WO1998001502A1 - Porous membrane comprising poly(4-methylpentene-1) resin and battery separator - Google Patents

Porous membrane comprising poly(4-methylpentene-1) resin and battery separator Download PDF

Info

Publication number
WO1998001502A1
WO1998001502A1 PCT/JP1997/002307 JP9702307W WO9801502A1 WO 1998001502 A1 WO1998001502 A1 WO 1998001502A1 JP 9702307 W JP9702307 W JP 9702307W WO 9801502 A1 WO9801502 A1 WO 9801502A1
Authority
WO
WIPO (PCT)
Prior art keywords
porous membrane
resin
stretching
poly
methylpentene
Prior art date
Application number
PCT/JP1997/002307
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhiro Meguro
Tomoo Susa
Toshiya Mizuno
Yoshikichi Teramoto
Hiroshi Sato
Original Assignee
Kureha Chemical Industry Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Chemical Industry Co., Ltd. filed Critical Kureha Chemical Industry Co., Ltd.
Publication of WO1998001502A1 publication Critical patent/WO1998001502A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2305/00Condition, form or state of the layers or laminate
    • B32B2305/02Cellular or porous
    • B32B2305/026Porous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/20Properties of the layers or laminate having particular electrical or magnetic properties, e.g. piezoelectric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/10Batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a porous membrane made of a poly (4-methylpentene-11) resin.
  • the present invention also relates to a separator for a pond comprising the porous membrane and a method for producing the porous membrane. More specifically, a porous film made of poly (4-methylpentene-11) resin having a specific multiplication impedance and a specific Young's modulus, and a porous film made of poly (4-methylpentene-11) resin and a specific film made of another polyolefin resin.
  • the present invention relates to a porous membrane having at least two particles with a porous membrane layer having a melting point range, a separator for a battery comprising the porous membrane, and a method for producing the porous membrane.
  • a battery separator has a structure in which at least one pair of electrodes are opposed to each other and an electrolytic solution is interposed between the electrodes.However, from the viewpoint of increasing the electric capacity of the battery and reducing the size of the battery. It is desirable that the distance between the electrodes is small. When the distance between the positive electrodes is small, it is common practice to interpose a separator made of a porous film between the positive electrodes to prevent contact between the electrodes and to retain the electrolyte.
  • the heat generated at that time melts the polyolefin-based resin constituting the low-melting-point polyolefin-based resin porous membrane waste and seals the plug.
  • the effect is that the flow of current is stopped to suppress overheating (short-down), and the high-melting-point polyolefin-based resin porous membrane waste is laminated to retain the melt-clogged low-melting-point polyolefin-based resin porous membrane ⁇ . It is understood that this has the effect of preventing the occurrence (breakdown).
  • the separator needs to be thinner from the viewpoint of increasing the energy density of the battery, but needs to have a certain degree from the viewpoint of preventing contact between the electrode and the electrode. For this reason, the non-aqueous solvent type 3 ⁇ 4Ikegawa Separe Ichiichi has a low in-between.
  • Non-aqueous solvent type batteries can be said to be representative of electrochemical devices because of their narrow electrodes, from the viewpoint of increasing the battery capacity.
  • Electrochemical devices with a narrow electrode spacing especially lithium-ion and lithium-ion batteries, generate electricity by increasing the capacity of the battery by stacking the positive electrode material, separator, and negative electrode material and rolling them in as many times as necessary.
  • the winding operation between the electrode and the separator is as follows: the positive electrode material, the separator electrode and the negative electrode material are rolled up and wound around the pin as many times as necessary, then the pin is pulled out and wound Gaining body.
  • the separator is longer than the electrode, and only the separator is involved at the beginning of the entrainment.
  • the positive electrode material, the separator, and the electrode material are wrapped around the electrodes, the electrodes are pressed against each other, that is, the electrode and the separator are mutually pressed, and the separator applies a tensile force.
  • the mechanical strength of Separee overnight, especially Young's modulus If the material is insufficient, the winding of the positive electrode material, separator and negative electrode material will end, and the pin will not come out when the pin is pulled out, or in extreme cases, a crack will occur over a short period of time.
  • An object of the present invention is to prevent the above-described pin disconnection failure during battery production, and furthermore, a porous membrane having a function of increasing the energy density of the battery, and a shutdown function as a separator.
  • An object of the present invention is to provide a multi-layer membrane having a function of preventing breakdown, a battery separator comprising the same, and a method for producing a porous membrane.
  • the present inventors have conducted intensive studies to improve the above problems, and as a result, have an apparent impedance of 25 ⁇ ⁇ cm 2 or less and a Young's modulus of 40 kg made of poly (4-methylpentene-11) resin.
  • the inventors have found that a porous membrane having a thickness of / mm 2 or more can solve such a problem, and have completed the present invention.
  • the first aspect of the present invention provides a polyporous membrane made of poly (4-methylpentene-11) resin having an apparent impedance of 25 ⁇ ⁇ c or less and a Young's modulus of 40 kg / mm 2 or more.
  • a second aspect of the present invention is a layer (A) of a porous membrane made of poly (4-methylpentene-11) resin, and a polyolefin resin different from the resin constituting the layer (A).
  • a porous membrane is provided.
  • a third aspect of the present invention provides a battery separator comprising the porous membranes of the first and second aspects, and a fourth aspect provides a method for producing the porous membranes of the first and second aspects.
  • the first aspect of the present invention relates to a porous membrane made of a poly (4-methylpentene-11) resin having an apparent impedance of 25 ⁇ ⁇ cm 2 or less and a Young's modulus of 40 kg / mm 2 or less.
  • the poly (4-methylpentene-11) resin used in the present invention includes a copolymer obtained by using a homopolymer of 4-methylpentene-11 or a 1-year-old olefin having 2 to 12 carbon atoms as a co-JE synthetic component. In.
  • co-synthetic components examples include ti-butyl ethylene, propylene, butene-1, hexene-11, 3-methylbutene-11, octene-11, styrene, vinylcyclohexene, and the like. It is desirable that the content of these copolymers be 40% by mass or less, preferably 20% by mass or less in the polymer.
  • the porous film itself has a melting point of preferably 200 ° C. or higher, and in the past, 230 ° C. or higher, in order to stably maintain the shape of the film with increasing temperature.
  • ⁇ only impedance 25 ⁇ ⁇ cm 2 or more de preferably 20 ⁇ ⁇ cm 2 or less. If the apparent impedance exceeds 25 ⁇ ⁇ cm 2 , it is not preferable because sufficient charge / discharge characteristics cannot be obtained when used in batteries.
  • the convertible impedance means that at room temperature (23 ° C.), a nonaqueous solvent-based electrolytic solution (a mixture of propylene carbonate and 1,2-dimethoxetane in a 1: 1 volume ratio of lithium perchlorate) (At a concentration of 1 mol / liter), and then apply AC (100 KHz, 0.4 IV) while the electrodes (Pt electrodes) are in contact with both sides of the porous membrane. It is the measured resistance ( ⁇ ⁇ cm 2 ), which is measured in a form that includes the resistance component of the non-aqueous solvent-based electrolyte.
  • the Young's modulus in the present invention was determined by the calculation method described in JIS K7127.
  • the porosity of the porous removal according to the present invention is preferably 25 to 60%, more preferably 30 to 45%.
  • the porosity in the present invention means, for example, the porosity of a single-piece porous membrane made of poly (4-methylpentene-11) resin, or the porosity of poly (4-methylpentene-1-ene). 1) In the case of a porous membrane containing layers made of resin, it means the average porosity of all the debris in the laminated porous membrane.
  • the second aspect of the present invention is a porous membrane made of poly (4-methylpentene-11) resin (A) and a polyolefin resin different from the resin constituting the refuse (A) and having a melting point of 100 to 140 ° C.
  • the present invention relates to a porous membrane having at least two layers with the porous membrane waste (B), wherein the stackable body has a convertible impedance of 25 ⁇ ⁇ cm 2 or less and a Young's modulus of 40 kg / mm 2 or more.
  • the poly (4-methylpentene-11) resin the same resins as those described in the first invention can be used.
  • Layer (A) of a porous membrane made of poly (4-methylpentene-1) resin and layer of a porous membrane made of a polyolefin resin different from the resin constituting the layer (A) and having a melting point of 100 to 140 ° C By having at least two layers with B), the following functions are provided. That is, this laminated porous membrane receives a thermal history When the temperature reaches or exceeds the melting point of (B), the micropores of (B) are melted and closed, but the layer (A) has a higher melting point than the layer (B), so it retains its shape as a porous stack membrane. It has been done.
  • polyolefin resin examples include polyethylene having a melting point of 100 to 140 ° C., preferably 110 to 135 ° C. Examples thereof include a copolymer with refine), an ethylene-propylene copolymer, and poly (butene-1). Of these polyolefin resins, polyethylene and polybutene-11 are preferred.
  • the “melting point” refers to a value obtained by measuring a sample 10018 at a temperature of 10 ° CZ under a nitrogen flow at a temperature rate of 10 ° CZ using a small difference scanning calorimeter (eg, DSC 30, manufactured by Mettler). Endothermic peak temperature created by melting.
  • a third aspect of the present invention relates to a battery separator composed of the first and second porous films.
  • the feature of the present invention is that it has a low convertible impedance (25 ⁇ ⁇ cm 2 or less) and a Young's modulus of 40 kg / mm 2 or more, thereby satisfying the electrical properties (low impedance) required for battery separators.
  • a fourth aspect of the present invention relates to a method for producing a porous membrane and a laminated porous membrane according to the first and second aspects of the present invention.
  • the manufacturing method will be described below.
  • a plasticizer is blended with poly (4-methylpentene-1) resin to obtain a composite composition.
  • the mixing method is not particularly limited as long as the plasticizer is uniformly mixed. For example, melt-kneading with an extruder after mixing with a ribbon blender, hensile mixer, fixed V-type blender, tumbler, ball mill, etc. And directly melt-kneaded.
  • a poly (4-methylpentene-1) resin and a polyolefin resin having a melting point of 100 to 140 ° C are used.
  • the mixing ratio of the resin and the plasticizer is 50 to 150 parts by mass of the plasticizer to 100 parts by mass of the resin, preferably 60 to 120 parts by mass, and more preferably 70 to 1 part by mass. 0 0 It is a mass part.
  • the plasticizer used in the present invention plasticizes polyolefin resins such as poly (4-methylpentene-1) and polybutene-11, and includes, for example, phthalic acid, dimethyl phthalate, getyl phthalate, and phthalate.
  • Diesters such as dibutyl acid, diisopentyl phthalate, dioctyl phthalate, and didodecyl phthalate; aliphatic dialcohols having 2 to 4 carbon atoms and aliphatic dicarboxylic acids having 2 to 9 carbon atoms (fats having 2 to 4 carbon atoms)
  • aliphatic dialcohols include ethylene glycol, propylene glycol, 1,4-butanediol, and 1,2-butanediol.
  • Examples of the aliphatic dicarboxylic acids having 2 to 9 carbon atoms include oxalic acid and malonic acid.
