゥ卜の特徴は、 面積を大きく した 1つのプレー卜電極 26で情 報蓄積用容量素子 Cを制御することである。 このようなレイアウトとすることに より、 D R AM動作に必要な基準電位を情報蓄積用容量素子 Cに印加することが 容¾になる。 また、 周辺 PI路の駆動能力を十分に大きくすれば、 不揮発性メモリ としての動作も可能である。 このプレート電称 26で制御する情報蓄積用容量素 子 Cの数は、 メモリの用途により調整すればよい。 27, c characterized in this plane Reiau Bok is a plan view showing a layout of a memory cell of the DRAM of the present embodiment controls the information storing capacitor C in one play Bok electrode 26 with a larger area That is. With such a layout, it becomes easy to apply the reference potential required for the DRAM operation to the information storage capacitor C. In addition, if the driving capability of the peripheral PI path is made sufficiently large, operation as a nonvolatile memory is also possible. The number of the information storage capacitance elements C controlled by the plate name 26 may be adjusted according to the use of the memory.
図 28は、 図 27の A— A' 線に沿った断面! ¾である。 本実施例の DRAMの メモリセルの構造および製造力'法は、 プレート ¾極 26を除いた他は、 前記実施 例 1の DRAMのメモリセルと基本的に同じである。 プレート ¾極 26の加工は f 記実施例 1と同様の方法で行い、 必要な大きさに調整すればよい。  FIG. 28 is a cross section taken along line AA ′ of FIG. 27! The structure and manufacturing capability of the DRAM memory cell of the present embodiment are basically the same as those of the DRAM memory cell of the first embodiment except for the plate electrode 26. The processing of the plate ¾ electrode 26 is performed in the same manner as in the first embodiment, and may be adjusted to a required size.
第 4実施例 Fourth embodiment
本実施例のメモリセルの構造について、 図 29を用いて説明する。 同図は、 1 トランジスタ 1キャパシ夕型メモリの、 キャパシ夕までを作成した段階を -す断 面図である。 キャパシ夕の容量絶縁膜には強誘電体材料である PZTを用い、 キ ャパシ夕電極には P tを用いている。  The structure of the memory cell of this embodiment will be described with reference to FIG. This figure is a cross-sectional view showing a stage of creating one transistor and one capacity memory until the capacity is completed. PZT, a ferroelectric material, is used for the capacitive insulating film of the capacitor, and Pt is used for the capacitive electrode.
このメモリは、 半導体基板 1上のフィールド酸化膜 2によってトランジスタを 電気的に分離する。 トランジスタは、半導体領域 8 (ソース領域、 ドレイン領域) と多結晶シリコンのゲー卜電極 6とその下部のゲ一ト酸化膜 5とで構成される M I SFETである。 この MI SFETの上部を BP 30膜1 1を用いて平坦化し た後にキャパシ夕を形成する。 キャパシ夕と M I S FETとは、 BPSG膜 1 1 の -部に埋め込んだ多結晶シリコンのプラグ 1 5によつて電気的に接続される。 キャパシタは、 P tの下部電極 23上に形成される立体型キャパシ夕であり、 PZTの容量絶縁膜 24をこの下部電極 23の上部に形成し、 容量絶縁膜 24の 上部に P tの上部電極 23を形成して立体型キャパシ夕を構成する。 また、 下部 電極 2 3から P tがプラグ 1 5中に拡散するのを抑えるために、 下部電極 2 3と プラグ 1 5との問に T i Nのパ'リァメタル 2 2を設けている。 In this memory, transistors are electrically separated by a field oxide film 2 on a semiconductor substrate 1. The transistor is an MISTFET composed of a semiconductor region 8 (source region and drain region), a gate electrode 6 of polycrystalline silicon, and a gate oxide film 5 thereunder. After the upper part of the MISFET is flattened using the BP30 film 11, a capacity is formed. The capacitor and the MISFET are electrically connected by a polycrystalline silicon plug 15 embedded in the-part of the BPSG film 11. The capacitor is a three-dimensional capacitor formed on the lower electrode 23 of Pt. The capacitor insulating film 24 of PZT is formed on the lower electrode 23, and the upper electrode of Pt is formed on the capacitor insulating film 24. 23 is formed to form a three-dimensional capacity. Also at the bottom In order to suppress the diffusion of Pt from the electrode 23 into the plug 15, a TiN parametal 22 is provided between the lower electrode 23 and the plug 15.
実際にメモリとして動作させるためには、 この図に示すものの他に、 配線 (通 常は上部電極 2 5の上部に 2層程度の配線が必要である)と、メモリ動作を制御し て外部と信号をやり取りするための周辺回路とが必要であるが、 これらは公知の 構造であり本実施例とは直接関係なレ、ので省略する。  In order to actually operate as a memory, in addition to those shown in this figure, wiring (usually two layers of wiring are required above the upper electrode 25) and memory operation are controlled to Peripheral circuits for exchanging signals are required, but these are well-known structures and are not directly related to the present embodiment, so description thereof will be omitted.
