WO2007116672A1 - Polyolefin microporous film - Google Patents

Polyolefin microporous film Download PDF

Info

Publication number
WO2007116672A1
WO2007116672A1 PCT/JP2007/056170 JP2007056170W WO2007116672A1 WO 2007116672 A1 WO2007116672 A1 WO 2007116672A1 JP 2007056170 W JP2007056170 W JP 2007056170W WO 2007116672 A1 WO2007116672 A1 WO 2007116672A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
polyolefin microporous
intermediate layer
polyolefin
melting point
Prior art date
Application number
PCT/JP2007/056170
Other languages
French (fr)
Japanese (ja)
Inventor
Daisuke Inagaki
Yosuke Inoue
Original Assignee
Asahi Kasei Chemicals Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corporation filed Critical Asahi Kasei Chemicals Corporation
Priority to KR1020087023731A priority Critical patent/KR101060380B1/en
Priority to CN2007800057953A priority patent/CN101384429B/en
Priority to JP2008509737A priority patent/JP4931911B2/en
Publication of WO2007116672A1 publication Critical patent/WO2007116672A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is widely used as a separation membrane used for separation of substances, selective permeation, and the like, and as a separator for electrochemical reaction devices such as alkali, lithium secondary batteries, fuel cells, capacitors, etc.
  • the present invention relates to a microporous membrane.
  • the present invention relates to a polyolefin microporous membrane suitably used as a separator for non-aqueous electrolyte batteries such as lithium ion batteries.
  • Polyolefin microporous membranes are widely used as separation of various substances, selective permeation separation membranes, separators and the like. Specific examples of applications include microfiltration membranes, separators for lithium secondary batteries and fuel cells, separators for capacitors, and various functional materials filled in the holes to create new functions. Examples include base materials for functional membranes. Among these uses, it is particularly suitably used as a separator for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason for this is that the polyolefin microporous membrane is excellent in mechanical strength of the membrane and has good pore blocking properties.
  • Pore occluding property means that when the battery is overheated in an overcharged state, the polymer constituting the membrane melts and closes the pores, blocking the reaction inside the cell and blocking the electric resistance of the membrane. This is a performance that enhances battery safety and ensures battery safety. The lower the temperature at which pore clogging occurs, the higher the safety effect.
  • a separator has a low heat shrinkage rate. This is because when the battery is at a high temperature, the separator shrinks and the isolation function between the electrodes is lost. However, there is generally a contradictory relationship between increasing the strength and the heat shrinkage rate.
  • Patent Document 1 proposes a film in which a microporous film obtained by blending ultrahigh molecular weight polyethylene and polypropylene and a polyethylene microporous film are laminated.
  • this method limits the amount of heat that can be imparted to the membrane in the heat setting step where the difference in pore clogging temperature between the layer of blended ultra-high molecular weight polyethylene and polypropylene and the layer of polyethylene alone is large.
  • it is difficult to achieve both high tensile strength and low thermal shrinkage sufficiently, and the physical properties that can be imparted are limited.
  • the difference in the hole closing temperature between the layers is large, there remains a problem in safety.
  • heat fixation is performed according to the melting point of the low melting point component, low heat shrinkability is also insufficient.
  • Patent Document 2 proposes a film having a high tensile strength by bonding a surface layer made of a high molecular weight polyolefin having a tensile strength of lOOOKgZcm 2 or more and an intermediate layer made of an ethylene-based copolymer.
  • these methods increase the heat shrinkage rate.
  • the hole closing temperature in the entire membrane with a large difference in the hole closing temperature between layers increases.
  • Patent Document 3 proposes a laminated film containing a low melting point component on the positive electrode side.
  • the hole closing property is improved, but the low melting point component is contained only on the positive electrode side, so that the electrode sticking effect is insufficient.
  • the melting point difference between the surface layer and the intermediate layer is large, the heat setting temperature has to be lowered, and the low heat shrinkability is insufficient.
  • Patent Document 4 proposes improvement of hole closing properties by laminating films having different porosity. However, there is no description regarding strength and heat shrinkability. Therefore, heat shrinkage is expected to be high.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-321323
  • Patent Document 2 JP-A-8-99382
  • Patent Document 3 Japanese Patent Laid-Open No. 2002-367587
  • Patent Document 4 Japanese Patent Application Laid-Open No. 2002-319386
  • An object of the present invention is to provide a polyolefin microporous membrane that maintains safety even when overheated and satisfies mechanical strength.
  • the inventors of the present invention have obtained the intrinsic viscosity of both the surface layer and the intermediate layer in order to obtain a polyolefin microporous membrane having a layered body strength of three or more layers, and By paying attention to the relationship between both surface layers and the intermediate layer, it has been found that the above problems can be solved even with a porous microporous membrane that maintains its porosity and strength. That is, the present invention is as follows.
  • a polyolefin microporous membrane that is a laminate of three or more layers including two surface layers and at least one intermediate layer, wherein the intrinsic viscosity [r?] Of the intermediate layer is 3. OdlZg In addition, the intrinsic viscosity [r?] Of the surface layer is smaller than the intrinsic viscosity [r?] Of the intermediate layer, and the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer Polyolefin microporous membrane characterized by a temperature of less than 10 ° C.
  • the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is 5 ° C. or less, wherein the polyolefin fine particles according to any one of (1) to (4) above are characterized. Porous membrane.
  • a polymer material and a plasticizer are melted and kneaded to form a laminated sheet by coextrusion,
  • Polyolefin microporous material obtained by melting and kneading polymer material and plasticizer to form a laminated sheet by coextrusion, biaxial stretching and extracting the plasticizer, followed by heat setting film.
  • the polyolefin microporous membrane of the present invention is high in strength, but has a smaller heat shrinkage ratio when heated than a conventional polyolefin microporous membrane.
  • a sticking effect when the membrane is stuck to an electrode or the like during overheating (hereinafter referred to as a sticking effect), the membrane separation effect can be reliably maintained. Therefore, when the microporous membrane of the present invention is used particularly for a battery separator, it is possible to ensure the safety of the battery.
  • the polyolefin microporous membrane of the present invention needs to have a force of three or more layers including two surface layers and at least one intermediate layer in order to maintain different kinds of physical properties.
  • the surface layer refers to the two outermost layers of the film laminated in three or more layers
  • the intermediate layer refers to the other layers.
  • the intermediate layer may be a single layer or a plurality of layers, but the intermediate layer is preferably a single layer from the viewpoint of productivity.
  • the surface layer is composed of one or more polyolefins.
  • the intermediate layer is also composed of one or more polyolefins.
  • the polyolefin used as the polymer material in the present invention is, for example, polyethylene, a homopolymer of polypropylene, or these homopolymers and ethylene, propylene and 1-butene, 4-methyl-1 pentene, 1 A copolymer of 1-hexene, 1-octene, norbornene and the like, and a mixture of the above-mentioned polymers may be used. From the viewpoint of the performance of the porous membrane, polyethylene and its copolymer are preferred.
  • the polymerization catalysts for these polyolefins include Ziegler Natta catalysts, Phillips catalysts, A catalyst etc. are mentioned. Polyolefin may be obtained by a single-stage polymerization method or may be obtained by a multi-stage polymerization method.
  • polyolefin microporous membrane of the present invention may be added with known additives such as metal stalagmites such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments. Agents can also be mixed and used.
  • the intrinsic viscosity [r?] Of the intermediate layer is 3. OdlZg or more, and the intrinsic viscosity [7?] Of the surface layer is smaller than the intrinsic viscosity [7?] Of the intermediate layer.
  • the intrinsic viscosity of the intermediate layer is preferably 2. OdlZg or more, more preferably 5. OdlZg or less than the intrinsic viscosity of the surface layer.
  • the intrinsic viscosity of the intermediate layer is less than 3. OdlZg, the mechanical strength of the entire film such as piercing strength and tensile strength is lowered. 3. 5dlZg or more is preferred 4. OdlZg or more is more preferred 5. OdlZg or more is more preferred. Further, since the heat shrinkage rate is small, 7. Odl / g or less is preferable.
  • the intrinsic viscosity [ ⁇ ?] Of the surface layer is preferably less than 3. OdlZg, and the point force at which the effect of sticking to the electrode due to stress relaxation at high temperature appears more remarkably is also preferable. Moreover, it is preferable that it is less than 2.5 dlZg in that it has both low fuse characteristics and high short-circuit characteristics. 2. It is more preferable that it is less than OdlZg. Furthermore, from the viewpoint of strength, it is preferably greater than 1. Odl / g.
  • the intrinsic viscosity [r?] Of the layer depends on the intrinsic viscosity [r?] Of the polyolefin component contained in the layer and its ratio.
  • the intrinsic viscosity [7?] Is the intrinsic viscosity [ ⁇ ] at 135 ° C in a decalin solvent based on ASTM-D4020.
  • the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer needs to be less than 10 ° C.
  • This temperature difference is preferably 5 ° C or less, more preferably 3 ° C or less.
  • the pore closing temperature depends on the lowest melting point of the polyolefin component contained in the layer. Therefore, the pore closing temperature of the surface layer and the intermediate layer can be set by selecting a polymer yarn having a desired melting point.
  • the hole closing temperature was measured by the following method. That is, a microporous membrane was set in the apparatus shown in FIG. 1 (A), the temperature was raised from 25 ° C to 200 ° C at a rate of 2 ° CZmin, and an alternating current of 1kHz was applied. The temperature and electrical resistance at this time were measured continuously, and the temperature at which the electrical resistance value of the microporous membrane reached 10 3 ⁇ was defined as the pore closing temperature.
  • the surface layer of the polyolefin microporous membrane of the present invention can exhibit the same sticking effect on the positive electrode and the negative electrode in the battery when the membrane is overheated, and can maintain the isolation between the electrodes.
  • the outermost layer is preferably composed of the same component.
  • the pore closing temperature is lowered, it is preferable that it is composed only of polyethylene, and more preferably, both surface layers are composed only of polyethylene!
  • the tensile strength in the MD direction is preferably lOOMPa or more because it is resistant to external impact tests on the battery and is less likely to cause a short circuit due to foreign matter in the battery. More preferably, it is l lOMPa or more.
  • the tensile strength in the TD direction is preferably 30 MPa or more, more preferably 60 MPa or more, because the battery is resistant to external impact tests on the battery and causes a short circuit due to foreign matter in the battery. More preferably 90 MPa or more.
  • the thickness of the entire film is preferably 5 m or more in order to maintain mechanical strength and to completely insulate the electrodes.
  • it is preferably 40 m or less, more preferably 10 to 20 m.
  • the thickness of the surface layer is preferably 0.1 ⁇ m or more in order to easily achieve the sticking effect during overheating, and the strength of the entire film is preferably 10 ⁇ m or less, more preferably 1 to 5 ⁇ m. .
  • the porosity is preferably 20% or more from the viewpoint of preventing an increase in the internal resistance of the battery, and the mechanical strength is preferably 70% or less, and more preferably 30 to 30%. 50%.
  • the air permeability is preferably lOsecZcc or more from the viewpoint of mechanical strength and 1000 sec / cc or less from the viewpoint of permeation performance, more preferably from 30 to 700 secZlOOcc force. I prefer ⁇ 500secZcc! / ⁇ .
  • the puncture strength is 3. ON / 25 ⁇ m or more from the viewpoint of preventing film breakage by the electrode active material. S is preferable, 4. ONZ25 m or more is more preferable 5.5 NZ25 m or more That force S is more preferable.
  • the heat shrinkage rate when measured in a state where the microporous membrane is not restrained at 130 ° C is preferably as low as possible.
  • the thermal shrinkage rate in the MD direction is preferably less than 30%.
  • the thermal shrinkage in the TD direction is preferably 30% or less, more preferably less than 20%, and even more preferably 15%.
  • the above TD tensile strength, overall film thickness, porosity, puncture strength, and crystallinity are determined by the composition ratio of the polyolefin component contained in the layer, extrusion conditions, stretching conditions, plasticizer extraction conditions, and heat setting conditions. Adjustments can be made by appropriate changes.
  • the polyolefin microporous membrane of the present invention is particularly effective when used as a battery separator, the force mainly described for use in this application is the microporous membrane of the present invention. It can also be used as a base material for microfiltration membranes, condenser separators, and functional membranes for filling various functional materials into the holes to bring out new functions. In that case, the membrane has the advantage of being able to increase the stability of the separation membrane and the base material by having the effect that the entire membrane is uniformly clogged in a short time during overheating and the surface of the membrane sticks. .
  • the polymer species and the solvent species are selected.
  • an inorganic substance can also be mixed in a raw material. In this case, the inorganic substance may be extracted during the production process or may be contained as it is.
  • the following composition is preferred.
  • the surface layer and the intermediate layer may be one or more kinds of polyolefin ink.
  • the intrinsic viscosity [r?] Of the surface polymer should be less than 3. OdlZg. More preferably, the polyolefin having an intrinsic viscosity [r?] Of 1.5 dlZg or less is contained in an amount of 50 wt% or more.
  • the polymer of the intermediate layer also has one or more polyolefin forces.
  • the intrinsic viscosity [ ⁇ ?] Of the polymer in the intermediate layer must be 3.
  • OdlZg or more when two or more types of polyolefine are used, the polyolefin having an intrinsic viscosity [r?] Of 4.5 dlZg or more. It is more preferable that it is composed of 30 wt% or more, and it is more preferable that it is composed of 50 wt% or more.
  • the absolute value of the difference between the melting point of the component having the lowest melting point contained in the surface polymer and the melting point of the component having the lowest melting point contained in the intermediate layer polymer is selected to be less than 10 ° C. There is a need to.
  • the absolute value of the difference between the melting points of the components having the lowest melting point contained in the polymer of the surface layer and the intermediate layer is preferably 5 ° C or less, more preferably 3 ° C or less.
  • additives such as metal stones such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments are added to the polymer material. I can do it. These additives are not particularly limited as long as the effect of a force additive that can be added to a raw material, melted and kneaded of a polymer, or after stretching is expressed.
  • the microporous membrane of the present invention can be obtained by melt-kneading a polymer material, extruding it, stretching it, heat setting and heat treatment. More specifically, it can be obtained by a method comprising the following steps (a) to (e).
  • raw materials such as surface layer and intermediate layer polymers are melt-kneaded.
  • the melt-kneading can be performed by a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, a mixer or the like. Some or all of the raw materials may be pre-mixed with a Henschel mixer, a ribbon blender, a tumbler blender, etc. as necessary. If the amount is small, it may be stirred by hand.
  • the temperature at the time of melt kneading is preferably 160 ° C or higher, more preferably 180 ° C or higher. Further, less than 300 ° C is preferable, and less than 240 ° C is more preferable, and less than 230 ° C is more preferable.
  • a plasticizer may be used in order to facilitate the work in the melt-kneading process and the subsequent extrusion process and to facilitate the production of the microporous membrane of the present invention.
  • the plasticizer is added before melting and kneading. As long as it is before the extrusion process, such as during melt kneading.
  • Extrusion molding includes a method of cooling the sheet die force such as a slit die and a T die with an extrusion cast tool, and a method of cooling after an inflation method.
  • the method of co-extrusion with a single die by integrating the gel sheets obtained with the respective extruder force, or the method of extruding each of the gel sheets and superimposing them to heat-seal them Can be made.
  • the coextrusion method is more productive.
  • the obtained film is more preferable because it easily obtains high interlayer adhesion strength and easily forms communication holes between the layers, so that the permeability of the film is easily maintained.
  • the obtained sheet is stretched in a uniaxial or biaxial or more direction. It is preferable to stretch biaxially or more because it is easy to ensure the strength of the resulting film, and it is preferable to stretch in the biaxial direction at the same time because there are fewer stretching steps.
  • stretching method There are no particular restrictions on the stretching method and the number of stretching operations. For example, MD-axial stretching with a roll stretching machine, TD-axial stretching with a tenter, roll stretching machine and tenter, or a combination of tenter and tenter. Examples include secondary biaxial stretching, simultaneous biaxial tenter and simultaneous biaxial stretching by inflation molding.
  • the draw ratio is preferably a total surface magnification of 8 times or more, more preferably 26 times or more, and most preferably a force of 40 times or more.
  • the upper limit of the uniformity of the film is preferably 100 times or less, more preferably 65 times or less.
  • the plasticizer is extracted as necessary.
  • the plasticizer is extracted using an extraction solvent after stretching.
  • the plasticizer is extracted by immersing the stretched sheet in an extraction solvent or showering. Then, it is sufficiently dried.
  • the obtained stretched sheet is subjected to heat setting and heat treatment.
  • a relaxation operation is performed so that a predetermined relaxation rate is obtained in a predetermined temperature atmosphere.
  • the relaxation operation means that the stretched sheet is M It is an operation to reduce in the D direction and Z or TD direction.
  • the relaxation rate is the value obtained by dividing the MD dimension of the film after the relaxation operation by the MD dimension of the film before the operation, or the value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the film before the operation, or When both MD and TD are relaxed, the value is the product of the MD relaxation rate and the TD relaxation rate.
  • Specific methods include a method using a tenter or a roll drawing machine.
  • the predetermined temperature is preferably less than 135 ° C.