  • Condensed polymers with acids, succinic acid, glutaric acid, adipic acid, azelaic acid, etc., lactones examples include aliphatic polyesters such as ring-opening polymer molecules of ton, butyrolactone, (—pa'relolactone, £ -prolactone, etc.), phosphate esters, glycolesters, and epoxy compounds.
  • a diester is preferred, and a mixture of two or more of the above plasticizers can also be used.
  • This mixture composition is optionally pelletized and then extruded at a temperature of 180 to 34 ° C., preferably. Can be formed into a melt-extruded film (film) at 200 to 280 ° C.
  • a laminated film it may be formed by a melt co-extrusion method or may be formed outside the die.
  • the thickness of the film at this point depends on the subsequent stretching ratio, but is preferably 200 to 20 2. m is preferable, and more preferably 150 to 30 m.
  • the obtained film is stretched (first stretching). Stretching, Teng evening one method, roll method, inflation one Deployment ⁇ -,) T:. Conducted in casting method or the like. Stretching may be either uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either temporary stretching or sequential stretching may be used.
  • the temperature for the first stretching is from 110 to 50 ° C, preferably from 0 to 40 ° C, and more preferably from 5 to 30 ° C.
  • the first stretching temperature is lower than 110 ° C, breakage will occur during stretching, and if it exceeds 50 ° C, the stretching will not be uneven.
  • the first draw ratio is at least 1.5 to 3.0 times, preferably 2.0 to 2.5 times in one direction. By stretching in at least one direction within the range of the first stretching temperature at a stretching ratio of 1.5 to 3.0, the Young's modulus can be increased and the apparent impedance can be reduced. Can be. On the other hand, if the ratio of the first stretching exceeds 3.0 times, the film is likely to be torn. Next, a plasticizer is extracted from the first spread film or the stacked film.
  • the solvent for this purpose is not particularly limited as long as it does not dissolve polyolefin resin such as poly (4-methylpentene-1) or poly (butene-11) and can dissolve nj plastic.
  • polyolefin resin such as poly (4-methylpentene-1) or poly (butene-11)
  • nj plastic can dissolve nj plastic.
  • haloalkanes such as trichloromethane and trichloromethane
  • ketones such as acetone and methylethyl ketone
  • lower carboxylic acid esters such as ethyl acetate
  • lower alcohols such as methanol and isopropyl alcohol
  • aromatics such as toluene and xylene.
  • Solvents such as aromatic hydrocarbons can be used.
  • the extraction method using a solvent is preferably performed at a temperature of 5 to 150 ° C, more preferably 10 to 100 ° C, particularly preferably 15 to 50 ° C, preferably 0.5 to 3 ° C. It is released for 60 minutes, more preferably for 3 to 120 minutes, particularly preferably for 5 to 60 minutes.
  • the extraction can be accelerated by applying appropriate vibration. "After extracting the plasticizer, dry the perforated crotch Heat treatment may be performed at a temperature of 40 to 120 ° C for a time of 0.25 to 360 minutes, or after treatment with a volatile solvent such as acetone, and air drying. After the extraction of the efficacious agent, the film is further stretched (second stretching).
  • Stretching can be performed by the same type of stretching method as in the first stretching, and may be either uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous stretching or sequential stretching may be used.
  • the stretching temperature of the second stretching is 0 to 120 ° C, preferably 5 to 80 ° C, and more preferably 10 to 50 ° C. If the stretching temperature of the second stretching is lower than 0 ° C., breakage occurs during stretching. 1 If the temperature exceeds 20 ° C, stretching tends to be uneven, and in the case of a laminate / film, the pores of the low-melting polyolefin resin are partially blocked and the number of through-holes is reduced, resulting in a higher impedance. .
  • the magnification of the second stretching is 1.2 to 2.5 times, preferably 1.5 to 2.0 times. If the second factor is less than 1.2 times, the apparent impedance cannot be lowered, and if it is more than 2.5 times, the film tends to tear or break.
  • the form of the porous membrane of the present invention may be a porous membrane made of poly (4-methylpentene-11) resin alone or a layer of a porous membrane made of poly (4-methylpentene-1) resin.
  • porous membrane layer (B) made of a polyolefin resin different from the resin constituting the layer (A) and having a melting point of 100 to 140 ° C. I can do it. If a poly (4-methylpentene-11) resin porous membrane is used as the separation for the pond, a laminated porous membrane is preferable from the viewpoint of easy down-sizing.
  • the porous membrane is made of poly (4-methylpentene)
  • the thickness of the poly (4-methylpentene 1) porous membrane (layer A) is preferably 3 to 20 ⁇ m, from the viewpoint of ease of forming the stack structure, not being excessively thick as the stack structure, or reducing the possibility of occurrence of short circuit, and 5 to 15 / m.
  • the polyolefin resin constituting the layer (B) includes polyethylene, ethylene-propylene copolymer, and poly (butene-11). Polyethylene and poly (butene-1) are preferred, and poly (butene-1) is more preferred.
  • the thickness of the porous membrane layer is preferably 3 / m or more, more preferably 5 to 15 m.
  • the porous membrane of the present invention preferably has a thickness of preferably 10 to 50 m, more preferably 20 to 35 m, regardless of whether it is a single-layer or laminated porous membrane.
  • the thickness of the porous membrane exceeds about 50 m, for example, when the porous membrane is used for the separation of the pond, the number of layers of the 3 ⁇ 4 layer between the two electrodes and the separation of the pond per one pond decreases. Since the battery capacity is reduced, the battery capacity becomes low, which is not preferable.
  • the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. Not something.
  • the measurements in the projecting examples and the comparative examples depended on the following methods.
  • the sample (5 cm x 5 cm) was immersed in mineral oil (manufactured by A1drich) for 6 hours, and the weight (W2) after sufficiently wiping the surface mineral oil was measured. The weight (W2) of the sample before immersion was measured.
  • a test piece of a porous film or a laminated porous film with a width of 101 ⁇ 11 and a length of 100 mm is inserted into a chuck.
  • the tensile strength and elongation were measured under the conditions of a distance of 50 mm and a tension speed of 20 mm / min, and the Young's modulus was calculated by the calculation method described in d of JISK7127.
  • Lithium perchlorate was dissolved at a concentration of 1 mol Z liter in a mixed solvent of 1: 1 electrolyte (the ratio of propylene carbonate and 1,2-dimethylxetane) in the obtained stack of porous membranes. ), And fixed with two 5 cm 2 platinum electrodes to obtain a measurement cell. Using a LCR meter (Yokogawa Hewlett Packard, Model 4274), apply an alternating current of 100 KHz and 0.1 V between the electrodes of the measuring cell and apply an AC electric resistance ( ⁇ ⁇ cm 2 ) was measured. The AC electrical resistance at this time was defined as the apparent impedance of the porous membrane.
  • 1 electrolyte the ratio of propylene carbonate and 1,2-dimethylxetane
  • the porous membrane is impregnated with 1,2-dimethylxetane beforehand, and the 1,2-dimethoxyethane in the porous membrane is impregnated with the non-aqueous solvent-based electrolyte. Replace with measurement It is one thing to do.
  • Finished roll A test was conducted in which the split pin (C) was pulled out from D), that is, a bin pull-out test, where the split pin (C) came off without breaking the shape of the wound material (D) when the pin was pulled out.
  • the porous film at the center of the wound (D) is pulled out by the split pin (C) and comes off, and the wound (D) is shaped like a mushroom, or the wound (D) is split from the split pin (C).
  • the sample that did not come off was designated as X.
  • the evaluation was performed using five rolls (D) made with a porous membrane obtained under the manufacturing conditions. There, the case three or more times was ⁇ and ⁇ , 3i9: the case more than j was X was X.
  • Poly (4-methylpentene-1) (manufactured by Ino Petrochemical Industry Co., Ltd., trade name: T PX, melting point 235 ° C)
  • T PX melting point 235 ° C
  • the obtained pellets were melt-molded into a film at a temperature of 240 "C using an extruder with a T-die of 270 mm width and cooled on a chill roll at 140 ° C.
  • the raw film was placed between the metal rolls at a temperature of 20 ° (:) at the draw ratio shown in Table 1 (shown in the first draw ratio column).
  • Example 1 The same operation as in Example 1 was performed except that the first stretching temperature was 70 ° C. The results are shown in Table 1.
  • Poly (butene-1) Mitsubishi Chemical Co., Ltd., trade name: Buron, melting point 123 ° C
  • Layer B 100 parts by mass, 100 parts by mass of dioctyl phthalate of 100 quality
  • the mixture was melt-mixed at 230 ° C using a twin-screw extruder and pelletized.
  • poly (4-methylpentene) manufactured by Mitsui Petrochemical Industry Co., Ltd., trade name: TPX, melting point: 235 ° C
  • a part of dioctyl furoate was similarly melt-mixed at 260 ° C and pelletized.
  • the obtained pellets were melt-molded into a film at a temperature of 240 ° C using a three-layer extruder equipped with a 370 mm wide three-layer co-extrusion T die at a temperature of 240 ° C with a layered structure of A layer, ZB layer and ZA layer. It was cooled on a chill roll at ° C to obtain a laminated film.
  • the laminated film is stretched in the MD direction (first stretching) at a stretching ratio (shown in the column of the first stretching ratio) shown in Table 2 at a temperature of 20 between the rolls, and then heated on a metal roll at a temperature of 70%. Heat treatment was performed for 1 minute at ° C.
  • the stretched debris film was continuously extracted in isopropyl alcohol at 30 ° C for 5 minutes while applying ultrasonic waves. After drying, the film is stretched in the same direction as the first stretching (2 stretching) at a stretching ratio (shown in the column of 2nd stretching ratio) shown in 3 ⁇ 42 at a temperature of 25 between the rolls. Heat treatment was performed at 70 ° C for 1 minute to obtain a laminated porous material.
  • the thickness, porosity, Young's modulus, and apparent impedance of the obtained laminated porous film were measured, and a pin loss test was performed. The results are shown in Table 2.
  • poly (4-methylpentene-1) manufactured by ⁇ don Petrochemical Industry Co., Ltd., trade name: TPX, melting point 235 ° C
  • Dioctyl phthalate was similarly melt-mixed at 260 ° C and pelletized.
  • the obtained pellets were melt-molded into a film with a laminated structure of A layer, ZB layer and A layer at a temperature of 240 ° C using three extruders equipped with a 370 mm wide three-layer co-extrusion T die. and it cooled on the chill roll 140 D C, to obtain a laminated membrane-like bodies.
  • the debris film was heated at 18 ° C in the TD direction (3 ⁇ 4 in the length direction of the raw material) at a draw ratio of 2.5 times and a draw ratio of 1.5 in the MD direction. After the axial stretching (first stretching), a heat treatment was performed on a metal roll at a temperature of 70 ° C. for 1 minute.
  • the stretched dust film was continuously subjected to extraction treatment in isopropyl alcohol at 30 ° C. for 5 minutes while applying ultrasonic waves. After drying, the film is stretched in the MD direction (second stretching) at a temperature of 25 ° C and a stretching ratio of 1.3 between rolls, and then heat-treated at 70 ° C for 2 minutes on a metal roll to form a laminated porous membrane. Obtained.
  • the thickness of the obtained porous porous membrane was 33 m, the Young's modulus was 61 kg / mm, the impedance was 11 ⁇ ⁇ cm 2 , and the porosity was 33%. Table 2 shows the results.
  • a porous membrane made of poly (4-methylpentene-11) resin and a product of a layer made of poly (4-methylpentene-11) resin and a porous membrane made of another polyolefin resin have a low impedance and a relatively high Young's strength. ⁇ Rate. Pond separators consisting of these porous membranes are designed to prevent pin dropout during production. Producibility 1: Productivity required for battery separators, breakdown function, break-down It is equipped with a prevention function, which contributes to improving the safety of the pond. In addition, it is possible to increase the energy density of the pond.