このような立体型キャパシタを用いたメモリの場合でも、 前記実施例 1のブラ ズマエッチング装置を用いることにより、 下部電極 2 3およびバリアメタル 2 2 をェッチング加工する際に正確な終点判定を行うことができる。  Even in the case of a memory using such a three-dimensional capacitor, accurate end point determination can be performed when the lower electrode 23 and the barrier metal 22 are etched by using the plasma etching apparatus of the first embodiment. Can be.
下部電極 2 3、 容量絶縁膜 2 4、 ヒ部電極 2 5は、 前記実施例 1に示した各種 の材料を使用して形成することができる。  The lower electrode 23, the capacitive insulating film 24, and the fin electrode 25 can be formed using the various materials described in the first embodiment.
第 5実施例 Fifth embodiment
本実施例のメモリセルの製造方法について、 図 3 0を用いて説明する。  The method for manufacturing the memory cell of this embodiment will be described with reference to FIG.
本実施例では、 ド部電極 2 3を形成した後に絶縁膜 2 8による平坦化処理を行 い、 その後に P Z Tの容量絶縁膜 2 4および P tの上部電極 2 5を形成する。 そ れ以外は前記実施例 4の製造方法と同じである。 このような立体型キャパシ夕を 用いたメモリの場合でも、 前記実施例 1のプラズマエツチング装置を用いること により、 ド部電極 2 3およびバリアメタル 2 2をエツチング加工する際に正確な 終点判定を行うことができる。  In this embodiment, after the gate electrode 23 is formed, a planarization process is performed using the insulating film 28, and thereafter, the capacitive insulating film 24 of PZT and the upper electrode 25 of Pt are formed. Except for this, the manufacturing method is the same as that of the fourth embodiment. Even in the case of a memory using such a three-dimensional capacity, by using the plasma etching apparatus of the first embodiment, an accurate end point can be determined when etching the gate electrode 23 and the barrier metal 22. be able to.
第 6実施例 Sixth embodiment
図 3 1は、 細管集合板の他の実施例を示す断面図である。 この細管集合板は、 受光部側の径が他端の径よりも大きくなるようなテーパーを設けた細管 1 1 9を 集めて石英 1 2 0で束ねることにより細管集合板を形成し、 これを石英ガラス窓 1 1 2に取付ける構造になっている。 プラズマの発光は、 細管 1 1 9の大径側か ら入射し、 石英窓 1 1 2を透過してプラズマモニタ部に導かれる。 このように、 細管 1 1 9にテーパー角を設けた構造とすることにより、 プラズマの発光が細管 1 1 9の内壁面で反射しながら集光されるので、 受光効率を向上させることがで きる。 また、 P tのドライエッチング中に細管 1 1 9の内壁に反応生成物が付着 した場合でも、 この付着物が光の反射層として働くので、 受光効率の変動も少な い。 FIG. 31 is a sectional view showing another embodiment of the thin tube collecting plate. This thin tube collecting plate is formed by collecting tapered thin tubes 1 19 having a taper such that the diameter of the light receiving section is larger than the diameter of the other end and bundling them with quartz 120 to form a thin tube collecting plate. It is structured to be attached to the quartz glass window 1 1 2. The light emission of the plasma enters from the large diameter side of the thin tube 119, passes through the quartz window 112, and is guided to the plasma monitor. In this way, by adopting a structure in which the thin tube 119 has a taper angle, the light emission of the plasma is collected while being reflected on the inner wall surface of the thin tube 119, so that the light receiving efficiency can be improved. . In addition, even when a reaction product adheres to the inner wall of the thin tube 119 during dry etching of Pt, the variation in the light receiving efficiency is small because the adhered substance acts as a light reflection layer. No.
細管 1 1 9は、 例えば石英ガラス管を引き伸ばすことによって作成することが できる。 細管 1 1 9は石英ガラスのみで構成してもよいが、 あらかじめ細管 1 1 9の内壁に反射率の大きい物質 (例えば金厲) を薄くコーティングしておいても よい。 また、 細管 1 1 9を金属で形成してもよい。 この場合も、 金属管を引き伸 ばすことによって作成できる。 その際、 金属管を束ねる支持体として支えとして 石英 1 2 0の代わりに金属を用いてもよい。  The thin tubes 1 19 can be made, for example, by stretching a quartz glass tube. The thin tube 119 may be made of only quartz glass, but the inner wall of the thin tube 119 may be previously thinly coated with a substance having a high reflectance (for example, gold). Further, the thin tube 119 may be formed of metal. In this case, too, it can be created by stretching the metal tube. At that time, metal may be used instead of quartz 120 as a support as a support for binding the metal tubes.