  • the predetermined relaxation rate is preferably 0.9 or less, and more preferably 0.8 or less, in order to reduce the heat shrinkage rate. Further, in order to prevent the generation of wrinkles and to make the porosity and permeability within the above-mentioned preferable ranges, it is preferably 0.6 or more.
  • the relaxation operation may be performed in both the MD direction and the TD direction, but may be performed only in one direction in the MD direction or the TD direction. Even when the relaxation operation is performed in one direction, it is possible to reduce the heat shrinkage rate not only in the operation direction but also in the direction perpendicular to the operation direction.
  • surface treatment such as electron beam irradiation, plasma irradiation, surfactant coating, chemical modification, etc. can be applied to the surface of the heat-set stretched sheet.
  • the master roll after the heat setting is aged at a predetermined temperature, and then the master roll is rewound. This step releases the residual stress of the polyolefin in the master roll.
  • the heat treatment temperature of the master roll is preferably 35 ° C or higher, more preferably 45 ° C or higher, particularly preferably 60 ° C or higher. Further, 120 ° C. or less is preferable from the viewpoint of maintaining the permeability of the membrane.
  • Plasticizers that can be used in the present invention include organic compounds that can form a homogeneous solution with polyolefin at temperatures below the boiling point, and specifically include decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl.
  • Examples include alcohol, oleyl alcohol, decyl alcohol, normal alcohol, diphenyl ether, n -decane, n -dodecane, and paraffin oil. Of these, paraffin oil and dioctyl phthalate are preferable.
  • the proportion of the plasticizer is not particularly limited, but it is preferable to add 20% by weight or more in all layers with respect to the amount of raw material input in each layer in order to keep the porosity of the obtained film in an appropriate range.
  • the content is 90% by weight or less in all layers. More preferably, it is 50 to 70% by weight.
  • the extraction solvent that can be used in the present invention is preferably a poor solvent for polyolefin, a good solvent for plasticizer, and a boiling point lower than the melting point of polyolefin.
  • extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride, 1,1,1 trichloroethane, fluorocarbon, ethanol and isopropanol. And alcohols such as acetone and ketones such as acetone and 2-butanone. Select from among these, and use alone or in combination. These extraction solvents may be regenerated by distillation after extraction of the plasticizer and used again.
  • an anti-oxidation agent in the step (a).
  • the resin is calcined before heating.
  • the concentration of the antioxidant is preferably 0.3 wt% or more, more preferably 0.5 wt% or more, based on the weight of the total polyolefin material. Further, 5.0% or less is preferable, and 3.0% or less is more preferable.
  • Phenol-based acid-detergents which are primary acid-detergents, are preferred as acid-detergents.
  • Secondary anti-oxidation agents can also be used in combination with tris (2,4 di-t-butylphenol) phosphite, tetrakis (2,4-di-t-butylphenol), 1,4,4 Examples thereof include phosphoric acid inhibitors such as biphenylene phosphonite and thio acid inhibitors such as dilauric dithiopropionate.
  • the inside of the mixer or the extruder is replaced with a nitrogen atmosphere, and the mixture is melted while maintaining the nitrogen atmosphere. It is preferable to perform kneading.
  • a battery may be prepared by the following method.
  • the microporous membrane is formed into a vertically long shape having a width of 10 mm to: LOO mm and a length of 200 mm to 2000 mm.
  • the separators are stacked in the order of positive electrode separator, negative electrode separator, or negative electrode separator positive electrode separator, and wound into a circular or flat spiral shape. Further, the wound body is accommodated in a battery can and an electrolyte is injected.
  • the type of the battery in the present invention is not particularly limited, but it is preferably a non-aqueous electrolyte battery from the viewpoint of the affinity between the polyolefin microporous membrane and the electrolyte.
  • a lithium ion battery is more preferable from the viewpoint of providing excellent safety when the microporous membrane of the present invention is used as a separator.
  • the (1) intrinsic viscosity and (11) pore closing temperature were measured for each layer by separating the surface layer and the intermediate layer from the laminated film. The peeling method is described below.
  • a sample was cut into an arbitrary size, and a curing cloth tape manufactured by Sliontec Co., Ltd. was attached to the entire surface of one surface. Attach and pull the crossing tape made of Sliontec Co., Ltd. on a part of the surface layer opposite to the layer on which the crossing tape made by Sliontec Co., Ltd. is applied. The surface layer on the side where the cross tape was not applied to the entire surface was peeled off. Paste Sliontec Co., Ltd.'s curing cloth tape on the entire surface of one side of the peeled laminate. Paste Sliontec Co., Ltd.'s curing cloth tape on a part of the opposite layer. Any layer was peeled off.
  • Mv was calculated according to the following formula.
  • the Mv of the layer was calculated from the polyethylene equation.
  • Porosity (volume mass Z film density) Z volume X 100
  • the film density was calculated at a constant 0.95.
  • the tensile elongation (%) was obtained by dividing the amount of elongation (mm) until the sample broke by the distance between chucks (5 Omm) and multiplying by 100.
  • the tensile strength (MPa) was obtained by dividing the strength at break of the sample by the cross-sectional area of the sample before the test. Also, by summing the MD direction value and the TD direction value, the total (%) of MD tensile elongation and TD tensile elongation was obtained. The measurement was performed at a temperature of 23 ⁇ 2 ° C, a chuck pressure of 0.30 MPa, and a tensile speed of 200 mmZ (for a sample where the distance between chucks cannot be secured to 50 mm, the strain rate is 400% Z). [0052] (7) Melting point
  • Measurement was performed using DSC-220C manufactured by Seiko Ichi Kogyo Co., Ltd.
  • the sample was punched into a circle with a diameter of 5 mm, and several sheets were stacked to make 3 mg. This was spread on an aluminum open sample pan with a diameter of 5 mm, a crimping cover was put on, and it was fixed in the aluminum pan with a sample sealer.
  • the temperature from 30 ° C to 180 ° C was measured at a rate of temperature increase of 10 ° CZmin, and the temperature at which the melting endotherm curve was maximized was taken as the melting point.
  • the polyolefin microporous film After making the polyolefin microporous film into a thickness of about 1 mm using a heating press, it was measured with an infrared spectrophotometer (FTS60AZ896ZU MA300 manufactured by Varian Technologies Japan Limited). Absorbance at 910 cm _1, the density of the polyolefin microporous film (g / cm3) and the thickness of the sample from (mm), POLYMER LETTERS
  • VOL. 2, PP. 339-341 Referring to the concentration of terminal bur groups, that is, the number of terminal bur groups per 10,000 carbon atoms in polyethylene (hereinafter this unit is expressed in units of Zio, 000C). (Expressed) was calculated from the following equation. The calculation was performed by rounding down the decimals.
  • the unit of density is gZcm 3 and the unit of thickness is mm.
  • a sample cut to 100 mm in the MD direction and 100 mm in the TD direction was left in an oven at 130 ° C for 1 hour. At this time, it was sandwiched between two sheets of paper so that the sample was not directly exposed to the hot air. After removing from the oven and cooling, the length (mm) was measured, and the thermal shrinkage of MD and TD was calculated by the following formula.
  • Fig. 1 (A) shows a schematic diagram of a device for measuring the hole closing temperature.
  • 1 is a microporous film
  • 2A and 2B are 10 m thick nickel foil
  • 3A and 3B are glass plates.
  • 4 is an electric resistance measuring device (LCR meter “AG-4311” (trademark) manufactured by Ando Electric Co., Ltd.), which is in contact with nickel foils 2A and 2B. It has been continued.
  • 5 is a thermocouple connected to a thermometer 6.
  • a data collector 7 is connected to the electrical resistance measuring device 4 and the thermometer 6. 8 is an oven in which the microporous membrane was heated.
  • the microporous membrane 1 was superposed on the nickel foil 2A, and this was fixed to the nickel foil 2A with “Teflon” (registered trademark) tape (shaded portion in the figure) in the vertical direction.
  • "Teflon” (registered trademark) tape is pasted onto nickel foil 2mm, leaving a 15mm x 10mm window part in the center of foil 2mm. Masked.
  • Nickel foil 2A and nickel foil 2B were superposed so as to sandwich microporous film 1, and two nickel foils were sandwiched between glass plates 3A and 3B. At this time, it was arranged so that the window portion of the foil 2B and the porous membrane 1 were at opposite positions.
  • thermocouple 5 was fixed to the glass plate with “Teflon” (registered trademark) tape.
  • PVDF polyvinylidene as a binder one mold - isopropylidene
  • NMP N-methylpyrrolidone
  • This slurry was applied to one side of a 20 / zm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press.
  • the amount of active material applied to the positive electrode was 250 gZm 2 and the bulk density of the active material was 3.OOgZcm 3 . This was cut to a width of about 40 mm to form a strip.
  • Electrode plate laminate The above microporous membrane separator, strip-shaped positive electrode, and strip-shaped negative electrode were stacked in the order of the strip-shaped negative electrode, separator, strip-shaped positive electrode, and separator, and wound in a spiral shape to produce an electrode plate laminate.
  • This electrode plate laminate is pressed into a flat plate shape and then housed in an aluminum container.
  • the aluminum lead derived from the positive electrode current collector force is placed on the container wall, and the nickel lead derived from the negative electrode current collector is placed on the container lid terminal. Connected to the department.
  • the lithium-ion battery thus fabricated was 6.3 mm in length (thickness), 30 mm in width, and 48 mm in height.
  • the battery was charged to V, and then the current value was started to be reduced so as to hold 4.2 V.
  • the temperature was raised to 0 ° C at a rate of 5 ° CZ and left at 150 ° C for 1 hour.
  • a microporous membrane consisting of two surface and intermediate layers with the same composition was made.
  • the composition of the surface layer is as follows: [7?] Is 1.2 dlZg, Mv is 70,000, 45% by weight of homopolymer polyethylene with a melting point of 133 ° C, [7?] Is 2.8 dlZg, Mv is 250,000, and the melting point is The homopolymer polyethylene was 45 wt% at 136 ° C, [7?] ⁇ 4.9 dlZg, and the homopolymer polypropylene was 5 wt% with Mv 400,000.
  • the intermediate layer has a [7?] Force of 6dlZg, Mv of 700,000 and a homopolymer polyethylene with a melting point of 135 ° C of 46.5 wt%, [7?] 2.8dlZg, Mv Power 250,000, 136.
  • the homopolymer polyethylene of C was 46.5 wt%, [7?] 4.9 dl / g, and the homopolymer polypropylene of Mv 400,000 was 7 wt%.
  • Each of these yarns was blended.
  • As an antioxidant 0.3 wt% tetrakis (methylene 3- (3,5,1-di-tert-butyl 4'-hydroxyphenol) propylene) methane was mixed with the total polymer in each layer.
  • This sheet was stretched 7 ⁇ 4 times with a simultaneous biaxial stretching machine at 124 ° C. Thereafter, this stretched sheet was immersed in methylene chloride, and the fluid paraffin was extracted and dried, followed by heat treatment at 120 ° C. to obtain a microporous membrane.
  • the physical properties of the obtained microporous membrane are shown in Tables 1 and 2.
  • the composition of the surface layer is 50 wt% of homopolymer polyethylene with [7?] Of 1.2 dlZg, Mv of 70,000 and melting point of 133 ° C, and [7?] Force of .8dlZg, Mv of 250,000 and melting point.
  • a microporous membrane was prepared in the same manner as in Example 1 except that the homopolymer polyethylene at 136 ° C. was changed to 50 wt%.
  • the physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • a microporous membrane consisting of two surface and intermediate layers with different compositions was produced.
  • the composition of the surface layer on one side is: [r?] Is 1.2 dlZg, Mv is 70,000, homopolymer polyethylene 50wt% with a melting point of 133 ° C, [7?] Is 2.8dlZg, Mv is 25 Homopolymer with a melting point of 136 ° C is 50 wt% of polyethylene.
  • Liquid paraffin (37.78 ° C kinematic viscosity 75.90cSt) 50wt% was injected into each extruder from the side feed.
  • the composition of the surface layer on the opposite side is as follows: [r?] Is 1.2 dl / g, Mv is 70,000, 50 wt% of homopolymer polyethylene with a melting point of 133 ° C, [] force. 8 dl / g, Each surface layer is 30 wt% of a homopolymer with an Mv of 250,000 and a melting point of 136 ° C, and a homopolymer of 20 wt% with an [r?] Of 5.6 dlZg, an Mv of 700,000 and a melting point of 135 ° C.
  • a microporous membrane was formed in the same manner as in Example 1 except that 65 wt% of liquid paraffin (37.78 ° C kinematic viscosity 75.90 cSt) was injected into the surface layer extruder from the side feed with respect to 35 wt% of the polymer. Produced.
  • the physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • a microporous membrane was prepared in the same manner as in Example 2 except that the thickness of the sheet was 0.7 mm. Tables 1 and 2 show the physical properties of the prepared microporous membrane.
  • the composition of the surface layer is as follows: [7?] Is 1.7 dlZg, Mv is 120,000, the copolymer is 50 wt% of polyethylene with a melting point of 127 ° C, [7?] Is 2.8 dlZg, Mv is 250,000, and the melting point is A microporous membrane was prepared in the same manner as in Example 3 except that 50 wt% of the homopolymer polyethylene at 136 ° C. was used and the heat treatment temperature was 117 ° C. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • a microporous membrane was prepared in the same manner as in Example 2 except that the thickness of the sheet was 1.3 mm and the sheet was stretched 7 ⁇ 7 times with a simultaneous biaxial stretching machine.
  • the physical properties produced are shown in Tables 1 and 2.
  • composition of the surface is 75 dl% of homopolymer polyethylene with [7?] 1.2 dlZg, Mv 70,000 and melting point 133 ° C, [7?] 2.8 dlZg, Mv 250,000, melting point
  • a microporous membrane was prepared in the same manner as in Example 5 except that homopolymer polyethylene at 136 ° C. was changed to 25 wt%.
  • the physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • the surface layer is composed of yarn, [7?] Is 1.2dlZg, Mv is 70,000, homopolymer polyethylene 50wt% with melting point 133 ° C, [7?] Is 2.8dlZg, Mv is 250,000 30 wt% homopolymer polyethylene with a melting point of 136 ° C, [7?] Is 5.6dlZg, Mv is 700,000, and the melting point is 135 ° C. Except for injecting 65 wt% liquid paraffin (37.78 cC kinematic viscosity 75.90 cSt) into the surface layer extruder from the side layer feed with 20 wt% homopolymer 20 wt%.
  • a microporous membrane was prepared as in 5. Tables 1 and 2 show the properties of the prepared microporous membrane.
  • the composition of the surface layer is as follows: [r?] Is 3.2 dlZg, Mv 300,000, melting point is 136 ° C, terminal bur group concentration is 10 ZlO, OOOC 50 wt% homopolymer polyethylene, [7?] 2
  • a microporous membrane was prepared in the same manner as in Example 5, except that 50 wt% of homopolymer polyethylene having an Odl / g, Mvl of 50,000, and a melting point of 133 ° C. was used.
  • the physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • the composition of the intermediate layer is [7?] 11.3 dlZg, Mv 2 million, 30 wt% of homopolymer polyethylene with melting point 135 ° C, [7?] Force 2. 8 dlZg, Mv 250,000, 70 wt% homopolymer polyethylene with a melting point of 136 ° C, and 65 wt% liquid paraffin (kinematic viscosity at 37.78 ° C 75.90 cSt) from the side feed to the intermediate layer 35 wt%
  • a microporous membrane was prepared in the same manner as in Example 5 except that the microporous membrane was injected into the extruder. Tables 1 and 2 show the physical properties of the fabricated microporous membrane.
  • the composition of the intermediate layer is [7?] 13. ldl / g, Mv 2.5 million, 20 wt% homopolymer polyethylene with melting point 135 ° C, [7?] 5.6 dlZg, Mv 700,000 15 wt% of homopolymer polyethylene with a melting point of 135 ° C, 30 wt% of homopolymer polyethylene with a melting point of 136 °C, 2.8 dlZg, Mv of 250,000 ] Is 1.7 dlZg, Mvl 20,000, melting point 131 ° C, ethylene propylene copolymer (comonomer: prepylene, content ratio 0.6 mol%) is 30 wt%, and liquid paraffin is used for 35% of the intermediate layer polymer.
  • Example 12 The intermediate layer is composed of 15 wt% of a molecular weight of 10,000 or less, MwZMn is 43, [] is 5.6 dlZg, Mv is 700,000, and a homopolymer polyethylene having a melting point of 137 ° C is 80 wt%.
  • a microporous membrane was prepared in the same manner as in Example 5 except that the homopolymer polypropylene of ⁇ 400,000 and [] was 4.9 dlZg and 20 wt%. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • the composition of the surface layer is as follows: [7?] Is 1.2dlZg, Mv is 70,000, homopolymer polyethylene 45wt% with melting point 133 ° C, [7?] Is 2.8dlZg, Mv is 250,000, melting point
  • the intermediate layer is 45 wt% of homopolymer with a temperature of 136 ° C and [7?] 4.9 dlZg, and the Mv400,000 homopolymer polypropylene is 5 wt%.
  • Example 5 and Example 5 except that the homopolymer polyethylene with an Mv of 210,000 and a melting point of 136 ° C is 95 wt%, and [7?] 9 dlZg and the homopolymer polypropylene with an Mv of 400,000 is 5 wt%.
  • make a microporous membrane Made The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
  • the composition of the surface is 75 dl% of homopolymer polyethylene with [7?] 1.2 dlZg, Mv 70,000 and melting point 133 ° C, and [7?] Force. 8dlZg, Mv 250,000 with melting point 136
  • a microporous membrane was prepared in the same manner as in Comparative Example 1 except that the polyethylene was 25 wt% of the homopolymer at ° C and the sheet thickness was 2. Omm.
  • the physical properties of the prepared microporous membrane are shown in Tables 1 and 2. As a result of the battery evaluation, the oven test proved to be satisfactory.
  • a microporous membrane was prepared in the same manner as in Comparative Example 2, except that the thickness of the sheet was 0.7 mm and the sheet was stretched 7 ⁇ 4 times with a simultaneous biaxial stretching machine.
  • the physical properties of the prepared microporous membrane are shown in Tables 1 and 2. As a result of battery evaluation, good results were not obtained in the oven test and the crash test.
  • the composition of the surface layer is [7?] 5.6 dlZg, Mv is 700,000 and the melting point is 135 ° C.
  • the homopolymer polyethylene is 100 wt%, and liquid paraffin (37.78 ° C)
  • a microporous membrane was prepared in the same manner as in Example 5 except that 70 wt% was injected into the surface layer extruder by side feed. Tables 1 and 2 show the physical properties of the fabricated microporous membrane.
  • the composition of the surface layer is [7?] 1.7 dlZg, Mv is 120,000, and the copolymer has a melting point of 125 ° C, 50 wt% of polyethylene, [7?] Force. 8 dlZg, Mv is 250,000, and the melting point is 136.
  • a microporous membrane was prepared in the same manner as in Example 5 except that 50% by weight of the homopolymer polyethylene at ° C, the temperature of the biaxial stretching machine was 121 ° C, and the heat treatment temperature was 115 ° C. Tables 1 and 2 show the physical properties of the fabricated microporous membrane.
  • Example 2 2.1 135 '4.3 140
  • Example 3 2.1 / 2.8 135 4.3 140
  • Example 4 2.1 135 4.3 140
  • Example 5 2.3 131 4,3 140
  • Example 6 2.1 135 4.3 140
  • Example 7 1.7 135 4.3 '140
  • Example 8 2.8 136 4.3 140
  • Example 9 2.3 135 4.3 140 .
  • Example 10 2.1 135 6.0 139
  • Example 12 2.1 135 5.3 138
  • Example 13 2.1 135 5.7 134 Comparative Example 1 2.2 135, 2.5 139 Comparative Example 2 1.7 134 2.5 139 Comparative Example 3 1.7 '134 2.5 139
  • the present invention relates to a microporous membrane used for separation of substances, a selective permeation separation membrane, a separator, and the like, and is particularly suitably used as a separator for lithium ion batteries and the like.
  • Fig. 1 shows a schematic diagram of an apparatus for measuring the pore closing temperature of a microporous membrane of the present invention.