Abstract

A porous membrane comprising a poly(4-methylpentene-1) resin and having an apparent impedance of not more than 25 Φ.cm2 and a Young's modulus of not less than 40 kg/mm2; a laminated porous membrane comprising a laminate of at least two layers of a porous membrane layer (A) comprising a poly(4-methylpentene-1) resin and a porous membrane layer (B) comprising a polyolefin resin different from the resin constituting the layer (A) and having a melting point of 100 to 400 °C, wherein the laminate has an apparent impedance of not more than 25 Φ.cm2 and a Young's modulus of not less than 40 kg/mm2; a battery separator comprising the above porous membrane; and a process for preparing the same.

Description

明細書 ポリ ( 4ーメチルペンテン一 1 ) 樹脂からなる多孔膜及び電池用セパレ一夕 技術の分野  Field of the Invention Field of technology for porous membranes made of poly (4-methylpentene-1) resin and separation for batteries
本発明は、 ポリ (4ーメチルペンテン一 1 ) 樹脂からなる多孔膜に関する。 ま た、 本発明はその多孔膜からなる ¾池用セパレ一タ一およびその多孔膜の製造方 法に関する。 より詳しくはポリ (4ーメチルペンテン一 1 ) 樹脂からなる特定の 掛けインピーダンスと特定のヤング率を有する多孔膜、 およびポリ (4ーメチ ルペンテン一 1 ) 樹脂からなる多孔膜と他のポリオレフィン樹脂からなる特定の 融点範囲を有する多孔膜の層との少なくとも 2屑の多孔胶と、 その多孔膜からな る ¾池用セパレ一タおよびその多孔膜の製造方法に 1 する。 背景技術  The present invention relates to a porous membrane made of a poly (4-methylpentene-11) resin. The present invention also relates to a separator for a pond comprising the porous membrane and a method for producing the porous membrane. More specifically, a porous film made of poly (4-methylpentene-11) resin having a specific multiplication impedance and a specific Young's modulus, and a porous film made of poly (4-methylpentene-11) resin and a specific film made of another polyolefin resin The present invention relates to a porous membrane having at least two particles with a porous membrane layer having a melting point range, a separator for a battery comprising the porous membrane, and a method for producing the porous membrane. Background art
従来、 様々な多孔膜が開発されており、 これらの用途としては電池用セパレ一 夕、 電解コンデンサー用隔壁、 各種フィルター、 透湿防水膜、 限外濾過膜、 精密 濾過膜等多種におよんでいる。 各用途に従い要求される性能も種々異なる。 例え ば電池用セパレータは、 少なくとも一組の電極を対向させ、 電極間に電解液を介 在させてなる構造を有するが、 電池の電気容量を大きくする観点及び電池の大き さを小さくする観点から電極の間隔が狭いことが望ましい。 そして、 ¾極の間隔 が狭いときには電極と電極との接触防 i や、 電解液の吸収保持のために^極の間 に多孔膜からなるセパレ一夕を介在させることが通常行われている。  Conventionally, various porous membranes have been developed, and these applications cover a wide variety of applications, such as separation for batteries, partition walls for electrolytic capacitors, various filters, moisture-permeable waterproof membranes, ultrafiltration membranes, and microfiltration membranes. . The required performance varies depending on each application. For example, a battery separator has a structure in which at least one pair of electrodes are opposed to each other and an electrolytic solution is interposed between the electrodes.However, from the viewpoint of increasing the electric capacity of the battery and reducing the size of the battery. It is desirable that the distance between the electrodes is small. When the distance between the positive electrodes is small, it is common practice to interpose a separator made of a porous film between the positive electrodes to prevent contact between the electrodes and to retain the electrolyte.
特にリチウム電池やリチウムイオン電池においては、 充放電時における樹枝状 のリチウム金属結晶 (デンドライ ト) の形成による正負電極の接触、 セパレー夕 一の収縮による正負電極の接触およびセノ、°レ一夕一の突刺強度不足で生じる 1極 貧通による fr'ii極の接触等に起 l¾lする^池の過熱に対し、 安全性を^すること が必要とされている。 この安全性を付与するものとしては、 特開; 2— 7 7 1 0 8 公報に記載の高融点ポリオレフィン系樹脂多孔膜層と低融点ポリオレフィン 系樹脂多孔膜 11との積層体からなるセパレーターが举げられる。 In particular, in lithium batteries and lithium ion batteries, contact between the positive and negative electrodes due to the formation of dendritic lithium metal crystals (dendrites) during charge and discharge, contact between the positive and negative electrodes due to contraction of the separator, and one-time 1 pole caused by insufficient piercing strength It is necessary to ensure safety against overheating of the pond, which is caused by contact of the fr'ii pole due to poverty. As a device that imparts this safety, a separator composed of a laminate of a high-melting-point polyolefin-based resin porous membrane layer and a low-melting-point polyolefin-based resin porous membrane 11 described in JP-A-2-77108 is used. I can do it.
この発明によれば、 短絡が発生して電池内に過大な電流が流れても、 その際に 発生する熱により低融点ポリオレフィン系樹脂多孔膜屑を構成するポリオレフィ ン系樹脂が溶融し閉塞封止され、 電流の流れを止めて過熱を抑制するという効果 (シャツ トダウン) 、 および溶融閉塞された低融点ポリオレフィン系樹脂多孔膜 ^を保持するために高融点ポリオレフィン系樹脂多孔膜屑を積層させ短絡の 度 発生 (ブレイクダウン) を防止する効果があると解される。  According to the present invention, even if a short circuit occurs and an excessive current flows in the battery, the heat generated at that time melts the polyolefin-based resin constituting the low-melting-point polyolefin-based resin porous membrane waste and seals the plug. The effect is that the flow of current is stopped to suppress overheating (short-down), and the high-melting-point polyolefin-based resin porous membrane waste is laminated to retain the melt-clogged low-melting-point polyolefin-based resin porous membrane ^. It is understood that this has the effect of preventing the occurrence (breakdown).
また、 セパレ一ターは、 電池を高エネルギー密度とする観点から薄くすること が必要であるが、 ^極と電極との接触を防止する観点からはある程^ みを持た せる必要がある。 このため非水溶媒型 ¾池川セパレ一夕一は兄掛(ナのインビーダ ンスが低いことが ^まれる。  Further, the separator needs to be thinner from the viewpoint of increasing the energy density of the battery, but needs to have a certain degree from the viewpoint of preventing contact between the electrode and the electrode. For this reason, the non-aqueous solvent type ¾Ikegawa Separe Ichiichi has a low in-between.
非水溶媒型電池は、 電池の電気容量を大きくすると云う観点から電極問の狭 t、 電気化学的装置の代表的なものと言える。 電極間隔の狭い電気化学的装置、 特に リチゥム電池やリチウムィォン電池の電 発生部位は、 電池の電気容量を高める ために正電極材、 セパレ一ターおよび負電極材を重ね、 必要回数巻き込んだ形態 をとつている。 非水溶媒型電池を製造する際の電極とセパレ一夕との巻き込み操 作は、 正電極材、 セパレー夕一および負電極材を ¾ね、 ピンに必要回数巻き込ん だ後、 ピンを引き抜き、 巻き込み体を得ている。 巻き込みは、 セパレ一タ一を電 極よりも長くとり、 巻き込みの始めはセパレ一夕一のみを巻き込む。 このような 製造方法では、 正電極材、 セパレーターおよび^電 材を¾ねて巻き込むことか ら電極間、 ひいては電極とセパレ一ター間は相互に押圧されており、 またセパレ —ターは引張力印加下にある。 この際セパレ一夕一の機械的強度、 特にヤング率 が不足している場合、 正^極材、 セパレーターおよび負電極材の巻き込みが終了 して、 ピンを抜く際にピンが抜けない、 或いは極端な場合にはセパレ一夕に ^裂 が発生する等の不 A合や、 セパレ一ターが電極間からずれて正負両^極をショ一 卜させる等の不^を生じる。 本発明の目的は、 上記のような電池製造時のピン抜け不良を防止し、 つ、 電 池の高エネルギー密度化の機能を持った多孔膜、 加えてセパレ一ターとしてシャ ッ 卜ダウン機能、 ブレイクダウンの防止機能を有する多子し膜およびそれらからな る電池用セパレータ、 並びに多孔膜の製造方法を提供することにある。 Non-aqueous solvent type batteries can be said to be representative of electrochemical devices because of their narrow electrodes, from the viewpoint of increasing the battery capacity. Electrochemical devices with a narrow electrode spacing, especially lithium-ion and lithium-ion batteries, generate electricity by increasing the capacity of the battery by stacking the positive electrode material, separator, and negative electrode material and rolling them in as many times as necessary. I am saying. When manufacturing a non-aqueous solvent type battery, the winding operation between the electrode and the separator is as follows: the positive electrode material, the separator electrode and the negative electrode material are rolled up and wound around the pin as many times as necessary, then the pin is pulled out and wound Gaining body. For the entrainment, the separator is longer than the electrode, and only the separator is involved at the beginning of the entrainment. In such a manufacturing method, since the positive electrode material, the separator, and the electrode material are wrapped around the electrodes, the electrodes are pressed against each other, that is, the electrode and the separator are mutually pressed, and the separator applies a tensile force. Below. At this time, the mechanical strength of Separee overnight, especially Young's modulus If the material is insufficient, the winding of the positive electrode material, separator and negative electrode material will end, and the pin will not come out when the pin is pulled out, or in extreme cases, a crack will occur over a short period of time. And the separator is displaced from the electrode and shorts both the positive and negative electrodes. An object of the present invention is to prevent the above-described pin disconnection failure during battery production, and furthermore, a porous membrane having a function of increasing the energy density of the battery, and a shutdown function as a separator. An object of the present invention is to provide a multi-layer membrane having a function of preventing breakdown, a battery separator comprising the same, and a method for producing a porous membrane.
発明の開示 Disclosure of the invention