以上、 本発明者によってなされた発明を実施例に基づき具体的に説明したが、 本発明は前記実施例に限定されるものではなく、 その要旨を逸脱しない範囲で 種々変更可能であることはいうまでもない。  As described above, the invention made by the inventor has been specifically described based on the embodiment. However, the present invention is not limited to the embodiment, and it can be said that various modifications can be made without departing from the gist of the invention. Not even.
本発明は、 前記実施例に示したようなマグネトロン R I E方式のプラズマエツ チング装 ί¾を用いたエツチングに限定されるものではなく、 E C R、 ヘリコン、 I C P , T C Pなど各種方式のプラズマエッチング装置を用 L、たェッチングに適 用することができる。 産業上の利用可能性  The present invention is not limited to the etching using the magnetron RIE type plasma etching apparatus as shown in the above-described embodiment, but is applicable to various types of plasma etching apparatuses such as ECR, helicon, ICP, TCP, etc. It can be applied to etching. Industrial applicability
以上のように、 本発明の半導体集積同路装置の製造方法によれば、 プラズマの 発光が反応生成物に遮られることなくエッチング装置のプラズマモニタ部に到達 できるので、 付着係数が大き 、反応生成物や蒸気 I上が低 L、反応生成物の発生を伴 うエツチングの終点を確 ¾に判定する必要のあるプロセスに適用して好適なもの である。  As described above, according to the method for manufacturing a semiconductor integrated circuit device of the present invention, since the emission of plasma can reach the plasma monitor of the etching apparatus without being interrupted by the reaction products, the adhesion coefficient is large, This method is suitable for use in processes where it is necessary to accurately determine the end point of etching involving the generation of a reaction product with low L on a substance or vapor I.

Claims

請 求 の 範 囲 The scope of the claims
1 . 半導体ウェハの近傍にプラズマを形成して前記半導体ウェハの表面をプラズ マ処理するブラズマ処理部と、 前記ブラズマの発光を検出して前記ブラズマ処理 の状態をモニタするプラズマモニタ部とを備えたエッチング装置を用いて所定の 薄膜が形成された半導体ウェハの表面をエッチングするにあたり、 少なくとも前 記薄膜のェッチングによつて前記ブラズマ処理部に発生する反応生成物のソース 側が開孔された高ァスぺク ト比の細孔が複数形成されてなる細孔集合板を、 前記 プラズマモニタ部に入射する前記プラズマの発光の光路上に配置することを特徴 とする半導体集積回路装置の製造方法。 1. A plasma processing unit that forms a plasma near the semiconductor wafer and performs a plasma process on the surface of the semiconductor wafer, and a plasma monitor unit that detects light emission of the plasma and monitors the state of the plasma process. When etching the surface of a semiconductor wafer on which a predetermined thin film has been formed using an etching apparatus, at least a source hole of a source of a reaction product generated in the plasma processing section by the etching of the thin film is opened. A method for manufacturing a semiconductor integrated circuit device, comprising: arranging a pore collecting plate formed with a plurality of pores having a power ratio on an optical path of emission of the plasma incident on the plasma monitor.
2 . 請求項 1記載の半導体集積回路装置の製造方法であって、 前記細孔衆 ·合板は、 微細な径を有する複数の管状物を接合してなる管状物集合板であることを特徴と する半導体集積回路装置の製造方法。  2. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the porous plywood is a tubular assembly plate formed by joining a plurality of tubular materials having a fine diameter. Of manufacturing a semiconductor integrated circuit device.
3 . 請求項 2記載の半導体集積回路装置の製造方法であって、 前,己管状物集合板 は、 複数のガラス細管を接合してなるガラス細管集合板であることを特徴とする 半導体集嵇回路装置の製造方法。  3. The method of manufacturing a semiconductor integrated circuit device according to claim 2, wherein the self-tubular assembly is a thin glass tube assembly formed by joining a plurality of thin glass tubes. A method for manufacturing a circuit device.
4 . 請求項 1記載の半導体集積回路装置の製造方法であつて、 前記細孔集合板に 形成した前記細孔のァスぺク 卜比は、 5以上であることを特徴とする半導体集積 回路装置の製造方法。  4. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein an aspect ratio of the pores formed in the pore aggregation plate is 5 or more. Device manufacturing method.
5 . 諧求項 1記載の半導体集積回路装置の製造方法であつて、 前記細孔集合板の 受光部の面積に占める前記細孔の面積の割合は、 1 0 %以上であることを特徴と する半導体集嵇回路装置の製造方法。 5. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the ratio of the area of the pores to the area of the light receiving portion of the pore collecting plate is 10% or more. Of manufacturing a semiconductor integrated circuit device.