Abstract

A polyolefin microporous film being a laminate of three or more layers including two surface layers and at least one interlayer, characterized in that the limiting viscosity [η] of the interlayer is 3.0 dl/g or higher, and that the limiting viscosity [η] of the surface layers is smaller than the limiting viscosity [η] of the interlayer, and that the absolute value of the difference between the pore closing temperature of the surface layers and the pore closing temperature of the interlayer is less than 10°C.

Description

明 細 書  Specification
ポリオレフイン微多孔膜  Polyolefin microporous membrane
技術分野  Technical field
[0001] 本発明は、物質の分離、選択透過などのために用いる分離膜、及びアルカリ、リチ ゥム二次電池や燃料電池、コンデンサーなど電気化学反応装置の隔離材等として広 く使用される微多孔膜に関する。特に、リチウムイオン電池などの非水電解液電池用 セパレーターとして好適に使用されるポリオレフイン微多孔膜に関する。 背景技術  [0001] The present invention is widely used as a separation membrane used for separation of substances, selective permeation, and the like, and as a separator for electrochemical reaction devices such as alkali, lithium secondary batteries, fuel cells, capacitors, etc. The present invention relates to a microporous membrane. In particular, the present invention relates to a polyolefin microporous membrane suitably used as a separator for non-aqueous electrolyte batteries such as lithium ion batteries. Background art
[0002] ポリオレフイン微多孔膜は、種々の物質の分離や選択透過分離膜、及び隔離材等 として広く用いられている。その具体的な用途例としては、精密ろ過膜、リチウム二次 電池や燃料電池用のセパレーター、コンデンサー用セパレーター、さらには各種の 機能材料を孔の中に充填させ、新たな機能を出現させるための機能膜の母材などが 挙げられる。これらの用途のうち、ノート型パーソナルコンピューターや携帯電話、デ ジタルカメラなどに広く使用されているリチウムイオン電池用のセパレーターとして、 特に好適に使用されている。その理由としては、ポリオレフイン微多孔膜は膜の機械 的強度に優れ、良好な孔閉塞性を有していることが挙げられる。  [0002] Polyolefin microporous membranes are widely used as separation of various substances, selective permeation separation membranes, separators and the like. Specific examples of applications include microfiltration membranes, separators for lithium secondary batteries and fuel cells, separators for capacitors, and various functional materials filled in the holes to create new functions. Examples include base materials for functional membranes. Among these uses, it is particularly suitably used as a separator for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason for this is that the polyolefin microporous membrane is excellent in mechanical strength of the membrane and has good pore blocking properties.
[0003] 孔閉塞性とは、電池内部が過充電状態などで過熱した時に、膜を構成するポリマ 一が溶融して孔を閉塞し、電池内部での反応を遮断することにより膜の電気抵抗を 高め、電池の安全性を確保する性能のことである。孔閉塞の生じる温度は低いほど、 安全性への効果は高 、とされて 、る。  [0003] Pore occluding property means that when the battery is overheated in an overcharged state, the polymer constituting the membrane melts and closes the pores, blocking the reaction inside the cell and blocking the electric resistance of the membrane. This is a performance that enhances battery safety and ensures battery safety. The lower the temperature at which pore clogging occurs, the higher the safety effect.
更にセパレーターの機能として、孔閉塞後もフィルム形状を維持し、電極間の絶縁を 保持する必要もある。そのためショート温度は高!ヽ方が望ま ヽ。  Furthermore, as a function of the separator, it is necessary to maintain the film shape even after the hole is closed and to maintain insulation between the electrodes. Therefore, the short temperature is high! Would you like it?
近年では、電池の容量増加に伴い、セパレーターの薄膜ィヒ及び高気孔率ィヒが求め られている。しかし、薄膜化及び高気孔率化に伴う突刺強度の低下によって短絡な どが生じることが懸念される。そこで、セパレーターの強度を保ったまま、薄膜化する ことが望まれる。これにカ卩えて、、セパレーターを捲回する際や、電池内の異物などに よる短絡を防ぐためにも、セパレーターの突刺強度や機械方向(MD方向)および機 械方向と垂直方向(TD方向)の引張強度は、ある程度以上の強度を有している必要 がある。さらに、電池の乾燥工程や、高温貯蔵試験、高温サイクル試験、オーブン試 験など、高温下での熱収縮率が小さ 、 (低熱収縮性)ことも必要である。 In recent years, as the capacity of batteries has increased, separator thin films and high porosity have been demanded. However, there is a concern that short-circuiting may occur due to a decrease in puncture strength associated with thinning and high porosity. Therefore, it is desirable to reduce the film thickness while maintaining the strength of the separator. In addition to this, in order to prevent the short circuit due to foreign matter in the battery when winding the separator, the piercing strength, machine direction (MD direction) and machine of the separator The tensile strength in the machine direction and the perpendicular direction (TD direction) must have a certain level of strength. In addition, it is necessary to have a low heat shrinkage (low heat shrinkage) at high temperatures, such as battery drying processes, high-temperature storage tests, high-temperature cycle tests, and oven tests.
一般的にセパレーターの熱収縮率は低 、ほどよ 、とされて 、る。これは電池が高温 状態の際に、セパレーターが縮んで、電極間の隔離機能が失われてしまうためであ る。し力しながら、一般的に高強度化と、熱収縮率とには相反する関係にある。  In general, a separator has a low heat shrinkage rate. This is because when the battery is at a high temperature, the separator shrinks and the isolation function between the electrodes is lost. However, there is generally a contradictory relationship between increasing the strength and the heat shrinkage rate.
[0004] 特許文献 1には、超高分子量ポリエチレンとポリプロピレンをブレンドして成る微多 孔膜と、ポリエチレンの微多孔膜とを積層する膜が提案されている。しかしながら、こ の方法では、超高分子量ポリエチレンとポリプロピレンをブレンドした層とポリエチレン のみの層の孔閉塞温度の差が大きぐ熱固定工程で膜に与えることができる熱量が 限定される。その結果として、高い引張強度と低い熱収縮率を十分に両立させるの が難しい上、他に付与できる物性の種類も限定されてしまう。また、層間の孔閉塞温 度の差が大きいため、安全性にも課題が残る。さらに、低融点成分の融点に合わせ て熱固定を実施するため、低熱収縮性も不足である。  [0004] Patent Document 1 proposes a film in which a microporous film obtained by blending ultrahigh molecular weight polyethylene and polypropylene and a polyethylene microporous film are laminated. However, this method limits the amount of heat that can be imparted to the membrane in the heat setting step where the difference in pore clogging temperature between the layer of blended ultra-high molecular weight polyethylene and polypropylene and the layer of polyethylene alone is large. As a result, it is difficult to achieve both high tensile strength and low thermal shrinkage sufficiently, and the physical properties that can be imparted are limited. In addition, since the difference in the hole closing temperature between the layers is large, there remains a problem in safety. Furthermore, since heat fixation is performed according to the melting point of the low melting point component, low heat shrinkability is also insufficient.
[0005] 特許文献 2では、引張強度 lOOOKgZcm2以上である高分子量ポリオレフインから なる表層と、エチレン系共重合体力 なる中間層を貼り合せ、高い引張強度をもつ膜 が提案されている。しかしながら、これらの方法では熱収縮率が増加することが懸念 される。また、層間の孔閉塞温度の差が大きぐ膜全体での孔閉塞温度は高くなつて しまう。 [0005] Patent Document 2 proposes a film having a high tensile strength by bonding a surface layer made of a high molecular weight polyolefin having a tensile strength of lOOOKgZcm 2 or more and an intermediate layer made of an ethylene-based copolymer. However, there is a concern that these methods increase the heat shrinkage rate. In addition, the hole closing temperature in the entire membrane with a large difference in the hole closing temperature between layers increases.
[0006] 特許文献 3では、正極側に低融点成分を含有する積層膜が提案されて!ヽる。この 方法では孔閉塞性は改善されて 、るが、低融点の成分を正極側だけに含有して 、る ので、電極の貼り付き効果に関しては不足である。また、表層と中間層の融点差が大 きいので熱固定温度を低くせざるを得ず、低熱収縮性に関しても不足である。  [0006] Patent Document 3 proposes a laminated film containing a low melting point component on the positive electrode side. In this method, the hole closing property is improved, but the low melting point component is contained only on the positive electrode side, so that the electrode sticking effect is insufficient. In addition, since the melting point difference between the surface layer and the intermediate layer is large, the heat setting temperature has to be lowered, and the low heat shrinkability is insufficient.
[0007] 特許文献 4では、空孔率の異なる膜を積層することで、孔閉塞性の改善が提案され ている。し力しながら、強度と熱収縮性に関しては何ら記載がない。従って、熱収縮 は高いことが予想される。  [0007] Patent Document 4 proposes improvement of hole closing properties by laminating films having different porosity. However, there is no description regarding strength and heat shrinkability. Therefore, heat shrinkage is expected to be high.
特許文献 1 :特開 2002— 321323号公報  Patent Document 1: Japanese Patent Laid-Open No. 2002-321323
特許文献 2:特開平 8— 99382号公報 特許文献 3:特開 2002— 367587号公報 Patent Document 2: JP-A-8-99382 Patent Document 3: Japanese Patent Laid-Open No. 2002-367587
特許文献 4:特開 2002— 319386号公報  Patent Document 4: Japanese Patent Application Laid-Open No. 2002-319386
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 本発明の目的は、過熱時にも安全性が保持され、機械的強度も満足したポリオレフ イン微多孔膜を提供することである。 [0008] An object of the present invention is to provide a polyolefin microporous membrane that maintains safety even when overheated and satisfies mechanical strength.
課題を解決するための手段  Means for solving the problem
[0009] 本発明者らは上述の目的を達成するために鋭意研究を重ねた結果、三層以上の積 層体力もなるポリオレフイン微多孔膜を得るにあたって、両表層と中間層の極限粘度 、および両表層と中間層の関係に着目することにより、気孔率や強度を維持したポリ ォレフィン微多孔膜であっても、上記課題を解決することができることを見出した。す なわち、本発明は以下の通りである。  [0009] As a result of intensive studies to achieve the above object, the inventors of the present invention have obtained the intrinsic viscosity of both the surface layer and the intermediate layer in order to obtain a polyolefin microporous membrane having a layered body strength of three or more layers, and By paying attention to the relationship between both surface layers and the intermediate layer, it has been found that the above problems can be solved even with a porous microporous membrane that maintains its porosity and strength. That is, the present invention is as follows.
[0010] (1) 2層の表層と少なくとも 1層の中間層を含む 3層以上の積層体であるポリオレフ イン微多孔膜であって、該中間層の極限粘度 [ r? ]が 3. OdlZg以上であり、かつ、前 記表層の極限粘度 [ r? ]は前記中間層の極限粘度 [ r? ]よりも小さぐさらに、表層の 孔閉塞温度と中間層の孔閉塞温度の差の絶対値が 10°C未満であることを特徴とす るポリオレフイン微多孔膜。  [0010] (1) A polyolefin microporous membrane that is a laminate of three or more layers including two surface layers and at least one intermediate layer, wherein the intrinsic viscosity [r?] Of the intermediate layer is 3. OdlZg In addition, the intrinsic viscosity [r?] Of the surface layer is smaller than the intrinsic viscosity [r?] Of the intermediate layer, and the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer Polyolefin microporous membrane characterized by a temperature of less than 10 ° C.
(2)両表層がポリエチレンのみで構成されていることを特徴とする上記(1)に記載の ポリオレフイン微多孔膜。  (2) The polyolefin microporous membrane as described in (1) above, wherein both surface layers are composed only of polyethylene.
(3)両表層が同じ組成で構成されていることを特徴とする上記(1)又は(2)に記載の ポリオレフイン微多孔膜。  (3) The polyolefin microporous membrane according to (1) or (2) above, wherein both surface layers have the same composition.
(4)膜全体の機械と垂直方向 (TD方向)の引張強度が 30MPa以上であることを特 徴とする上記(1)〜(3)の 、ずれかに記載のポリオレフイン微多孔膜。  (4) The polyolefin microporous membrane according to any one of (1) to (3) above, wherein the tensile strength in the direction perpendicular to the machine (TD direction) of the membrane is 30 MPa or more.
(5)表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値がが 5°C以下であること を特徴とする上記(1)〜 (4)の 、ずれかに記載のポリオレフイン微多孔膜。  (5) The absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is 5 ° C. or less, wherein the polyolefin fine particles according to any one of (1) to (4) above are characterized. Porous membrane.
(6)ポリオレフインと可塑剤を含有する組成物を用いて製造される上記(1)〜(5)の V、ずれかに記載のポリオレフイン微多孔膜。  (6) The polyolefin microporous membrane according to any one of (1) to (5) above, which is produced using a composition containing polyolefin and a plasticizer.
(7)ポリマー材料と可塑剤を溶融混鍊して、共押出しで積層されたシートを形成し、 二軸延伸を施し可塑剤を抽出した後に、熱固定する工程を含むことを特徴とする(1) 〜(6)の 、ずれかに記載のポリオレフイン微多孔膜の製造方法。 (7) A polymer material and a plasticizer are melted and kneaded to form a laminated sheet by coextrusion, The method for producing a polyolefin microporous membrane according to any one of (1) to (6), comprising a step of heat setting after biaxial stretching and extraction of a plasticizer.
(8)ポリマー材料と可塑剤を溶融混鍊して、共押出しで積層されたシートを形成し、 二軸延伸を施し可塑剤を抽出した後に、熱固定することによって得られたポリオレフ イン微多孔膜。  (8) Polyolefin microporous material obtained by melting and kneading polymer material and plasticizer to form a laminated sheet by coextrusion, biaxial stretching and extracting the plasticizer, followed by heat setting film.
(9)上記(1)〜(6)および (8)のいずれかに記載のポリオレフイン微多孔膜を用いた 非水電解液電池用セパレーター。  (9) A separator for a non-aqueous electrolyte battery using the polyolefin microporous membrane according to any one of (1) to (6) and (8) above.
(10)上記(9)に記載のセパレーターを用いた非水電解液電池。  (10) A non-aqueous electrolyte battery using the separator according to (9) above.
発明の効果  The invention's effect
[0011] 本発明のポリオレフイン微多孔膜は、高強度でありながら、過熱時の熱収縮率が従 来のポリオレフイン微多孔膜と比較して小さい。また、過熱時に膜が電極などに貼り つくことにより(以下、貼り付き効果という)、膜の分離効果を確実に保持することがで きる。そのため、本発明の微多孔膜を特に電池セパレーターに使用した場合、電池 の安全性を確保することが可能である。  [0011] The polyolefin microporous membrane of the present invention is high in strength, but has a smaller heat shrinkage ratio when heated than a conventional polyolefin microporous membrane. In addition, when the membrane is stuck to an electrode or the like during overheating (hereinafter referred to as a sticking effect), the membrane separation effect can be reliably maintained. Therefore, when the microporous membrane of the present invention is used particularly for a battery separator, it is possible to ensure the safety of the battery.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0012] 本発明のポリオレフイン微多孔膜は、異なる種類の物性を保持させるために 2層の 表層と少なくとも 1層の中間層を含む 3層以上力も構成される必要がある。ここでいう 表層とは、 3層以上に積層された膜の、最外層の 2層のことを指し、中間層はそれ以 外の層を指す。中間層は 1層あるいは複数層でもよいが、生産性の観点から中間層 は 1層であることが好ましい。  [0012] The polyolefin microporous membrane of the present invention needs to have a force of three or more layers including two surface layers and at least one intermediate layer in order to maintain different kinds of physical properties. As used herein, the surface layer refers to the two outermost layers of the film laminated in three or more layers, and the intermediate layer refers to the other layers. The intermediate layer may be a single layer or a plurality of layers, but the intermediate layer is preferably a single layer from the viewpoint of productivity.
[0013] 表層は、 1種又は 2種以上のポリオレフインからなる。一方、中間層も 1種又は 2種以 上のポリオレフインからなる。  [0013] The surface layer is composed of one or more polyolefins. On the other hand, the intermediate layer is also composed of one or more polyolefins.
[0014] ここで、本発明でポリマー材料として使用されるポリオレフインとは、例えば、ポリエ チレン、ポリプロピレンのホモ重合体、または、これらのホモポリマーとエチレン、プロ ピレンと 1ーブテン、 4ーメチルー 1 ペンテン、 1一へキセンおよび 1—オタテン、ノル ボルネンなどとの共重合体であって、上記重合体の混合物でもかまわない。多孔膜 の性能の観点から、ポリエチレンおよびその共重合体が好ましい。これらのポリオレフ インの重合触媒としては、チーグラー'ナッタ系触媒、フィリップス系触媒、メタ口セン 触媒などが挙げられる。ポリオレフインは、 1段重合法によって得られたものでも良い し、多段重合法によって得られたものでもよい。 Here, the polyolefin used as the polymer material in the present invention is, for example, polyethylene, a homopolymer of polypropylene, or these homopolymers and ethylene, propylene and 1-butene, 4-methyl-1 pentene, 1 A copolymer of 1-hexene, 1-octene, norbornene and the like, and a mixture of the above-mentioned polymers may be used. From the viewpoint of the performance of the porous membrane, polyethylene and its copolymer are preferred. The polymerization catalysts for these polyolefins include Ziegler Natta catalysts, Phillips catalysts, A catalyst etc. are mentioned. Polyolefin may be obtained by a single-stage polymerization method or may be obtained by a multi-stage polymerization method.
[0015] さらに本発明のポリオレフイン微多孔膜には、ステアリン酸カルシウムゃステアリン酸 亜鉛等の金属石鹼類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料 などの公知の添加剤も混合して使用することが出来る。  Further, the polyolefin microporous membrane of the present invention may be added with known additives such as metal stalagmites such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments. Agents can also be mixed and used.
[0016] 本発明のポリオレフイン微多孔膜は、中間層の極限粘度 [ r? ]が 3. OdlZg以上で あり、表層の極限粘度 [ 7? ]はこの中間層の極限粘度 [ 7? ]より小さい必要がある。表 層と中間層の極限粘度をこの範囲に保つことにより、膜としての強度を維持できるだ けでなぐ膜に熱が力かった時に膜表層の貼り付き効果を発揮することが可能となる 。膜の貼り付き効果と突刺強度のバランスの観点力 中間層の極限粘度は表層の極 限粘度よりも 2. OdlZg以上大きいことが好ましぐより好ましくは 5. OdlZg以下であ ることが好ましい。  [0016] In the polyolefin microporous membrane of the present invention, the intrinsic viscosity [r?] Of the intermediate layer is 3. OdlZg or more, and the intrinsic viscosity [7?] Of the surface layer is smaller than the intrinsic viscosity [7?] Of the intermediate layer. There is a need. By maintaining the intrinsic viscosity of the surface layer and the intermediate layer within this range, it is possible to exert the effect of adhering the film surface layer when heat is applied to the film as long as the strength of the film can be maintained. From the viewpoint of the balance between the film sticking effect and the puncture strength, the intrinsic viscosity of the intermediate layer is preferably 2. OdlZg or more, more preferably 5. OdlZg or less than the intrinsic viscosity of the surface layer.