本発明-者らは、 上記のような問題点を改善するべく鋭意検討した結果、 ポリ ( 4 ーメチルペンテン一 1 ) 樹脂からなり見掛けィンピ一ダンスが 2 5 Ω · c m 2以下、 ヤング率 4 0 k g /m m 2以上を有する多孔膜がかかる問题点を解決し うることを見い出し、 本発明を完成するに至った。 すなわち本発明の第 1は、 ポリ (4ーメチルペンテン一 1 ) 樹脂からなり見掛 けインピーダンスが 2 5 Ω · c 以下、 ヤング率 4 0 k g /m m 2以上を有する多 孔膜を提供する。 また本発明の第 2はポリ (4ーメチルペンテン一 1 ) 樹脂から なる多孔膜の層 (A ) と、 層 (A ) を構成する樹脂とは異なるポリオレフイ ン樹 脂からなり 1 0 0〜 1 4 0 °Cの融点を有する多孔膜の屑 ( B ) との少なくとも 2 層の積層体であって、 該積層体の見掛けインピーダンスが 2 5 Ω · c m 2以下、 ャ ング率 4 0 k g /m m 2以上である多孔膜を提供する。 さらに、 本発明の第 3は ¾ 1、 第 2の発明の多孔膜からなる電池用セパレ一夕を提供し、 第 4は第 1および 第 2の発明の多孔膜の製造方法を提供する。 発明を実施するための最良の形態 The present inventors have conducted intensive studies to improve the above problems, and as a result, have an apparent impedance of 25 Ω · cm 2 or less and a Young's modulus of 40 kg made of poly (4-methylpentene-11) resin. The inventors have found that a porous membrane having a thickness of / mm 2 or more can solve such a problem, and have completed the present invention. That is, the first aspect of the present invention provides a polyporous membrane made of poly (4-methylpentene-11) resin having an apparent impedance of 25 Ω · c or less and a Young's modulus of 40 kg / mm 2 or more. A second aspect of the present invention is a layer (A) of a porous membrane made of poly (4-methylpentene-11) resin, and a polyolefin resin different from the resin constituting the layer (A). A laminate of at least two layers with porous membrane debris (B) having a melting point of ° C, wherein the laminate has an apparent impedance of 25 Ω · cm 2 or less and a Young's modulus of 40 kg / mm 2 or more. A porous membrane is provided. Furthermore, a third aspect of the present invention provides a battery separator comprising the porous membranes of the first and second aspects, and a fourth aspect provides a method for producing the porous membranes of the first and second aspects. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳しく説明する。 本発明の第 1はポリ (4ーメチルペンテン一 1 ) 樹脂からなり見掛けィンピ一ダンスが 25 Ω · cm 2以下、 ャング率 40 k g /mm2以 を冇する多孔膜に関するものである。 本発明に fflいるポリ (4ーメチルペンテン一 1 ) 樹脂としては、 4ーメチルぺ ンテン一 1のホモポリマ一または炭素数 2〜 1 2のひ一才レフィンを共 JE合成分 として用いた共重合休を含んでいる。 共 ¾合成分としては ti-休的にエチレン、 プ ロピレン、 ブテンー 1、 へキセン一 1、 3—メチルブテン一 1、 ォクテン一 1、 スチレン、 ビニルシクロへキセン等が挙げられる。 これらの共 ¾合成分はポリマ 一中 40質量%以下、 好ましくは 20 量%以下であることが望ましい。 Hereinafter, the present invention will be described in detail. The first aspect of the present invention relates to a porous membrane made of a poly (4-methylpentene-11) resin having an apparent impedance of 25 Ω · cm 2 or less and a Young's modulus of 40 kg / mm 2 or less. The poly (4-methylpentene-11) resin used in the present invention includes a copolymer obtained by using a homopolymer of 4-methylpentene-11 or a 1-year-old olefin having 2 to 12 carbon atoms as a co-JE synthetic component. In. Examples of co-synthetic components include ti-butyl ethylene, propylene, butene-1, hexene-11, 3-methylbutene-11, octene-11, styrene, vinylcyclohexene, and the like. It is desirable that the content of these copolymers be 40% by mass or less, preferably 20% by mass or less in the polymer.
また、 多孔膜自体が好ましくは 200°C以上、 史には 230°C以上の融点を有す ることが温度の上昇に対して膜の形状を安定に維持する意味で Sましい。 本発明の多孔膜の有する物性として、 兌掛けインピーダンスは 25 Ω · c m2以 ド、 好ましくは 20 Ω · c m 2以下である。 見掛けィンピ一ダンスが 25 Ω · c m2を超えると電池に使用する際、 充分な充放電特性が得難くなるので好ましく ない。 本発明で兌掛けインピーダンスとは、 室温 (23°C) において多孔膜に非 水溶媒系電解液 (プロピレンカーボネートと 1 , 2—ジメ トキシェタンの体積比 1 : 1の混合溶媒に過塩素酸リチウムを濃度 1モル/リッ トルで溶解したもの) を含浸させた後、 多孔膜の両 [friに電極 (P t電極) を接触させた状態で交流 (1 00 KH z, 0. I V) を印加し測定された抵抗 (Ω . cm2) であり、 非水溶媒 系電解液の抵抗成分を含んだ形で測定されたものである。 本発明におけるヤング率とは、 J I S K7127に記載の計算方法で求めた 'ji張弾性率であり、 40 k gz mm 2以上が必要であり、 好ましくは 50 k g m m2以上である。 多孔膜のヤング率が 40 k g /mm2より小さいと¾池用セパレ 一夕一として使用した場合、 ^池製造時の両電極とセパレ一夕との巻き込み操作 でピン抜け不良を起こし易く、 史に高速で巻き取る際には巻きじわが入りやすく /|-:産性が著しく低ドするので好ましくない。 本発明の多孔脱の空孔率は、 25〜 60 %が好ましく、 より好ましくは 30〜 45%である。 60%より空孔率が大きいと機械的強度が低下し、 25%より/ Jヽ さい場合は見掛けインピーダンスが大きくなり' 池セパレ一ターとして使用した 場合に ' 池容 Mの低下を招くので好ましくない。 尚、 本発明での空孔率とは、 例 えばポリ (4—メチルペンテン一 1 ) 樹脂からなる単屑多孔膜の ¾合は単 'の空 孔率を意味し、 またはポリ ( 4ーメチルペンテン― 1 ) 樹脂からなる層を^む積 多孔膜の場合は積層多孔膜全屑の平均空孔率を意味する。 本発明の第 2はポリ ( 4ーメチルペンテン一 1 )樹脂からなる多孔膜の ' ( A ) と、 屑 (A) を構成する樹脂とは異なるポリオレフィン樹脂からなり 100〜1 40°Cの融点を有する多孔膜の屑 (B) との少なくとも 2層の積層体であって、 該積屑体の兌掛けインピーダンスが 25 Ω · cm 2以下、 ヤング率 40 k g/m m2以上である多孔膜に関する。 ポリ (4ーメチルペンテン一 1 ) 樹脂は第 1の発明で述べた樹脂と同様なもの が使用できる。 ポリ (4ーメチルペンテン一 1 ) 樹脂からなる多孔膜の層 (A) と、 層 (A) を構成する樹脂とは異なるポリオレフィン樹脂からなり 1 00~ 1 40°Cの融点を有する多孔膜の層 (B) との少なくとも 2層の積層体であること により、 以下のような機能を生ずる。 即ち、 この積層多孔膜が熱履歴を受け層 (B) の融点以上の温度に達した時には/ (B) の微細孔は溶融して閉塞するが 層 (A) は層 (B) より融点が卨いので積屑多孔膜としての形態は保持されてい る。 本発明で層 (B) の樹脂として使/ ijし得るポリオレフィン樹脂としては、 融 点が 100〜 140 °C、 好ましくは 1 10〜 1 35 °Cのポリエチレン (ェチレン を主休とする α—才レフインとの ¾ 合休も含む)、 エチレン一プロピレン共重 合体、 およびポリ (ブテン— 1 ) を例示することができる。 これらのポリオレフ ィン樹脂のうちポリエチレン、 ポリブテン一 1が好ましい。 ここで 「融点」 とは 小差走査熱 il計 (例えば、 DSC 30、 Mettler社製) を用い試料 10018を¾素 流下で 温速度 10 °CZ分にて¾温より昇温し測定したときの融解に作う吸熱 ピーク温度を意味する。 ^が混合樹脂からなってし、る場合は複数の吸熱ピークが 現れることがあるカ、 それらのピークの屮で最も大きいピーク面積をもつピーク の温度をその^の融点とする。 本発明の第 3は第 1、 第 2の多孔膜からなる電池用セパレ一夕に関するもので ある。 この発明の特徴は兌掛けインピーダンス (25Ω · cm2以下) が低く、 ャ ング率が 40 k g /mm2以上であることにより、 電池用セパレー夕として要求さ れる電気的性質 (低いインピーダンス) を満たし、 且つ、 製造時のピン抜け不良 の防 itをャング率を特定することにより達成可 ¾としたものである。 また、 本発明の第 4は前 ¾に第 1の発明および第 2の発明による多孔膜、 積層 多孔膜の製造方法に関するものである。 以下にその製造方法について述べる。 ポリ (4—メチルペンテン— 1 ) 樹脂に可塑剤を配合して ¾合組成物を得る。 混合方法は可塑剤が均一に混合されるものであれば特に制限はない。 例えば、 リ ボンプレンダ一、 ヘンシヱルミキサー、 ΙίΜ定式 V型ブレンダ一、 タンブラ一、 ボ 一ルミル等による混合後押出機で溶融混練する方法、 または押出機に両者を |Μ]時 に投入し直接溶融混練する方法などがある。 また、 積層多孔膜の場合はポリ (4 ーメチルペンテン一 1 ) 樹脂と、 これとは異なるポリオレフイン樹脂からなり 1 0 0〜 1 4 0 °Cの融点を有する樹脂 (例えばポリブテン - 1 ) の両樹脂の各々に 可塑剤を配合した別々の混合組成物を用 t、ればよし、。 樹脂と可塑剂との配合割合 は樹脂 1 0 0質量部に対して可塑剤 5 0〜 1 5 0質量部であり、 好ましくは 6 0 〜 1 2 0質¾部、 更に好ましくは 7 0〜 1 0 0 ¾量部である。 本発明で使用する可塑剤としては、 ポリ ( 4ーメチルペンテン— 1 ) 、 ポリブ テン一 1などのポリオレフイン樹脂を可塑化するものであり、 例えば、 フタル酸、 フタル酸ジメチル、 フ夕ル酸ジェチル、 フタル酸ジブチル、 フタル酸ジイソペン チル、 フタル酸ジォクチル、 フタル酸ジドデシル等のフタル酸ジエステル、 炭素 数 2〜 4の脂肪族ジアルコールと炭素数 2〜 9の脂肪族ジカルボン酸 (炭素数 2 〜 4の脂肪族ジアルコールとしては、 エチレングリコール、 プロピレングリコー ル、 1 , 4一ブタンジオール、 1 , 2—ブタンジオール等を挙げることができ、 炭素数 2〜 9の脂肪族ジカルボン酸としては、 シユウ酸、 マロン酸、 コハク酸、 グルタル酸、 アジピン酸、 ァゼライン酸等) との縮合系高分子、 ラク トン類 (プ 口ピオラク トン、 ブチロラクトン、 ( —パ'レロラク トン、 £一力プロラクトン等) の開環重合系 分子等の脂肪族系ポリエステル、 リン酸エステル、 グリコールェ ステル、 エポキシ化合物が例示される。 この中でもフタル酸ジエステルが好まし い。 さらに、 前記可塑剤の 2種類以上の混合物も使用することができる。 この混合組成物は必要によりペレツ 卜化したのち、 押出温度 1 8 0〜 3 4 0 °C、 好ましくは 2 0 0〜 2 8 0 °Cで溶融押出し膜状物 (フイルム) に成形すること力 できる。 積層膜状物の場合は溶融共押出法によってもよいし、 ダイ外で褚層して もよい。 この時点でのフィルムの厚さは、 後の延伸比にもよるが 2 0 0〜 2 0〃 mが好ましく、 より好ましくは、 1 5 0〜3 0 mである。 次に、 得られた膜状物を延伸する (第 1延伸) 。 延伸は、 テン夕一法、 ロール 法、 インフレ一ション汰 -、 )T:.延法等で行う。 延伸は 1軸延仲または 2軸延伸のい ずれであってもよい。 2軸延伸の場合には、 Μ時延伸または逐次延伸のいずれで もよい。 第 1延伸の温度は、 一 1 0〜5 0 °C、 好ましくは 0〜4 0 °C、 さらに好 ましくは 5〜3 0 °Cである。 第 1延伸温度が一 1 0 °Cより低いと延伸時に破断が 発^し く、 5 0 °Cを超えると延伸が不均一となり い。 第 1延伸倍率は少なく とも 1方向に 1 . 5〜3 . 0倍、 好ましくは 2 . 0〜2 . 5倍である。 前記第 1 延伸温度の範两内で、 少なくとも 1方问に延伸倍率 1 . 5〜 3 . 0倍で延伸する ことにより、 ヤング率を高くすることができ、 また、 見掛けインピーダンスを低 くすることができる。 また、 第 1延伸の^率が 3 . 0倍を超えるとフィルムの裂 けが発 :し易くなる。 次に、 第 1延仲された膜状体または積磨膜状体から可塑剤を抽出する。 このた めの溶媒としては、 ポリ (4ーメチルペンテン— 1 ) もしくはポリ (ブテン一1 ) 等のポリオレフィ ン樹脂を溶解せず、 nj塑剂を溶解できるものであれば特に限定 されない。 例えば、 トリクロロメタン、 トリクロ口ェ夕ン等のハロアルカン、 ァ セトン、 メチルェチルケ卜ン等のケトン、 酢酸ェチル等の低級カルボン酸エステ ル、 メタノール、 イソプロピルアルコール等の低級アルコール、 トルエン、 キシ レン等の芳香族炭化水素などの溶媒を例小できる。 Further, it is preferable that the porous film itself has a melting point of preferably 200 ° C. or higher, and in the past, 230 ° C. or higher, in order to stably maintain the shape of the film with increasing temperature. As physical properties possessed by the porous membrane of the present invention,兌掛only impedance 25 Ω · cm 2 or more de, preferably 20 Ω · cm 2 or less. If the apparent impedance exceeds 25 Ω · cm 2 , it is not preferable because sufficient charge / discharge characteristics cannot be obtained when used in batteries. In the present invention, the convertible impedance means that at room temperature (23 ° C.), a nonaqueous solvent-based electrolytic solution (a mixture of propylene carbonate and 1,2-dimethoxetane in a 1: 1 volume ratio of lithium perchlorate) (At a concentration of 1 mol / liter), and then apply AC (100 KHz, 0.4 IV) while the electrodes (Pt electrodes) are in contact with both sides of the porous membrane. It is the measured resistance (Ω · cm 2 ), which is measured in a form that includes the resistance component of the non-aqueous solvent-based electrolyte. The Young's modulus in the present invention was determined by the calculation method described in JIS K7127. 'a ji Zhang modulus, requires 40 k gz mm 2 or more, preferably 50 kgmm 2 or more. If the Young's modulus of the porous film is used as the ¾ pond for separator Isseki first and 40 kg / mm 2 is less than, susceptible to failure omission pin rolling operation between both electrodes and the separator Isseki during ^ pond manufacturing, history When winding at high speed, wrinkles are likely to occur. / |-: Productivity is significantly reduced, which is not preferable. The porosity of the porous removal according to the present invention is preferably 25 to 60%, more preferably 30 to 45%. If the porosity is greater than 60%, the mechanical strength will decrease.If the porosity is less than 25% / J, the apparent impedance will increase, and when used as a pond separator, the pond volume M will decrease. Absent. The porosity in the present invention means, for example, the porosity of a single-piece porous membrane made of poly (4-methylpentene-11) resin, or the porosity of poly (4-methylpentene-1-ene). 