6 . 請求項 1記載の半導体集積回路装置の製造方法であつて、 前記細孔集合板に 形成された前記細孔は、 前記反応生成物のソース側の開孔端の径が他端の径ょり も大きいことを特徴とする半導体集積回路装置の製造方法。  6. The method for manufacturing a semiconductor integrated circuit device according to claim 1, wherein the pores formed in the pore aggregation plate have a diameter of a source-side opening end of the reaction product at the other end. A method for manufacturing a semiconductor integrated circuit device, characterized in that the size is large.
7 . 以下の工程を含むことを特徴とする半導体集積回路装置の製造方法:  7. A method for manufacturing a semiconductor integrated circuit device, comprising the following steps:
( a ) 半導体ウェハの表面に所定の薄膜を堆積する工程、  (a) depositing a predetermined thin film on the surface of a semiconductor wafer,
( b ) 半導体ウェハの近傍にブラズマを形成して前記半導体ウェハの表面をブラ ズマ処理するブラズマ処理部と、 前記ブラズマの発光を検出して前記ブラズマ処 理の状態をモニタするプラズマモニタ部と、 前記プラズマモニタ部に入射する前 プラズマの発光の光路上に配置され、 少なく とも前記プラズマ処理部に発生す る反応生成物のソース側が開孔された高ァスぺク ト比の細孔が複数形成されてな る高開口数細孔集合板とを備えたエッチング装置を用い、 前記プラズマモニタ部 によってその終点をモニタしながら、 前記半導体ウェハの表面に堆積された前記 薄膜をエッチングする工程。 (b) a plasma processing section for forming a plasma near the semiconductor wafer and performing a plasma processing on the surface of the semiconductor wafer; and detecting the light emission of the plasma and performing the plasma processing. A plasma monitor for monitoring the state of processing, a plasma monitor disposed on the optical path of light emission of plasma before entering the plasma monitor, and a source side of at least a reaction product generated in the plasma processing unit having a high opening on a source side. Using an etching apparatus provided with a high-numerical-aperture aggregate plate in which a plurality of pores having an aspect ratio are formed, the plasma monitor monitors the end point of the semiconductor wafer while monitoring the end point thereof. Etching the deposited thin film.
8 . 請求項 7記載の半導体集積回路装置の製造方法であって、 前記薄膜をエッチ ングする工程は、 下部電極、 容量絶縁膜および上部電極を積層して構成される容 8. The method for manufacturing a semiconductor integrated circuit device according to claim 7, wherein the step of etching the thin film is performed by stacking a lower electrode, a capacitor insulating film, and an upper electrode.
—¾素子を形成する工程であることを特徴とする半導体集積回路装置の製造方法。 9 . 請求項 8記載の半導体集積回路装置の製造方法であって、 前記容量素子は、 D R A Mのメモリセルの容 S素子であることを特徴とする半導体桀積回路装置の 製造方法。 —¾A method of manufacturing a semiconductor integrated circuit device, which is a step of forming an element. 9. The method for manufacturing a semiconductor integrated circuit device according to claim 8, wherein the capacitance element is an S element of a DRAM memory cell.
1 0 . ίί 求項 9記載の半導体集積同路装置の製造方法であって、 前記薄膜は、 前 記容 素子の上部電極を構成する P t膜であることを特徴とする半導体集積回路 装 :の製造方法。  10. The method for manufacturing a semiconductor integrated circuit device according to claim 9, wherein the thin film is a Pt film constituting an upper electrode of the element. Manufacturing method.
1 1 . 請求項 1 0記載の半導体集積回路装置の製造方法であって、 前記 P t膜か らなる上部電極の下層の前記容量絶縁膜は、 その比誘電率が 2 0以上の高誘電体 膜であることを特徴とする半導体集積回路装置の製造方法。  11. The method for manufacturing a semiconductor integrated circuit device according to claim 10, wherein the capacitor insulating film below the upper electrode made of the Pt film has a relative dielectric constant of 20 or more. A method for manufacturing a semiconductor integrated circuit device, comprising: a film.