[0017] 中間層の極限粘度が 3. OdlZg未満であると、突き刺し強度や引っ張り強度などの 膜全体の機械的強度が低下する。 3. 5dlZg以上が好ましぐ 4. OdlZg以上がより 好ましぐ 5. OdlZg以上がさらに好ましい。また、熱収縮率が小さいことから 7. Odl/ g以下であると好ましい。  [0017] If the intrinsic viscosity of the intermediate layer is less than 3. OdlZg, the mechanical strength of the entire film such as piercing strength and tensile strength is lowered. 3. 5dlZg or more is preferred 4. OdlZg or more is more preferred 5. OdlZg or more is more preferred. Further, since the heat shrinkage rate is small, 7. Odl / g or less is preferable.
表層の極限粘度 [ τ? ]は、 3. OdlZg未満であることが高温での応力緩和による電極 への貼り付き効果がより顕著に表れる点力も好ましい。また、 2. 5dlZg未満であると さらに低ヒューズ特性と高ショート特性とを兼ね備えるという点で好ましぐ 2. OdlZg 未満がより好ましい。さらに、強度の観点からは 1. Odl/gより大きいことが好ましい。 層の極限粘度 [ r? ]は層に含まれるポリオレフイン成分の極限粘度 [ r? ]とその比率に 依存する。従って、各層のポリマー組成とその比率を調整すれば、本発明で規定の 極限粘度の範囲とすることができる。なお、極限粘度 [ 7? ]は、 ASTM— D4020に基 づき、デカリン溶媒における 135°Cでの極限粘度 [ η ]である。  The intrinsic viscosity [τ?] Of the surface layer is preferably less than 3. OdlZg, and the point force at which the effect of sticking to the electrode due to stress relaxation at high temperature appears more remarkably is also preferable. Moreover, it is preferable that it is less than 2.5 dlZg in that it has both low fuse characteristics and high short-circuit characteristics. 2. It is more preferable that it is less than OdlZg. Furthermore, from the viewpoint of strength, it is preferably greater than 1. Odl / g. The intrinsic viscosity [r?] Of the layer depends on the intrinsic viscosity [r?] Of the polyolefin component contained in the layer and its ratio. Therefore, by adjusting the polymer composition of each layer and the ratio thereof, the range of the intrinsic viscosity specified in the present invention can be achieved. The intrinsic viscosity [7?] Is the intrinsic viscosity [η] at 135 ° C in a decalin solvent based on ASTM-D4020.
[0018] 本発明のポリオレフイン製積層微多孔膜は、表層の孔閉塞温度と、中間層の孔閉 塞温度との差が 10°C未満であることが必要である。このことにより、ほぼ同じ温度で 全ての層において孔閉塞が起きるので、膜全体で孔を閉塞させることがさせることが できる。この温度差は 5°C以下であることが好ましぐさらに好ましくは 3°C以下である 。孔閉塞温度は層内に含有するポリオレフイン成分の最低融点に依存する。従って、 所望の融点を有するポリマー糸且成を選択することにより、表層と中間層の孔閉塞温度 を設定することができる。 [0018] In the polyolefin microporous membrane of the present invention, the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer needs to be less than 10 ° C. As a result, pore clogging occurs in almost all layers at substantially the same temperature, so that the pores can be clogged in the entire membrane. This temperature difference is preferably 5 ° C or less, more preferably 3 ° C or less. . The pore closing temperature depends on the lowest melting point of the polyolefin component contained in the layer. Therefore, the pore closing temperature of the surface layer and the intermediate layer can be set by selecting a polymer yarn having a desired melting point.
[0019] なお、孔閉塞温度は、次のような方法で測定した。すなわち、図 1 (A)に示した装置 に微多孔膜をセットし、 25°Cから 200°Cまで 2°CZminの速度にて昇温させ、 1kHz の交流をかけた。このときの温度と電気抵抗値を連続的に測定し、微多孔膜の電気 抵抗値が 103 Ωに達するときの温度を孔閉塞温度と定義した。 [0019] The hole closing temperature was measured by the following method. That is, a microporous membrane was set in the apparatus shown in FIG. 1 (A), the temperature was raised from 25 ° C to 200 ° C at a rate of 2 ° CZmin, and an alternating current of 1kHz was applied. The temperature and electrical resistance at this time were measured continuously, and the temperature at which the electrical resistance value of the microporous membrane reached 10 3 Ω was defined as the pore closing temperature.
また、本発明のポリオレフイン微多孔膜の表層は、膜の過熱時に、電池内で正極、負 極に対し同等の貼り付き効果を発現し、電極間の隔離性を維持することができること In addition, the surface layer of the polyolefin microporous membrane of the present invention can exhibit the same sticking effect on the positive electrode and the negative electrode in the battery when the membrane is overheated, and can maintain the isolation between the electrodes.
、および、電池捲回時の走行性安定のためにも最表層が同じ成分で構成されること が好ましい。 For the sake of running stability when the battery is wound, the outermost layer is preferably composed of the same component.
[0020] また、孔閉塞温度が低くなることからポリエチレンのみで構成されていることが好まし く、より好ましくは両表層ともポリエチレンのみで構成されて 、るとよ!、。  [0020] In addition, since the pore closing temperature is lowered, it is preferable that it is composed only of polyethylene, and more preferably, both surface layers are composed only of polyethylene!
MD方向の引張強度は電池での外部からの衝突試験への耐性及び電池内の異物 などにより短絡を生じにくくすることから、 lOOMPa以上であることが好ましい。より好 ましくは l lOMPa以上である。  The tensile strength in the MD direction is preferably lOOMPa or more because it is resistant to external impact tests on the battery and is less likely to cause a short circuit due to foreign matter in the battery. More preferably, it is l lOMPa or more.
[0021] TD方向の引張強度は電池での外部からの衝突試験への耐性及び電池内の異物 などにより短絡を生じに《することから、 30MPa以上であることが好ましぐ 60MPa 以上がより好ましぐ 90MPa以上がさらに好ましい。  [0021] The tensile strength in the TD direction is preferably 30 MPa or more, more preferably 60 MPa or more, because the battery is resistant to external impact tests on the battery and causes a short circuit due to foreign matter in the battery. More preferably 90 MPa or more.
[0022] 膜全体の厚みは、機械強度を保持し、電極間を完全に絶縁できるようにすることか ら 5 m以上であることが好ましい。また、小型電池のセパレーターへ組み込む場合 は、 40 m以下力 子ましく、さらに好ましくは 10〜 20 mである。表層の厚みは、過 熱時の貼り付き効果を達成しやすくすることから 0. 1 μ m以上、膜全体の強度の観点 力ら 10 μ m以下が好ましぐ 1〜5 μ mがより好ましい。  [0022] The thickness of the entire film is preferably 5 m or more in order to maintain mechanical strength and to completely insulate the electrodes. In addition, when incorporated in a separator of a small battery, it is preferably 40 m or less, more preferably 10 to 20 m. The thickness of the surface layer is preferably 0.1 μm or more in order to easily achieve the sticking effect during overheating, and the strength of the entire film is preferably 10 μm or less, more preferably 1 to 5 μm. .
[0023] 気孔率は、電池セパレーターとして使用した場合に電池内部の抵抗が高くなること を防止する点から 20%以上、機械的強度の点力 70%以下が好ましぐさらに好ま しくは 30〜50%である。透気度は、機械強度の観点から lOsecZcc以上、透過性能 の観点から 1000sec/cc以下が好ましぐ 30〜700secZlOOcc力より好ましく、 50 〜500secZccがさらに好まし!/ヽ。 [0023] When used as a battery separator, the porosity is preferably 20% or more from the viewpoint of preventing an increase in the internal resistance of the battery, and the mechanical strength is preferably 70% or less, and more preferably 30 to 30%. 50%. The air permeability is preferably lOsecZcc or more from the viewpoint of mechanical strength and 1000 sec / cc or less from the viewpoint of permeation performance, more preferably from 30 to 700 secZlOOcc force. I prefer ~ 500secZcc! / ヽ.
[0024] 突刺強度は、電極活物質による破膜防止の観点から、 3. ON/25 μ m以上である こと力 S好ましく、 4. ONZ25 m以上がより好ましぐ 5. 5NZ25 m以上であること 力 Sさらに好ましい。 [0024] The puncture strength is 3. ON / 25 μm or more from the viewpoint of preventing film breakage by the electrode active material. S is preferable, 4. ONZ25 m or more is more preferable 5.5 NZ25 m or more That force S is more preferable.
[0025] 微多孔膜を 130°Cで拘束しな 、状態で測定したときの熱収縮率は低ければ低 、ほ どよい。具体的には、 MD方向の熱収縮率は、 30%未満であることが好ましい。 TD方 向の熱収縮率は、 30%以下であることが好ましぐ 20%未満であることがより好ましく 15%であることが更に好ましい。  [0025] The heat shrinkage rate when measured in a state where the microporous membrane is not restrained at 130 ° C is preferably as low as possible. Specifically, the thermal shrinkage rate in the MD direction is preferably less than 30%. The thermal shrinkage in the TD direction is preferably 30% or less, more preferably less than 20%, and even more preferably 15%.
[0026] 上記の TD引張強度、膜全体の厚み、気孔率、突刺強度、結晶化度は、層に含ま れるポリオレフイン成分組成比や、押出条件、延伸条件、可塑剤抽出条件、熱固定 条件を適宜変更することにより、調整が可能である。  [0026] The above TD tensile strength, overall film thickness, porosity, puncture strength, and crystallinity are determined by the composition ratio of the polyolefin component contained in the layer, extrusion conditions, stretching conditions, plasticizer extraction conditions, and heat setting conditions. Adjustments can be made by appropriate changes.
[0027] なお、本発明のポリオレフイン微多孔膜は電池用セパレーターとして使用した場合 に特に顕著な効果が得られるので、この用途に使用した場合ついて中心に説明した 力 本発明の微多孔膜は、精密ろ過膜、コンデンサー用セパレーター、さらには各種 の機能材料を孔の中に充填させ新たな機能を出現させるための機能膜の母材として 用いることもできる。その場合、過熱時に膜全体が短時間で均一に孔閉塞することや 膜の表面が貼り付く効果を有していることにより、分離膜や母材の安定性を高めること ができるという利点を有する。  [0027] Since the polyolefin microporous membrane of the present invention is particularly effective when used as a battery separator, the force mainly described for use in this application is the microporous membrane of the present invention. It can also be used as a base material for microfiltration membranes, condenser separators, and functional membranes for filling various functional materials into the holes to bring out new functions. In that case, the membrane has the advantage of being able to increase the stability of the separation membrane and the base material by having the effect that the entire membrane is uniformly clogged in a short time during overheating and the surface of the membrane sticks. .
[0028] 次に、本発明の微多孔膜の製造方法について説明する。  [0028] Next, a method for producing a microporous membrane of the present invention will be described.
[0029] 本発明の微多孔膜の製造方法としては、得られる微多孔膜が本発明を満たす特性 を有するように両表層と中間層のポリマー材料を選定していれば、ポリマー種、溶媒 種、押出方法、延伸方法、抽出方法、開孔方法、熱固定,熱処理方法などにおいて 、何ら限定されることはない。また原料に無機物を混入することもできる。この場合、 製造工程中で無機物を抽出してもよいし、含有させたままでもどちらでもよい。  [0029] As a method for producing the microporous membrane of the present invention, as long as the polymer material of both the surface layer and the intermediate layer is selected so that the obtained microporous membrane has characteristics satisfying the present invention, the polymer species and the solvent species are selected. In the extrusion method, stretching method, extraction method, hole opening method, heat setting, heat treatment method and the like, there is no limitation. Moreover, an inorganic substance can also be mixed in a raw material. In this case, the inorganic substance may be extracted during the production process or may be contained as it is.
本発明のポリオレフイン微多孔膜の特性を得るためには、次の組成とすることが好ま しい。  In order to obtain the properties of the polyolefin microporous membrane of the present invention, the following composition is preferred.
[0030] 表層および中間層は、 1種又は 2種以上のポリオレフインカもなる。本発明に規定の 微多孔膜を製造するには、表層のポリマーの極限粘度 [ r? ]は 3. OdlZgより小さいこ と力 子ましく、極限粘度 [ r? ]が 1. 5dlZg以下のポリオレフインが 50wt%以上で含ま れているとより好ましい。一方、中間層のポリマーも 1種又は 2種以上のポリオレフイン 力らなる。中間層のポリマーの極限粘度 [ τ? ]が 3. OdlZg以上であることが必要であ り、二種以上のポリオレフインカもなるときは、極限粘度 [ r? ]が 4. 5dlZg以上のポリ ォレフィンが 30w%以上で構成されていることが好ましぐ 50wt%以上で構成されて いることがさらに好ましい。さらに、表層のポリマーに含まれる最も低い融点をもつ成 分の融点と、中間層のポリマーに含まれる最も低い融点をもつ成分の融点の差の絶 対値が 10°C未満となるように選定する必要がある。表層と中間層のポリマーに含まれ る最も低い融点を持つ成分の融点の差の絶対値は 5°C以下が好ましぐ 3°C以下が より好まし 、。 [0030] The surface layer and the intermediate layer may be one or more kinds of polyolefin ink. In order to produce a microporous membrane as defined in the present invention, the intrinsic viscosity [r?] Of the surface polymer should be less than 3. OdlZg. More preferably, the polyolefin having an intrinsic viscosity [r?] Of 1.5 dlZg or less is contained in an amount of 50 wt% or more. On the other hand, the polymer of the intermediate layer also has one or more polyolefin forces. The intrinsic viscosity [τ?] Of the polymer in the intermediate layer must be 3. OdlZg or more, and when two or more types of polyolefine are used, the polyolefin having an intrinsic viscosity [r?] Of 4.5 dlZg or more. It is more preferable that it is composed of 30 wt% or more, and it is more preferable that it is composed of 50 wt% or more. In addition, the absolute value of the difference between the melting point of the component having the lowest melting point contained in the surface polymer and the melting point of the component having the lowest melting point contained in the intermediate layer polymer is selected to be less than 10 ° C. There is a need to. The absolute value of the difference between the melting points of the components having the lowest melting point contained in the polymer of the surface layer and the intermediate layer is preferably 5 ° C or less, more preferably 3 ° C or less.
[0031] さらに上記ポリマー材料には、ステアリン酸カルシウムゃステアリン酸亜鉛等の金属 石鹼類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の 添加剤を添加することが出来る。これらの添加剤は、原料に添加したり、ポリマーの溶 融混練時、延伸処理後などにカ卩えることができる力 添加剤の効果が発現するので あれば、特に限定されることはない。  [0031] Furthermore, known additives such as metal stones such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments are added to the polymer material. I can do it. These additives are not particularly limited as long as the effect of a force additive that can be added to a raw material, melted and kneaded of a polymer, or after stretching is expressed.
本発明の微多孔膜は、ポリマー材料を溶融混練して押出し、これを延伸し、熱固定 および熱処理することにより得られる。より具体的には以下の(a)〜(e)の工程からな る方法により得られる。  The microporous membrane of the present invention can be obtained by melt-kneading a polymer material, extruding it, stretching it, heat setting and heat treatment. More specifically, it can be obtained by a method comprising the following steps (a) to (e).
[0032] (a)溶融混練 [0032] (a) Melt kneading
まず、表層用、および中間層用のポリマーなどの原材料をそれぞれ溶融混練する。 溶融混練は、一軸押出機、二軸押出機等のスクリュー押出機、ニーダー、ミキサー等 により行うことができる。原材料の一部或いは全部を必要に応じてヘンシェルミキサー 、リボンブレンダー、タンブラーブレンダ一等で事前混合しておいてもよい。少量の場 合は、手で撹拌しても良い。溶融混練時の温度は、 160°C以上が好ましぐ 180°C以 上がさらに好ましい。また 300°C未満が好ましぐ 240°C未満がより好ましぐ 230°C 未満がさらに好ましい。  First, raw materials such as surface layer and intermediate layer polymers are melt-kneaded. The melt-kneading can be performed by a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, a mixer or the like. Some or all of the raw materials may be pre-mixed with a Henschel mixer, a ribbon blender, a tumbler blender, etc. as necessary. If the amount is small, it may be stirred by hand. The temperature at the time of melt kneading is preferably 160 ° C or higher, more preferably 180 ° C or higher. Further, less than 300 ° C is preferable, and less than 240 ° C is more preferable, and less than 230 ° C is more preferable.
また、溶融混練工程や、後の押出し工程での作業を容易にし、本発明の微多孔膜 を製造しやすくするため、可塑剤を用いるとよい。可塑剤の添加時期は、溶融混鍊前 や溶融混鍊時など、押出し工程の前であれば、いつでもよい。 Further, a plasticizer may be used in order to facilitate the work in the melt-kneading process and the subsequent extrusion process and to facilitate the production of the microporous membrane of the present invention. The plasticizer is added before melting and kneading. As long as it is before the extrusion process, such as during melt kneading.
[0033] (b)押出し'冷却  [0033] (b) Extrusion 'cooling
得られた溶融混練物を押出して、シート状に成型してゲルシートとし、これを冷却固 化させる。押出し成型には、スリットダイや Tダイなどのシートダイ力も押出しキャスト口 ールなどで冷却する方法や、インフレーション法した後、冷却する方法が挙げられる 。表層と中間層の積層は、それぞれの押出機力も得られたゲルシートを一体化させ て一つのダイで共押出する方法、ゲルシートをそれぞれ押出して、それらを重ね合わ せて熱融着する方法のいずれでも作製できる。共押出法の方が生産性に優れる。ま た、得られた膜は高い層間接着強度を得やすい上、層間に連通孔を形成しやすい ので、膜の透過性を維持しやすいためより好ましい。  The obtained melt-kneaded product is extruded, formed into a sheet shape to obtain a gel sheet, and this is cooled and solidified. Extrusion molding includes a method of cooling the sheet die force such as a slit die and a T die with an extrusion cast tool, and a method of cooling after an inflation method. For the lamination of the surface layer and the intermediate layer, either the method of co-extrusion with a single die by integrating the gel sheets obtained with the respective extruder force, or the method of extruding each of the gel sheets and superimposing them to heat-seal them Can be made. The coextrusion method is more productive. In addition, the obtained film is more preferable because it easily obtains high interlayer adhesion strength and easily forms communication holes between the layers, so that the permeability of the film is easily maintained.
[0034] (c)延伸  [0034] (c) Stretching