1) In the case of a porous membrane containing layers made of resin, it means the average porosity of all the debris in the laminated porous membrane. The second aspect of the present invention is a porous membrane made of poly (4-methylpentene-11) resin (A) and a polyolefin resin different from the resin constituting the refuse (A) and having a melting point of 100 to 140 ° C. The present invention relates to a porous membrane having at least two layers with the porous membrane waste (B), wherein the stackable body has a convertible impedance of 25 Ω · cm 2 or less and a Young's modulus of 40 kg / mm 2 or more. As the poly (4-methylpentene-11) resin, the same resins as those described in the first invention can be used. Layer (A) of a porous membrane made of poly (4-methylpentene-1) resin and layer of a porous membrane made of a polyolefin resin different from the resin constituting the layer (A) and having a melting point of 100 to 140 ° C ( By having at least two layers with B), the following functions are provided. That is, this laminated porous membrane receives a thermal history When the temperature reaches or exceeds the melting point of (B), the micropores of (B) are melted and closed, but the layer (A) has a higher melting point than the layer (B), so it retains its shape as a porous stack membrane. It has been done. Examples of the polyolefin resin that can be used as the resin of the layer (B) in the present invention include polyethylene having a melting point of 100 to 140 ° C., preferably 110 to 135 ° C. Examples thereof include a copolymer with refine), an ethylene-propylene copolymer, and poly (butene-1). Of these polyolefin resins, polyethylene and polybutene-11 are preferred. Here, the “melting point” refers to a value obtained by measuring a sample 10018 at a temperature of 10 ° CZ under a nitrogen flow at a temperature rate of 10 ° CZ using a small difference scanning calorimeter (eg, DSC 30, manufactured by Mettler). Endothermic peak temperature created by melting. If ^ is composed of a mixed resin, multiple endothermic peaks may appear, and the temperature of the peak with the largest peak area of the peaks is the melting point of ^. A third aspect of the present invention relates to a battery separator composed of the first and second porous films. The feature of the present invention is that it has a low convertible impedance (25 Ω · cm 2 or less) and a Young's modulus of 40 kg / mm 2 or more, thereby satisfying the electrical properties (low impedance) required for battery separators. In addition, it is possible to prevent the occurrence of defective pins during manufacturing by specifying the Young's modulus. A fourth aspect of the present invention relates to a method for producing a porous membrane and a laminated porous membrane according to the first and second aspects of the present invention. The manufacturing method will be described below. A plasticizer is blended with poly (4-methylpentene-1) resin to obtain a composite composition. The mixing method is not particularly limited as long as the plasticizer is uniformly mixed. For example, melt-kneading with an extruder after mixing with a ribbon blender, hensile mixer, fixed V-type blender, tumbler, ball mill, etc. And directly melt-kneaded. In the case of a laminated porous membrane, a poly (4-methylpentene-1) resin and a polyolefin resin having a melting point of 100 to 140 ° C (for example, polybutene-1) are used. Use separate mixed compositions, each containing a plasticizer. The mixing ratio of the resin and the plasticizer is 50 to 150 parts by mass of the plasticizer to 100 parts by mass of the resin, preferably 60 to 120 parts by mass, and more preferably 70 to 1 part by mass. 0 0 It is a mass part. The plasticizer used in the present invention plasticizes polyolefin resins such as poly (4-methylpentene-1) and polybutene-11, and includes, for example, phthalic acid, dimethyl phthalate, getyl phthalate, and phthalate. Diesters such as dibutyl acid, diisopentyl phthalate, dioctyl phthalate, and didodecyl phthalate; aliphatic dialcohols having 2 to 4 carbon atoms and aliphatic dicarboxylic acids having 2 to 9 carbon atoms (fats having 2 to 4 carbon atoms) Examples of the aliphatic dialcohols include ethylene glycol, propylene glycol, 1,4-butanediol, and 1,2-butanediol. Examples of the aliphatic dicarboxylic acids having 2 to 9 carbon atoms include oxalic acid and malonic acid. Condensed polymers with acids, succinic acid, glutaric acid, adipic acid, azelaic acid, etc., lactones Examples include aliphatic polyesters such as ring-opening polymer molecules of ton, butyrolactone, (—pa'relolactone, £ -prolactone, etc.), phosphate esters, glycolesters, and epoxy compounds. A diester is preferred, and a mixture of two or more of the above plasticizers can also be used.This mixture composition is optionally pelletized and then extruded at a temperature of 180 to 34 ° C., preferably. Can be formed into a melt-extruded film (film) at 200 to 280 ° C. In the case of a laminated film, it may be formed by a melt co-extrusion method or may be formed outside the die. The thickness of the film at this point depends on the subsequent stretching ratio, but is preferably 200 to 20 2. m is preferable, and more preferably 150 to 30 m. Next, the obtained film is stretched (first stretching). Stretching, Teng evening one method, roll method, inflation one Deployment汰-,) T:. Conducted in casting method or the like. Stretching may be either uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either temporary stretching or sequential stretching may be used. The temperature for the first stretching is from 110 to 50 ° C, preferably from 0 to 40 ° C, and more preferably from 5 to 30 ° C. If the first stretching temperature is lower than 110 ° C, breakage will occur during stretching, and if it exceeds 50 ° C, the stretching will not be uneven. The first draw ratio is at least 1.5 to 3.0 times, preferably 2.0 to 2.5 times in one direction. By stretching in at least one direction within the range of the first stretching temperature at a stretching ratio of 1.5 to 3.0, the Young's modulus can be increased and the apparent impedance can be reduced. Can be. On the other hand, if the ratio of the first stretching exceeds 3.0 times, the film is likely to be torn. Next, a plasticizer is extracted from the first spread film or the stacked film. The solvent for this purpose is not particularly limited as long as it does not dissolve polyolefin resin such as poly (4-methylpentene-1) or poly (butene-11) and can dissolve nj plastic. For example, haloalkanes such as trichloromethane and trichloromethane, ketones such as acetone and methylethyl ketone, lower carboxylic acid esters such as ethyl acetate, lower alcohols such as methanol and isopropyl alcohol, and aromatics such as toluene and xylene. Solvents such as aromatic hydrocarbons can be used.
溶媒による抽出方法は好ましくは温度 5〜 1 5 0 °C、 更に好ましくは 1 0〜 1 0 0 °C、 特に好ましくは 1 5〜5 0 °Cの抽出溶媒中に好ましくは 0 . 5〜3 6 0分、 更に好ましくは 3〜1 2 0分、 特に好ましくは 5〜6 0分放 Sする。 また、 適宜振動を加え抽出を加速することができる。 "了塑剤抽出後は多孔股の乾燥のた め温度 40〜 1 20 °C、 時間 0. 25〜 360分間の条件で熱処理をするか、 ま たはァセ卜ン等の揮発性溶剤で処理した後、 風乾してもよい。 可 ffi剤抽出後の膜状体を、 さらに延伸する (第 2延伸) 。 延伸は、 第 1延伸と 同様の種類の延伸法により行うことができ、 1軸延伸または 2軸延伸のいずれで あってもよい。 2軸延伸の場介には、 同時延伸または逐次延伸のいずれでもよい。 第 2延伸の延伸温度は 0〜 1 20°C、 好ましくは 5〜 80°C、 さらに好ましくは 1 0〜50°Cである。 第 2延伸の延伸温度が 0°Cより低いと延伸時に破断が発^ し い。 1 20°Cを超えると延伸が不均一になり易く、 積/ 膜状体の場合には低 融点のポリオレフィン樹 層の孔が部分的に閉塞し貫通孔が減少するので 掛け インピーダンスが ¾くなる。 第 2延伸の倍率は、 1. 2〜2. 5倍、 好ましくは 1. 5〜2. 0倍である。 第 2延仲倍率が 1. 2倍より小さいと見掛けインピーダンスを低くすることがで きず、 2. 5倍よりも大きいと膜状体 (フィルム) に裂けや破断が生じ易くなる。 本発明の多孔膜の形態としては、 ポリ (4ーメチルペンテン一 1 ) 樹脂からな る多孔膜単独あるいはポリ (4—メチルペンテン— 1 ) 樹脂からなる多孔膜の層The extraction method using a solvent is preferably performed at a temperature of 5 to 150 ° C, more preferably 10 to 100 ° C, particularly preferably 15 to 50 ° C, preferably 0.5 to 3 ° C. It is released for 60 minutes, more preferably for 3 to 120 minutes, particularly preferably for 5 to 60 minutes. In addition, the extraction can be accelerated by applying appropriate vibration. "After extracting the plasticizer, dry the perforated crotch Heat treatment may be performed at a temperature of 40 to 120 ° C for a time of 0.25 to 360 minutes, or after treatment with a volatile solvent such as acetone, and air drying. After the extraction of the efficacious agent, the film is further stretched (second stretching). Stretching can be performed by the same type of stretching method as in the first stretching, and may be either uniaxial stretching or biaxial stretching. In the case of biaxial stretching, either simultaneous stretching or sequential stretching may be used. The stretching temperature of the second stretching is 0 to 120 ° C, preferably 5 to 80 ° C, and more preferably 10 to 50 ° C. If the stretching temperature of the second stretching is lower than 0 ° C., breakage occurs during stretching. 1 If the temperature exceeds 20 ° C, stretching tends to be uneven, and in the case of a laminate / film, the pores of the low-melting polyolefin resin are partially blocked and the number of through-holes is reduced, resulting in a higher impedance. . The magnification of the second stretching is 1.2 to 2.5 times, preferably 1.5 to 2.0 times. If the second factor is less than 1.2 times, the apparent impedance cannot be lowered, and if it is more than 2.5 times, the film tends to tear or break. The form of the porous membrane of the present invention may be a porous membrane made of poly (4-methylpentene-11) resin alone or a layer of a porous membrane made of poly (4-methylpentene-1) resin.