1 2 . 以下の工程を含むことを特徴とする半導体集積回路装置の製造方法: ( a ) 半導体ウェハの表面に第 1の薄膜を堆積する工程、  12. A method of manufacturing a semiconductor integrated circuit device, comprising the following steps: (a) depositing a first thin film on a surface of a semiconductor wafer;
( b ) 半導体ウェハの近傍にプラズマを形成して前記半導体ウェハの表面をブラ ズマ処理するプラズマ処理部と、 前記プラズマの発光を検出して前記プラズマ処 理の状態をモニタするプラズマモニタ部と、 前 ^プラズマモニタ部に入射する前 記プラズマの発光の光路上に配置され、 少なく とも前記プラズマ処理部に発生す る反応生成物のソース側が開孔された高ァスぺク 卜比の細孔が複数形成されてな る高開口数細孔集合板とを備えた第 1のエッチング装置を用い、 ^記プラズマモ 二夕部によってその終点をモニタしながら、 前記半導体ウェハの表面に堆積され た前記第 1の薄膜をエッチングする工程、  (b) a plasma processing unit that forms a plasma near the semiconductor wafer and performs a plasma process on the surface of the semiconductor wafer; a plasma monitor unit that detects light emission of the plasma and monitors a state of the plasma processing; Pre ^ A high-aspect-ratio pore that is located on the optical path of the plasma emission incident on the plasma monitor and at least the source side of the reaction product generated in the plasma processing section is opened. Using a first etching apparatus provided with a high numerical aperture aggregate plate in which a plurality of holes are formed, while monitoring the end point thereof by using a plasma monitor, the above-described process is performed on the surface of the semiconductor wafer. Etching the first thin film,
( c ) 半導体ウェハの表面に第 2の薄膜を堆積する工程、 ( d ) 前記工程 ( a ) の前または後に、 前記第 1のエッチング装置またはこれと 異なる第 2のエツチング装置を用 L、、 あらかじめ定める時間だけェッチングする ことによつてその終点を決定することにより、 前記第 2の薄膜をェッチングする 工程。 (c) depositing a second thin film on the surface of the semiconductor wafer; (d) before or after the step (a), by using the first etching apparatus or a second etching apparatus different from the first etching apparatus, by determining the end point by etching for a predetermined time. Etching the second thin film.
1 3 . 以下の工程よりなる半導体集積回路装置の製造方法:  13. A method for manufacturing a semiconductor integrated circuit device comprising the following steps:
( a ) 半導体集積回路装置製造用のウェハの主面上に直接または間接に第 1の薄 胶を形成する工程、  (a) forming a first thin film directly or indirectly on a main surface of a wafer for manufacturing a semiconductor integrated circuit device;
( b ) 前記第 1の薄膜が形成された前記ウェハを気相反応処理容器内にお L、て気 相反応を用いてエッチングすることにより、 前記第 1の薄膜を所定の形状にノ、°タ —ニングする工程、  (b) etching the first thin film into a predetermined shape by etching the wafer on which the first thin film is formed in a gas phase reaction processing vessel by using a gas phase reaction. Turning process,
( c ) 己エッチングに関与する前記ウェハ近傍の反応気相からの、 または少な くともその部分を透過した光情報をモニタするに際して、 前記反応気相と光検出 部との間の前記気相反応処理容器内に、 少なくとも観測光を通過させる程度に大 きな内径を有し、 不所望なデポジションの原因となる粒子の通過を実質的に阻止 または抑制できる程度に大きなァスぺクト比を持ち、 少なくとも前記反応気相側 が開放された非常に多くの微細管を密集させた微細管集合板を配置し、 前記微細 管集合板を透過した光を観測することにより、 前記ェッチングの終点を検出する 工程。  (c) When monitoring optical information from a reaction gas phase in the vicinity of the wafer involved in self-etching or transmitted through at least a portion thereof, the gas phase reaction between the reaction gas phase and a light detection unit is performed. The processing vessel has an inner diameter large enough to allow at least the observation light to pass through, and an aspect ratio large enough to substantially prevent or suppress the passage of particles that cause undesired deposition. By placing a microtube collecting plate in which a very large number of microtubes are densely arranged, at least the reaction gas phase side is opened, and observing light transmitted through the microtube collecting plate, the end point of the etching is determined. The process of detecting.
1 4 . 請求項 1 3記載の半導体集積回路装置の製造方法であって、 前記微細管の 内径は、 前記不所望なデポジションの原因となる粒子の前記気相反応処理容器内 における平均自由工程に比較して十分に小さいことを特徴とする半導体集積回路 装置の製造方法。  14. The method for manufacturing a semiconductor integrated circuit device according to claim 13, wherein the inside diameter of the microtube is a mean free path of the particles causing the undesired deposition in the gas-phase reaction processing container. A method for manufacturing a semiconductor integrated circuit device, which is sufficiently smaller than the above.
1 5 . 請求項 1 4記載の半導体集積回路装置の製造方法であって、 前記微細管の 長さは、 前記不所望なデポジションの原因となる粒子の前記気相反応処理容器内 における平均自由工程に比較して同程度かまたはそれよりも短いことを特徴とす る半導体集積回路装置の製造方法。  15. The method for manufacturing a semiconductor integrated circuit device according to claim 14, wherein the length of the fine tube is such that the particles causing the undesired deposition are mean free in the gas phase reaction processing container. A method for manufacturing a semiconductor integrated circuit device, wherein the method is equal to or shorter than a process.