得られたシートを一軸または二軸以上の方向へ延伸する。得られる膜の強度を確 保し易い点から二軸以上に延伸することが好ましぐまた延伸工程が少ない点で同 時に二軸方向に延伸することが好ま U、。延伸方法及び延伸回数につ!、ては特に 制限はないが、例えば、ロール延伸機による MD—軸延伸、テンターによる TD—軸 延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐 次二軸延伸、同時二軸テンターやインフレーション成形による同時二軸延伸などが 挙げられる。延伸倍率は、膜厚の生産性の観点より、トータルの面倍率が 8倍以上が 好ましぐ 26倍以上がさらに好ましぐ 40倍以上力もっとも好ましい。また、膜の均一 性の点力も上限は 100倍以下が好ましぐより好ましくは 65倍以下である。  The obtained sheet is stretched in a uniaxial or biaxial or more direction. It is preferable to stretch biaxially or more because it is easy to ensure the strength of the resulting film, and it is preferable to stretch in the biaxial direction at the same time because there are fewer stretching steps. There are no particular restrictions on the stretching method and the number of stretching operations. For example, MD-axial stretching with a roll stretching machine, TD-axial stretching with a tenter, roll stretching machine and tenter, or a combination of tenter and tenter. Examples include secondary biaxial stretching, simultaneous biaxial tenter and simultaneous biaxial stretching by inflation molding. From the viewpoint of film thickness productivity, the draw ratio is preferably a total surface magnification of 8 times or more, more preferably 26 times or more, and most preferably a force of 40 times or more. The upper limit of the uniformity of the film is preferably 100 times or less, more preferably 65 times or less.
[0035] (d)可塑剤抽出  [0035] (d) Plasticizer extraction
(a)でポリマー材料に可塑剤を添加した場合、必要に応じて可塑剤を抽出する。可 塑剤抽出の時期、方法、回数については特に制限はない。例えば、延伸後に抽出 溶媒などを用いて可塑剤を抽出する。この場合、延伸シートを抽出溶媒に浸漬、ある いはシャワーすることにより可塑剤を抽出する。その後、充分に乾燥させる。  When a plasticizer is added to the polymer material in (a), the plasticizer is extracted as necessary. There are no particular restrictions on the timing, method, and number of plasticizer extractions. For example, the plasticizer is extracted using an extraction solvent after stretching. In this case, the plasticizer is extracted by immersing the stretched sheet in an extraction solvent or showering. Then, it is sufficiently dried.
[0036] (e)熱固定および熱処理  [0036] (e) Heat setting and heat treatment
得られた延伸シートは熱固定及び熱処理を行う。熱固定の方法としては、所定の温 度雰囲気で所定の緩和率となるよう緩和操作を行う。緩和操作とは、延伸シートを M D方向及び Z或いは TD方向へ縮小させる操作のことである。また緩和率とは、緩和 操作後の膜の MD寸法を操作前の膜の MD寸法で除した値、或 、は緩和操作後の TD寸法を操作前の膜の TD寸法で除した値、或いは MD、 TD双方を緩和した場合 は、 MDの緩和率と TDの緩和率を乗じた値のことである。具体的な方法として、テン ターやロール延伸機を利用する方法が挙げられる。所定の温度としては、熱収縮率 を低くするためには 100°C以上が好ましぐ気孔率及び透過性を上述の好ましい範 囲とするためには 135°C未満が好ましい。所定の緩和率としては、熱収縮率を低くす るために 0. 9以下が好ましぐ 0. 8以下であることがさらに好ましい。また、しわの発 生を防止すること、気孔率及び透過性を上述の好ましい範囲とするためには 0. 6以 上であることが好ましい。緩和操作は、 MD方向、 TD方向の双方で行っても良いが、 MD方向或いは TD方向に片方だけの緩和操作でもよ 、。一方向に緩和操作を行つ た場合であっても、操作方向だけでなく操作方向と垂直な方向についても、熱収縮 率を低減することが可能である。 The obtained stretched sheet is subjected to heat setting and heat treatment. As a heat setting method, a relaxation operation is performed so that a predetermined relaxation rate is obtained in a predetermined temperature atmosphere. The relaxation operation means that the stretched sheet is M It is an operation to reduce in the D direction and Z or TD direction. The relaxation rate is the value obtained by dividing the MD dimension of the film after the relaxation operation by the MD dimension of the film before the operation, or the value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the film before the operation, or When both MD and TD are relaxed, the value is the product of the MD relaxation rate and the TD relaxation rate. Specific methods include a method using a tenter or a roll drawing machine. The predetermined temperature is preferably less than 135 ° C. in order to make the porosity and permeability preferable above 100 ° C. in order to lower the heat shrinkage rate and in the above-mentioned preferable range. The predetermined relaxation rate is preferably 0.9 or less, and more preferably 0.8 or less, in order to reduce the heat shrinkage rate. Further, in order to prevent the generation of wrinkles and to make the porosity and permeability within the above-mentioned preferable ranges, it is preferably 0.6 or more. The relaxation operation may be performed in both the MD direction and the TD direction, but may be performed only in one direction in the MD direction or the TD direction. Even when the relaxation operation is performed in one direction, it is possible to reduce the heat shrinkage rate not only in the operation direction but also in the direction perpendicular to the operation direction.
[0037] また、熱固定した延伸シートの表面に電子線照射、プラズマ照射、界面活性剤塗 布、化学的改質などの表面処理を施すことも出来る。 [0037] Further, surface treatment such as electron beam irradiation, plasma irradiation, surfactant coating, chemical modification, etc. can be applied to the surface of the heat-set stretched sheet.
更に、上記熱固定後のマスターロールを所定の温度下でエージングし、その後マス ターロールの巻き返し作業を行うことが好ましい。この工程により、マスターロール内 のポリオレフインの残存応力が開放される。マスターロールの熱処理温度は 35°C以 上が好ましぐ 45°C以上が更に好ましぐ 60°C以上が特に好ましい。また、膜の透過 性を保持する観点から 120°C以下が好ましい。  Further, it is preferable that the master roll after the heat setting is aged at a predetermined temperature, and then the master roll is rewound. This step releases the residual stress of the polyolefin in the master roll. The heat treatment temperature of the master roll is preferably 35 ° C or higher, more preferably 45 ° C or higher, particularly preferably 60 ° C or higher. Further, 120 ° C. or less is preferable from the viewpoint of maintaining the permeability of the membrane.
[0038] 本発明で使用しうる可塑剤には、沸点以下の温度でポリオレフインと均一な溶液を 形成しうる有機化合物が挙げられ、具体的にはデカリン、キシレン、ジォクチルフタレ ート、ジブチルフタレート、ステアリルアルコール、ォレイルアルコール、デシルアルコ ール、ノ-ルアルコール、ジフエ-ルエーテル、 n—デカン、 n—ドデカン、パラフィン 油等が挙げられる。このうちパラフィン油、ジォクチルフタレートが好ましい。 [0038] Plasticizers that can be used in the present invention include organic compounds that can form a homogeneous solution with polyolefin at temperatures below the boiling point, and specifically include decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl. Examples include alcohol, oleyl alcohol, decyl alcohol, normal alcohol, diphenyl ether, n -decane, n -dodecane, and paraffin oil. Of these, paraffin oil and dioctyl phthalate are preferable.
[0039] 可塑剤の割合は特に限定されないが、得られる膜の気孔率を適当な範囲するため には各層の原材料投入量に対して全ての層で 20重量%以上添加することが好まし ぐ粘度を適当な範囲するためには全ての層で 90重量%以下であることが好ましい。 より好ましくは 50重量%から 70重量%である。 [0039] The proportion of the plasticizer is not particularly limited, but it is preferable to add 20% by weight or more in all layers with respect to the amount of raw material input in each layer in order to keep the porosity of the obtained film in an appropriate range. In order to make the viscosity within an appropriate range, it is preferable that the content is 90% by weight or less in all layers. More preferably, it is 50 to 70% by weight.
[0040] 本発明で使用しうる抽出溶媒としては、ポリオレフインに対して貧溶媒であり、且つ 可塑剤に対しては良溶媒であり、沸点がポリオレフインの融点よりも低いものが望まし い。このような抽出溶媒としては、例えば、 n—へキサンやシクロへキサン等の炭化水 素類、塩化メチレンや 1, 1, 1 トリクロロェタン、フルォロカーボン系等ハロゲン化炭 化水素類、エタノールやイソプロパノール等のアルコール類、アセトンや 2—ブタノン 等のケトン類が挙げられる。この中から適宜選択し、単独で、若しくは混合して使用す る。これらの抽出溶媒は、可塑剤の抽出後に蒸留により再生し、再度使用しても構わ ない。 [0040] The extraction solvent that can be used in the present invention is preferably a poor solvent for polyolefin, a good solvent for plasticizer, and a boiling point lower than the melting point of polyolefin. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride, 1,1,1 trichloroethane, fluorocarbon, ethanol and isopropanol. And alcohols such as acetone and ketones such as acetone and 2-butanone. Select from among these, and use alone or in combination. These extraction solvents may be regenerated by distillation after extraction of the plasticizer and used again.
[0041] 溶融混練時の熱劣化とそれによる品質悪化を防止する観点より、 (a)工程において 酸ィ匕防止剤を配合することが好ましい。特に材料の特性上、榭脂が加熱する前に添 カロされていることが好ましい。酸化防止剤の濃度は、全ポリオレフイン材料の重量に 対して 0. 3wt%以上が好ましぐ 0. 5wt%以上がさらに好ましい。また、 5. 0 %以 下が好ましぐ 3. 0 %以下がさらに好ましい。  [0041] From the viewpoint of preventing thermal deterioration during melt kneading and quality deterioration due thereto, it is preferable to add an anti-oxidation agent in the step (a). In particular, from the standpoint of the material properties, it is preferable that the resin is calcined before heating. The concentration of the antioxidant is preferably 0.3 wt% or more, more preferably 0.5 wt% or more, based on the weight of the total polyolefin material. Further, 5.0% or less is preferable, and 3.0% or less is more preferable.
[0042] 酸ィ匕防止剤としては、 1次酸ィ匕防止剤であるフエノール系酸ィ匕防止剤が好ましぐ 2 , 6—ジ tーブチルー 4 メチルフエノール、ペンタエリスリチルーテトラキスー [3— ( 3, 5—ジ一 t—ブチル 4—ヒドロキシフエ-ル)プロピオネート]、ォクタデシルー 3— (3, 5—ジ—tーブチルー 4ーヒドロキシフエ-ル)プロピオネート等が挙げられる。な お、 2次酸ィ匕防止剤も併用して使用可能であり、トリス(2, 4 ジー t ブチルフエ- ル)フォスファイト、テトラキス(2, 4 ジ一 t—ブチルフエ-ル)一 4, 4 ビフエ-レン ージフォスフォナイト等のリン系酸ィ匕防止剤、ジラウリルーチォージプロピオネート等 のィォゥ系酸ィ匕防止剤などが挙げられる。  [0042] Phenol-based acid-detergents, which are primary acid-detergents, are preferred as acid-detergents. 2,6-Di-tert-butyl-4-methylphenol, pentaerythrityl-tetrakis [3 — (3,5-di-tert-butyl 4-hydroxyphenol) propionate], octadecyl-3- (3,5-di-tert-butyl-4-hydroxyphenol) propionate, and the like. Secondary anti-oxidation agents can also be used in combination with tris (2,4 di-t-butylphenol) phosphite, tetrakis (2,4-di-t-butylphenol), 1,4,4 Examples thereof include phosphoric acid inhibitors such as biphenylene phosphonite and thio acid inhibitors such as dilauric dithiopropionate.
[0043] さらには、上述のように原料ポリマーに酸ィ匕防止剤を所定の濃度で混合した後、ミ キサーや押出し機の内部を窒素雰囲気に置換し、窒素雰囲気を維持した状態で溶 融混練を行うことが好まし 、。  [0043] Further, as described above, after mixing the raw material polymer with the anti-oxidation agent at a predetermined concentration, the inside of the mixer or the extruder is replaced with a nitrogen atmosphere, and the mixture is melted while maintaining the nitrogen atmosphere. It is preferable to perform kneading.
[0044] 本発明の微多孔膜を電池用セパレーターとして用いる場合、例えば下記の方法で 電池を作成すればよい。 [0044] When the microporous membrane of the present invention is used as a battery separator, for example, a battery may be prepared by the following method.
[0045] まず、微多孔膜を幅 10mm〜: LOOmm、長さ 200mm〜2000mmの縦長の形状に する。このセパレーターを、正極ーセパレーター負極ーセパレーター、または負極 セパレーター正極ーセパレーターの順で重ね、円または扁平な渦巻状に卷回する。 さらに、この卷回体を電池缶内に収納し、さらに電解液を注入する。 [0045] First, the microporous membrane is formed into a vertically long shape having a width of 10 mm to: LOO mm and a length of 200 mm to 2000 mm. To do. The separators are stacked in the order of positive electrode separator, negative electrode separator, or negative electrode separator positive electrode separator, and wound into a circular or flat spiral shape. Further, the wound body is accommodated in a battery can and an electrolyte is injected.
[0046] 本発明における電池の種類は特に限定されないが、ポリオレフイン微多孔膜と電解 液との親和性の観点力 非水電解液電池であることが好ましい。また、本発明の微多 孔膜をセパレーターとして使用した場合に優れた安全性を付与できるという観点から リチウムイオン電池であることがより好ま 、。  [0046] The type of the battery in the present invention is not particularly limited, but it is preferably a non-aqueous electrolyte battery from the viewpoint of the affinity between the polyolefin microporous membrane and the electrolyte. In addition, a lithium ion battery is more preferable from the viewpoint of providing excellent safety when the microporous membrane of the present invention is used as a separator.
実施例  Example
[0047] 本発明を実施例に基づいて説明する。  [0047] The present invention will be described based on examples.
本発明で用いた各種物性は、以下の試験方法に基づいて測定した。  Various physical properties used in the present invention were measured based on the following test methods.
なお、(1)極限粘度と(11)孔閉塞温度については、積層膜から表層と中間層を分 離し、各層について測定した。剥離方法は下記に記載する。  The (1) intrinsic viscosity and (11) pore closing temperature were measured for each layer by separating the surface layer and the intermediate layer from the laminated film. The peeling method is described below.
[0048] サンプルを任意の大きさに切り出し、(株)スリオンテック製養生用クロステープを片 側の表層の全面に貼り付けた。(株)スリオンテック製養生用クロステープを全面に貼 り付けた層と逆側の表層の一部分に、(株)スリオンテック製養生用クロステープ貼り 付けて引っ張り、中間層と (株)スリオンテック製養生用クロステープが全面に貼られ ていない側の表層を剥がし取った。剥がし取った積層体の、片側の層の全面に (株) スリオンテック製養生用クロステープを貼り付け、逆側の層の一部分に (株)スリオンテ ック製養生用クロステープを貼り付けて引っ張り、任意の層を剥がし取った。 [0048] A sample was cut into an arbitrary size, and a curing cloth tape manufactured by Sliontec Co., Ltd. was attached to the entire surface of one surface. Attach and pull the crossing tape made of Sliontec Co., Ltd. on a part of the surface layer opposite to the layer on which the crossing tape made by Sliontec Co., Ltd. is applied. The surface layer on the side where the cross tape was not applied to the entire surface was peeled off. Paste Sliontec Co., Ltd.'s curing cloth tape on the entire surface of one side of the peeled laminate. Paste Sliontec Co., Ltd.'s curing cloth tape on a part of the opposite layer. Any layer was peeled off.
[0049] (1)極限粘度 [ 7? ]及び粘度平均分子量 (Mv) [0049] (1) Intrinsic viscosity [7?] And viscosity average molecular weight (Mv)
ASTM— D4020に基づき、デカリン溶媒における 135°Cでの極限粘度 [ ]を求 めた。ポリエチレンの Mvは次式により算出した。  Based on ASTM-D4020, the intrinsic viscosity [] at 135 ° C in decalin solvent was determined. The Mv of polyethylene was calculated by the following formula.
[ τ? ] =6. 77 Χ 10"4Μν°· 67 [τ?] = 6. 77 Χ 10 " 4 Μν ° · 67
ポリプロピレンについては、次式により Mvを算出した。  For polypropylene, Mv was calculated according to the following formula.
[ r? ] = l. 10 Χ 10-4Μν°· 80 [r?] = l. 10 Χ 10- 4 Μν ° · 80
層の Mvはポリエチレンの式より算出した。  The Mv of the layer was calculated from the polyethylene equation.
(2)膜厚 m)  (2) Film thickness m)
東洋精機製作所 (株)の微小測厚器、 KBM (商標)用いて室温 23士 2°Cで測定し た。 Measured at room temperature 23 people at 2 ° C using KBM (trademark), a micro thickness gauge from Toyo Seiki Seisakusho Co., Ltd. It was.
[0050] (3)気孔率(%)  [0050] (3) Porosity (%)
lOcm X 10cm角の試料を微多孔膜から切り取り、その体積 (cm3 )と質量 (g)を求 め、それらと膜密度 (gZcm3)より、次式を用いて計算した。 A sample of lOcm × 10 cm square was cut from a microporous membrane, and its volume (cm 3 ) and mass (g) were determined. From these and the film density (gZcm 3 ), the following equation was used.
気孔率 = (体積 質量 Z膜密度) Z体積 X 100  Porosity = (volume mass Z film density) Z volume X 100
なお、膜密度は 0. 95と一定にして計算した。  The film density was calculated at a constant 0.95.
(4)透気度(sec)  (4) Air permeability (sec)
JIS P— 8117に準拠し、ガーレー式透気度計 (東洋精機製作所 (株)製、 G-B2 ( 商標))により測定した。  Based on JIS P-8117, it was measured with a Gurley type air permeability meter (G-B2 (trademark), manufactured by Toyo Seiki Seisakusho Co., Ltd.).
(5)突刺強度 (g)、(NZ25 m)  (5) Puncture strength (g), (NZ25 m)
カトーテック製、 KES— G5 (商標)ハンディー圧縮試験器を用いて、針先端の曲率 半径 0. 5mm、突刺速度 2mmZsecで、 23 ± 2°C雰囲気下にて突刺試験を行うこと により、最大突刺荷重 (N)に Z25 ( μ m)を乗じた突刺強度 (NZ25 μ m)を算出し た。  Using a KES-G5 (trademark) handy compression tester manufactured by Kato Tech, the maximum piercing is performed by performing a piercing test in a 23 ± 2 ° C atmosphere with a radius of curvature of the needle tip of 0.5 mm and a piercing speed of 2 mmZsec. The puncture strength (NZ25 μm) obtained by multiplying the load (N) by Z25 (μm) was calculated.
[0051] (6)引張強度 (MPa)、引張伸度 (%)  [0051] (6) Tensile strength (MPa), Tensile elongation (%)
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフ AG— A型 (商標 )を用いて、測定した。このサンプル(形状;幅 10mm X長さ 100mm)を MD方向及 び TD方向に切り取った。また、サンプルはチャック間を 50mmとし、サンプルの両端 部(各 25mm)の片面にセロハンテープ(日東電工包装システム (株)製、商品名: N. 29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試 験機のチャック内側に、厚み lmmのフッ素ゴムを貼り付けた。  In accordance with JIS K7127, measurement was performed using a tensile tester manufactured by Shimadzu Corporation, Autograph AG-A type (trademark). This sample (shape: width 10 mm x length 100 mm) was cut in the MD and TD directions. The sample used was a sample with a chuck spacing of 50 mm and cellophane tape (Nitto Denko Packaging System Co., Ltd., trade name: N. 29) on one side of each end of the sample (25 mm each). Furthermore, in order to prevent sample slip during the test, lmm-thick fluororubber was affixed inside the chuck of the tensile tester.
引張伸度(%)は、サンプルが破断に至るまでの伸び量 (mm)をチャック間距離 (5 Omm)で除して、 100を乗じることにより求めた。  The tensile elongation (%) was obtained by dividing the amount of elongation (mm) until the sample broke by the distance between chucks (5 Omm) and multiplying by 100.
引張強度 (MPa)は、サンプルの破断時の強度を、試験前のサンプル断面積で除 することで求めた。また、 MD方向の値と TD方向の値を合計することにより、 MD引 張伸びと TD引張伸びの合計(%)を求めた。なお、測定は、温度 23± 2°C、チャック 圧 0. 30MPa、引張速度 200mmZ分(チャック間距離を 50mm確保できないサンプ ルにあっては、ひずみ速度 400%Z分)で行った。 [0052] (7)融点 The tensile strength (MPa) was obtained by dividing the strength at break of the sample by the cross-sectional area of the sample before the test. Also, by summing the MD direction value and the TD direction value, the total (%) of MD tensile elongation and TD tensile elongation was obtained. The measurement was performed at a temperature of 23 ± 2 ° C, a chuck pressure of 0.30 MPa, and a tensile speed of 200 mmZ (for a sample where the distance between chucks cannot be secured to 50 mm, the strain rate is 400% Z). [0052] (7) Melting point