(A) と、 層 (A) を構成する樹脂とは異なるポリオレフィン樹脂からなり 1 0 0〜140°Cの融点を有する多孔膜の層 (B) との少なくとも 2層の積屑多孔膜 が举げられる。 ^池用のセパレ一夕一としてポリ (4—メチルペンテン一 1 ) 樹 脂の多孔膜を用いる場合には、 シャツ トダウンをし易くする観点から積層多孔膜 であることが好ましい。 この積屑多孔膜としては、 ポリ (4ーメチルペンテン(A) and a porous membrane layer (B) made of a polyolefin resin different from the resin constituting the layer (A) and having a melting point of 100 to 140 ° C. I can do it. If a poly (4-methylpentene-11) resin porous membrane is used as the separation for the pond, a laminated porous membrane is preferable from the viewpoint of easy down-sizing. The porous membrane is made of poly (4-methylpentene)
1 ) 樹脂からなる多孔股 (Al i) と、 多孔膜の層 (B) との積屑物が好ましい。 ¾層多孔膜の層構成としては積^の数又は順序に制限はなく、 (A) 層 Z (B) 層の 2層構成、 (AM / (B)層/ (A) 磨、 (B) m/ (A) m, (B) の 3磨構成などが举げられる。 中でも、 (Afei) / (B) 層,./ (A) 層が安全性 の点で好ましい。 電池用セパレ一夕一としても 多孔膜を用いる場合、 ポリ (4—メチルペンテ ンー 1) 多孔膜 (A層) の厚さとしては、 積屑構造のつくり易さ、 積^構造体と して過度に厚くないこと、 あるいは短絡発生の可能性を低下させること等の観点 から、 3〜20〃mが好ましく、 5〜 1 5 /mであることがさらに好ましい。 また、 層 (B) を構成するポリオレフイン樹脂としては、 ポリエチレン、 ェチ レン一プロピレン共重合休、 およびポリ (ブテン一 1 ) を例示することができる。 これらの中でもポリエチレンおよびポリ (ブテン一 1 ) が好ましく、 ポリ (ブテ ンー 1) が更に好ましい。 ポリオレフイン系樹) 11多孔膜層の厚さは、 3 / m以上 が好ましく、 5~1 5 mであることがさらに好ましい。 1) It is preferable to use a stack of the resin-made porous crotch (Al i) and the porous membrane layer (B). There is no limitation on the number or order of the products in the layer structure of the ¾ layer porous membrane. (A) Layer Z (B) Two-layer structure, (AM / (B) layer / (A) polishing, (B) m / (A) m, (B) three polishing, etc. Among them, (Afei) / (B ) Layer, ./ (A) layer is preferable from the viewpoint of safety If a porous membrane is used as the battery separator, the thickness of the poly (4-methylpentene 1) porous membrane (layer A) The thickness is preferably 3 to 20〃m, from the viewpoint of ease of forming the stack structure, not being excessively thick as the stack structure, or reducing the possibility of occurrence of short circuit, and 5 to 15 / m. More preferably, the polyolefin resin constituting the layer (B) includes polyethylene, ethylene-propylene copolymer, and poly (butene-11). Polyethylene and poly (butene-1) are preferred, and poly (butene-1) is more preferred. The thickness of the porous membrane layer is preferably 3 / m or more, more preferably 5 to 15 m.
さらにシャツ 卜ダウン機能を損なわない範囲であれば、 前記ポリオレフィン樹 脂は他の樹脂 (例えばポリプロピレン) と混合して層を構成しても構わない。 本発明の多孔膜は単層、 積層多孔膜に拘わらず、 好ましくは 1 0〜 50 m、 更に好ましくは 20〜35 mの厚みをもつことが ¾ましい。 多孔膜の厚みが 5 0 mを超える程度になると、 例えば多孔膜を' 池用セパレ一夕に使用した場合、 ¾池 1個あたりの両電極とセパレ一夕との ¾層物の巻き込み数が減るために電池 容 の低ドが生じ好ましくない。 また、 厚みが 1 0 //mより小さいと膜としての 機械的強度が不足するので好ましくない。 以下、 ¾施例により本発明を具体的に説明するが、 本発明はこれらに限定され るものではない。 なお、 突施例、 比較例における測定は下記方法に依つた。 Furthermore, the polyolefin resin may be mixed with another resin (for example, polypropylene) to form a layer as long as the shirt-down function is not impaired. The porous membrane of the present invention preferably has a thickness of preferably 10 to 50 m, more preferably 20 to 35 m, regardless of whether it is a single-layer or laminated porous membrane. When the thickness of the porous membrane exceeds about 50 m, for example, when the porous membrane is used for the separation of the pond, the number of layers of the ¾ layer between the two electrodes and the separation of the pond per one pond decreases. Since the battery capacity is reduced, the battery capacity becomes low, which is not preferable. On the other hand, if the thickness is less than 10 // m, the mechanical strength of the film becomes insufficient, which is not preferable. Hereinafter, the present invention will be described specifically with reference to Examples, but the present invention is not limited thereto. Not something. The measurements in the projecting examples and the comparative examples depended on the following methods.
1. 空孔率  1. Porosity
試料 (5 cmx 5 cm) をミネラルオイル (A 1 d r i c h社製) に 6時間 漬し、 表面のミネラルオイルを十分に拭き取った後の重量 (W2) を測定し、 該 試料の浸漬前の重量 (W1 ) 及びミネラルオイルの密度 (p) より空孔体積 (V 1 ) を次式: V 1 = (W2-W1 ) Z p、 により求めた。 空孔率 (P) は、 見掛 け体嵇 (V2 :厚さ及び寸法により計算される値) と空孔体秸 (V I ) とから、 次式: P = (V Iノ V 2 ) X 100 (%) により計算した。  The sample (5 cm x 5 cm) was immersed in mineral oil (manufactured by A1drich) for 6 hours, and the weight (W2) after sufficiently wiping the surface mineral oil was measured. The weight (W2) of the sample before immersion was measured. The pore volume (V 1) was determined from the following equation: V 1 = (W2-W1) Z p from W1) and the density (p) of the mineral oil. The porosity (P) is calculated from the apparent body 嵇 (V2: a value calculated from the thickness and dimensions) and the porosity 秸 (VI) as follows: P = (VI V V 2) X 100 (%).
2. ヤング率 2. Young's modulus
引張強伸度測定機 ( (株) オリエンテック社製テンシロン RTM— 1 00型) を用いて、 幅 101^11 ズ長さ 1 00 mmの多孔膜もしくは積^多孔膜の試験片を、 チャック問距離 50 mm、 ¾ I張速度 20 mm/分の条件下で引張強伸度を測定し、 J I S K 71 27に,d載の計算方法でヤング率を求めた。  Using a tensile strength and elongation measuring instrument (Tensilon RTM-100 manufactured by Orientec Co., Ltd.), a test piece of a porous film or a laminated porous film with a width of 101 ^ 11 and a length of 100 mm is inserted into a chuck. The tensile strength and elongation were measured under the conditions of a distance of 50 mm and a tension speed of 20 mm / min, and the Young's modulus was calculated by the calculation method described in d of JISK7127.
3. 見掛けインピーダンス 3. Apparent impedance
得られた積屑多孔膜に電解液 (プロピレンカーボネー卜と 1, 2—ジメ 卜キシ ェタンの休 の比 1 : 1の混合溶媒に過塩素酸リチウムを濃度 1モル Zリ ッ トル で溶解したもの) を含' させた後、 5 cm2の白金電極 2枚で挟んで 定して測定 セルとした。 この測定セルを L CRメータ一 (Yo k o g awa Hew l e t t P a c k a r d社製、 4274型) を用いて測定セルの ¾極間に 100 KH z、 0. 1 Vの交流を印加して交流電気抵抗 (Ω · cm2) を測定した。 この時の 交流電気抵抗を多孔膜の見掛けインピーダンスとした。 尚、 非水溶媒系電解液の 含浸性が悪い場合、 あらかじめ 1, 2-ジメ 卜キシェタンを多孔膜に含浸させた 後、 多孔膜中の 1 , 2—ジメ トキシエタンを上記非水溶媒系電解液と置換し測定 することが1 ¾ましい。 Lithium perchlorate was dissolved at a concentration of 1 mol Z liter in a mixed solvent of 1: 1 electrolyte (the ratio of propylene carbonate and 1,2-dimethylxetane) in the obtained stack of porous membranes. ), And fixed with two 5 cm 2 platinum electrodes to obtain a measurement cell. Using a LCR meter (Yokogawa Hewlett Packard, Model 4274), apply an alternating current of 100 KHz and 0.1 V between the electrodes of the measuring cell and apply an AC electric resistance ( Ω · cm 2 ) was measured. The AC electrical resistance at this time was defined as the apparent impedance of the porous membrane. When the impregnating property of the non-aqueous solvent-based electrolyte is poor, the porous membrane is impregnated with 1,2-dimethylxetane beforehand, and the 1,2-dimethoxyethane in the porous membrane is impregnated with the non-aqueous solvent-based electrolyte. Replace with measurement It is one thing to do.
4. ピン抜けテスト 4. Pin missing test
同一製造条件で得られた多孔股から幅 43mm、 jiさ 500 mmに切り出した 試料 5枚を用意した。 直径 4. 5 mm, さ 60mm、 スリッ ト fe'l mmの SU S製の'剖ピンのスリッ ト部 ( C ) に 2枚重ねした多孔膜の端部を挟み込む。 はじ めに多孔膜のみを 5 Ommピンに卷き込み、 その後幅 38mm、 長さ 400 mm、 厚み 150 μπιの 2枚の銅板を、 多孔膜 Ζ銅板/多孔胶 Ζ銅板となるように ¾み 'Τ (ねた積層体を 2秒/ 1 In]転の速さでピンに巻き込み、 卷き込みが終 したもの を粘着テープで^定し評価用巻き込み物 (D とした。 出来上がった巻き込み物 (D)から割ピン (C) を引き抜くテス卜、 即ちビン抜けテストを行った。 ピン を引き抜いた時に卷き込み物 (D) の形状を壊さず割ピン (C) が抜けたものを 〇、 卷き込み物 (D) の中心部の多孔膜が割ピン (C) に引っ張られながら抜け、 巻き込み物 (D) がたけのこ状になったもの、 もしくは巻き込み物 (D) から割 ピン (C) が抜けなかったものを Xとした。 評価は 卜 -製造条件で得た多孔膜で 作成した 5個の巻き込み物 (D) を用いて行い、 3回以上が〇であった場合を〇 とし、 3i9:j以上が Xであった場合を Xとした。  Five samples cut from the perforated crotch obtained under the same manufacturing conditions to a width of 43 mm and a ji of 500 mm were prepared. Insert the end of the two porous membranes into the slit (C) of a SS pin made of SUS with a diameter of 4.5 mm, length of 60 mm and slit fe'l mm. First, wrap only the porous membrane around a 5 Omm pin, and then wrap two copper plates 38 mm wide, 400 mm long, and 150 μπι thick so that they become porous membrane Ζ copper plate / porous copper plate. Τ Wrap the rolled product around the pin at a speed of 2 seconds / 1 In. Roll, fix the finished roll with adhesive tape, and use it for evaluation roll (D. Finished roll ( A test was conducted in which the split pin (C) was pulled out from D), that is, a bin pull-out test, where the split pin (C) came off without breaking the shape of the wound material (D) when the pin was pulled out. The porous film at the center of the wound (D) is pulled out by the split pin (C) and comes off, and the wound (D) is shaped like a mushroom, or the wound (D) is split from the split pin (C). The sample that did not come off was designated as X. The evaluation was performed using five rolls (D) made with a porous membrane obtained under the manufacturing conditions. There, the case three or more times was 〇 and 〇, 3i9: the case more than j was X was X.