1 6 . 請求項 1 5記載の半導体集積回路装置の製造方法であって、 前記微細管の 内径は、 前記観測光の波長に比較して十分に大きいことを特徴とする半導体集積 回路装置の製造方法。 16. The method for manufacturing a semiconductor integrated circuit device according to claim 15, wherein an inner diameter of the microtube is sufficiently larger than a wavelength of the observation light. Method.
1 7 . 請求項 1 6記載の半導体集積回路装置の製造方法であって、 前記微細管の 内径部分の面積は、 それ以外の管壁および管の間の部分全体の面積に比較して同 程度かまたはそれよりも大きいことを特徴とする半導体集積回路装置の製造方法 c 17. The method for manufacturing a semiconductor integrated circuit device according to claim 16, wherein the area of the inner diameter portion of the fine tube is substantially the same as the area of the entire other portion between the tube wall and the tube. production method c Kamata semiconductor integrated circuit device, characterized in that greater than
1 8 . 請求項 1 7記載の半導体集積回路装置の製造方法であって、 前記気相反応 の主要部分は、 前記不所望なデポジションの原因となる粒子の前記気相反応処理 容器内における平均自由工程が 0. 1 mmから数 1 0 cmとなるような真空下で行 われることを特徴とする半導体集積回路装置の製造方法。 18. The method for manufacturing a semiconductor integrated circuit device according to claim 17, wherein a main part of the gas phase reaction is an average of particles that cause the undesired deposition in the gas phase reaction processing container. A method for manufacturing a semiconductor integrated circuit device, wherein the process is performed under a vacuum such that a free process is from 0.1 mm to several 10 cm.
1 9 . 以下の工程よりなる半導体集積回路装置の製造方法:  1 9. A method for manufacturing a semiconductor integrated circuit device comprising the following steps:
( a ) 半導体集積回路装置製造用のウェハの第 1の主面上の第 1の絶縁膜上に直 接または間接に、 高誘電体膜または強誘電体胶を用いたメモリデータ記憶部また はキャパシ夕の電極の少なくとも一部を構成する^記高誘電体膜または強誘電休 膜もしくはその構成材料に対して化学反応耐性を有する第 1の金属層を形成する 工程、  (a) Directly or indirectly on a first insulating film on a first main surface of a wafer for manufacturing a semiconductor integrated circuit device, a memory data storage unit or a ferroelectric film using a high dielectric film. Forming a high-dielectric film or a ferroelectric dielectric film constituting at least a part of an electrode of the capacitor or a first metal layer having a chemical reaction resistance to a constituent material thereof;
( b ) 前記第 1の金属層上に直接または間接に、 キャパシタの一部を構成する高 誘 性または強誘電体性を有する第 2の絶縁膜を形成する工程、  (b) forming, directly or indirectly, on the first metal layer, a highly insulating or ferroelectric second insulating film constituting a part of a capacitor;
( c ) 前記第 2の絶縁膜上に直接または問接に、 前記高誘電体膜または強誘電体 膜を用いたメモリデータ記憶部またはキャパシ夕の電極の少なくとも一部を構成 する前記高誘電体膜または強誘 体膜もしくはその構成材料に対して化学反応耐 性を有する第 2の金属層を形成するて程、  (c) directly or in contact with the second insulating film, the high dielectric material constituting at least a part of an electrode of a memory data storage unit or a capacitor using the high dielectric film or the ferroelectric film. The formation of the second metal layer having chemical reaction resistance to the film or the strong dielectric film or its constituent material
( d ) 前記第 2の金属層が形成された前記ウェハを気相反応処理容器内において 気相反応を用いてエッチングすることにより、 所定の形状にノ、"夕一ニングするェ 程、  (d) etching the wafer, on which the second metal layer is formed, by using a gas phase reaction in a gas phase reaction processing vessel, so that the wafer has a predetermined shape;
( e ) 前記エッチングに関与する前記ウェハ近傍の反応気相からの、 または少な くともその部分を透過した光情報をモニタするに際して、 前記反応気相と光検出 部との間の前記気相反応処理容器内に、 少なくとも観測光を通過させる程度に大 きな内径を有し、 不所望なデポジションの原因となる粒子の通過を実質的に阻止 または抑制できる程度に大きなァスぺク ト比を持ち、 少なくとも前記反応気相側 が開放された非常に多くの微細管を密集させた微細管集合板を配置し、 前記微細 管集合板を透過した光を観測することにより、 前記ェッチングの終点を検出する 工程。 (e) When monitoring optical information from or at least transmitted through a reaction gas phase near the wafer involved in the etching, the gas phase reaction between the reaction gas phase and a light detection unit is monitored. The inside diameter of the processing vessel is large enough to allow at least the observation light to pass, and the large aspect ratio is large enough to substantially prevent or suppress the passage of particles that cause undesired deposition. By arranging a fine tube collecting plate in which a very large number of fine tubes with at least the reaction gas phase side being opened are densely arranged, and observing light transmitted through the fine tube collecting plate, the end point of the etching Detect Process.