セィコ一電子工業 (株)製 DSC— 220Cを使用し測定した。サンプルは直径 5mm の円形に打ち抜き、数枚重ね合わせて 3mgとした。これを直径 5mmのアルミ製ォー プンサンプルパンに敷き詰め、クリンビングカバーをのせ、サンプルシーラーでアルミ パン内に固定した。昇温速度 10°CZminで、 30°Cから 180°Cまでを測定し、融解吸 熱曲線の極大となる温度を融点とした。  Measurement was performed using DSC-220C manufactured by Seiko Ichi Kogyo Co., Ltd. The sample was punched into a circle with a diameter of 5 mm, and several sheets were stacked to make 3 mg. This was spread on an aluminum open sample pan with a diameter of 5 mm, a crimping cover was put on, and it was fixed in the aluminum pan with a sample sealer. The temperature from 30 ° C to 180 ° C was measured at a rate of temperature increase of 10 ° CZmin, and the temperature at which the melting endotherm curve was maximized was taken as the melting point.
(8)末端ビニル基濃度  (8) Terminal vinyl group concentration
ポリオレフイン微多孔膜を、加熱プレスを用いて lmm程度の厚さにした後、赤外分 光光度計 (株式会社バリアンテクノロジーズジャパンリミテッド製 FTS60AZ896ZU MA300)で測定した。 910cm_1における吸光度、ポリオレフイン微多孔膜の密度 (g /cm3)及びサンプルの厚さ(mm)より、 POLYMER LETTERS After making the polyolefin microporous film into a thickness of about 1 mm using a heating press, it was measured with an infrared spectrophotometer (FTS60AZ896ZU MA300 manufactured by Varian Technologies Japan Limited). Absorbance at 910 cm _1, the density of the polyolefin microporous film (g / cm3) and the thickness of the sample from (mm), POLYMER LETTERS
VOL. 2, PP. 339-341に記載の式を参考にして、末端ビュル基濃度、すなわち ポリエチレン中の炭素原子 10, 000個あたりの末端ビュル基個数 (以下、この単位を 個 Zio, 000Cで表現する)を以下の式より算出した。なお、小数点以下を切り捨て て算出した。  VOL. 2, PP. 339-341 Referring to the concentration of terminal bur groups, that is, the number of terminal bur groups per 10,000 carbon atoms in polyethylene (hereinafter this unit is expressed in units of Zio, 000C). (Expressed) was calculated from the following equation. The calculation was performed by rounding down the decimals.
末端ビニル基濃度 (個 ZIO, 000C) = 11. 4 X吸光度 Z (密度'厚さ)  Terminal vinyl group concentration (pieces ZIO, 000C) = 11. 4 X absorbance Z (density'thickness)
なお、密度の単位は gZcm3であり、厚さの単位は mmである。 The unit of density is gZcm 3 and the unit of thickness is mm.
[0053] (9) 130°C熱収縮率 [0053] (9) 130 ° C heat shrinkage
MD方向に 100mm、 TD方向に 100mmに切り取ったサンプルを、 130°Cのォー ブン中に 1時間放置した。このとき、温風に直接サンプルがあたらないように、 2枚の 紙にはさんだ。オーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式に て MD及び TDの熱収縮率を算出した。  A sample cut to 100 mm in the MD direction and 100 mm in the TD direction was left in an oven at 130 ° C for 1 hour. At this time, it was sandwiched between two sheets of paper so that the sample was not directly exposed to the hot air. After removing from the oven and cooling, the length (mm) was measured, and the thermal shrinkage of MD and TD was calculated by the following formula.
MD熱収縮率(%) = (100—加熱後の MDの長さ) Z100 X 100 TD熱収縮率(%) = (100—加熱後の TDの長さ) Z100 X 100 (10)孔閉塞温度  MD heat shrinkage rate (%) = (100—MD length after heating) Z100 X 100 TD heat shrinkage rate (%) = (100—TD length after heating) Z100 X 100 (10) Hole closure temperature
図 1 (A)に孔閉塞温度の測定装置の概略図を示す。 1は微多孔膜であり、 2A及 び 2Bは厚さ 10 mのニッケル箔、 3A及び 3Bはガラス板である。 4は電気抵抗測定 装置 (安藤電気製 LCRメーター「AG—4311」(商標))でありニッケル箔 2A、 2Bと接 続されている。 5は熱電対であり温度計 6と接続されている。 7はデーターコレクターで あり、電気抵抗測定装置 4及び温度計 6と接続されている。 8はオーブンであり、ここ で微多孔膜を加熱した。 Fig. 1 (A) shows a schematic diagram of a device for measuring the hole closing temperature. 1 is a microporous film, 2A and 2B are 10 m thick nickel foil, and 3A and 3B are glass plates. 4 is an electric resistance measuring device (LCR meter “AG-4311” (trademark) manufactured by Ando Electric Co., Ltd.), which is in contact with nickel foils 2A and 2B. It has been continued. 5 is a thermocouple connected to a thermometer 6. A data collector 7 is connected to the electrical resistance measuring device 4 and the thermometer 6. 8 is an oven in which the microporous membrane was heated.
[0054] さらに図 1 (B) (C)を用いてこの装置を用いた測定方法について詳細に説明する。  Further, a measurement method using this apparatus will be described in detail with reference to FIGS.
図 1 (B)に示すようにニッケル箔 2A上に微多孔膜 1を重ねて、これを縦方向に「テフ ロン」(登録商標)テープ(図の斜線部)でニッケル箔 2Aに固定した。微多孔膜 1には 電解液として ImolZリットルのホウフッ化リチウム溶液 (溶媒:プロピレンカーボネート Zエチレンカーボネート Ζ Ύ ブチルラタトン = 1Ζ1Ζ2)を含浸させた。ニッケル箔 2Β上には図 1 (C)に示すように「テフロン」(登録商標)テープ(図の斜線部)を貼り合 わせ、箔 2Βの中央部分に 15mm X 10mmの窓の部分を残してマスキングした。  As shown in FIG. 1 (B), the microporous membrane 1 was superposed on the nickel foil 2A, and this was fixed to the nickel foil 2A with “Teflon” (registered trademark) tape (shaded portion in the figure) in the vertical direction. The microporous membrane 1 was impregnated with an ImolZ liter lithium borofluoride solution (solvent: propylene carbonate Z ethylene carbonate Ύ butyl rataton = 1 Ζ 1 Ζ 2) as the electrolyte. As shown in Fig. 1 (C), "Teflon" (registered trademark) tape (shaded area in the figure) is pasted onto nickel foil 2mm, leaving a 15mm x 10mm window part in the center of foil 2mm. Masked.
[0055] ニッケル箔 2Aとニッケル箔 2Bを微多孔膜 1をはさむような形で重ね合わせ、さらに その両側力もガラス板 3A、 3Bによって 2枚のニッケル箔をはさみこんだ。このとき、箔 2Bの窓の部分と、多孔膜 1が相対する位置に来るように配置した。  [0055] Nickel foil 2A and nickel foil 2B were superposed so as to sandwich microporous film 1, and two nickel foils were sandwiched between glass plates 3A and 3B. At this time, it was arranged so that the window portion of the foil 2B and the porous membrane 1 were at opposite positions.
また、 2枚のガラス板は市販のダブルクリップではさむことにより固定した。熱電対 5 は「テフロン」(登録商標)テープでガラス板に固定した。  The two glass plates were fixed by sandwiching with a commercially available double clip. The thermocouple 5 was fixed to the glass plate with “Teflon” (registered trademark) tape.
このような装置で連続的に温度と電気抵抗を測定した。 25°Cから 200°Cまで 2°CZ minの速度にて昇温させ、 1kHzの交流にて測定したとき、微多孔膜の電気抵抗値 力 ^103 Ωに達した温度を孔閉塞温度と定義した。 Temperature and electric resistance were continuously measured with such an apparatus. When the temperature was increased from 25 ° C to 200 ° C at a rate of 2 ° CZ min and measured at an alternating current of 1 kHz, the temperature at which the electrical resistance of the microporous membrane reached ^ 10 3 Ω was defined as the pore closure temperature. Defined.
[0056] (11)電池評価  [0056] (11) Battery evaluation
正極の作製:活物質としてリチウムコバルト複合酸化物 LiCoOを 92. 2重量%、導  Fabrication of positive electrode: 92.2% by weight of lithium cobalt composite oxide LiCoO as the active material
2  2
電剤としてリン片状グラフアイトとアセチレンブラックをそれぞれ 2. 3重量%、バインダ 一としてポリフッ化ビ-リデン(PVDF) 3. 2重量0 /0を N メチルピロリドン(NMP)中 に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ 20 /z mのァ ルミ-ゥム箔の片面にダイコーターで塗付し、 130°Cで 3分間乾燥後、ロールプレス 機で圧縮成形した。このとき、正極の活物質塗付量は 250gZm2,活物質嵩密度は 3. OOgZcm3になるようにした。これを幅約 40mmに切断して帯状にした。 Each 2.3% by weight of scaly graphite and acetylene black as a conductive agent, polyvinylidene as a binder one mold - isopropylidene (PVDF) 3. dispersed therein 2 wt 0/0 in N-methylpyrrolidone (NMP) and the slurry Was prepared. This slurry was applied to one side of a 20 / zm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the amount of active material applied to the positive electrode was 250 gZm 2 and the bulk density of the active material was 3.OOgZcm 3 . This was cut to a width of about 40 mm to form a strip.
[0057] 負極の作製:活物質として人造グラフアイト 96. 9重量%、バインダーとしてカルボキ シメチルセルロースのアンモ-ゥム塩 1. 4重量0 /0とスチレン ブタジエン共重合体ラ テックス 1. 7重量%を精製水中に分散させてスラリーを調製した。このスラリーを負極 集電体となる厚さ 12 mの銅箔の片面にダイコーターで塗付し、 120°Cで 3分間乾 燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は 106gZm2 ,活物質嵩密度は 1. 35gZcm3になるようにした。これを幅約 40mmに切断して帯 状にした。 [0057] Preparation of negative electrode: artificial graphite 96.9% by weight as an active material, ammonium of carboxymethyl sheet methylcellulose as binders - © beam salt 1.4 wt 0/0 and styrene-butadiene copolymer La Tex 1. A slurry was prepared by dispersing 7% by weight in purified water. This slurry was applied to one side of a 12 m thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material coating amount of the negative electrode was set to 106 gZm 2 , and the active material bulk density was set to 1.35 gZcm 3 . This was cut to a width of about 40 mm to form a strip.
[0058] 非水電解液の調製:エチレンカーボネート:ェチルメチルカーボネート = 1: 2 (体積 比)の混合溶媒に、溶質として LiPF 6を濃度 1. OmolZリットルとなるように溶解させて 調製した。  [0058] Preparation of non-aqueous electrolyte: Prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1. OmolZ liter.
[0059] 電池組立:上記の微多孔膜セパレーター、帯状正極及び帯状負極を、帯状負極、 セパレーター、帯状正極、セパレーターの順に重ねて渦巻状に複数回捲回して電極 板積層体を作製した。この電極板積層体を平板状にプレス後、アルミニウム製容器 に収納し、正極集電体力ゝら導出したアルミニウム製リードを容器壁に、負極集電体か ら導出したニッケル製リードを容器蓋端子部に接続した。  Battery assembly: The above microporous membrane separator, strip-shaped positive electrode, and strip-shaped negative electrode were stacked in the order of the strip-shaped negative electrode, separator, strip-shaped positive electrode, and separator, and wound in a spiral shape to produce an electrode plate laminate. This electrode plate laminate is pressed into a flat plate shape and then housed in an aluminum container. The aluminum lead derived from the positive electrode current collector force is placed on the container wall, and the nickel lead derived from the negative electrode current collector is placed on the container lid terminal. Connected to the department.
その後、真空下 65°Cで 8時間乾燥後、この容器内に前記した非水電解液を注入し 封口した。  Thereafter, after drying at 65 ° C. for 8 hours under vacuum, the above-mentioned non-aqueous electrolyte was poured into the container and sealed.
こうして作製されるリチウムイオン電池は、縦 (厚み) 6. 3mm,横 30mm,高さ 48m mの大きさであった。この電池を 25°C雰囲気下、(0. 5C)の電流値で電池電圧 4. 2 The lithium-ion battery thus fabricated was 6.3 mm in length (thickness), 30 mm in width, and 48 mm in height. The battery voltage at a current value of (0.5C) in an atmosphere of 25 ° C 4.2
Vまで充電し、さらに 4. 2Vを保持するようにして電流値を絞り始めるという方法で、合 計 6時間電池作成後の最初の充電を行った。 The battery was charged to V, and then the current value was started to be reduced so as to hold 4.2 V. The first charge after the battery was made for a total of 6 hours was performed.
[0060] (a)この電池についてオーブン試験を実施するため、充電後の電池を室温から 15[0060] (a) In order to perform an oven test on this battery, the battery after charging was charged from room temperature.
0°Cまで 5°CZ分の速さで昇温して、 150°Cで 1時間放置した。 The temperature was raised to 0 ° C at a rate of 5 ° CZ and left at 150 ° C for 1 hour.
その結果、 10分以下で発火したものを X、 30分まで発火しな力つたものを〇、 1時 間発火しな力つたものを◎とした。  As a result, X was fired in less than 10 minutes, ○ was fired until 30 minutes, and ◎ was fired for 1 hour.
[0061] (b)この電池の衝突試験をするため、 1. 9mの高さ力 コンクリート床に繰りかえし 1[0061] (b) In order to perform a collision test of this battery, 1. 9m high force Repeated on the concrete floor 1
0回落下させた。その後電池を解体し、セパレーターの状態を観察した。セパレータ 一の変形による短絡を生じな力 たものは、評価良好とした。 Dropped 0 times. Thereafter, the battery was disassembled, and the state of the separator was observed. A separator that did not cause a short circuit due to a single deformation was evaluated as good.
[0062] [実施例 1] [Example 1]
押出機 2台を用いて、組成の同じ 2つの表層および中間層からなる微多孔膜を作 成した。表面層の組成は、 [ 7? ]が 1. 2dlZg、 Mvが 7万、融点が 133°Cであるホモポ リマーのポリエチレン 45wt%、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 136°Cである ホモポリマーのポリエチレン 45wt%、 [ 7? ]カ^4. 9dlZg、 Mv40万のホモポリマーの ポリプロピレン 5wt%とした。また、中間層の糸且成は、 [ 7? ]力 . 6dlZg、 Mvが 70万 、融点が 135°Cであるホモポリマーのポリエチレンを 46. 5wt%、 [ 7? ]カ 2. 8dlZg、 Mv力 25万、 136。Cであるホモポリマーのポリエチレンを 46. 5wt%, [ 7? ]カ 4. 9dl /g、 Mv40万のホモポリマーのポリプロピレンを 7wt%とした。これらの糸且成をそれぞ れブレンドした。酸化防止剤として、各層のポリマーの合計に対し 0. 3wt%のテトラ キス (メチレン 3— (3,, 5,一ジ一 t—ブチル 4 '—ヒドロキシフエ-ル)プロピネ ート)メタンを混合した。各組成はそれぞれ口径 25mm、 LZD=48の二軸押出機へ 、フィーダ一を介して投入した。さらに各層のポリマー 50wt%に対して流動パラフィ ン(37. 78°Cにおける動粘度 75. 90cSt) 50wt%をサイドフィードよりそれぞれの押 出機に注入し、 200°C、 200rpmの条件で混鍊し、押出機先端に設置した共押出可 能な Tダイ力も押出した。その後、ただちに 25°Cに冷却したキャストロールで冷却固 化させ、厚さ 1. 1mmのシートを成形した。このシートを同時二軸延伸機で 124°Cの 条件で 7 X 4倍に延伸した。その後、この延伸シートを塩化メチレンに浸漬し、流動パ ラフィンを抽出除去後乾燥し、 120°Cで熱処理して、微多孔膜を得た。得られた微多 孔膜の物性を表 1および 2に示す。 Using two extruders, a microporous membrane consisting of two surface and intermediate layers with the same composition was made. Made. The composition of the surface layer is as follows: [7?] Is 1.2 dlZg, Mv is 70,000, 45% by weight of homopolymer polyethylene with a melting point of 133 ° C, [7?] Is 2.8 dlZg, Mv is 250,000, and the melting point is The homopolymer polyethylene was 45 wt% at 136 ° C, [7?] ^ 4.9 dlZg, and the homopolymer polypropylene was 5 wt% with Mv 400,000. The intermediate layer has a [7?] Force of 6dlZg, Mv of 700,000 and a homopolymer polyethylene with a melting point of 135 ° C of 46.5 wt%, [7?] 2.8dlZg, Mv Power 250,000, 136. The homopolymer polyethylene of C was 46.5 wt%, [7?] 4.9 dl / g, and the homopolymer polypropylene of Mv 400,000 was 7 wt%. Each of these yarns was blended. As an antioxidant, 0.3 wt% tetrakis (methylene 3- (3,5,1-di-tert-butyl 4'-hydroxyphenol) propylene) methane was mixed with the total polymer in each layer. did. Each composition was introduced into a twin screw extruder having a diameter of 25 mm and LZD = 48 via a feeder. Furthermore, 50 wt% of flow paraffin (37.78 ° C kinematic viscosity 75.90cSt) is injected into each extruder from the side feed with respect to 50wt% of polymer in each layer, and kneaded under the conditions of 200 ° C and 200rpm. The T-die force that can be co-extruded installed at the tip of the extruder was also extruded. After that, it was immediately cooled and solidified with a cast roll cooled to 25 ° C. to form a sheet having a thickness of 1.1 mm. This sheet was stretched 7 × 4 times with a simultaneous biaxial stretching machine at 124 ° C. Thereafter, this stretched sheet was immersed in methylene chloride, and the fluid paraffin was extracted and dried, followed by heat treatment at 120 ° C. to obtain a microporous membrane. The physical properties of the obtained microporous membrane are shown in Tables 1 and 2.
[実施例 2] [Example 2]
表面層の組成を、 [ 7? ]が1. 2dlZgで Mvが 7万で融点が 133°Cであるホモポリマー のポリエチレン 50wt%と、 [ 7? ]力 . 8dlZg、 Mvが 25万で融点が 136°Cであるホモ ポリマーのポリエチレン 50wt%とした以外は実施例 1と同様に微多孔膜を作製した。 作製した微多孔膜の物性を表 1および 2に示す。 The composition of the surface layer is 50 wt% of homopolymer polyethylene with [7?] Of 1.2 dlZg, Mv of 70,000 and melting point of 133 ° C, and [7?] Force of .8dlZg, Mv of 250,000 and melting point. A microporous membrane was prepared in the same manner as in Example 1 except that the homopolymer polyethylene at 136 ° C. was changed to 50 wt%. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[実施例 3] [Example 3]
押出機 3台を用いて、組成の異なる 2つの表層および中間層からなる微多孔膜を作 成した。片側の表面層の組成は、 [ r? ]が 1. 2dlZg、 Mvが 7万、融点が 133°Cであ るホモポリマーのポリエチレン 50wt%と、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 13 6°Cであるホモポリマーのポリエチレン 50wt%とし、上記ポリエチレン 50wt%に対し て、流動パラフィン(37. 78°Cにおける動粘度 75. 90cSt) 50wt%をサイドフィード よりそれぞれの押出機に注入した。一方、反対側の表層の組成を、 [ r? ]が 1. 2dl/g 、 Mvが 7万、融点が 133°Cであるホモポリマーのポリエチレン 50wt%と、 [ ]力 . 8 dl/g, Mvが 25万で融点が 136°Cであるホモポリマーのポリエチレン 30wt%と、 [ r? ]が 5. 6dlZg、 Mvが 70万、融点が 135°Cであるホモポリマー 20wt%として、各表 層のポリマー 35wt%に対して、流動パラフィン(37. 78°Cにおける動粘度 75. 90cS t) 65wt%をサイドフィードより表層の押出機に注入した以外は、実施例 1と同様に微 多孔膜を作製した。作製した微多孔膜の物性を表 1および 2に示す。 Using three extruders, a microporous membrane consisting of two surface and intermediate layers with different compositions was produced. The composition of the surface layer on one side is: [r?] Is 1.2 dlZg, Mv is 70,000, homopolymer polyethylene 50wt% with a melting point of 133 ° C, [7?] Is 2.8dlZg, Mv is 25 Homopolymer with a melting point of 136 ° C is 50 wt% of polyethylene. Liquid paraffin (37.78 ° C kinematic viscosity 75.90cSt) 50wt% was injected into each extruder from the side feed. On the other hand, the composition of the surface layer on the opposite side is as follows: [r?] Is 1.2 dl / g, Mv is 70,000, 50 wt% of homopolymer polyethylene with a melting point of 133 ° C, [] force. 8 dl / g, Each surface layer is 30 wt% of a homopolymer with an Mv of 250,000 and a melting point of 136 ° C, and a homopolymer of 20 wt% with an [r?] Of 5.6 dlZg, an Mv of 700,000 and a melting point of 135 ° C. A microporous membrane was formed in the same manner as in Example 1 except that 65 wt% of liquid paraffin (37.78 ° C kinematic viscosity 75.90 cSt) was injected into the surface layer extruder from the side feed with respect to 35 wt% of the polymer. Produced. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[0064] [実施例 4] [0064] [Example 4]
シートの厚さを 0. 7mmとした以外は実施例 2と同様に微多孔膜を作製した。作製 した微多孔膜の物性を表 1および 2に示す。  A microporous membrane was prepared in the same manner as in Example 2 except that the thickness of the sheet was 0.7 mm. Tables 1 and 2 show the physical properties of the prepared microporous membrane.
[実施例 5]  [Example 5]
表面層の組成を、 [ 7? ]が 1. 7dlZg、 Mvが 12万、融点が 127°Cであるコポリマー のポリエチレン 50wt%と、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 136°Cであるホモ ポリマーのポリエチレン 50wt%として、熱処理温度を 117°Cとした以外は、実施例 3 と同様に微多孔膜を作製した。作製した微多孔膜の物性を表 1および 2に示す。  The composition of the surface layer is as follows: [7?] Is 1.7 dlZg, Mv is 120,000, the copolymer is 50 wt% of polyethylene with a melting point of 127 ° C, [7?] Is 2.8 dlZg, Mv is 250,000, and the melting point is A microporous membrane was prepared in the same manner as in Example 3 except that 50 wt% of the homopolymer polyethylene at 136 ° C. was used and the heat treatment temperature was 117 ° C. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[実施例 6]  [Example 6]
シートの厚さを 1. 3mmとして、同時二軸延伸機で 7 X 7倍に延伸した以外は実施 例 2と同様に微多孔膜を作製した。作製した物性を表 1および 2に示す。  A microporous membrane was prepared in the same manner as in Example 2 except that the thickness of the sheet was 1.3 mm and the sheet was stretched 7 × 7 times with a simultaneous biaxial stretching machine. The physical properties produced are shown in Tables 1 and 2.
[0065] [実施例 7] [0065] [Example 7]
表面の組成を、 [ 7? ]が 1. 2dlZg、 Mvが 7万、融点が 133°Cであるホモポリマーの ポリエチレン 75wt%と、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 136°Cであるホモポ リマーのポリエチレン 25wt%とした以外は実施例 5と同様に微多孔膜を作製した。作 製した微多孔膜の物性を表 1および 2に示す。  The composition of the surface is 75 dl% of homopolymer polyethylene with [7?] 1.2 dlZg, Mv 70,000 and melting point 133 ° C, [7?] 2.8 dlZg, Mv 250,000, melting point A microporous membrane was prepared in the same manner as in Example 5 except that homopolymer polyethylene at 136 ° C. was changed to 25 wt%. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[実施例 8]  [Example 8]
表面層の糸且成を、 [ 7? ]が 1. 2dlZg、 Mvが 7万、融点が 133°Cであるホモポリマーの ポリエチレン 50wt%と、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 136°Cであるホモポ リマーのポリエチレン 30wt%と、 [ 7? ]が 5. 6dlZg、 Mvが 70万、融点が 135°Cであ るホモポリマー 20wt%として、表層のポリエチレン 35wt%に対して、流動パラフィン (37. 78°Cにおける動粘度 75. 90cSt) 65wt%をサイドフィードより表層用の押出機 に注入した以外は、実施例 5と同様に微多孔膜を作製した。作製した微多孔膜の物 性を表 1および 2に示す。 The surface layer is composed of yarn, [7?] Is 1.2dlZg, Mv is 70,000, homopolymer polyethylene 50wt% with melting point 133 ° C, [7?] Is 2.8dlZg, Mv is 250,000 30 wt% homopolymer polyethylene with a melting point of 136 ° C, [7?] Is 5.6dlZg, Mv is 700,000, and the melting point is 135 ° C. Except for injecting 65 wt% liquid paraffin (37.78 cC kinematic viscosity 75.90 cSt) into the surface layer extruder from the side layer feed with 20 wt% homopolymer 20 wt%. A microporous membrane was prepared as in 5. Tables 1 and 2 show the properties of the prepared microporous membrane.
[実施例 9]  [Example 9]
表面層の組成を、 [ r? ]が 3. 2dlZg、 Mv30万、融点が 136°Cで末端ビュル基濃 度 10個 ZlO, OOOCであるホモポリマーのポリエチレン 50wt%と、 [ 7? ]カ 2. Odl/g 、 Mvl5万、融点が 133°Cであるホモポリマーのポリエチレン 50wt%とした以外は実 施例 5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表 1および 2に示す  The composition of the surface layer is as follows: [r?] Is 3.2 dlZg, Mv 300,000, melting point is 136 ° C, terminal bur group concentration is 10 ZlO, OOOC 50 wt% homopolymer polyethylene, [7?] 2 A microporous membrane was prepared in the same manner as in Example 5, except that 50 wt% of homopolymer polyethylene having an Odl / g, Mvl of 50,000, and a melting point of 133 ° C. was used. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[0066] [実施例 10] [Example 10]
中間層の組成を、 [ 7? ]が 11. 3dlZg、 Mvが 200万、融点が 135°Cであるホモポリ マーのポリエチレンを 30wt%と、 [ 7? ]力 2. 8dlZg、 Mvが 25万、融点が 136°Cであ るホモポリマーのポリエチレンを 70wt%として、中間層のポリマー 35wt%に対して、 流動パラフィン(37. 78°Cにおける動粘度 75. 90cSt) 65wt%をサイドフィードから 中間層用の押出機に注入した以外は実施例 5と同様に微多孔膜を作製した。作製し た微多孔膜の物性を表 1および 2に示す。  The composition of the intermediate layer is [7?] 11.3 dlZg, Mv 2 million, 30 wt% of homopolymer polyethylene with melting point 135 ° C, [7?] Force 2. 8 dlZg, Mv 250,000, 70 wt% homopolymer polyethylene with a melting point of 136 ° C, and 65 wt% liquid paraffin (kinematic viscosity at 37.78 ° C 75.90 cSt) from the side feed to the intermediate layer 35 wt% A microporous membrane was prepared in the same manner as in Example 5 except that the microporous membrane was injected into the extruder. Tables 1 and 2 show the physical properties of the fabricated microporous membrane.
[実施例 11]  [Example 11]
中間層の組成を、 [ 7? ]が 13. ldl/g, Mvが 250万、融点が 135°Cのホモポリマー のポリエチレンを 20wt%と、 [ 7? ]が 5. 6dlZg、 Mvが 70万、融点が 135°Cであるホ モポリマーのポリエチレンを 15wt%と、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 136 °Cであるホモポリマーのポリエチレンを 30wt%と、 [ 7? ]が 1. 7dlZg、 Mvl2万、融 点が 131°Cであるエチレンプロピレンコポリマー(コモノマー:プレピレン。含有比 0. 6 mol%)を 30wt%として、中間層のポリマー 35 %に対して、流動パラフィン(37. 7 8°Cにおける動粘度 75. 90cSt) 65wt%をサイドフィードから中間層用の押出機に 注入して、熱処理温度を 118°Cとした以外は実施例 5と同様に微多孔膜を作製した。 作製した微多孔膜の物性を表 1および 2に示す。  The composition of the intermediate layer is [7?] 13. ldl / g, Mv 2.5 million, 20 wt% homopolymer polyethylene with melting point 135 ° C, [7?] 5.6 dlZg, Mv 700,000 15 wt% of homopolymer polyethylene with a melting point of 135 ° C, 30 wt% of homopolymer polyethylene with a melting point of 136 ℃, 2.8 dlZg, Mv of 250,000 ] Is 1.7 dlZg, Mvl 20,000, melting point 131 ° C, ethylene propylene copolymer (comonomer: prepylene, content ratio 0.6 mol%) is 30 wt%, and liquid paraffin is used for 35% of the intermediate layer polymer. (37.7 Kinematic viscosity at 8 ° C 75.90cSt) Microporous membrane as in Example 5, except that 65wt% was injected from the side feed into the intermediate layer extruder and the heat treatment temperature was set to 118 ° C. Was made. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[0067] [実施例 12] 中間層の糸且成を、分子量 1万以下の量比が 15wt%で、 MwZMnが 43、 [ ]が 5 . 6dlZg、 Mvが 70万、融点が 137°Cのホモポリマーのポリエチレンを 80wt%と [ ] が 4. 9dlZgで Μν40万のホモポリマーのポリプロピレンを 20wt%とした以外は実施 例 5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表 1および 2に示す。 [0067] [Example 12] The intermediate layer is composed of 15 wt% of a molecular weight of 10,000 or less, MwZMn is 43, [] is 5.6 dlZg, Mv is 700,000, and a homopolymer polyethylene having a melting point of 137 ° C is 80 wt%. A microporous membrane was prepared in the same manner as in Example 5 except that the homopolymer polypropylene of Μν400,000 and [] was 4.9 dlZg and 20 wt%. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
[実施例 13] [Example 13]
中間層の糸且成を、 [ 7? ]が 13. ldl/g, Mvが 250万、融点が 132°Cのホモポリマー のポリエチレンを 25wt% 7? ]が 1. 7dlZg、 Mvが 12万、融点が 131°Cであるェチ レンプロピレンコポリマー(コモノマー:プレピレン。含有比 0. 6mol%)を 75wt%とし て、上記ポリマー 35wt%に対して、流動パラフィン(37. 78°Cにおける動粘度 75. 9 OcSt) 65wt%をサイドフィードから中間層用の押出機に注入して、熱処理温度を 11 8°Cとした以外は実施例 5と同様に微多孔膜を作製した。作製した微多孔膜の物性を 表 1および 2に示す。  [7?] Is 13. ldl / g, Mv is 2.5 million, homopolymer polyethylene of melting point 132 ° C is 25wt% 7?] Is 1.7dlZg, Mv is 120,000, 75% by weight of ethylene propylene copolymer (comonomer: prepylene, content ratio 0.6 mol%) having a melting point of 131 ° C was used for liquid paraffin (37.78 ° C dynamic viscosity 75%) relative to 35% by weight of the above polymer. .9 OcSt) A microporous membrane was prepared in the same manner as in Example 5 except that 65 wt% was injected from the side feed into the intermediate layer extruder and the heat treatment temperature was set to 118 ° C. Tables 1 and 2 show the physical properties of the prepared microporous membrane.
実施例 1〜 13で得られた実施例に示す全ての微多孔膜にっ ヽて、電池を作製した 後、 150°Cで 1時間オーブンに放置した。その結果、少なくとも 30分以内に発火する ものはなかった。 1. 9mの高さ力もコンクリート床に 10回繰り返して落下させる試験で 発火しな力つた。試験後の電池を解体し、セパレーターの収縮を確認したところ、セ パレーターの収縮による電極の短絡はみられなかった。また、 L 9mの高さからコン クリート床に 10回繰り返して落下させる試験を行った力 セパレーターの変形による 短絡は観察されなかった。  All the microporous membranes shown in the examples obtained in Examples 1 to 13 were made into batteries and then left in an oven at 150 ° C. for 1 hour. As a result, nothing ignited within at least 30 minutes. 1. A 9m high force was applied to the concrete floor 10 times, and it did not ignite. When the battery after the test was disassembled and the separator contraction was confirmed, no short circuit of the electrode due to the contraction of the separator was observed. In addition, a short circuit due to deformation of the force separator, which was tested to repeatedly drop 10 times from the height of L 9m onto the concrete floor, was not observed.
また、全ての膜につ!、て DSC (示差走査熱量測定装置)を用いて結晶化度を測定 したところ、全ての層は結晶化度が 70%を超えていた。  In addition, when all the films were measured for crystallinity using DSC (Differential Scanning Calorimetry), the crystallinity of all layers exceeded 70%.
[比較例 1] [Comparative Example 1]
表面層の組成は、 [ 7? ]が1. 2dlZg、 Mvが 7万、融点が 133°Cであるホモポリマーの ポリエチレン 45wt%と、 [ 7? ]が 2. 8dlZg、 Mvが 25万、融点が 136°Cであるホモポ リマーのポリエチレン 45wt%と、 [ 7? ]カ 4. 9dlZgで Mv40万のホモポリマーのポリ プロピレン 5wt%として、中間層の糸且成を、 [ 7? ]カ . 5dlZg、 Mvが 21万、融点が 1 36°Cであるホモポリマーのポリエチレンを 95wt%と、 [ 7? ]カ . 9dlZgで Mv40万の ホモポリマーのポリプロピレンを 5wt%とした以外は、実施例 5と同様に微多孔膜を作 製した。作製した微多孔膜の物性を表 1および 2に示す。 The composition of the surface layer is as follows: [7?] Is 1.2dlZg, Mv is 70,000, homopolymer polyethylene 45wt% with melting point 133 ° C, [7?] Is 2.8dlZg, Mv is 250,000, melting point The intermediate layer is 45 wt% of homopolymer with a temperature of 136 ° C and [7?] 4.9 dlZg, and the Mv400,000 homopolymer polypropylene is 5 wt%. Example 5 and Example 5 except that the homopolymer polyethylene with an Mv of 210,000 and a melting point of 136 ° C is 95 wt%, and [7?] 9 dlZg and the homopolymer polypropylene with an Mv of 400,000 is 5 wt%. Similarly, make a microporous membrane Made. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2.
電池評価の結果、オーブン試験、衝突試験において、良好な結果が得られな力つた  As a result of battery evaluation, good results were not obtained in oven test and crash test
[0069] [比較例 2] [0069] [Comparative Example 2]
表面の組成を、 [ 7? ]が1. 2dlZgで Mvが 7万で融点が 133°Cであるホモポリマー のポリエチレン 75wt%と、 [ 7? ]力 . 8dlZgで Mvが 25万で融点が 136°Cであるホ モポリマーのポリエチレン 25wt%として、シートの厚さを 2. Ommとした以外は、比較 例 1と同様に微多孔膜を作製した。作製した微多孔膜の物性を表 1および 2に示す。 電池評価の結果、オーブン試験において、良好な結果が得られな力つた。  The composition of the surface is 75 dl% of homopolymer polyethylene with [7?] 1.2 dlZg, Mv 70,000 and melting point 133 ° C, and [7?] Force. 8dlZg, Mv 250,000 with melting point 136 A microporous membrane was prepared in the same manner as in Comparative Example 1 except that the polyethylene was 25 wt% of the homopolymer at ° C and the sheet thickness was 2. Omm. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2. As a result of the battery evaluation, the oven test proved to be satisfactory.
[比較例 3]  [Comparative Example 3]
シートの厚さを 0. 7mmとして、同時二軸延伸機で 7 X 4倍に延伸した以外は、比較 例 2と同様に微多孔膜を作製した。作製した微多孔膜の物性を表 1および 2に示す。 電池評価の結果、オーブン試験、衝突試験において、良好な結果が得られなかつ た。  A microporous membrane was prepared in the same manner as in Comparative Example 2, except that the thickness of the sheet was 0.7 mm and the sheet was stretched 7 × 4 times with a simultaneous biaxial stretching machine. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2. As a result of battery evaluation, good results were not obtained in the oven test and the crash test.
[0070] [比較例 4]  [0070] [Comparative Example 4]
表層の組成を、 [ 7? ]カ 5. 6dlZgで Mvが 70万で融点が 135°Cであるホモポリマー のポリエチレン 100wt%として、上記ポリエチレン 30wt%に対して、流動パラフィン( 37. 78°Cにおける動粘度 75. 90cSt) 70wt%をサイドフィードで表層用の押出機に 注入した以外は、実施例 5と同様に微多孔膜を作製した。作製した微多孔膜の物性 を表 1および 2に示す。  The composition of the surface layer is [7?] 5.6 dlZg, Mv is 700,000 and the melting point is 135 ° C. The homopolymer polyethylene is 100 wt%, and liquid paraffin (37.78 ° C A microporous membrane was prepared in the same manner as in Example 5 except that 70 wt% was injected into the surface layer extruder by side feed. Tables 1 and 2 show the physical properties of the fabricated microporous membrane.
電池評価の結果、オーブン試験において、良好な結果が得られな力つた。  As a result of the battery evaluation, the oven test proved to be satisfactory.
[比較例 5]  [Comparative Example 5]
表面層の組成を、 [ 7? ]が1. 7dlZgで Mvが 12万で融点が 125°Cであるコポリマー のポリエチレン 50wt%と、 [ 7? ]力 . 8dlZgで Mvが 25万で融点が 136°Cであるホ モポリマーのポリエチレン 50wt%として、二軸延伸機の温度を 121°Cとして、熱処理 温度を 115°Cとする以外は、実施例 5と同様に微多孔膜を作製した。作製した微多 孔膜の物性を表 1および 2に示す。  The composition of the surface layer is [7?] 1.7 dlZg, Mv is 120,000, and the copolymer has a melting point of 125 ° C, 50 wt% of polyethylene, [7?] Force. 8 dlZg, Mv is 250,000, and the melting point is 136. A microporous membrane was prepared in the same manner as in Example 5 except that 50% by weight of the homopolymer polyethylene at ° C, the temperature of the biaxial stretching machine was 121 ° C, and the heat treatment temperature was 115 ° C. Tables 1 and 2 show the physical properties of the fabricated microporous membrane.
電池評価の結果、オーブン試験において、良好な結果が得られな力つた。 [0071] [比較例 6] As a result of the battery evaluation, the oven test proved to be satisfactory. [0071] [Comparative Example 6]
[ r? ]力 . 6dl/gで Mvが 70万で融点が 135°Cであるホモポリマーのポリエチレンを 46. 5wt%と、 [ 7? ]力 . 5dlZgで Mvが 25万で融点が 136°Cであるホモポリマーの ポリエチレンを 46. 5wt%と、 [ 7? ]カ4. 9dlZgで Mv40万のホモポリマーのポリプロ ピレンを 7wt%の単層膜である以外は、実施例 5と同様に微多孔膜を作製した。得ら れた微多孔膜の物性を表 1に示す。作製した微多孔膜の物性を表 1および 2に示す 電池評価の結果、オーブン試験において、良好な結果が得られな力つた。  [r?] Force. 46.5 wt% of homopolymer polyethylene with 6dl / g, Mv 700,000 and melting point 135 ° C, [7?] Force. 5dlZg, Mv 250,000 and melting point 136 ° The same as Example 5 except that the homopolymer polyethylene of C is 46.5 wt% and [7?] 4.9 dlZg and the homopolymer polypropylene of Mv 400,000 is 7 wt% monolayer film. A porous membrane was produced. Table 1 shows the physical properties of the obtained microporous membrane. The physical properties of the prepared microporous membrane are shown in Tables 1 and 2. As a result of battery evaluation, the oven test showed that good results could not be obtained.
[0072] [比較例 7] [0072] [Comparative Example 7]
両表層がポリプロピレンからなり、中間層がポリエチレンである 3層が貼り合わされて なる市販の乾式膜を用いて同様に行った。  It carried out similarly using the commercially available dry-type film | membrane by which three surface layers which both layers consist of polypropylene and an intermediate layer is polyethylene are bonded together.
電池評価の結果、衝突試験において、良好な結果が得られな力つた。  As a result of the battery evaluation, in the collision test, good results were not obtained.
[0073] [表 1] [0073] [Table 1]
中間層 中間層 温度 [ 7) ] 孔閉塞温度Intermediate layer Intermediate layer temperature [7)] Pore plugging temperature
(dl/g) (。C) ' (dl/g) (dl / g) (.C) '(dl / g)
' (C) 実施例 1 2.2 135 . ' 4.3 140 実施例 2 2.1 135 ' 4.3 140 実施例 3 2.1/2.8 135 4.3 140 実施例 4 2.1 135 4.3 140 実施例 5 2.3 131 4,3 140 実施例 6 2.1 135 4.3 140 実施例 7 1.7 135 4.3 ' 140 実施例 8 2.8 136 4.3 140 実施例 9 2.3 135 4.3 140 . 実施例 10 2.1 135 6.0 139 実施例 11 2.1 135 5.9 136 実施例 12 2.1 135 5.3 138 · 1 実施例 13 2.1 135 5.7 134 比較例 1 2.2 135 ,2.5 139 比較例 2 1.7 134 2.5 139 比較例 3 1.7 ' 134 2.5 139' ( . C) Example 1 2.2 135.' 4.3 140 Example 2 2.1 135 '4.3 140 Example 3 2.1 / 2.8 135 4.3 140 Example 4 2.1 135 4.3 140 Example 5 2.3 131 4,3 140 Example 6 2.1 135 4.3 140 Example 7 1.7 135 4.3 '140 Example 8 2.8 136 4.3 140 Example 9 2.3 135 4.3 140 .Example 10 2.1 135 6.0 139 Example 11 2.1 135 5.9 136 Example 12 2.1 135 5.3 138 Example 13 2.1 135 5.7 134 Comparative Example 1 2.2 135, 2.5 139 Comparative Example 2 1.7 134 2.5 139 Comparative Example 3 1.7 '134 2.5 139
Ji較例 4 5.6 139 4.3 140 I 比較例 5 2.3 129 4.3 . 140 比較例 6 ― ——. 4.3 ■ 140 比較例 7 ― 165 一 133 Ji Comparative Example 4 5.6 139 4.3 140 I Comparative Example 5 2.3 129 4.3.140 Comparative Example 6 ― ――. 4.3 ■ 140 Comparative Example 7 ― 165 ― 133
訂正された用紙 (規則 91)
Figure imgf000026_0001
産業上の利用可能性
Corrected form (Rule 91)
Figure imgf000026_0001
Industrial applicability
本発明は、物質の分離や選択透過分離膜、及び隔離材等に用いられている微多 孔膜に関し、特にリチウムイオン電池などのセパレ一ターとして好適に使用される。  The present invention relates to a microporous membrane used for separation of substances, a selective permeation separation membrane, a separator, and the like, and is particularly suitably used as a separator for lithium ion batteries and the like.
訂正された用紙 (規則 91) 図面の簡単な説明 Corrected form (Rule 91) Brief Description of Drawings
[0076] [図 1]本発明の微多孔膜の孔閉塞温度の測定装置の概略図を示す。  [0076] [Fig. 1] Fig. 1 shows a schematic diagram of an apparatus for measuring the pore closing temperature of a microporous membrane of the present invention.
符号の説明  Explanation of symbols
[0077] 1:微多孔膜 [0077] 1: Microporous membrane
2A:ニッケル箔  2A: Nickel foil
2B:ニッケル箔  2B: Nickel foil
3A:ガラス板  3A: Glass plate
3B:ガラス板  3B: Glass plate
4:電気抵抗測定装置  4: Electrical resistance measuring device
5:熱電対  5: Thermocouple
6:温度計  6: Thermometer
7:データコレクター  7: Data collector
8:オーブン  8: Oven

Claims

請求の範囲 The scope of the claims
[1] 2層の表層と少なくとも 1層の中間層を含む 3層以上の積層体であるポリオレフイン 微多孔膜であって、該中間層の極限粘度 [ r? ]が 3. OdlZg以上であり、かつ、前記 表層の極限粘度 [ r? ]は前記中間層の極限粘度 [ r? ]よりも小さぐさらに、表層の孔 閉塞温度と中間層の孔閉塞温度の差の絶対値が 10°C未満であることを特徴とする ポリオレフイン微多孔膜。  [1] A polyolefin microporous membrane that is a laminate of three or more layers including two surface layers and at least one intermediate layer, and the intrinsic viscosity [r?] Of the intermediate layer is 3. OdlZg or more, In addition, the intrinsic viscosity [r?] Of the surface layer is smaller than the intrinsic viscosity [r?] Of the intermediate layer, and the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is less than 10 ° C. A polyolefin microporous membrane characterized by
[2] 両表層がポリエチレンのみで構成されていることを特徴とする請求項 1に記載のポリ ォレフィン微多孔膜。  [2] The polyolefin microporous membrane according to [1], wherein both surface layers are composed only of polyethylene.
[3] 両表層が同じ組成で構成されていることを特徴とする請求項 1又は 2に記載のポリオ レフイン微多孔膜。  [3] The polyolefin microporous membrane according to claim 1 or 2, wherein both surface layers are composed of the same composition.
[4] 膜全体の機械方向と垂直方向 (TD方向)の引張強度が 30MPa以上であることを 特徴とする請求項 1〜3のいずれか一項に記載のポリオレフイン微多孔膜。  [4] The polyolefin microporous membrane according to any one of claims 1 to 3, wherein the tensile strength in the direction perpendicular to the machine direction (TD direction) of the entire membrane is 30 MPa or more.
[5] 表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値が 5°C以下であることを特 徴とする請求項 1〜4のいずれか一項に記載のポリオレフイン微多孔膜。 [5] The polyolefin microporous membrane according to any one of claims 1 to 4, wherein the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is 5 ° C or less. .
[6] ポリオレフインと可塑剤を含有する組成物を用いて製造される請求項 1〜5のいず れか一項に記載のポリオレフイン微多孔膜。 [6] The polyolefin microporous membrane according to any one of claims 1 to 5, which is produced using a composition containing polyolefin and a plasticizer.
[7] ポリマー材料と可塑剤を溶融混鍊して、共押出しで積層されたシートを形成し、二軸 延伸を施し可塑剤を抽出した後に、熱固定する工程を含むことを特徴とする請求項 1[7] The method includes the steps of melt-mixing the polymer material and the plasticizer to form a laminated sheet by coextrusion, biaxial stretching, extracting the plasticizer, and then heat-setting. Term 1
〜6のいずれか一項に記載のポリオレフイン微多孔膜の製造方法。 The manufacturing method of the polyolefin microporous film as described in any one of -6.
[8] ポリマー材料と可塑剤を溶融混鍊して、共押出しで積層されたシートを形成し、二 軸延伸を施し可塑剤を抽出した後に、熱固定することによって得られた請求項 1〜5 の!、ずれか一項に記載のポリオレフイン微多孔膜。 [8] The polymer material and the plasticizer are melt-kneaded to form a laminated sheet by coextrusion, the biaxial stretching is performed, the plasticizer is extracted, and then heat-fixed to obtain the sheet. 5. The polyolefin microporous membrane according to any one of 5!
[9] 請求項 1〜6および 8のいずれか一項に記載のポリオレフイン微多孔膜を用いた非 水電解液電池用セパレーター。 [9] A separator for a non-aqueous electrolyte battery using the polyolefin microporous membrane according to any one of claims 1 to 6 and 8.
[10] 請求項 9に記載のセパレーターを用いた非水電解液電池。 [10] A non-aqueous electrolyte battery using the separator according to claim 9.
PCT/JP2007/056170 2006-03-30 2007-03-26 Polyolefin microporous film WO2007116672A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020087023731A KR101060380B1 (en) 2006-03-30 2007-03-26 Polyolefin Microporous Membrane
CN2007800057953A CN101384429B (en) 2006-03-30 2007-03-26 Polyolefin microporous film
JP2008509737A JP4931911B2 (en) 2006-03-30 2007-03-26 Polyolefin microporous membrane

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-094841 2006-03-30
JP2006094841 2006-03-30

Publications (1)

Publication Number Publication Date
WO2007116672A1 true WO2007116672A1 (en) 2007-10-18

Family

ID=38580971

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/056170 WO2007116672A1 (en) 2006-03-30 2007-03-26 Polyolefin microporous film

Country Status (5)

Country Link
JP (1) JP4931911B2 (en)
KR (1) KR101060380B1 (en)
CN (1) CN101384429B (en)
TW (1) TW200808547A (en)
WO (1) WO2007116672A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010061974A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010061973A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010120217A (en) * 2008-11-18 2010-06-03 Mitsubishi Plastics Inc Laminated porous film, separator for battery and battery
CN101612532B (en) * 2008-06-27 2011-06-15 中国科学院金属研究所 High-strength sub-micron pore separation membrane, preparation method and application thereof
JP2012015073A (en) * 2010-07-05 2012-01-19 Asahi Kasei E-Materials Corp Microporous film, method for producing the same, and battery separator
JP2012508795A (en) * 2008-11-17 2012-04-12 東レバッテリーセパレータフィルム合同会社 Microporous membranes and methods for making and using such membranes
JP2015018813A (en) * 2009-03-09 2015-01-29 旭化成イーマテリアルズ株式会社 Polyolefin microporous film and production method therefor, and laminated polyolefin microporous film
JP2015092488A (en) * 2009-08-06 2015-05-14 旭化成イーマテリアルズ株式会社 Microporous membrane pile-up, manufacturing method of the same, and manufacturing method of microporous membrane
WO2018029832A1 (en) 2016-08-10 2018-02-15 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018041726A (en) * 2016-08-31 2018-03-15 旭化成株式会社 Separator for power storage device
JP2018141029A (en) * 2017-02-27 2018-09-13 旭化成株式会社 Polyolefin microporous membrane
WO2018168871A1 (en) * 2017-03-17 2018-09-20 東レ株式会社 Polyolefin microporous membrane

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101724168B (en) * 2009-11-16 2011-09-21 深圳市星源材质科技股份有限公司 Preparation method of polyolefin microporous membrane
US20130101889A1 (en) * 2010-06-25 2013-04-25 Toray Industries, Inc. Composite porous membrane, method for producing composite porous membrane and battery separator using same
CN103785302A (en) * 2012-10-29 2014-05-14 深圳市冠力新材料有限公司 Method for controlling thickness customization aperture porous membrane
AU2017354687B2 (en) * 2016-11-04 2020-02-27 Asahi Kasei Medical Co., Ltd. Porous membrane and method for manufacturing porous membrane
KR102202789B1 (en) 2018-05-24 2021-01-14 주식회사 엘지화학 Non-destructive thickness measurement method of reinforcing membranes for polymer electrolyte fuel cell having three layer
KR102256444B1 (en) * 2018-11-27 2021-05-26 롯데케미칼 주식회사 Polyethylene porous separator and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899382A (en) * 1994-09-30 1996-04-16 Mitsui Petrochem Ind Ltd Laminated microporous film of olefinic polymer and production and use thereof
JP2002321323A (en) * 2001-04-24 2002-11-05 Asahi Kasei Corp Polyolefin micro-porous film
WO2004089627A1 (en) * 2003-04-04 2004-10-21 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09259857A (en) * 1996-03-27 1997-10-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0899382A (en) * 1994-09-30 1996-04-16 Mitsui Petrochem Ind Ltd Laminated microporous film of olefinic polymer and production and use thereof
JP2002321323A (en) * 2001-04-24 2002-11-05 Asahi Kasei Corp Polyolefin micro-porous film
WO2004089627A1 (en) * 2003-04-04 2004-10-21 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612532B (en) * 2008-06-27 2011-06-15 中国科学院金属研究所 High-strength sub-micron pore separation membrane, preparation method and application thereof
JP2010061973A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2010061974A (en) * 2008-09-03 2010-03-18 Mitsubishi Plastics Inc Laminated porous film for separator and method for manufacturing the same
JP2012508795A (en) * 2008-11-17 2012-04-12 東レバッテリーセパレータフィルム合同会社 Microporous membranes and methods for making and using such membranes
JP2010120217A (en) * 2008-11-18 2010-06-03 Mitsubishi Plastics Inc Laminated porous film, separator for battery and battery
US9882190B2 (en) 2009-03-09 2018-01-30 Asahi Kasei E-Materials Corporation Laminated polymicroporous membrane including propylene copolymer and method of producing the same
US9356275B2 (en) 2009-03-09 2016-05-31 Asahi Kasei E-Materials Corporation Laminated separator including inorganic particle and polyolefin layer for electricity storage device
US9853272B2 (en) 2009-03-09 2017-12-26 Asahi Kasei E-Materials Corporation Laminated polyolefin microporous membrane including propylene-α-olefin copolymer and method of producing the same
JP2015018813A (en) * 2009-03-09 2015-01-29 旭化成イーマテリアルズ株式会社 Polyolefin microporous film and production method therefor, and laminated polyolefin microporous film
US9966583B2 (en) 2009-03-09 2018-05-08 Asahi Kasei E-Materials Corporation Laminated polyolefin microporous membrane including propylene copolymer and method of producing the same
US10680223B2 (en) 2009-03-09 2020-06-09 Asahi Kasei E-Materials Corporation Laminated separator, polyolefin microporous membrane, and separator for electricity storage device
JP2015092488A (en) * 2009-08-06 2015-05-14 旭化成イーマテリアルズ株式会社 Microporous membrane pile-up, manufacturing method of the same, and manufacturing method of microporous membrane
JP2012015073A (en) * 2010-07-05 2012-01-19 Asahi Kasei E-Materials Corp Microporous film, method for producing the same, and battery separator
US10468651B2 (en) 2016-08-10 2019-11-05 Envision Aesc Japan Ltd. Non-aqueous electrolyte secondary battery
WO2018029832A1 (en) 2016-08-10 2018-02-15 日産自動車株式会社 Nonaqueous electrolyte secondary battery
JP2018041726A (en) * 2016-08-31 2018-03-15 旭化成株式会社 Separator for power storage device
JP7017344B2 (en) 2016-08-31 2022-02-08 旭化成株式会社 Separator for power storage device
JP2018141029A (en) * 2017-02-27 2018-09-13 旭化成株式会社 Polyolefin microporous membrane
WO2018168871A1 (en) * 2017-03-17 2018-09-20 東レ株式会社 Polyolefin microporous membrane
JPWO2018168871A1 (en) * 2017-03-17 2020-01-16 東レ株式会社 Polyolefin microporous membrane

Also Published As

Publication number Publication date
KR101060380B1 (en) 2011-08-29
KR20080102255A (en) 2008-11-24
JPWO2007116672A1 (en) 2009-08-20
CN101384429B (en) 2011-10-05
TWI348969B (en) 2011-09-21
CN101384429A (en) 2009-03-11
TW200808547A (en) 2008-02-16
JP4931911B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP4931911B2 (en) Polyolefin microporous membrane
US9882190B2 (en) Laminated polymicroporous membrane including propylene copolymer and method of producing the same
JP5216327B2 (en) Polyolefin microporous membrane
WO2008069216A1 (en) Polyolefin microporous membrane
WO2010070930A1 (en) Polyolefin micro-porous membrane and lithium ion secondary battery separator
JPWO2007015416A1 (en) Polyolefin microporous membrane
CN110461925B (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP5213768B2 (en) Polyolefin microporous membrane
JPWO2018216819A1 (en) Polyolefin microporous membrane, power storage device separator, and power storage device
JP5592745B2 (en) Polyolefin microporous membrane
JP6543164B2 (en) Multilayer microporous membrane and separator for storage device
JP5909411B2 (en) Polyolefin microporous membrane and method for producing the same
JP2009138159A (en) Microporous membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07739608

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2008509737

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 200780005795.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020087023731

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07739608

Country of ref document: EP

Kind code of ref document: A1