(実施例 1〜2, 比較例 1〜3) (Examples 1-2, Comparative Examples 1-3)
ポリ ( 4ーメチルペンテン— 1 ) ( 井石油化学工業株式会社製、 商品名: T PX、 融点 235°C) 100質量部に対し、 70質量部のフタル酸ジォクチルを 260°Cで溶融混合して、 ペレツ ト化した。 得られたペレツ トを 270 mm幅の Tダイの設匿された押出機を用い、 温度 240 "Cで膜状に溶融成形し 140°Cの チルロール上で冷却して、 原反 (膜状体) フィル厶を得た。 原反フィルムを金厲 ロール間で温度 20° (:、 表 1に示す延伸倍率 (第 1延伸倍率の欄に表示) で MD 方向 (原反の さ方向) に延伸 (第 1延伸.) を行った後、 金厲ロール上で温度 7 0°Cで 1分問熱処理を行った。 この延伸されたフィルムに 30°Cのイソプロピル アルコール中で 5分間超音波を当てながら可塑剤の抽出処理をした。 さらに、 了 セ卜ン中で 1分間処理した後、 風乾した。 その後、 金属ロール間で温度 25 °C、 表 1に^す延伸倍率 (第 2延伸倍率の欄に表示) で可塑剤抽出前の延伸と同一方 向に延伸 (第 2延伸) した。 その後金属ロール上、 温度 70°Cで 1分問熱処理を 行って多孔膜を得た。 得られた多孔膜の厚さ、 空孔率、 ヤング率及び兌掛けイン ピーダンスを測定し、 さらにピン抜けテストを行 L、、 その結果を表 1に示した。 Poly (4-methylpentene-1) (manufactured by Ino Petrochemical Industry Co., Ltd., trade name: T PX, melting point 235 ° C) For 100 parts by mass, 70 parts by mass of dioctyl phthalate are melt-mixed at 260 ° C, Pelletized. The obtained pellets were melt-molded into a film at a temperature of 240 "C using an extruder with a T-die of 270 mm width and cooled on a chill roll at 140 ° C. The raw film was placed between the metal rolls at a temperature of 20 ° (:) at the draw ratio shown in Table 1 (shown in the first draw ratio column). After stretching in the direction (the length direction of the raw fabric) (first stretching), heat treatment was performed on a metal roll at a temperature of 70 ° C for 1 minute. The stretched film was subjected to a plasticizer extraction process while applying ultrasonic waves in isopropyl alcohol at 30 ° C for 5 minutes. Furthermore, after treating in Ryoton for 1 minute, it was air-dried. Then, the film was stretched (second stretching) between the metal rolls at the temperature of 25 ° C and the stretching ratio shown in Table 1 (shown in the column of the second stretching ratio) in the same direction as the stretching before extracting the plasticizer. Thereafter, heat treatment was performed on the metal roll at a temperature of 70 ° C for 1 minute to obtain a porous film. The thickness, porosity, Young's modulus, and convertible impedance of the obtained porous film were measured, and a pin removal test was performed. The results are shown in Table 1.
(比較例 4) (Comparative Example 4)
第 1延伸温度を 70°Cで行ったことを除き、 実施例 1と同じに行った。 結果を 表 1に示した。  The same operation as in Example 1 was performed except that the first stretching temperature was 70 ° C. The results are shown in Table 1.
(実施例 3〜6, 比較例 5〜8) (Examples 3-6, Comparative Examples 5-8)
(B層) を形成するためにポリ (ブテン一 1) (三井石油化学工業株式会社製、 商品名: ビューロン、 融点 123°C) 100質量部に対し、 1 00質最部のフタ ル酸ジォクチルを 2軸押出機を用いて 230°Cで溶融混合しペレツ ト化した。 同 じく ( A層) を形成するため、 ポリ ( 4—メチルぺンテン一】) (三井石油化学 工業株式会社製、 商品名 : TPX、 融点 235°C) 1 00質量部に対し、 70質 量部のフ夕ル酸ジォクチルを 260°Cで同様に溶融混合してペレツ ト化した。 得 られたペレツ 卜を 370mm幅の 3層共押出用 Tダイの設置された 3台の押出機 を用い温度 240°Cで A層 ZB層 Z A層の積層構成で膜状に溶融成形し、 140 °Cのチルロール上で冷却して、 積層膜状体を得た。 積層膜状体をロール間におい て温度 20て、 表 2に示す延伸倍率 (第 1延伸倍率の欄に表示) で MD方 ί に延 伸 (第 1延伸) した後、 金属ロール上で温度 70°Cで 1分間熱処理を行った。 こ の延伸された積屑フィル厶を連続的に 30 °Cのィソプロピルアルコール中で超^ 波を ^てながら 5分間抽出処理した。 乾燥後、 ロール間において温度 25て、 ¾ 2に示す延伸倍率 (第 2延伸倍率の欄に表示) で第 1延伸の延伸と同一方向に延 伸 ( 2延伸) した後、 金属ロール上で温度 70°Cで 1分間熱処现を行って積層 多孔胶を得た。 積層多孔膜を構成する各層の厚みの比は A層/' ノ A層 = 2 : 1 : 2であった。 得られた積層多孔膜の厚さ、 空孔率、 ヤング率及び見掛けイン ピーダンスを測定し、 ピン抜けテストを行い、 その結果を表 2に示した。 Poly (butene-1) (Mitsui Petrochemical Co., Ltd., trade name: Buron, melting point 123 ° C) to form (Layer B) 100 parts by mass, 100 parts by mass of dioctyl phthalate of 100 quality The mixture was melt-mixed at 230 ° C using a twin-screw extruder and pelletized. In order to form the same (layer A), poly (4-methylpentene) (manufactured by Mitsui Petrochemical Industry Co., Ltd., trade name: TPX, melting point: 235 ° C) A part of dioctyl furoate was similarly melt-mixed at 260 ° C and pelletized. The obtained pellets were melt-molded into a film at a temperature of 240 ° C using a three-layer extruder equipped with a 370 mm wide three-layer co-extrusion T die at a temperature of 240 ° C with a layered structure of A layer, ZB layer and ZA layer. It was cooled on a chill roll at ° C to obtain a laminated film. The laminated film is stretched in the MD direction (first stretching) at a stretching ratio (shown in the column of the first stretching ratio) shown in Table 2 at a temperature of 20 between the rolls, and then heated on a metal roll at a temperature of 70%. Heat treatment was performed for 1 minute at ° C. This The stretched debris film was continuously extracted in isopropyl alcohol at 30 ° C for 5 minutes while applying ultrasonic waves. After drying, the film is stretched in the same direction as the first stretching (2 stretching) at a stretching ratio (shown in the column of 2nd stretching ratio) shown in ¾2 at a temperature of 25 between the rolls. Heat treatment was performed at 70 ° C for 1 minute to obtain a laminated porous material. The ratio of the thicknesses of the respective layers constituting the laminated porous film was A layer / anode layer A = 2: 1: 2. The thickness, porosity, Young's modulus, and apparent impedance of the obtained laminated porous film were measured, and a pin loss test was performed. The results are shown in Table 2.
(実施例 7 ) (Example 7)
(B) 層を形成するためにポリ (ブテン一 1 ) (二井石油化学工業株式会社製、 商品名 : ビュ一ロン、 融点 123°C) 1 00質 S部に対し、 100Γ 部のフタ ル酸ジォクチルを 2軸押出機を用いて 230°Cで溶融混合しペレツ 卜化した。 同 じく ( A I i ) を形成するため、 ポリ ( 4ーメチルペンテン一 1 ) ( ^丼石油化学 工業株式会社製、 商品名 : TPX、 融点 235°C) 100質量部に対し、 70質 M部のフタル酸ジォクチルを 260°Cで同様に溶融混合してペレツ ト化した。 得 られたペレツ 卜を 370mm幅の 3層共押出用 Tダイの設置された 3台の押出機 を用い温度 240°Cで A層 ZB層ズ A層の積層構成で膜状に溶融成形し、 140 DCのチルロール上で冷却して、 積層膜状体を得た。 積屑膜状体を温度 18°C、 T D方向 (原反の長さ方向に ¾ ) 延伸倍率 2. 5倍、 MD方向延伸倍率 1. 5偌 の条件でテン夕一法を用いて逐次 2軸延伸 (第 1延伸) した後、 金属ロール上で 温度 70°Cで 1分間熱処理を行った。 この延伸された嵇屑フィルムを連続的に 3 0°Cのィソプロピルアルコール中で超音波を当てながら 5分間抽出処理した。 乾 燥後、 ロール間において温度 25°C、 延伸倍率 1. 3倍で MD方向に延伸 (第 2 延伸) した後、 金属ロール上で温度 70°Cで 2分間熱処理を行って積層多孔膜を 得た。 積層多孔膜を構成する各層の厚みの比は A層 /B) /A層 = 2 : 1 : 2であった。 られた嵇屑多孔膜の厚さは 3 3 m、 ヤング率 6 1 k g/mm インピーダン ス 1 1 Ω · c m2、 空孔率 3 3%であり、 ピン抜けテストは〇であった。 結 を表 2に示した。 Poly (butene one 1) to form a layer (B): to (Nii Petrochemical Industries, Ltd., trade name views one Ron, mp 123 ° C) 1 00 quality S unit, 100 gamma portion of the lid Le Dioctyl acid was melt-mixed at 230 ° C using a twin-screw extruder and pelletized. To form the same (AIi), poly (4-methylpentene-1) (manufactured by ^ don Petrochemical Industry Co., Ltd., trade name: TPX, melting point 235 ° C) Dioctyl phthalate was similarly melt-mixed at 260 ° C and pelletized. The obtained pellets were melt-molded into a film with a laminated structure of A layer, ZB layer and A layer at a temperature of 240 ° C using three extruders equipped with a 370 mm wide three-layer co-extrusion T die. and it cooled on the chill roll 140 D C, to obtain a laminated membrane-like bodies. The debris film was heated at 18 ° C in the TD direction (¾ in the length direction of the raw material) at a draw ratio of 2.5 times and a draw ratio of 1.5 in the MD direction. After the axial stretching (first stretching), a heat treatment was performed on a metal roll at a temperature of 70 ° C. for 1 minute. The stretched dust film was continuously subjected to extraction treatment in isopropyl alcohol at 30 ° C. for 5 minutes while applying ultrasonic waves. After drying, the film is stretched in the MD direction (second stretching) at a temperature of 25 ° C and a stretching ratio of 1.3 between rolls, and then heat-treated at 70 ° C for 2 minutes on a metal roll to form a laminated porous membrane. Obtained. The thickness ratio of each layer constituting the laminated porous membrane was A layer / B) / A layer = 2: 1: 2. The thickness of the obtained porous porous membrane was 33 m, the Young's modulus was 61 kg / mm, the impedance was 11 Ω · cm 2 , and the porosity was 33%. Table 2 shows the results.
1  1
Figure imgf000017_0001
Figure imgf000017_0001
表 2  Table 2
Figure imgf000017_0002
産業上の利用可能性
Figure imgf000017_0002
Industrial applicability
本発明によるポリ (4ーメチルペンテン一 1 ) 樹脂からなる多孔膜およびポリ ( 4ーメチルペンテン一 1 ) 樹脂からなる層と他のポリオレフィン樹脂からなる 多孔膜との積^多孔膜は低いインピーダンスと比較的高いヤング率を^する。 こ れらの多孔膜からなる' 池用セパレ一夕は、 製造時のピン抜け不良の防止による ^産性の向 1:、 電池用セパレ一夕に要求されるシャツ 卜ダウン機能、 ブレイクダ ゥンの防止機能を 備し、 ^池の安全性向上に寄与する。 しかも、 ' 池の高エネ ルギー密度化が可能となる。  According to the present invention, a porous membrane made of poly (4-methylpentene-11) resin and a product of a layer made of poly (4-methylpentene-11) resin and a porous membrane made of another polyolefin resin have a low impedance and a relatively high Young's strength. ^ Rate. Pond separators consisting of these porous membranes are designed to prevent pin dropout during production. Producibility 1: Productivity required for battery separators, breakdown function, break-down It is equipped with a prevention function, which contributes to improving the safety of the pond. In addition, it is possible to increase the energy density of the pond.