2 0 . 以下の工程よりなる半導体集積回路装置の製造方法:  20. A method for manufacturing a semiconductor integrated circuit device comprising the following steps:
( a ) 半導体集積回路装置製造用のウェハの第 1の主面上の第 1の絶縁膜上に直 接または間接に、 高誘電体膜または強誘電体膜を用いたメモリデータ記憶部また はキャパシ夕の電極の少なくとも一部を構成する前記高誘電体膜または強誘電体 膜もしくはその構成材料に対して化学反応耐性を有する第 1の金属層を形成する 工程、  (a) Directly or indirectly on a first insulating film on a first main surface of a wafer for manufacturing a semiconductor integrated circuit device, a memory data storage unit or a ferroelectric film using a high dielectric film or a ferroelectric film. Forming a first metal layer having resistance to a chemical reaction with respect to the high dielectric film or the ferroelectric film constituting the at least a part of the electrode of the capacitor or a constituent material thereof;
( b ) 前記第 1の金属層上に直接または間接に、 キャパシ夕の一部を構成する高 誘電性または強誘電体性を -する第 2の絶縁膜を形成する工程、  (b) forming, directly or indirectly, on the first metal layer, a second insulating film having a high dielectric property or a ferroelectric property which constitutes a part of a capacity;
( c ) 前記第 2の絶縁膜上に直接または間接に、 前記高誘電体膜または強誘電体 膜を用いたメモリデータ記憶部またはキャパシ夕の電極の少なく とも一部を構成 する前記高誘 体膜または強誘電体膜もしくはその構成材料に対して化学反応耐 性を有する第 2の金属層を形成する工程、  (c) directly or indirectly on the second insulating film, the high dielectric substance constituting at least a part of a memory data storage unit or a capacitor electrode using the high dielectric film or the ferroelectric film. Forming a second metal layer having chemical reaction resistance to the film or the ferroelectric film or its constituent materials;
( d ) 前記第 2の金属屑が形成された前記ウェハを気相反応処理容器内において 気相反応を用いてエッチングすることにより、 所定の形状にノ ターニングするェ 程、  (d) a step of notching into a predetermined shape by etching the wafer on which the second metal chips are formed by using a gas phase reaction in a gas phase reaction processing vessel;
( e ) 前記ェッチングに関与する前記ウェハ近傍の反応気相からの、 または少な くともその部分を透過した光情報をモニタするに際して、 前記反応気相と光検出 部との間の前記気相反応処理容器内に、 少なくとも観測光を通過させる程度に大 きな内径を有し、 不所望なデポジションの原因となる粒子の通過を実質的に阻止 または抑制できる程度に 5またはそれよりも大きなァスぺク ト比を持ち、 少なく とも前記反応気相側が開放された管状部を配置し、 前記管状部を透過した光を観 測することにより、 前記エッチングの終点を検出する工程。  (e) when monitoring optical information from or at least transmitted through a reaction gas phase near the wafer involved in the etching, the gas phase reaction between the reaction gas phase and a light detection unit; The inside diameter of the processing vessel is at least large enough to allow observation light to pass through, and 5 or more large enough to substantially prevent or suppress the passage of particles that cause undesired deposition. A step of arranging a tubular portion having a stroke ratio and opening at least the reaction gas phase side, and observing light transmitted through the tubular portion to detect the end point of the etching.