Claims

請求の範囲 The scope of the claims
1. ポリ (4ーメチルペンテン一 1 ) 樹脂からなり兑掛けインピーダンスが 2 5 Ω . c rn^以下、 ヤング率 40 k g/mm2以 hを冇する多孔膜。 1. Poly (4-methylpentene one 1)兑掛only impedance consists resin 2 5 Ω. C rn ^ or less, a porous membrane that冇the Young's modulus 40 kg / mm 2 or more h.
2. ポリ (4—メチルペンテン一 1 ) 樹脂からなる多孔膜の^ (A) と、 層 2. ^ (A) and layer of porous membrane made of poly (4-methylpentene-1) resin
( A ) を構成する樹脂とは異なるポリオレフィン樹脂からなり 100〜 140 °C の融点を する多孔膜の層 (Β) との少なくとも 2ί の積層体であって、 該秸 ifi 体の見掛けインピーダンスが 25 Ω · cm2以下、 ヤング率 40 k g/mm2以上で ある多孔膜。 (A) a laminate of at least 2% of a porous membrane layer (Β) made of a polyolefin resin having a melting point of 100 to 140 ° C. and having an apparent impedance of 25%.多孔 · cm 2 or less, Young's modulus 40 kg / mm 2 or more.
3. 請求項 2記載の層 (B) を構成する樹脂がポリブテン一 1である多孔膜。  3. A porous membrane, wherein the resin constituting the layer (B) according to claim 2 is polybutene-11.
4. 請求項 1〜 3の L、ずれかに, 載の多孔胶からなる電池用セパレー夕。 4. A battery separator composed of the porous ceramics described in claim 1 or claim 3.
5. ポリ ( 4ーメチルペンテン— 1 )樹脂 100質量部、 【 塑剤 50〜 1 50 質量部からなる混合組成物を溶融押出して膜状物に成形する工程、 股状物を - 1 0〜50°Cの温度で少なくとも -方向に 1. 5〜3. (Mfiに延伸 (第 1延伸) する 工程、 第 1延伸した膜状物から可塑剤を抽出する工程、 膜状物を更に 0〜 120°C の温度で 1. 2〜2. 5倍に延伸 (第 2延伸) する工程とからなることを特徴と する請求項 1記載の多孔膜の製造方法。  5. A process of melt-extruding a mixed composition comprising 100 parts by mass of a poly (4-methylpentene-1) resin and 50 to 150 parts by mass of a plasticizer to form a film, wherein the crotch is -10 to 50 ° 1.5 to 3. (stretching to Mfi (first stretching) at least in the-direction at a temperature of C, extracting plasticizer from the first stretched film, further 0 to 120 ° of the film 2. The method for producing a porous membrane according to claim 1, comprising a step of stretching (second stretching) 1.2 to 2.5 times at a temperature of C.
6. ポリ (4ーメチルペンテン一 1 ) 樹脂 100質量部、 可塑剂 50〜1 20 質量部からなる組成物とポリ (4ーメチルペンテン一 1 )樹脂とは異なるポリオ レフィン樹脂で、 1 00〜 140 °Cの融点を有する樹脂 100質量部と 剤 5 0〜150質量部とからなる組成物との少なくとも 2極の組成物を溶融押出し積 層膜状物に成形する工程、 積層膜状物を - 10〜50°Cの温度で少なくとも -方 向に 1. 5〜3. 0倍に延伸 (第 1延伸) する工程、 第 1延伸した積層膜状物か ら可塑-剤を抽出する工程、 積屑膜状物を更に 0〜 120 °Cの温度で 1. 2〜 2. 6. A polyolefin resin that is different from poly (4-methylpentene-11) resin in a composition consisting of 100 parts by mass of poly (4-methylpentene-1) resin and 50 to 120 parts by mass of plastic, A step of melt-extruding a composition of at least two poles of a composition comprising 100 parts by mass of a resin having a melting point and 50 to 150 parts by mass of an agent to form a laminated film; Stretching at least in the-direction at a temperature of ° C by 1.5 to 3.0 times (first stretching); extracting plasticizer from the first stretched laminated film; The object is further heated at a temperature of 0 to 120 ° C 1.2 to 2.
5倍に延伸 (第 2延伸) する工程とからなることを特徴とする請求項 2記載の多 孔膜の製造方法。 3. The method for producing a porous film according to claim 2, comprising a step of stretching by 5 times (second stretching).
PCT/JP1997/002307 1996-07-03 1997-07-03 Porous membrane comprising poly(4-methylpentene-1) resin and battery separator WO1998001502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP8/192963 1996-07-03
JP8192963A JPH1017692A (en) 1996-07-03 1996-07-03 Porous membrane comprising poly(4-methylpentene-1) and separator for electric cell

Publications (1)

Publication Number Publication Date
WO1998001502A1 true WO1998001502A1 (en) 1998-01-15

Family

ID=16299959

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/002307 WO1998001502A1 (en) 1996-07-03 1997-07-03 Porous membrane comprising poly(4-methylpentene-1) resin and battery separator

Country Status (2)

Country Link
JP (1) JPH1017692A (en)
WO (1) WO1998001502A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834656B2 (en) * 2012-05-11 2014-09-16 Entire Technology Co., Ltd. Manufacturing method of porous composite film

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229971A (en) * 2000-02-14 2001-08-24 At Battery:Kk Nonaqueous electrolyte secondary battery
JP5501233B2 (en) * 2008-08-01 2014-05-21 三井化学株式会社 Poly-4-methyl-1-pentene resin composition, film containing the same, microporous film, battery separator, and lithium ion battery
KR101117626B1 (en) 2009-10-07 2012-02-29 한국생산기술연구원 Polymer membrane for battery, method of preparing same and battery including same
CN103313848A (en) * 2011-01-11 2013-09-18 东丽电池隔膜株式会社 Multilayer microporous film, process for production of the film, and use of the film
KR20230102009A (en) * 2021-12-29 2023-07-07 더블유스코프코리아 주식회사 Stretching equipment for manufacturing separator and method for manufacturing separator using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0693130A (en) * 1992-07-30 1994-04-05 Asahi Chem Ind Co Ltd Production of microporous polyolefin film
JPH0733449B2 (en) * 1987-02-19 1995-04-12 東レ株式会社 Method for producing polyolefin microporous film
JPH08138644A (en) * 1994-11-11 1996-05-31 Asahi Chem Ind Co Ltd Battery separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733449B2 (en) * 1987-02-19 1995-04-12 東レ株式会社 Method for producing polyolefin microporous film
JPH0693130A (en) * 1992-07-30 1994-04-05 Asahi Chem Ind Co Ltd Production of microporous polyolefin film
JPH08138644A (en) * 1994-11-11 1996-05-31 Asahi Chem Ind Co Ltd Battery separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8834656B2 (en) * 2012-05-11 2014-09-16 Entire Technology Co., Ltd. Manufacturing method of porous composite film

Also Published As

Publication number Publication date
JPH1017692A (en) 1998-01-20

Similar Documents

Publication Publication Date Title
JP7451648B2 (en) Improved multilayer microporous separators and related methods for lithium ion secondary batteries
CN108352480B (en) Improved laminated multilayer film, separator, battery, and method
JP4753446B2 (en) Polyolefin microporous membrane
JP5325405B2 (en) Polyolefin microporous membrane
JP4704513B2 (en) Laminated microporous film, method for producing the same, and battery separator
JP5870925B2 (en) Composite porous membrane and method for producing the same
JP5463154B2 (en) Laminated microporous membrane and separator for non-aqueous electrolyte secondary battery
WO2014126079A1 (en) Separator for batteries and method for producing separator for batteries
WO2004020511A1 (en) Polyolefin microporous membrane and method of evaluating the same
JP5532430B2 (en) Composite porous membrane, method for producing composite porous membrane, and battery separator using the same
WO2006038532A1 (en) Polyolefin microporous membrane
KR102126212B1 (en) Polyolefin microporous membrane, separator for nonaqueous electrolyte based secondary battery, and nonaqueous electrolyte based secondary battery
JP7045862B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
WO2014192860A1 (en) Multilayer, microporous polyolefin membrane, and production method thereof
WO2007116672A1 (en) Polyolefin microporous film
JP2016523440A (en) Method for producing separation membrane for electrochemical device and separation membrane for electrochemical device produced by the method
WO2015194504A1 (en) Polyolefin microporous membrane, separator for cell, and cell
JP7386015B2 (en) Battery separator and its manufacturing method
JP7207300B2 (en) porous polyolefin film
WO2020137336A1 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP5592745B2 (en) Polyolefin microporous membrane
WO2019045077A1 (en) Polyolefin microporous membrane
WO1998001502A1 (en) Porous membrane comprising poly(4-methylpentene-1) resin and battery separator
JP6000590B2 (en) Laminated microporous film and battery separator
JP6543164B2 (en) Multilayer microporous membrane and separator for storage device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: CA