PCT/JP1996/001889 1996-07-08 1996-07-08 Method of production of semiconductor integrated circuit device WO1998001895A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP1996/001889 WO1998001895A1 (en) 1996-07-08 1996-07-08 Method of production of semiconductor integrated circuit device
AU63197/96A AU6319796A (en) 1996-07-08 1996-07-08 Method of production of semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1996/001889 WO1998001895A1 (en) 1996-07-08 1996-07-08 Method of production of semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO1998001895A1 true WO1998001895A1 (en) 1998-01-15

Family

ID=14153524

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/001889 WO1998001895A1 (en) 1996-07-08 1996-07-08 Method of production of semiconductor integrated circuit device

Country Status (2)

Country Link
AU (1) AU6319796A (en)
WO (1) WO1998001895A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003068714A (en) * 2001-08-28 2003-03-07 Tokyo Electron Ltd Plasma treatment apparatus
JP2003332465A (en) * 2002-05-14 2003-11-21 Mitsubishi Electric Corp Method of manufacturing semiconductor memory device
JP2007067423A (en) * 2006-09-29 2007-03-15 Toshiba Corp Optical process monitor device, optical process monitor method, and method of manufacturing semiconductor device
US7595885B2 (en) 2003-10-22 2009-09-29 Kabushiki Kaisha Toshiba Process monitoring system, process monitoring method, and method for manufacturing semiconductor device
US8241980B2 (en) 2007-03-27 2012-08-14 Fujitsu Semiconductor Limited Semiconductor device and manufacturing method thereof
JP5013632B2 (en) * 1998-12-28 2012-08-29 ラム リサーチ コーポレーション Perforated plasma confinement ring in plasma reactor
JP2015145323A (en) * 2014-02-04 2015-08-13 コバレントマテリアル株式会社 Silica aeration body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299601A (en) * 1992-02-20 1993-11-12 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH0878393A (en) * 1994-09-06 1996-03-22 Toshiba Corp Plasma etching system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299601A (en) * 1992-02-20 1993-11-12 Mitsubishi Electric Corp Semiconductor device and its manufacture
JPH0878393A (en) * 1994-09-06 1996-03-22 Toshiba Corp Plasma etching system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5013632B2 (en) * 1998-12-28 2012-08-29 ラム リサーチ コーポレーション Perforated plasma confinement ring in plasma reactor
JP2003068714A (en) * 2001-08-28 2003-03-07 Tokyo Electron Ltd Plasma treatment apparatus
JP4657521B2 (en) * 2001-08-28 2011-03-23 東京エレクトロン株式会社 Plasma processing equipment
JP2003332465A (en) * 2002-05-14 2003-11-21 Mitsubishi Electric Corp Method of manufacturing semiconductor memory device
US7595885B2 (en) 2003-10-22 2009-09-29 Kabushiki Kaisha Toshiba Process monitoring system, process monitoring method, and method for manufacturing semiconductor device
JP2007067423A (en) * 2006-09-29 2007-03-15 Toshiba Corp Optical process monitor device, optical process monitor method, and method of manufacturing semiconductor device
JP4496191B2 (en) * 2006-09-29 2010-07-07 株式会社東芝 OPTICAL PROCESS MONITOR DEVICE, OPTICAL PROCESS MONITOR METHOD, AND SEMICONDUCTOR DEVICE MANUFACTURING METHOD
US8241980B2 (en) 2007-03-27 2012-08-14 Fujitsu Semiconductor Limited Semiconductor device and manufacturing method thereof
US8466021B2 (en) 2007-03-27 2013-06-18 Fujitsu Semiconductor Limited Semiconductor device and manufacturing method thereof
JP2015145323A (en) * 2014-02-04 2015-08-13 コバレントマテリアル株式会社 Silica aeration body

Also Published As

Publication number Publication date
AU6319796A (en) 1998-02-02

Similar Documents

Publication Publication Date Title
JP3676958B2 (en) Manufacturing method of semiconductor integrated circuit device
US6358362B1 (en) Methods and arrangements for determining an endpoint for an in-situ local interconnect etching process
US6153460A (en) Method of fabricating semiconductor memory device
US6798010B2 (en) Ferroelectric memory devices
EP1353370A2 (en) Semiconductor memory capacitor and method for fabricating the same
JP2001244426A (en) Manufacturing method of ferroelectric memory cell
US6339008B1 (en) Method of manufacturing a semiconductor memory device
US20070128758A1 (en) Semiconductor device and method for fabricating the same
JP2002151465A (en) Method and system for fabricating semiconductor device, and semiconductor device
JP3994017B2 (en) Manufacturing method of semiconductor device
US6268259B1 (en) Overhanging separator for self-defining stacked capacitor
US7115468B2 (en) Semiconductor device and method for fabricating the same
JP2005537646A (en) Method for forming a conductive material in an opening and structure relating to the method
WO1998001895A1 (en) Method of production of semiconductor integrated circuit device
JP2000133783A (en) Semiconductor integrated circuit and manufacture thereof
JP2000114245A (en) Semiconductor integrated circuit device and its manufacture
JPH1022274A (en) Etching method and manufacture of semiconductor device
JPH10107223A (en) Dielectric capacitor and dielectric memory device and manufacture of them
KR100699206B1 (en) Ferroelectric memory cell fabrication methood
US6613683B2 (en) Method of manufacturing a contact hole of a semiconductor device
JP2007181190A (en) Semiconductor device and method for fabricating same
JP5245383B2 (en) Manufacturing method of semiconductor device
JP2553702B2 (en) Semiconductor device and manufacturing method thereof
JPH1050951A (en) Semiconductor device, and its manufacture
JP4497260B2 (en) Semiconductor integrated circuit device and manufacturing method thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AU BB BG BR CA CN CZ EE FI GE HU IL IS JP KG KR LK LR LT LV MD MG MK MN MX NO NZ PL RO SG SI SK TR TT UA US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA