JPWO2007116672A1 - Polyolefin microporous membrane - Google Patents

Polyolefin microporous membrane Download PDF

Info

Publication number
JPWO2007116672A1
JPWO2007116672A1 JP2008509737A JP2008509737A JPWO2007116672A1 JP WO2007116672 A1 JPWO2007116672 A1 JP WO2007116672A1 JP 2008509737 A JP2008509737 A JP 2008509737A JP 2008509737 A JP2008509737 A JP 2008509737A JP WO2007116672 A1 JPWO2007116672 A1 JP WO2007116672A1
Authority
JP
Japan
Prior art keywords
microporous membrane
polyolefin microporous
intermediate layer
film
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008509737A
Other languages
Japanese (ja)
Other versions
JP4931911B2 (en
Inventor
大助 稲垣
大助 稲垣
井上 陽介
陽介 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei E Materials Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2008509737A priority Critical patent/JP4931911B2/en
Publication of JPWO2007116672A1 publication Critical patent/JPWO2007116672A1/en
Application granted granted Critical
Publication of JP4931911B2 publication Critical patent/JP4931911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1216Three or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/002Organic membrane manufacture from melts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/0025Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching
    • B01D67/0027Organic membrane manufacture by inducing porosity into non porous precursor membranes by mechanical treatment, e.g. pore-stretching by stretching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0023Organic membrane manufacture by inducing porosity into non porous precursor membranes
    • B01D67/003Organic membrane manufacture by inducing porosity into non porous precursor membranes by selective elimination of components, e.g. by leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1212Coextruded layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/26Polyalkenes
    • B01D71/261Polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/22Layered products comprising a layer of synthetic resin characterised by the use of special additives using plasticisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/02Diaphragms; Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/06Specific viscosities of materials involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、2層の表層と少なくとも1層の中間層を含む3層以上の積層体であるポリオレフィン微多孔膜であって、該中間層の極限粘度[η]が3.0dl/g以上であり、かつ、前記表層の極限粘度[η]は前記中間層の極限粘度[η]よりも小さく、さらに、表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値が10℃未満であることを特徴とするポリオレフィン微多孔膜である。The present invention is a polyolefin microporous membrane which is a laminate of three or more layers including two surface layers and at least one intermediate layer, wherein the intrinsic viscosity [η] of the intermediate layer is 3.0 dl / g or more. And the intrinsic viscosity [η] of the surface layer is smaller than the intrinsic viscosity [η] of the intermediate layer, and the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is less than 10 ° C. It is a polyolefin microporous film characterized by being.

Description

本発明は、物質の分離、選択透過などのために用いる分離膜、及びアルカリ、リチウム二次電池や燃料電池、コンデンサーなど電気化学反応装置の隔離材等として広く使用される微多孔膜に関する。特に、リチウムイオン電池などの非水電解液電池用セパレーターとして好適に使用されるポリオレフィン微多孔膜に関する。   The present invention relates to a separation membrane used for separation of substances, selective permeation, and the like, and a microporous membrane widely used as a separator for electrochemical reaction devices such as alkali, lithium secondary batteries, fuel cells and capacitors. In particular, the present invention relates to a polyolefin microporous membrane suitably used as a separator for non-aqueous electrolyte batteries such as lithium ion batteries.

ポリオレフィン微多孔膜は、種々の物質の分離や選択透過分離膜、及び隔離材等として広く用いられている。その具体的な用途例としては、精密ろ過膜、リチウム二次電池や燃料電池用のセパレーター、コンデンサー用セパレーター、さらには各種の機能材料を孔の中に充填させ、新たな機能を出現させるための機能膜の母材などが挙げられる。これらの用途のうち、ノート型パーソナルコンピューターや携帯電話、デジタルカメラなどに広く使用されているリチウムイオン電池用のセパレーターとして、特に好適に使用されている。その理由としては、ポリオレフィン微多孔膜は膜の機械的強度に優れ、良好な孔閉塞性を有していることが挙げられる。   Polyolefin microporous membranes are widely used as separation of various substances, selective permeation separation membranes, and separators. Specific applications include microfiltration membranes, separators for lithium secondary batteries and fuel cells, separators for capacitors, and various functional materials filled in the holes to make new functions appear. Examples include a base material for a functional membrane. Among these uses, it is particularly suitably used as a separator for lithium ion batteries widely used in notebook personal computers, mobile phones, digital cameras and the like. The reason for this is that the polyolefin microporous membrane is excellent in mechanical strength of the membrane and has good pore blocking properties.

孔閉塞性とは、電池内部が過充電状態などで過熱した時に、膜を構成するポリマーが溶融して孔を閉塞し、電池内部での反応を遮断することにより膜の電気抵抗を高め、電池の安全性を確保する性能のことである。孔閉塞の生じる温度は低いほど、安全性への効果は高いとされている。
更にセパレーターの機能として、孔閉塞後もフィルム形状を維持し、電極間の絶縁を保持する必要もある。そのためショート温度は高い方が望ましい。
近年では、電池の容量増加に伴い、セパレーターの薄膜化及び高気孔率化が求められている。しかし、薄膜化及び高気孔率化に伴う突刺強度の低下によって短絡などが生じることが懸念される。そこで、セパレーターの強度を保ったまま、薄膜化することが望まれる。これに加えて、、セパレーターを捲回する際や、電池内の異物などによる短絡を防ぐためにも、セパレーターの突刺強度や機械方向(MD方向)および機械方向と垂直方向(TD方向)の引張強度は、ある程度以上の強度を有している必要がある。さらに、電池の乾燥工程や、高温貯蔵試験、高温サイクル試験、オーブン試験など、高温下での熱収縮率が小さい(低熱収縮性)ことも必要である。
一般的にセパレーターの熱収縮率は低いほどよいとされている。これは電池が高温状態の際に、セパレーターが縮んで、電極間の隔離機能が失われてしまうためである。しかしながら、一般的に高強度化と、熱収縮率とには相反する関係にある。
Pore plugging means that when the inside of a battery is overheated due to overcharging, etc., the polymer constituting the film melts and closes the hole, thereby blocking the reaction inside the battery and increasing the electric resistance of the film. It is the performance to ensure safety. The lower the temperature at which hole clogging occurs, the higher the safety effect.
Further, as a function of the separator, it is necessary to maintain the film shape even after the hole is closed and to maintain insulation between the electrodes. For this reason, it is desirable that the short circuit temperature is high.
In recent years, with the increase in battery capacity, it has been required to reduce the thickness of the separator and increase the porosity. However, there is a concern that a short circuit or the like may occur due to a decrease in the puncture strength associated with a thin film and a high porosity. Therefore, it is desired to reduce the thickness of the separator while maintaining the strength of the separator. In addition to this, in order to prevent the short circuit due to foreign matter in the battery when winding the separator, the puncture strength of the separator and the tensile strength in the machine direction (MD direction) and the machine direction (TD direction). Needs to have a certain strength or more. Furthermore, it is also necessary that the thermal shrinkage rate at a high temperature is low (low heat shrinkability) such as a battery drying process, a high temperature storage test, a high temperature cycle test, and an oven test.
Generally, it is said that the lower the thermal shrinkage rate of the separator, the better. This is because when the battery is in a high temperature state, the separator shrinks, and the isolation function between the electrodes is lost. However, there is generally a contradictory relationship between increasing strength and thermal shrinkage.

特許文献1には、超高分子量ポリエチレンとポリプロピレンをブレンドして成る微多孔膜と、ポリエチレンの微多孔膜とを積層する膜が提案されている。しかしながら、この方法では、超高分子量ポリエチレンとポリプロピレンをブレンドした層とポリエチレンのみの層の孔閉塞温度の差が大きく、熱固定工程で膜に与えることができる熱量が限定される。その結果として、高い引張強度と低い熱収縮率を十分に両立させるのが難しい上、他に付与できる物性の種類も限定されてしまう。また、層間の孔閉塞温度の差が大きいため、安全性にも課題が残る。さらに、低融点成分の融点に合わせて熱固定を実施するため、低熱収縮性も不足である。   Patent Document 1 proposes a film in which a microporous film formed by blending ultrahigh molecular weight polyethylene and polypropylene and a polyethylene microporous film are laminated. However, in this method, the difference in pore closing temperature between the layer obtained by blending ultra-high molecular weight polyethylene and polypropylene and the layer containing only polyethylene is large, and the amount of heat that can be applied to the film in the heat setting step is limited. As a result, it is difficult to achieve both a high tensile strength and a low thermal shrinkage sufficiently, and the types of physical properties that can be imparted are also limited. Moreover, since the difference of the hole blockage temperature between layers is large, a problem also remains in safety. Furthermore, since heat fixation is performed according to the melting point of the low melting point component, low heat shrinkability is also insufficient.

特許文献2では、引張強度1000Kg/cm以上である高分子量ポリオレフィンからなる表層と、エチレン系共重合体からなる中間層を貼り合せ、高い引張強度をもつ膜が提案されている。しかしながら、これらの方法では熱収縮率が増加することが懸念される。また、層間の孔閉塞温度の差が大きく、膜全体での孔閉塞温度は高くなってしまう。Patent Document 2 proposes a film having a high tensile strength by bonding a surface layer made of a high-molecular-weight polyolefin having a tensile strength of 1000 kg / cm 2 or more and an intermediate layer made of an ethylene-based copolymer. However, there is a concern that these methods increase the heat shrinkage rate. Further, the difference in the hole closing temperature between the layers is large, and the hole closing temperature in the entire film is increased.

特許文献3では、正極側に低融点成分を含有する積層膜が提案されている。この方法では孔閉塞性は改善されているが、低融点の成分を正極側だけに含有しているので、電極の貼り付き効果に関しては不足である。また、表層と中間層の融点差が大きいので熱固定温度を低くせざるを得ず、低熱収縮性に関しても不足である。   Patent Document 3 proposes a laminated film containing a low melting point component on the positive electrode side. In this method, the hole closing property is improved, but the component having a low melting point is contained only on the positive electrode side, so that the electrode sticking effect is insufficient. In addition, since the melting point difference between the surface layer and the intermediate layer is large, the heat setting temperature has to be lowered, and the low heat shrinkability is insufficient.

特許文献4では、空孔率の異なる膜を積層することで、孔閉塞性の改善が提案されている。しかしながら、強度と熱収縮性に関しては何ら記載がない。従って、熱収縮は高いことが予想される。
特開2002−321323号公報 特開平8−99382号公報 特開2002−367587号公報 特開2002−319386号公報
Patent Document 4 proposes improvement of hole closing property by laminating films having different porosity. However, there is no description regarding strength and heat shrinkability. Therefore, heat shrinkage is expected to be high.
JP 2002-321323 A JP-A-8-99382 Japanese Patent Laid-Open No. 2002-367587 JP 2002-319386 A

本発明の目的は、過熱時にも安全性が保持され、機械的強度も満足したポリオレフィン微多孔膜を提供することである。   An object of the present invention is to provide a polyolefin microporous membrane that maintains safety even when overheated and satisfies the mechanical strength.

本発明者らは上述の目的を達成するために鋭意研究を重ねた結果、三層以上の積層体からなるポリオレフィン微多孔膜を得るにあたって、両表層と中間層の極限粘度、および両表層と中間層の関係に着目することにより、気孔率や強度を維持したポリオレフィン微多孔膜であっても、上記課題を解決することができることを見出した。すなわち、本発明は以下の通りである。 As a result of intensive studies to achieve the above object, the present inventors have obtained a polyolefin microporous film composed of a laminate of three or more layers, and the intrinsic viscosity of both surface layers and intermediate layers, and both surface layers and intermediate layers. By paying attention to the relationship of the layers, it has been found that the above-mentioned problems can be solved even with a polyolefin microporous membrane that maintains porosity and strength. That is, the present invention is as follows.

(1)2層の表層と少なくとも1層の中間層を含む3層以上の積層体であるポリオレフィン微多孔膜であって、該中間層の極限粘度[η]が3.0dl/g以上であり、かつ、前記表層の極限粘度[η]は前記中間層の極限粘度[η]よりも小さく、さらに、表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値が10℃未満であることを特徴とするポリオレフィン微多孔膜。
(2)両表層がポリエチレンのみで構成されていることを特徴とする上記(1)に記載のポリオレフィン微多孔膜。
(3)両表層が同じ組成で構成されていることを特徴とする上記(1)又は(2)に記載のポリオレフィン微多孔膜。
(4)膜全体の機械と垂直方向(TD方向)の引張強度が30MPa以上であることを特徴とする上記(1)〜(3)のいずれかに記載のポリオレフィン微多孔膜。
(5)表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値がが5℃以下であることを特徴とする上記(1)〜(4)のいずれかに記載のポリオレフィン微多孔膜。
(6)ポリオレフィンと可塑剤を含有する組成物を用いて製造される上記(1)〜(5)のいずれかに記載のポリオレフィン微多孔膜。
(7)ポリマー材料と可塑剤を溶融混錬して、共押出しで積層されたシートを形成し、二軸延伸を施し可塑剤を抽出した後に、熱固定する工程を含むことを特徴とする(1)〜(6)のいずれかに記載のポリオレフィン微多孔膜の製造方法。
(8)ポリマー材料と可塑剤を溶融混錬して、共押出しで積層されたシートを形成し、二軸延伸を施し可塑剤を抽出した後に、熱固定することによって得られたポリオレフィン微多孔膜。
(9)上記(1)〜(6)および(8)のいずれかに記載のポリオレフィン微多孔膜を用いた非水電解液電池用セパレーター。
(10)上記(9)に記載のセパレーターを用いた非水電解液電池。
(1) A polyolefin microporous membrane that is a laminate of three or more layers including two surface layers and at least one intermediate layer, wherein the intrinsic viscosity [η] of the intermediate layer is 3.0 dl / g or more And the limiting viscosity [η] of the surface layer is smaller than the limiting viscosity [η] of the intermediate layer, and the absolute value of the difference between the hole closing temperature of the surface layer and the hole closing temperature of the intermediate layer is less than 10 ° C. A polyolefin microporous membrane characterized by the above.
(2) The polyolefin microporous membrane as described in (1) above, wherein both surface layers are composed only of polyethylene.
(3) The polyolefin microporous membrane as described in (1) or (2) above, wherein both surface layers have the same composition.
(4) The polyolefin microporous membrane according to any one of (1) to (3) above, wherein the tensile strength in the direction perpendicular to the machine (TD direction) of the membrane is 30 MPa or more.
(5) The polyolefin microporous membrane according to any one of (1) to (4) above, wherein the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is 5 ° C. or less .
(6) The polyolefin microporous membrane according to any one of the above (1) to (5), which is produced using a composition containing a polyolefin and a plasticizer.
(7) The method includes melt-kneading a polymer material and a plasticizer, forming a sheet laminated by coextrusion, performing biaxial stretching, extracting the plasticizer, and then heat-setting ( The manufacturing method of the polyolefin microporous film in any one of 1)-(6).
(8) A polyolefin microporous film obtained by melt-kneading a polymer material and a plasticizer to form a laminated sheet by coextrusion, biaxial stretching to extract the plasticizer, and heat setting .
(9) A separator for a non-aqueous electrolyte battery using the polyolefin microporous membrane according to any one of (1) to (6) and (8) above.
(10) A non-aqueous electrolyte battery using the separator according to (9).

本発明のポリオレフィン微多孔膜は、高強度でありながら、過熱時の熱収縮率が従来のポリオレフィン微多孔膜と比較して小さい。また、過熱時に膜が電極などに貼りつくことにより(以下、貼り付き効果という)、膜の分離効果を確実に保持することができる。そのため、本発明の微多孔膜を特に電池セパレーターに使用した場合、電池の安全性を確保することが可能である。   The polyolefin microporous membrane of the present invention is high in strength but has a small heat shrinkage ratio when overheated compared to the conventional polyolefin microporous membrane. Further, when the membrane is adhered to an electrode or the like during overheating (hereinafter referred to as a sticking effect), the membrane separation effect can be reliably maintained. Therefore, when the microporous membrane of the present invention is used particularly for a battery separator, it is possible to ensure the safety of the battery.

本発明のポリオレフィン微多孔膜は、異なる種類の物性を保持させるために2層の表層と少なくとも1層の中間層を含む3層以上から構成される必要がある。ここでいう表層とは、3層以上に積層された膜の、最外層の2層のことを指し、中間層はそれ以外の層を指す。中間層は1層あるいは複数層でもよいが、生産性の観点から中間層は1層であることが好ましい。   The polyolefin microporous membrane of the present invention needs to be composed of three or more layers including two surface layers and at least one intermediate layer in order to maintain different types of physical properties. The surface layer here refers to the outermost two layers of the film laminated in three or more layers, and the intermediate layer refers to the other layers. The intermediate layer may be one layer or a plurality of layers, but the intermediate layer is preferably one layer from the viewpoint of productivity.

表層は、1種又は2種以上のポリオレフィンからなる。一方、中間層も1種又は2種以上のポリオレフィンからなる。   A surface layer consists of 1 type, or 2 or more types of polyolefin. On the other hand, the intermediate layer is also composed of one or more polyolefins.

ここで、本発明でポリマー材料として使用されるポリオレフィンとは、例えば、ポリエチレン、ポリプロピレンのホモ重合体、または、これらのホモポリマーとエチレン、プロピレンと1−ブテン、4−メチル−1−ペンテン、1−ヘキセンおよび1−オクテン、ノルボルネンなどとの共重合体であって、上記重合体の混合物でもかまわない。多孔膜の性能の観点から、ポリエチレンおよびその共重合体が好ましい。これらのポリオレフィンの重合触媒としては、チーグラー・ナッタ系触媒、フィリップス系触媒、メタロセン触媒などが挙げられる。ポリオレフィンは、1段重合法によって得られたものでも良いし、多段重合法によって得られたものでもよい。   Here, the polyolefin used as the polymer material in the present invention is, for example, a homopolymer of polyethylene or polypropylene, or these homopolymers and ethylene, propylene and 1-butene, 4-methyl-1-pentene, 1 -A copolymer of hexene, 1-octene, norbornene, etc., which may be a mixture of the above polymers. From the viewpoint of the performance of the porous membrane, polyethylene and a copolymer thereof are preferable. Examples of polymerization catalysts for these polyolefins include Ziegler-Natta catalysts, Phillips catalysts, metallocene catalysts, and the like. The polyolefin may be obtained by a one-stage polymerization method or may be obtained by a multi-stage polymerization method.

さらに本発明のポリオレフィン微多孔膜には、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の添加剤も混合して使用することが出来る。   Further, the polyolefin microporous membrane of the present invention is mixed with known additives such as metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments. Can be used.

本発明のポリオレフィン微多孔膜は、中間層の極限粘度[η]が3.0dl/g以上であり、表層の極限粘度[η]はこの中間層の極限粘度[η]より小さい必要がある。表層と中間層の極限粘度をこの範囲に保つことにより、膜としての強度を維持できるだけでなく、膜に熱がかかった時に膜表層の貼り付き効果を発揮することが可能となる。膜の貼り付き効果と突刺強度のバランスの観点から中間層の極限粘度は表層の極限粘度よりも2.0dl/g以上大きいことが好ましく、より好ましくは5.0dl/g以下であることが好ましい。   In the polyolefin microporous membrane of the present invention, the intrinsic viscosity [η] of the intermediate layer is 3.0 dl / g or more, and the intrinsic viscosity [η] of the surface layer needs to be smaller than the intrinsic viscosity [η] of the intermediate layer. By maintaining the intrinsic viscosity of the surface layer and the intermediate layer within this range, not only the strength as the film can be maintained, but also the effect of sticking the film surface layer can be exhibited when the film is heated. From the viewpoint of the balance between the film sticking effect and the puncture strength, the intrinsic viscosity of the intermediate layer is preferably 2.0 dl / g or more, more preferably 5.0 dl / g or less than the intrinsic viscosity of the surface layer. .

中間層の極限粘度が3.0dl/g未満であると、突き刺し強度や引っ張り強度などの膜全体の機械的強度が低下する。3.5dl/g以上が好ましく、4.0dl/g以上がより好ましく、5.0dl/g以上がさらに好ましい。また、熱収縮率が小さいことから7.0dl/g以下であると好ましい。
表層の極限粘度[η]は、3.0dl/g未満であることが高温での応力緩和による電極への貼り付き効果がより顕著に表れる点から好ましい。また、2.5dl/g未満であるとさらに低ヒューズ特性と高ショート特性とを兼ね備えるという点で好ましく、2.0dl/g未満がより好ましい。さらに、強度の観点からは1.0dl/gより大きいことが好ましい。
層の極限粘度[η]は層に含まれるポリオレフィン成分の極限粘度[η]とその比率に依存する。従って、各層のポリマー組成とその比率を調整すれば、本発明で規定の極限粘度の範囲とすることができる。なお、極限粘度[η]は、ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]である。
When the intrinsic viscosity of the intermediate layer is less than 3.0 dl / g, the mechanical strength of the entire film such as piercing strength and tensile strength is lowered. 3.5 dl / g or more is preferable, 4.0 dl / g or more is more preferable, and 5.0 dl / g or more is further more preferable. Moreover, it is preferable that it is 7.0 dl / g or less from a small heat shrinkage rate.
The intrinsic viscosity [η] of the surface layer is preferably less than 3.0 dl / g from the viewpoint that the effect of sticking to the electrode due to stress relaxation at high temperature appears more remarkably. Moreover, it is preferable that it is less than 2.5 dl / g from the point of having a low fuse characteristic and a high short characteristic further, and less than 2.0 dl / g is more preferable. Further, from the viewpoint of strength, it is preferably larger than 1.0 dl / g.
The intrinsic viscosity [η] of the layer depends on the intrinsic viscosity [η] of the polyolefin component contained in the layer and its ratio. Therefore, by adjusting the polymer composition of each layer and its ratio, the range of the intrinsic viscosity specified in the present invention can be obtained. The intrinsic viscosity [η] is the intrinsic viscosity [η] at 135 ° C. in a decalin solvent based on ASTM-D4020.

本発明のポリオレフィン製積層微多孔膜は、表層の孔閉塞温度と、中間層の孔閉塞温度との差が10℃未満であることが必要である。このことにより、ほぼ同じ温度で全ての層において孔閉塞が起きるので、膜全体で孔を閉塞させることがさせることができる。この温度差は5℃以下であることが好ましく、さらに好ましくは3℃以下である。孔閉塞温度は層内に含有するポリオレフィン成分の最低融点に依存する。従って、所望の融点を有するポリマー組成を選択することにより、表層と中間層の孔閉塞温度を設定することができる。   In the polyolefin microporous membrane of the present invention, the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer needs to be less than 10 ° C. As a result, pore clogging occurs in all layers at substantially the same temperature, so that the pores can be clogged throughout the membrane. This temperature difference is preferably 5 ° C. or less, more preferably 3 ° C. or less. The pore closing temperature depends on the lowest melting point of the polyolefin component contained in the layer. Therefore, by selecting a polymer composition having a desired melting point, the pore closing temperature of the surface layer and the intermediate layer can be set.

なお、孔閉塞温度は、次のような方法で測定した。すなわち、図1(A)に示した装置に微多孔膜をセットし、25℃から200℃まで2℃/minの速度にて昇温させ、1kHzの交流をかけた。このときの温度と電気抵抗値を連続的に測定し、微多孔膜の電気抵抗値が10Ωに達するときの温度を孔閉塞温度と定義した。
また、本発明のポリオレフィン微多孔膜の表層は、膜の過熱時に、電池内で正極、負極に対し同等の貼り付き効果を発現し、電極間の隔離性を維持することができること、および、電池捲回時の走行性安定のためにも最表層が同じ成分で構成されることが好ましい。
The hole closing temperature was measured by the following method. That is, a microporous membrane was set in the apparatus shown in FIG. 1 (A), the temperature was raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min, and an alternating current of 1 kHz was applied. The temperature and electrical resistance value at this time were measured continuously, and the temperature at which the electrical resistance value of the microporous membrane reached 10 3 Ω was defined as the pore closing temperature.
Further, the surface layer of the polyolefin microporous membrane of the present invention can exhibit the same sticking effect on the positive electrode and the negative electrode in the battery when the film is overheated, and can maintain the isolation between the electrodes, and the battery It is preferable that the outermost layer is composed of the same components in order to stabilize the running performance during winding.

また、孔閉塞温度が低くなることからポリエチレンのみで構成されていることが好ましく、より好ましくは両表層ともポリエチレンのみで構成されているとよい。
MD方向の引張強度は電池での外部からの衝突試験への耐性及び電池内の異物などにより短絡を生じにくくすることから、100MPa以上であることが好ましい。より好ましくは110MPa以上である。
Moreover, it is preferable that it is comprised only from polyethylene since the hole closing temperature becomes low, More preferably, both surface layers are comprised only from polyethylene.
The tensile strength in the MD direction is preferably 100 MPa or more because the battery is resistant to an external collision test and hardly causes a short circuit due to foreign matter in the battery. More preferably, it is 110 MPa or more.

TD方向の引張強度は電池での外部からの衝突試験への耐性及び電池内の異物などにより短絡を生じにくくすることから、30MPa以上であることが好ましく、60MPa以上がより好ましく、90MPa以上がさらに好ましい。   The tensile strength in the TD direction is preferably 30 MPa or more, more preferably 60 MPa or more, and more preferably 90 MPa or more, since resistance to an external collision test in the battery and resistance to a short circuit due to foreign matter in the battery are less likely to occur. preferable.

膜全体の厚みは、機械強度を保持し、電極間を完全に絶縁できるようにすることから5μm以上であることが好ましい。また、小型電池のセパレーターへ組み込む場合は、40μm以下が好ましく、さらに好ましくは10〜20μmである。表層の厚みは、過熱時の貼り付き効果を達成しやすくすることから0.1μm以上、膜全体の強度の観点から10μm以下が好ましく、1〜5μmがより好ましい。   The thickness of the entire film is preferably 5 μm or more in order to maintain mechanical strength and to completely insulate the electrodes. Moreover, when incorporating in the separator of a small battery, 40 micrometers or less are preferable, More preferably, it is 10-20 micrometers. The thickness of the surface layer is preferably 0.1 μm or more from the viewpoint of easily achieving the sticking effect during overheating, preferably 10 μm or less, and more preferably 1 to 5 μm from the viewpoint of the strength of the entire film.

気孔率は、電池セパレーターとして使用した場合に電池内部の抵抗が高くなることを防止する点から20%以上、機械的強度の点から70%以下が好ましく、さらに好ましくは30〜50%である。透気度は、機械強度の観点から10sec/cc以上、透過性能の観点から1000sec/cc以下が好ましく、30〜700sec/100ccがより好ましく、50〜500sec/ccがさらに好ましい。   When used as a battery separator, the porosity is preferably 20% or more from the viewpoint of preventing an increase in resistance inside the battery, 70% or less from the viewpoint of mechanical strength, and more preferably 30 to 50%. The air permeability is preferably 10 sec / cc or more from the viewpoint of mechanical strength, 1000 sec / cc or less from the viewpoint of transmission performance, more preferably 30 to 700 sec / 100 cc, and further preferably 50 to 500 sec / cc.

突刺強度は、電極活物質による破膜防止の観点から、3.0N/25μm以上であることが好ましく、4.0N/25μm以上がより好ましく、5.5N/25μm以上であることがさらに好ましい。   The puncture strength is preferably 3.0 N / 25 μm or more, more preferably 4.0 N / 25 μm or more, and further preferably 5.5 N / 25 μm or more, from the viewpoint of preventing film breakage by the electrode active material.

微多孔膜を130℃で拘束しない状態で測定したときの熱収縮率は低ければ低いほどよい。具体的には、MD方向の熱収縮率は、30%未満であることが好ましい。TD方向の熱収縮率は、30%以下であることが好ましく、20%未満であることがより好ましく15%であることが更に好ましい。   The lower the heat shrinkage rate when the microporous membrane is measured without being constrained at 130 ° C., the better. Specifically, the thermal shrinkage rate in the MD direction is preferably less than 30%. The thermal contraction rate in the TD direction is preferably 30% or less, more preferably less than 20%, and still more preferably 15%.

上記のTD引張強度、膜全体の厚み、気孔率、突刺強度、結晶化度は、層に含まれるポリオレフィン成分組成比や、押出条件、延伸条件、可塑剤抽出条件、熱固定条件を適宜変更することにより、調整が可能である。   The above TD tensile strength, overall film thickness, porosity, pin puncture strength, and crystallinity are appropriately changed in the composition ratio of polyolefin components contained in the layer, extrusion conditions, stretching conditions, plasticizer extraction conditions, and heat setting conditions. Adjustment is possible.

なお、本発明のポリオレフィン微多孔膜は電池用セパレーターとして使用した場合に特に顕著な効果が得られるので、この用途に使用した場合ついて中心に説明したが、本発明の微多孔膜は、精密ろ過膜、コンデンサー用セパレーター、さらには各種の機能材料を孔の中に充填させ新たな機能を出現させるための機能膜の母材として用いることもできる。その場合、過熱時に膜全体が短時間で均一に孔閉塞することや膜の表面が貼り付く効果を有していることにより、分離膜や母材の安定性を高めることができるという利点を有する。   Since the polyolefin microporous membrane of the present invention is particularly effective when used as a battery separator, the case of using it in this application has been mainly described. However, the microporous membrane of the present invention is a microfiltration membrane. Membranes, separators for condensers, and various functional materials can also be used as a base material for functional membranes for filling the holes with new functions. In that case, it has the advantage that the stability of the separation membrane and the base material can be improved by having the effect of uniformly closing the pores in a short time during overheating and having the effect of sticking the surface of the membrane. .

次に、本発明の微多孔膜の製造方法について説明する。   Next, the manufacturing method of the microporous film of this invention is demonstrated.

本発明の微多孔膜の製造方法としては、得られる微多孔膜が本発明を満たす特性を有するように両表層と中間層のポリマー材料を選定していれば、ポリマー種、溶媒種、押出方法、延伸方法、抽出方法、開孔方法、熱固定・熱処理方法などにおいて、何ら限定されることはない。また原料に無機物を混入することもできる。この場合、製造工程中で無機物を抽出してもよいし、含有させたままでもどちらでもよい。
本発明のポリオレフィン微多孔膜の特性を得るためには、次の組成とすることが好ましい。
As the method for producing the microporous membrane of the present invention, the polymer species, the solvent species, and the extrusion method are selected as long as the polymer materials of both the surface layer and the intermediate layer are selected so that the obtained microporous membrane has the characteristics satisfying the present invention. The stretching method, the extraction method, the hole opening method, the heat setting / heat treatment method and the like are not limited at all. Moreover, an inorganic substance can also be mixed in a raw material. In this case, the inorganic substance may be extracted during the production process or may be contained as it is.
In order to obtain the characteristics of the polyolefin microporous membrane of the present invention, the following composition is preferred.

表層および中間層は、1種又は2種以上のポリオレフィンからなる。本発明に規定の微多孔膜を製造するには、表層のポリマーの極限粘度[η]は3.0dl/gより小さいことが好ましく、極限粘度[η]が1.5dl/g以下のポリオレフィンが50wt%以上で含まれているとより好ましい。一方、中間層のポリマーも1種又は2種以上のポリオレフィンからなる。中間層のポリマーの極限粘度[η]が3.0dl/g以上であることが必要であり、二種以上のポリオレフィンからなるときは、極限粘度[η]が4.5dl/g以上のポリオレフィンが30w%以上で構成されていることが好ましく、50wt%以上で構成されていることがさらに好ましい。さらに、表層のポリマーに含まれる最も低い融点をもつ成分の融点と、中間層のポリマーに含まれる最も低い融点をもつ成分の融点の差の絶対値が10℃未満となるように選定する必要がある。表層と中間層のポリマーに含まれる最も低い融点を持つ成分の融点の差の絶対値は5℃以下が好ましく、3℃以下がより好ましい。   A surface layer and an intermediate | middle layer consist of 1 type, or 2 or more types of polyolefin. In order to produce the microporous membrane defined in the present invention, the intrinsic viscosity [η] of the surface layer polymer is preferably less than 3.0 dl / g, and a polyolefin having an intrinsic viscosity [η] of 1.5 dl / g or less is preferably used. It is more preferable that it is contained at 50 wt% or more. On the other hand, the polymer of the intermediate layer is also composed of one or more polyolefins. It is necessary that the intrinsic viscosity [η] of the polymer of the intermediate layer is 3.0 dl / g or more. When two or more kinds of polyolefins are used, the polyolefin having the intrinsic viscosity [η] of 4.5 dl / g or more is used. It is preferably composed of 30 w% or more, more preferably 50 wt% or more. In addition, the absolute value of the difference between the melting point of the component having the lowest melting point contained in the surface polymer and the melting point of the component having the lowest melting point contained in the intermediate layer polymer must be selected to be less than 10 ° C. is there. The absolute value of the difference between the melting points of the components having the lowest melting point contained in the polymer of the surface layer and the intermediate layer is preferably 5 ° C. or less, more preferably 3 ° C. or less.

さらに上記ポリマー材料には、ステアリン酸カルシウムやステアリン酸亜鉛等の金属石鹸類、紫外線吸収剤、光安定剤、帯電防止剤、防曇剤、着色顔料などの公知の添加剤を添加することが出来る。これらの添加剤は、原料に添加したり、ポリマーの溶融混練時、延伸処理後などに加えることができるが、添加剤の効果が発現するのであれば、特に限定されることはない。
本発明の微多孔膜は、ポリマー材料を溶融混練して押出し、これを延伸し、熱固定および熱処理することにより得られる。より具体的には以下の(a)〜(e)の工程からなる方法により得られる。
Furthermore, known additives such as metal soaps such as calcium stearate and zinc stearate, ultraviolet absorbers, light stabilizers, antistatic agents, antifogging agents, and coloring pigments can be added to the polymer material. These additives can be added to the raw material, or can be added at the time of melt kneading of the polymer or after the stretching treatment, but are not particularly limited as long as the effect of the additive is exhibited.
The microporous membrane of the present invention can be obtained by melt kneading and extruding a polymer material, stretching it, heat setting and heat treatment. More specifically, it is obtained by a method comprising the following steps (a) to (e).

(a)溶融混練
まず、表層用、および中間層用のポリマーなどの原材料をそれぞれ溶融混練する。溶融混練は、一軸押出機、二軸押出機等のスクリュー押出機、ニーダー、ミキサー等により行うことができる。原材料の一部或いは全部を必要に応じてヘンシェルミキサー、リボンブレンダー、タンブラーブレンダー等で事前混合しておいてもよい。少量の場合は、手で撹拌しても良い。溶融混練時の温度は、160℃以上が好ましく、180℃以上がさらに好ましい。また300℃未満が好ましく、240℃未満がより好ましく、230℃未満がさらに好ましい。
また、溶融混練工程や、後の押出し工程での作業を容易にし、本発明の微多孔膜を製造しやすくするため、可塑剤を用いるとよい。可塑剤の添加時期は、溶融混錬前や溶融混錬時など、押出し工程の前であれば、いつでもよい。
(A) Melt-kneading First, raw materials such as polymers for the surface layer and the intermediate layer are melt-kneaded, respectively. The melt-kneading can be performed by a screw extruder such as a single screw extruder or a twin screw extruder, a kneader, a mixer, or the like. Some or all of the raw materials may be premixed with a Henschel mixer, a ribbon blender, a tumbler blender, or the like, if necessary. If the amount is small, it may be stirred by hand. The temperature during melt kneading is preferably 160 ° C. or higher, and more preferably 180 ° C. or higher. Moreover, less than 300 degreeC is preferable, less than 240 degreeC is more preferable, and less than 230 degreeC is further more preferable.
Further, a plasticizer may be used in order to facilitate the work in the melt-kneading process and the subsequent extrusion process and to facilitate the production of the microporous membrane of the present invention. The plasticizer may be added at any time as long as it is before the extrusion process, such as before melt kneading or during melt kneading.

(b)押出し・冷却
得られた溶融混練物を押出して、シート状に成型してゲルシートとし、これを冷却固化させる。押出し成型には、スリットダイやTダイなどのシートダイから押出しキャストロールなどで冷却する方法や、インフレーション法した後、冷却する方法が挙げられる。表層と中間層の積層は、それぞれの押出機から得られたゲルシートを一体化させて一つのダイで共押出する方法、ゲルシートをそれぞれ押出して、それらを重ね合わせて熱融着する方法のいずれでも作製できる。共押出法の方が生産性に優れる。また、得られた膜は高い層間接着強度を得やすい上、層間に連通孔を形成しやすいので、膜の透過性を維持しやすいためより好ましい。
(B) Extrusion / Cooling The obtained melt-kneaded product is extruded and formed into a sheet to form a gel sheet, which is cooled and solidified. Extrusion molding includes a method of cooling from a sheet die such as a slit die or a T die with an extrusion cast roll or the like, and a method of cooling after performing an inflation method. The lamination of the surface layer and the intermediate layer can be performed by either integrating the gel sheets obtained from the respective extruders and co-extruding them with a single die, or extruding each of the gel sheets and overlaying them to heat-seal. Can be made. The coextrusion method is more productive. Further, the obtained film is more preferable because it easily obtains high interlayer adhesion strength and easily forms a communication hole between the layers, so that the permeability of the film is easily maintained.

(c)延伸
得られたシートを一軸または二軸以上の方向へ延伸する。得られる膜の強度を確保し易い点から二軸以上に延伸することが好ましく、また延伸工程が少ない点で同時に二軸方向に延伸することが好ましい。延伸方法及び延伸回数については特に制限はないが、例えば、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸、同時二軸テンターやインフレーション成形による同時二軸延伸などが挙げられる。延伸倍率は、膜厚の生産性の観点より、トータルの面倍率が8倍以上が好ましく、26倍以上がさらに好ましく、40倍以上がもっとも好ましい。また、膜の均一性の点から上限は100倍以下が好ましく、より好ましくは65倍以下である。
(C) Stretching The obtained sheet is stretched in a uniaxial or biaxial direction. It is preferable to stretch biaxially or more from the viewpoint of easily ensuring the strength of the resulting film, and it is preferable to simultaneously stretch in the biaxial direction from the viewpoint of fewer stretching steps. There are no particular limitations on the stretching method and the number of stretching, but for example, MD uniaxial stretching with a roll stretching machine, TD uniaxial stretching with a tenter, sequential biaxial stretching with a combination of a roll stretching machine and a tenter, or a tenter and a tenter, Examples thereof include simultaneous biaxial stretching by axial tenter and inflation molding. From the viewpoint of film thickness productivity, the draw ratio is preferably 8 times or more, more preferably 26 times or more, and most preferably 40 times or more. Further, from the viewpoint of film uniformity, the upper limit is preferably 100 times or less, more preferably 65 times or less.

(d)可塑剤抽出
(a)でポリマー材料に可塑剤を添加した場合、必要に応じて可塑剤を抽出する。可塑剤抽出の時期、方法、回数については特に制限はない。例えば、延伸後に抽出溶媒などを用いて可塑剤を抽出する。この場合、延伸シートを抽出溶媒に浸漬、あるいはシャワーすることにより可塑剤を抽出する。その後、充分に乾燥させる。
(D) Plasticizer extraction When a plasticizer is added to the polymer material in (a), the plasticizer is extracted as necessary. There are no particular restrictions on the timing, method, and number of plasticizer extractions. For example, the plasticizer is extracted using an extraction solvent after stretching. In this case, the plasticizer is extracted by immersing or showering the stretched sheet in an extraction solvent. Then, it is sufficiently dried.

(e)熱固定および熱処理
得られた延伸シートは熱固定及び熱処理を行う。熱固定の方法としては、所定の温度雰囲気で所定の緩和率となるよう緩和操作を行う。緩和操作とは、延伸シートをMD方向及び/或いはTD方向へ縮小させる操作のことである。また緩和率とは、緩和操作後の膜のMD寸法を操作前の膜のMD寸法で除した値、或いは緩和操作後のTD寸法を操作前の膜のTD寸法で除した値、或いはMD、TD双方を緩和した場合は、MDの緩和率とTDの緩和率を乗じた値のことである。具体的な方法として、テンターやロール延伸機を利用する方法が挙げられる。所定の温度としては、熱収縮率を低くするためには100℃以上が好ましく、気孔率及び透過性を上述の好ましい範囲とするためには135℃未満が好ましい。所定の緩和率としては、熱収縮率を低くするために0.9以下が好ましく、0.8以下であることがさらに好ましい。また、しわの発生を防止すること、気孔率及び透過性を上述の好ましい範囲とするためには0.6以上であることが好ましい。緩和操作は、MD方向、TD方向の双方で行っても良いが、MD方向或いはTD方向に片方だけの緩和操作でもよい。一方向に緩和操作を行った場合であっても、操作方向だけでなく操作方向と垂直な方向についても、熱収縮率を低減することが可能である。
(E) Heat setting and heat treatment The obtained stretched sheet is subjected to heat setting and heat treatment. As a heat setting method, a relaxation operation is performed so that a predetermined relaxation rate is obtained in a predetermined temperature atmosphere. The relaxation operation is an operation for reducing the stretched sheet in the MD direction and / or the TD direction. The relaxation rate is a value obtained by dividing the MD dimension of the film after the relaxation operation by the MD dimension of the film before the operation, or a value obtained by dividing the TD dimension after the relaxation operation by the TD dimension of the film before the operation, or MD, When both TDs are relaxed, it is a value obtained by multiplying the MD relaxation rate and the TD relaxation rate. As a specific method, a method using a tenter or a roll stretching machine can be mentioned. The predetermined temperature is preferably 100 ° C. or higher in order to reduce the heat shrinkage rate, and is preferably less than 135 ° C. in order to bring the porosity and permeability into the above-described preferable ranges. The predetermined relaxation rate is preferably 0.9 or less, and more preferably 0.8 or less, in order to reduce the heat shrinkage rate. Moreover, in order to prevent generation | occurrence | production of a wrinkle and to make a porosity and permeability | transmittance into the said preferable range, it is preferable that it is 0.6 or more. The relaxation operation may be performed in both the MD direction and the TD direction, but may be performed only in one direction in the MD direction or the TD direction. Even when the relaxation operation is performed in one direction, the thermal contraction rate can be reduced not only in the operation direction but also in the direction perpendicular to the operation direction.

また、熱固定した延伸シートの表面に電子線照射、プラズマ照射、界面活性剤塗布、化学的改質などの表面処理を施すことも出来る。
更に、上記熱固定後のマスターロールを所定の温度下でエージングし、その後マスターロールの巻き返し作業を行うことが好ましい。この工程により、マスターロール内のポリオレフィンの残存応力が開放される。マスターロールの熱処理温度は35℃以上が好ましく、45℃以上が更に好ましく、60℃以上が特に好ましい。また、膜の透過性を保持する観点から120℃以下が好ましい。
Further, surface treatment such as electron beam irradiation, plasma irradiation, surfactant coating, chemical modification and the like can be performed on the surface of the heat-set stretched sheet.
Furthermore, it is preferable that the master roll after the heat setting is aged at a predetermined temperature and then the master roll is rewound. By this step, the residual stress of the polyolefin in the master roll is released. The heat treatment temperature of the master roll is preferably 35 ° C. or higher, more preferably 45 ° C. or higher, and particularly preferably 60 ° C. or higher. Moreover, 120 degrees C or less is preferable from a viewpoint of hold | maintaining the permeability | transmittance of a film | membrane.

本発明で使用しうる可塑剤には、沸点以下の温度でポリオレフィンと均一な溶液を形成しうる有機化合物が挙げられ、具体的にはデカリン、キシレン、ジオクチルフタレート、ジブチルフタレート、ステアリルアルコール、オレイルアルコール、デシルアルコール、ノニルアルコール、ジフェニルエーテル、n−デカン、n−ドデカン、パラフィン油等が挙げられる。このうちパラフィン油、ジオクチルフタレートが好ましい。   Examples of the plasticizer that can be used in the present invention include organic compounds that can form a uniform solution with polyolefin at temperatures below the boiling point, specifically decalin, xylene, dioctyl phthalate, dibutyl phthalate, stearyl alcohol, oleyl alcohol. Decyl alcohol, nonyl alcohol, diphenyl ether, n-decane, n-dodecane, paraffin oil and the like. Of these, paraffin oil and dioctyl phthalate are preferred.

可塑剤の割合は特に限定されないが、得られる膜の気孔率を適当な範囲するためには各層の原材料投入量に対して全ての層で20重量%以上添加することが好ましく、粘度を適当な範囲するためには全ての層で90重量%以下であることが好ましい。より好ましくは50重量%から70重量%である。   The proportion of the plasticizer is not particularly limited, but it is preferable to add 20% by weight or more in all layers with respect to the raw material input amount of each layer in order to make the porosity of the obtained film in an appropriate range, and the viscosity is set appropriately. In order to make the range, it is preferable that it is 90% by weight or less in all layers. More preferably, it is 50 to 70% by weight.

本発明で使用しうる抽出溶媒としては、ポリオレフィンに対して貧溶媒であり、且つ可塑剤に対しては良溶媒であり、沸点がポリオレフィンの融点よりも低いものが望ましい。このような抽出溶媒としては、例えば、n−ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1,1−トリクロロエタン、フルオロカーボン系等ハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、アセトンや2−ブタノン等のケトン類が挙げられる。この中から適宜選択し、単独で、若しくは混合して使用する。これらの抽出溶媒は、可塑剤の抽出後に蒸留により再生し、再度使用しても構わない。   The extraction solvent that can be used in the present invention is preferably a poor solvent for polyolefin, a good solvent for plasticizer, and a boiling point lower than that of polyolefin. Examples of such extraction solvents include hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride, 1,1,1-trichloroethane, and fluorocarbons, alcohols such as ethanol and isopropanol, and acetone. And ketones such as 2-butanone. It selects from these suitably, and is used individually or in mixture. These extraction solvents may be regenerated by distillation after extraction of the plasticizer and used again.

溶融混練時の熱劣化とそれによる品質悪化を防止する観点より、(a)工程において酸化防止剤を配合することが好ましい。特に材料の特性上、樹脂が加熱する前に添加されていることが好ましい。酸化防止剤の濃度は、全ポリオレフィン材料の重量に対して0.3wt%以上が好ましく、0.5wt%以上がさらに好ましい。また、5.0wt%以下が好ましく、3.0wt%以下がさらに好ましい。   From the viewpoint of preventing thermal deterioration during melt kneading and quality deterioration due thereto, an antioxidant is preferably added in the step (a). In particular, it is preferable that the resin is added before heating because of the characteristics of the material. The concentration of the antioxidant is preferably 0.3 wt% or more, more preferably 0.5 wt% or more based on the weight of the total polyolefin material. Moreover, 5.0 wt% or less is preferable and 3.0 wt% or less is more preferable.

酸化防止剤としては、1次酸化防止剤であるフェノール系酸化防止剤が好ましく、2,6−ジ−t−ブチル−4−メチルフェノール、ペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]、オクタデシル−3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート等が挙げられる。なお、2次酸化防止剤も併用して使用可能であり、トリス(2,4−ジ−t−ブチルフェニル)フォスファイト、テトラキス(2,4−ジ−t−ブチルフェニル)−4,4−ビフェニレン−ジフォスフォナイト等のリン系酸化防止剤、ジラウリル−チオ−ジプロピオネート等のイオウ系酸化防止剤などが挙げられる。   As the antioxidant, a phenolic antioxidant which is a primary antioxidant is preferable, and 2,6-di-t-butyl-4-methylphenol, pentaerythrityl-tetrakis- [3- (3,5- Di-t-butyl-4-hydroxyphenyl) propionate], octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, and the like. Secondary antioxidants can also be used in combination, such as tris (2,4-di-t-butylphenyl) phosphite, tetrakis (2,4-di-t-butylphenyl) -4,4- Examples thereof include phosphorus-based antioxidants such as biphenylene-diphosphonite and sulfur-based antioxidants such as dilauryl-thio-dipropionate.

さらには、上述のように原料ポリマーに酸化防止剤を所定の濃度で混合した後、ミキサーや押出し機の内部を窒素雰囲気に置換し、窒素雰囲気を維持した状態で溶融混練を行うことが好ましい。   Furthermore, it is preferable to mix the antioxidant in the raw material polymer at a predetermined concentration as described above, and then replace the inside of the mixer or the extruder with a nitrogen atmosphere, and perform melt-kneading while maintaining the nitrogen atmosphere.

本発明の微多孔膜を電池用セパレーターとして用いる場合、例えば下記の方法で電池を作成すればよい。   When the microporous membrane of the present invention is used as a battery separator, for example, a battery may be prepared by the following method.

まず、微多孔膜を幅10mm〜100mm、長さ200mm〜2000mmの縦長の形状にする。このセパレーターを、正極−セパレーター負極−セパレーター、または負極−セパレーター正極−セパレーターの順で重ね、円または扁平な渦巻状に巻回する。さらに、この巻回体を電池缶内に収納し、さらに電解液を注入する。   First, the microporous membrane is formed into a vertically long shape having a width of 10 mm to 100 mm and a length of 200 mm to 2000 mm. The separator is stacked in the order of positive electrode-separator negative electrode-separator, or negative electrode-separator positive electrode-separator, and wound into a circular or flat spiral shape. Further, the wound body is housed in a battery can and an electrolyte is injected.

本発明における電池の種類は特に限定されないが、ポリオレフィン微多孔膜と電解液との親和性の観点から非水電解液電池であることが好ましい。また、本発明の微多孔膜をセパレーターとして使用した場合に優れた安全性を付与できるという観点からリチウムイオン電池であることがより好ましい。   Although the kind of battery in this invention is not specifically limited, From a viewpoint of the affinity of a polyolefin microporous membrane and electrolyte solution, it is preferable that it is a non-aqueous electrolyte battery. Moreover, it is more preferable that it is a lithium ion battery from a viewpoint that the outstanding safety | security can be provided when the microporous film of this invention is used as a separator.

本発明を実施例に基づいて説明する。
本発明で用いた各種物性は、以下の試験方法に基づいて測定した。
なお、(1)極限粘度と(11)孔閉塞温度については、積層膜から表層と中間層を分離し、各層について測定した。剥離方法は下記に記載する。
The present invention will be described based on examples.
Various physical properties used in the present invention were measured based on the following test methods.
Note that (1) intrinsic viscosity and (11) pore closing temperature were measured for each layer by separating the surface layer and the intermediate layer from the laminated film. The peeling method is described below.

サンプルを任意の大きさに切り出し、(株)スリオンテック製養生用クロステープを片側の表層の全面に貼り付けた。(株)スリオンテック製養生用クロステープを全面に貼り付けた層と逆側の表層の一部分に、(株)スリオンテック製養生用クロステープ貼り付けて引っ張り、中間層と(株)スリオンテック製養生用クロステープが全面に貼られていない側の表層を剥がし取った。剥がし取った積層体の、片側の層の全面に(株)スリオンテック製養生用クロステープを貼り付け、逆側の層の一部分に(株)スリオンテック製養生用クロステープを貼り付けて引っ張り、任意の層を剥がし取った。   A sample was cut into an arbitrary size, and a curing cross tape manufactured by Sliontec Co., Ltd. was attached to the entire surface of one surface. Sliontec Co., Ltd. Curing Cloth Cross Tape Affixed to the entire surface and a part of the surface layer opposite to the surface layer, the Slion Tech Co., Ltd. Curing Cloth Cross Tape is applied and pulled, and the intermediate layer and Slion Tech Co., Ltd. Curing Cloth The surface layer on the side where the tape was not applied to the entire surface was peeled off. Paste Sliontec Co., Ltd.'s curing cloth tape on the entire surface of one side of the peeled laminate. Paste Sliontec Co., Ltd.'s curing cloth tape on a part of the opposite side. The layer was peeled off.

(1)極限粘度[η]及び粘度平均分子量(Mv)
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η]を求めた。ポリエチレンのMvは次式により算出した。
[η]=6.77×10−4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10−4Mv0.80
層のMvはポリエチレンの式より算出した。
(2)膜厚(μm)
東洋精機製作所(株)の微小測厚器、KBM(商標)用いて室温23±2℃で測定した。
(1) Intrinsic viscosity [η] and viscosity average molecular weight (Mv)
Based on ASTM-D4020, the intrinsic viscosity [η] at 135 ° C. in a decalin solvent was determined. Mv of polyethylene was calculated by the following formula.
[Η] = 6.77 × 10 −4 Mv 0.67
For polypropylene, Mv was calculated by the following formula.
[Η] = 1.10 × 10 −4 Mv 0.80
The Mv of the layer was calculated from the polyethylene equation.
(2) Film thickness (μm)
The measurement was performed at a room temperature of 23 ± 2 ° C. using a fine thickness measuring instrument KBM (trademark) manufactured by Toyo Seiki Seisakusho.

(3)気孔率(%)
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm)と質量(g)を求め、それらと膜密度(g/cm)より、次式を用いて計算した。
気孔率=(体積−質量/膜密度)/体積×100
なお、膜密度は0.95と一定にして計算した。
(4)透気度(sec)
JIS P−8117に準拠し、ガーレー式透気度計(東洋精機製作所(株)製、G−B2(商標))により測定した。
(5)突刺強度(g)、(N/25μm)
カトーテック製、KES−G5(商標)ハンディー圧縮試験器を用いて、針先端の曲率半径0.5mm、突刺速度2mm/secで、23±2℃雰囲気下にて突刺試験を行うことにより、最大突刺荷重(N)に/25(μm)を乗じた突刺強度(N/25μm)を算出した。
(3) Porosity (%)
A sample of 10 cm × 10 cm square was cut out from the microporous membrane, its volume (cm 3 ) and mass (g) were determined, and calculated from these and the film density (g / cm 3 ) using the following formula.
Porosity = (volume−mass / film density) / volume × 100
The film density was calculated at a constant 0.95.
(4) Air permeability (sec)
Based on JIS P-8117, it measured with the Gurley type air permeability meter (the Toyo Seiki Seisakusho Co., Ltd. product, G-B2 (trademark)).
(5) Puncture strength (g), (N / 25 μm)
By using a KES-G5 (trademark) handy compression tester manufactured by Kato Tech, the needle tip curvature radius is 0.5 mm and the needle stick speed is 2 mm / sec. The puncture strength (N / 25 μm) obtained by multiplying the puncture load (N) by / 25 (μm) was calculated.

(6)引張強度(MPa)、引張伸度(%)
JIS K7127に準拠し、島津製作所製の引張試験機、オートグラフAG−A型(商標)を用いて、測定した。このサンプル(形状;幅10mm×長さ100mm)をMD方向及びTD方向に切り取った。また、サンプルはチャック間を50mmとし、サンプルの両端部(各25mm)の片面にセロハンテープ(日東電工包装システム(株)製、商品名:N.29)を貼ったものを用いた。更に、試験中のサンプル滑りを防止するために、引張試験機のチャック内側に、厚み1mmのフッ素ゴムを貼り付けた。
引張伸度(%)は、サンプルが破断に至るまでの伸び量(mm)をチャック間距離(50mm)で除して、100を乗じることにより求めた。
引張強度(MPa)は、サンプルの破断時の強度を、試験前のサンプル断面積で除することで求めた。また、MD方向の値とTD方向の値を合計することにより、MD引張伸びとTD引張伸びの合計(%)を求めた。なお、測定は、温度23±2℃、チャック圧0.30MPa、引張速度200mm/分(チャック間距離を50mm確保できないサンプルにあっては、ひずみ速度400%/分)で行った。
(6) Tensile strength (MPa), tensile elongation (%)
In accordance with JIS K7127, measurement was performed using a tensile tester manufactured by Shimadzu Corporation and Autograph AG-A type (trademark). This sample (shape: width 10 mm × length 100 mm) was cut in the MD direction and the TD direction. Moreover, the sample used the thing which stuck the cellophane tape (the Nitto Denko Packaging System Co., Ltd. make, brand name: N.29) to the single side | surface of the both ends (each 25mm) of the sample between chuck | zippers 50mm. Furthermore, in order to prevent sample slipping during the test, 1 mm-thick fluororubber was affixed inside the chuck of the tensile tester.
The tensile elongation (%) was obtained by dividing the amount of elongation (mm) until the sample breaks by the distance between chucks (50 mm) and multiplying by 100.
The tensile strength (MPa) was obtained by dividing the strength at break of the sample by the sample cross-sectional area before the test. Moreover, the sum (%) of MD tensile elongation and TD tensile elongation was calculated | required by totaling the value of MD direction, and the value of TD direction. The measurement was performed at a temperature of 23 ± 2 ° C., a chuck pressure of 0.30 MPa, and a tensile speed of 200 mm / min (in the case of a sample where the distance between chucks cannot be secured 50 mm, the strain rate is 400% / min).

(7)融点
セイコー電子工業(株)製DSC−220Cを使用し測定した。サンプルは直径5mmの円形に打ち抜き、数枚重ね合わせて3mgとした。これを直径5mmのアルミ製オープンサンプルパンに敷き詰め、クリンピングカバーをのせ、サンプルシーラーでアルミパン内に固定した。昇温速度10℃/minで、30℃から180℃までを測定し、融解吸熱曲線の極大となる温度を融点とした。
(8)末端ビニル基濃度
ポリオレフィン微多孔膜を、加熱プレスを用いて1mm程度の厚さにした後、赤外分光光度計(株式会社バリアンテクノロジーズジャパンリミテッド製FTS60A/896/UMA300)で測定した。910cm−1における吸光度、ポリオレフィン微多孔膜の密度(g/cm3)及びサンプルの厚さ(mm)より、POLYMER LETTERS
VOL.2,PP.339‐341に記載の式を参考にして、末端ビニル基濃度、すなわちポリエチレン中の炭素原子10,000個あたりの末端ビニル基個数(以下、この単位を個/10,000Cで表現する)を以下の式より算出した。なお、小数点以下を切り捨てて算出した。
末端ビニル基濃度(個/10,000C)=11.4×吸光度/(密度・厚さ)
なお、密度の単位はg/cmであり、厚さの単位はmmである。
(7) Melting point It measured using Seiko Electronics Industry Co., Ltd. DSC-220C. The sample was punched into a circle with a diameter of 5 mm, and several sheets were stacked to make 3 mg. This was spread on an aluminum open sample pan having a diameter of 5 mm, a crimping cover was placed, and the sample was sealed in the aluminum pan with a sample sealer. The temperature from 30 ° C. to 180 ° C. was measured at a rate of temperature increase of 10 ° C./min, and the temperature at which the melting endotherm curve was maximized was taken as the melting point.
(8) Terminal Vinyl Group Concentration The polyolefin microporous membrane was measured with an infrared spectrophotometer (FTS60A / 896 / UMA300 manufactured by Varian Technologies Japan Limited) after making the thickness of the polyolefin microporous film about 1 mm using a heating press. From the absorbance at 910 cm −1, the density of the polyolefin microporous membrane (g / cm 3) and the thickness of the sample (mm), POLYMER LETTERS
VOL. 2, PP. With reference to the formula described in 339-341, the concentration of terminal vinyl groups, that is, the number of terminal vinyl groups per 10,000 carbon atoms in polyethylene (hereinafter, this unit is expressed in units / 10,000 C) is as follows. It was calculated from the following formula. In addition, it rounded down and calculated.
Terminal vinyl group concentration (pieces / 10,000 C) = 11.4 × absorbance / (density / thickness)
The unit of density is g / cm 3 and the unit of thickness is mm.

(9)130℃熱収縮率
MD方向に100mm、TD方向に100mmに切り取ったサンプルを、130℃のオーブン中に1時間放置した。このとき、温風に直接サンプルがあたらないように、2枚の紙にはさんだ。オーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMD及びTDの熱収縮率を算出した。
MD熱収縮率(%)=(100−加熱後のMDの長さ)/100×100
TD熱収縮率(%)=(100−加熱後のTDの長さ)/100×100
(10)孔閉塞温度
図1(A)に孔閉塞温度の測定装置の概略図を示す。1は微多孔膜であり、2A及び2Bは厚さ10μmのニッケル箔、3A及び3Bはガラス板である。4は電気抵抗測定装置(安藤電気製LCRメーター「AG−4311」(商標))でありニッケル箔2A、2Bと接続されている。5は熱電対であり温度計6と接続されている。7はデーターコレクターであり、電気抵抗測定装置4及び温度計6と接続されている。8はオーブンであり、ここで微多孔膜を加熱した。
(9) 130 ° C. Heat Shrinkage A sample cut to 100 mm in the MD direction and 100 mm in the TD direction was left in an oven at 130 ° C. for 1 hour. At this time, it was sandwiched between two pieces of paper so that the sample was not directly exposed to the warm air. After taking out from the oven and cooling, the length (mm) was measured, and the thermal contraction rate of MD and TD was calculated by the following formula.
MD thermal shrinkage (%) = (100−MD length after heating) / 100 × 100
TD heat shrinkage rate (%) = (100−length of TD after heating) / 100 × 100
(10) Hole Clogging Temperature FIG. 1 (A) shows a schematic diagram of a device for measuring the hole clogging temperature. 1 is a microporous film, 2A and 2B are 10-micrometer-thick nickel foils, and 3A and 3B are glass plates. 4 is an electric resistance measuring device (LCR meter “AG-4411” (trademark) manufactured by Ando Electric Co., Ltd.), which is connected to the nickel foils 2A and 2B. A thermocouple 5 is connected to the thermometer 6. A data collector 7 is connected to the electrical resistance measuring device 4 and the thermometer 6. 8 is an oven, and the microporous film was heated here.

さらに図1(B)(C)を用いてこの装置を用いた測定方法について詳細に説明する。図1(B)に示すようにニッケル箔2A上に微多孔膜1を重ねて、これを縦方向に「テフロン」(登録商標)テープ(図の斜線部)でニッケル箔2Aに固定した。微多孔膜1には電解液として1mol/リットルのホウフッ化リチウム溶液(溶媒:プロピレンカーボネート/エチレンカーボネート/γ−ブチルラクトン=1/1/2)を含浸させた。ニッケル箔2B上には図1(C)に示すように「テフロン」(登録商標)テープ(図の斜線部)を貼り合わせ、箔2Bの中央部分に15mm×10mmの窓の部分を残してマスキングした。   Further, a measurement method using this apparatus will be described in detail with reference to FIGS. As shown in FIG. 1 (B), the microporous membrane 1 was superposed on the nickel foil 2A, and this was fixed to the nickel foil 2A with “Teflon” (registered trademark) tape (shaded portion in the figure) in the vertical direction. The microporous membrane 1 was impregnated with a 1 mol / liter lithium borofluoride solution (solvent: propylene carbonate / ethylene carbonate / γ-butyllactone = 1/1/2) as an electrolytic solution. As shown in FIG. 1 (C), “Teflon” (registered trademark) tape (shaded portion in the figure) is pasted on the nickel foil 2B, and masking is performed by leaving a window portion of 15 mm × 10 mm at the center of the foil 2B. did.

ニッケル箔2Aとニッケル箔2Bを微多孔膜1をはさむような形で重ね合わせ、さらにその両側からガラス板3A、3Bによって2枚のニッケル箔をはさみこんだ。このとき、箔2Bの窓の部分と、多孔膜1が相対する位置に来るように配置した。
また、2枚のガラス板は市販のダブルクリップではさむことにより固定した。熱電対5は「テフロン」(登録商標)テープでガラス板に固定した。
このような装置で連続的に温度と電気抵抗を測定した。25℃から200℃まで2℃/minの速度にて昇温させ、1kHzの交流にて測定したとき、微多孔膜の電気抵抗値が10Ωに達した温度を孔閉塞温度と定義した。
The nickel foil 2A and the nickel foil 2B were overlapped with each other so as to sandwich the microporous film 1, and two nickel foils were sandwiched by the glass plates 3A and 3B from both sides thereof. At this time, it arrange | positioned so that the part of the window of foil 2B and the porous film 1 may come to the position which opposes.
Moreover, the two glass plates were fixed by pinching with a commercially available double clip. The thermocouple 5 was fixed to a glass plate with “Teflon” (registered trademark) tape.
Temperature and electric resistance were continuously measured with such an apparatus. When the temperature was raised from 25 ° C. to 200 ° C. at a rate of 2 ° C./min and measured at an alternating current of 1 kHz, the temperature at which the electrical resistance value of the microporous membrane reached 10 3 Ω was defined as the pore closing temperature.

(11)電池評価
正極の作製:活物質としてリチウムコバルト複合酸化物LiCoOを92.2重量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3重量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2重量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗付し、130℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、正極の活物質塗付量は250g/m,活物質嵩密度は3.00g/cmになるようにした。これを幅約40mmに切断して帯状にした。
(11) Battery evaluation Preparation of positive electrode: 92.2% by weight of lithium cobalt composite oxide LiCoO 2 as an active material, 2.3% by weight of flake graphite and acetylene black as a conductive agent, and polyvinylidene fluoride as a binder ( A slurry was prepared by dispersing 3.2% by weight of PVDF in N-methylpyrrolidone (NMP). This slurry was applied to one side of a 20 μm thick aluminum foil serving as a positive electrode current collector with a die coater, dried at 130 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the positive electrode was 250 g / m 2 , and the active material bulk density was 3.00 g / cm 3 . This was cut into a width of about 40 mm to form a strip.

負極の作製:活物質として人造グラファイト96.9重量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4重量%とスチレン−ブタジエン共重合体ラテックス1.7重量%を精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付し、120℃で3分間乾燥後、ロールプレス機で圧縮成形した。このとき、負極の活物質塗付量は106g/m,活物質嵩密度は1.35g/cmになるようにした。これを幅約40mmに切断して帯状にした。Production of negative electrode: 96.9% by weight of artificial graphite as active material, 1.4% by weight of ammonium salt of carboxymethyl cellulose and 1.7% by weight of styrene-butadiene copolymer latex as a binder were dispersed in purified water to prepare a slurry. did. This slurry was applied to one side of a 12 μm thick copper foil serving as a negative electrode current collector with a die coater, dried at 120 ° C. for 3 minutes, and then compression molded with a roll press. At this time, the active material application amount of the negative electrode was set to 106 g / m 2 , and the active material bulk density was set to 1.35 g / cm 3 . This was cut into a width of about 40 mm to form a strip.

非水電解液の調製:エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/リットルとなるように溶解させて調製した。Preparation of non-aqueous electrolyte: Prepared by dissolving LiPF 6 as a solute in a mixed solvent of ethylene carbonate: ethyl methyl carbonate = 1: 2 (volume ratio) to a concentration of 1.0 mol / liter.

電池組立:上記の微多孔膜セパレーター、帯状正極及び帯状負極を、帯状負極、セパレーター、帯状正極、セパレーターの順に重ねて渦巻状に複数回捲回して電極板積層体を作製した。この電極板積層体を平板状にプレス後、アルミニウム製容器に収納し、正極集電体から導出したアルミニウム製リードを容器壁に、負極集電体から導出したニッケル製リードを容器蓋端子部に接続した。
その後、真空下65℃で8時間乾燥後、この容器内に前記した非水電解液を注入し封口した。
こうして作製されるリチウムイオン電池は、縦(厚み)6.3mm,横30mm,高さ48mmの大きさであった。この電池を25℃雰囲気下、(0.5C)の電流値で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を絞り始めるという方法で、合計6時間電池作成後の最初の充電を行った。
Battery assembly: The above-mentioned microporous membrane separator, strip-shaped positive electrode and strip-shaped negative electrode were stacked in the order of the strip-shaped negative electrode, separator, strip-shaped positive electrode, and separator and wound in a spiral shape to produce an electrode plate laminate. After pressing this electrode plate laminate into a flat plate, it is housed in an aluminum container, the aluminum lead led out from the positive electrode current collector is used as the container wall, and the nickel lead derived from the negative electrode current collector is used as the container lid terminal part. Connected.
Then, after drying at 65 ° C. for 8 hours under vacuum, the above-described non-aqueous electrolyte was poured into the container and sealed.
The lithium ion battery thus produced was 6.3 mm in length (thickness), 30 mm in width, and 48 mm in height. This battery is charged to a battery voltage of 4.2 V at a current value of (0.5 C) in an atmosphere of 25 ° C., and then the current value is started to be reduced so as to hold 4.2 V, thereby producing a battery for a total of 6 hours. After the first charge.

(a)この電池についてオーブン試験を実施するため、充電後の電池を室温から150℃まで5℃/分の速さで昇温して、150℃で1時間放置した。
その結果、10分以下で発火したものを×、30分まで発火しなかったものを○、1時間発火しなかったものを◎とした。
(A) In order to perform an oven test on this battery, the battery after charging was heated from room temperature to 150 ° C. at a rate of 5 ° C./min and left at 150 ° C. for 1 hour.
As a result, those that ignited in 10 minutes or less were marked with ×, those that did not ignite until 30 minutes were marked with ○, and those that did not ignite for 1 hour were marked with ◎.

(b)この電池の衝突試験をするため、1.9mの高さからコンクリート床に繰りかえし10回落下させた。その後電池を解体し、セパレーターの状態を観察した。セパレーターの変形による短絡を生じなかったものは、評価良好とした。   (B) In order to perform a collision test of the battery, the battery was dropped 10 times from a height of 1.9 m onto a concrete floor. Thereafter, the battery was disassembled, and the state of the separator was observed. Those that did not cause a short circuit due to the deformation of the separator were evaluated as good.

[実施例1]
押出機2台を用いて、組成の同じ2つの表層および中間層からなる微多孔膜を作成した。表面層の組成は、[η]が1.2dl/g、Mvが7万、融点が133℃であるホモポリマーのポリエチレン45wt%、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレン45wt%、[η]が4.9dl/g、Mv40万のホモポリマーのポリプロピレン5wt%とした。また、中間層の組成は、[η]が5.6dl/g、Mvが70万、融点が135℃であるホモポリマーのポリエチレンを46.5wt%、[η]が2.8dl/g、Mvが25万、136℃であるホモポリマーのポリエチレンを46.5wt%、[η]が4.9dl/g、Mv40万のホモポリマーのポリプロピレンを7wt%とした。これらの組成をそれぞれブレンドした。酸化防止剤として、各層のポリマーの合計に対し0.3wt%のテトラキス−(メチレン−3−(3’,5’−ジ−t−ブチル−4‘−ヒドロキシフェニル)プロピネート)メタンを混合した。各組成はそれぞれ口径25mm、L/D=48の二軸押出機へ、フィーダーを介して投入した。さらに各層のポリマー50wt%に対して流動パラフィン(37.78℃における動粘度75.90cSt)50wt%をサイドフィードよりそれぞれの押出機に注入し、200℃、200rpmの条件で混錬し、押出機先端に設置した共押出可能なTダイから押出した。その後、ただちに25℃に冷却したキャストロールで冷却固化させ、厚さ1.1mmのシートを成形した。このシートを同時二軸延伸機で124℃の条件で7×4倍に延伸した。その後、この延伸シートを塩化メチレンに浸漬し、流動パラフィンを抽出除去後乾燥し、120℃で熱処理して、微多孔膜を得た。得られた微多孔膜の物性を表1および2に示す。
[Example 1]
A microporous membrane composed of two surface layers and intermediate layers having the same composition was prepared using two extruders. The composition of the surface layer is [η] of 1.2 dl / g, Mv of 70,000, homopolymer polyethylene 45 wt% with a melting point of 133 ° C., [η] of 2.8 dl / g, Mv of 250,000, melting point The polymer was 45 wt% of a homopolymer having a temperature of 136 ° C., 5 wt% of a homopolymer having a [η] of 4.9 dl / g and a Mv of 400,000. The composition of the intermediate layer was [η] of 5.6 dl / g, Mv of 700,000, 46.5 wt% of homopolymer polyethylene having a melting point of 135 ° C., and [η] of 2.8 dl / g, Mv. Was 26.5 wt% of homopolymer polyethylene at 250,000 and 136 ° C., and 7 wt% of homopolymer polypropylene with [η] of 4.9 dl / g and Mv 400,000. Each of these compositions was blended. As an antioxidant, 0.3 wt% of tetrakis- (methylene-3- (3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propinate) methane was mixed with respect to the total polymer in each layer. Each composition was charged into a twin screw extruder having a diameter of 25 mm and L / D = 48 via a feeder. Furthermore, liquid paraffin (kinematic viscosity at 37.78 ° C. 75.90 cSt) 50 wt% is injected into each extruder from the side feed with respect to 50 wt% polymer in each layer, and kneaded at 200 ° C. and 200 rpm. Extruded from a co-extrudable T-die installed at the tip. Thereafter, the sheet was immediately cooled and solidified with a cast roll cooled to 25 ° C. to form a sheet having a thickness of 1.1 mm. This sheet was stretched 7 × 4 times with a simultaneous biaxial stretching machine at 124 ° C. Thereafter, this stretched sheet was immersed in methylene chloride, and liquid paraffin was extracted and dried, followed by heat treatment at 120 ° C. to obtain a microporous film. The physical properties of the obtained microporous membrane are shown in Tables 1 and 2.

[実施例2]
表面層の組成を、[η]が1.2dl/gでMvが7万で融点が133℃であるホモポリマーのポリエチレン50wt%と、[η]が2.8dl/g、Mvが25万で融点が136℃であるホモポリマーのポリエチレン50wt%とした以外は実施例1と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例3]
押出機3台を用いて、組成の異なる2つの表層および中間層からなる微多孔膜を作成した。片側の表面層の組成は、[η]が1.2dl/g、Mvが7万、融点が133℃であるホモポリマーのポリエチレン50wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレン50wt%とし、上記ポリエチレン50wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)50wt%をサイドフィードよりそれぞれの押出機に注入した。一方、反対側の表層の組成を、[η]が1.2dl/g、Mvが7万、融点が133℃であるホモポリマーのポリエチレン50wt%と、[η]が2.8dl/g、Mvが25万で融点が136℃であるホモポリマーのポリエチレン30wt%と、[η]が5.6dl/g、Mvが70万、融点が135℃であるホモポリマー20wt%として、各表層のポリマー35wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)65wt%をサイドフィードより表層の押出機に注入した以外は、実施例1と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[Example 2]
The composition of the surface layer is 50 wt% of homopolymer polyethylene with [η] of 1.2 dl / g, Mv of 70,000 and melting point of 133 ° C., [η] of 2.8 dl / g and Mv of 250,000. A microporous membrane was prepared in the same manner as in Example 1 except that the homopolymer polyethylene having a melting point of 136 ° C. was changed to 50 wt%. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 3]
Using three extruders, a microporous film composed of two surface layers and intermediate layers having different compositions was prepared. The composition of the surface layer on one side is as follows: [η] is 1.2 dl / g, Mv is 70,000, 50 wt% of homopolymer polyethylene having a melting point of 133 ° C., [η] is 2.8 dl / g, and Mv is 25 The homopolymer polyethylene having a melting point of 136 ° C. is 50 wt%, and 50 wt% of liquid paraffin (kinematic viscosity at 37.78 ° C.) is injected into each extruder from the side feed with respect to 50 wt% of the polyethylene. did. On the other hand, the composition of the surface layer on the opposite side is as follows: [η] is 1.2 dl / g, Mv is 70,000, 50 wt% of a homopolymer polyethylene having a melting point of 133 ° C., [η] is 2.8 dl / g, Mv 30 wt% of a homopolymer having a melting point of 250,000 and a melting point of 136 ° C., and 20 wt% of a homopolymer having an [η] of 5.6 dl / g, an Mv of 700,000 and a melting point of 135 ° C. A microporous membrane was prepared in the same manner as in Example 1 except that 65 wt% of liquid paraffin (kinematic viscosity at 37.78 ° C. 75.90 cSt) was injected into the surface layer extruder from the side feed. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.

[実施例4]
シートの厚さを0.7mmとした以外は実施例2と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例5]
表面層の組成を、[η]が1.7dl/g、Mvが12万、融点が127℃であるコポリマーのポリエチレン50wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレン50wt%として、熱処理温度を117℃とした以外は、実施例3と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例6]
シートの厚さを1.3mmとして、同時二軸延伸機で7×7倍に延伸した以外は実施例2と同様に微多孔膜を作製した。作製した物性を表1および2に示す。
[Example 4]
A microporous membrane was prepared in the same manner as in Example 2 except that the thickness of the sheet was 0.7 mm. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 5]
The composition of the surface layer is as follows: [η] is 1.7 dl / g, Mv is 120,000, the copolymer is 50 wt% polyethylene having a melting point of 127 ° C., [η] is 2.8 dl / g, Mv is 250,000, melting point A microporous membrane was prepared in the same manner as in Example 3 except that the homopolymer polyethylene was 50 wt% at 136 ° C. and the heat treatment temperature was 117 ° C. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 6]
A microporous membrane was prepared in the same manner as in Example 2 except that the thickness of the sheet was 1.3 mm and the sheet was stretched 7 × 7 times with a simultaneous biaxial stretching machine. The physical properties prepared are shown in Tables 1 and 2.

[実施例7]
表面の組成を、[η]が1.2dl/g、Mvが7万、融点が133℃であるホモポリマーのポリエチレン75wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレン25wt%とした以外は実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例8]
表面層の組成を、[η]が1.2dl/g、Mvが7万、融点が133℃であるホモポリマーのポリエチレン50wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレン30wt%と、[η]が5.6dl/g、Mvが70万、融点が135℃であるホモポリマー20wt%として、表層のポリエチレン35wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)65wt%をサイドフィードより表層用の押出機に注入した以外は、実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例9]
表面層の組成を、[η]が3.2dl/g、Mv30万、融点が136℃で末端ビニル基濃度10個/10,000Cであるホモポリマーのポリエチレン50wt%と、[η]が2.0dl/g、Mv15万、融点が133℃であるホモポリマーのポリエチレン50wt%とした以外は実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[Example 7]
The composition of the surface is 75 wt% of homopolymer polyethylene with [η] of 1.2 dl / g, Mv of 70,000 and melting point of 133 ° C., [η] of 2.8 dl / g, Mv of 250,000, melting point A microporous membrane was prepared in the same manner as in Example 5 except that 25 wt% of a homopolymer polyethylene having a temperature of 136 ° C. was used. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 8]
The composition of the surface layer is as follows: [η] is 1.2 dl / g, Mv is 70,000, 50 wt% of homopolymer polyethylene having a melting point of 133 ° C., [η] is 2.8 dl / g, Mv is 250,000, 30 wt% of homopolymer polyethylene having a melting point of 136 ° C. and 20 wt% of homopolymer having [η] of 5.6 dl / g, Mv of 700,000 and melting point of 135 ° C. A microporous membrane was prepared in the same manner as in Example 5 except that 65 wt% of liquid paraffin (kinematic viscosity at 37.78 ° C., 75.90 cSt) was injected from the side feed into the surface layer extruder. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 9]
The composition of the surface layer is such that [η] is 3.2 dl / g, Mv 300,000, melting point is 136 ° C., homopolymer polyethylene 50 wt% with a terminal vinyl group concentration of 10 / 10,000 C, and [η] is 2. A microporous membrane was prepared in the same manner as in Example 5 except that 50 wt% of homopolymer polyethylene having a 0 dl / g, Mv of 150,000, and a melting point of 133 ° C. was used. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.

[実施例10]
中間層の組成を、[η]が11.3dl/g、Mvが200万、融点が135℃であるホモポリマーのポリエチレンを30wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレンを70wt%として、中間層のポリマー35wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)65wt%をサイドフィードから中間層用の押出機に注入した以外は実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例11]
中間層の組成を、[η]が13.1dl/g、Mvが250万、融点が135℃のホモポリマーのポリエチレンを20wt%と、[η]が5.6dl/g、Mvが70万、融点が135℃であるホモポリマーのポリエチレンを15wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレンを30wt%と、[η]が1.7dl/g、Mv12万、融点が131℃であるエチレンプロピレンコポリマー(コモノマー:プレピレン。含有比0.6mol%)を30wt%として、中間層のポリマー35wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)65wt%をサイドフィードから中間層用の押出機に注入して、熱処理温度を118℃とした以外は実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[Example 10]
The composition of the intermediate layer is such that [η] is 11.3 dl / g, Mv is 2 million, homopolymer polyethylene having a melting point of 135 ° C. is 30 wt%, [η] is 2.8 dl / g, and Mv is 250,000. 70 wt. Of homopolymer polyethylene having a melting point of 136 ° C., and 65 wt.% Of liquid paraffin (kinematic viscosity at 37.78 ° C. of 75.90 cSt) from the side feed for the intermediate layer of 35 wt. A microporous membrane was prepared in the same manner as in Example 5 except that the microporous membrane was injected into the extruder. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 11]
The composition of the intermediate layer is [η] is 13.1 dl / g, Mv is 2.5 million, 20 wt% of homopolymer polyethylene having a melting point of 135 ° C., [η] is 5.6 dl / g, Mv is 700,000, 15 wt% of homopolymer polyethylene having a melting point of 135 ° C., [η] of 2.8 dl / g, Mv of 250,000, 30 wt% of homopolymer polyethylene having a melting point of 136 ° C., and [η] of 1 0.7 dl / g, Mv 120,000, ethylene propylene copolymer having a melting point of 131 ° C. (comonomer: propylene; content ratio 0.6 mol%) is 30 wt%, and liquid paraffin (37.78 is added to 35 wt% of the polymer in the intermediate layer. Example 5 except that 65 wt% of kinematic viscosity at 75 ° C. was injected into the extruder for the intermediate layer from the side feed and the heat treatment temperature was set to 118 ° C. A microporous membrane was prepared. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.

[実施例12]
中間層の組成を、分子量1万以下の量比が15wt%で、Mw/Mnが43、[η]が5.6dl/g、Mvが70万、融点が137℃のホモポリマーのポリエチレンを80wt%と[η]が4.9dl/gでMv40万のホモポリマーのポリプロピレンを20wt%とした以外は実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
[実施例13]
中間層の組成を、[η]が13.1dl/g、Mvが250万、融点が132℃のホモポリマーのポリエチレンを25wt%と[η]が1.7dl/g、Mvが12万、融点が131℃であるエチレンプロピレンコポリマー(コモノマー:プレピレン。含有比0.6mol%)を75wt%として、上記ポリマー35wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)65wt%をサイドフィードから中間層用の押出機に注入して、熱処理温度を118℃とした以外は実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
実施例1〜13で得られた実施例に示す全ての微多孔膜について、電池を作製した後、150℃で1時間オーブンに放置した。その結果、少なくとも30分以内に発火するものはなかった。1.9mの高さからコンクリート床に10回繰り返して落下させる試験で発火しなかった。試験後の電池を解体し、セパレーターの収縮を確認したところ、セパレーターの収縮による電極の短絡はみられなかった。また、1.9mの高さからコンクリート床に10回繰り返して落下させる試験を行ったが、セパレーターの変形による短絡は観察されなかった。
また、全ての膜についてDSC(示差走査熱量測定装置)を用いて結晶化度を測定したところ、全ての層は結晶化度が70%を超えていた。
[Example 12]
The composition of the intermediate layer is 15 wt% in a molecular weight of 10,000 or less, Mw / Mn is 43, [η] is 5.6 dl / g, Mv is 700,000, and the homopolymer polyethylene having a melting point of 137 ° C. is 80 wt. % And [η] were 4.9 dl / g, and a microporous membrane was prepared in the same manner as in Example 5 except that the homopolymer polypropylene of Mv 400,000 was changed to 20 wt%. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
[Example 13]
The composition of the intermediate layer is [η] of 13.1 dl / g, Mv of 2.5 million, 25 wt% of homopolymer polyethylene having a melting point of 132 ° C., [η] of 1.7 dl / g, Mv of 120,000, melting point The ethylene propylene copolymer (comonomer: prepylene, content ratio 0.6 mol%) having a temperature of 131 ° C. is 75 wt%, and the liquid paraffin (kinematic viscosity at 37.78 ° C. 75.90 cSt) is 65 wt% with respect to 35 wt% of the polymer. A microporous film was produced in the same manner as in Example 5 except that the heat treatment temperature was set to 118 ° C. from the side feed into the intermediate layer extruder. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
For all the microporous membranes shown in Examples obtained in Examples 1 to 13, batteries were prepared and left in an oven at 150 ° C. for 1 hour. As a result, nothing ignited at least within 30 minutes. It did not ignite in a test of repeatedly dropping 10 times from a height of 1.9 m onto a concrete floor. When the battery after the test was disassembled and the shrinkage of the separator was confirmed, no short circuit of the electrode due to the shrinkage of the separator was observed. Moreover, although the test which repeatedly drops to a concrete floor 10 times from the height of 1.9 m was done, the short circuit by deformation | transformation of a separator was not observed.
Moreover, when the crystallinity degree was measured using DSC (differential scanning calorimeter) for all the films, the crystallinity degree of all the layers exceeded 70%.

[比較例1]
表面層の組成は、[η]が1.2dl/g、Mvが7万、融点が133℃であるホモポリマーのポリエチレン45wt%と、[η]が2.8dl/g、Mvが25万、融点が136℃であるホモポリマーのポリエチレン45wt%と、[η]が4.9dl/gでMv40万のホモポリマーのポリプロピレン5wt%として、中間層の組成を、[η]が2.5dl/g、Mvが21万、融点が136℃であるホモポリマーのポリエチレンを95wt%と、[η]が4.9dl/gでMv40万のホモポリマーのポリプロピレンを5wt%とした以外は、実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
電池評価の結果、オーブン試験、衝突試験において、良好な結果が得られなかった。
[Comparative Example 1]
The composition of the surface layer is [η] of 1.2 dl / g, Mv of 70,000, homopolymer polyethylene 45 wt% with a melting point of 133 ° C., [η] of 2.8 dl / g, Mv of 250,000, The intermediate layer has a composition of [η] of 2.5 dl / g, with a homopolymer polyethylene of 45 wt% having a melting point of 136 ° C. and an [η] of 4.9 dl / g and a homopolymer polypropylene of 5 wt% of Mv 400,000. Example 5 except that the homopolymer polyethylene having an Mv of 210,000 and a melting point of 136 ° C. is 95 wt%, and the [η] is 4.9 dl / g and the homopolymer polypropylene of Mv 400,000 is 5 wt%. Similarly, a microporous membrane was produced. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
As a result of battery evaluation, good results were not obtained in the oven test and the collision test.

[比較例2]
表面の組成を、[η]が1.2dl/gでMvが7万で融点が133℃であるホモポリマーのポリエチレン75wt%と、[η]が2.8dl/gでMvが25万で融点が136℃であるホモポリマーのポリエチレン25wt%として、シートの厚さを2.0mmとした以外は、比較例1と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
電池評価の結果、オーブン試験において、良好な結果が得られなかった。
[比較例3]
シートの厚さを0.7mmとして、同時二軸延伸機で7×4倍に延伸した以外は、比較例2と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
電池評価の結果、オーブン試験、衝突試験において、良好な結果が得られなかった。
[Comparative Example 2]
The composition of the surface is 75 wt% of homopolymer polyethylene with [η] of 1.2 dl / g, Mv of 70,000 and melting point of 133 ° C., [η] of 2.8 dl / g, Mv of 250,000 and melting point A microporous membrane was prepared in the same manner as in Comparative Example 1, except that the homopolymer polyethylene was 25 wt% at 136 ° C. and the sheet thickness was 2.0 mm. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
As a result of battery evaluation, good results were not obtained in the oven test.
[Comparative Example 3]
A microporous membrane was prepared in the same manner as in Comparative Example 2, except that the thickness of the sheet was 0.7 mm and the sheet was stretched 7 × 4 times with a simultaneous biaxial stretching machine. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
As a result of battery evaluation, good results were not obtained in the oven test and the collision test.

[比較例4]
表層の組成を、[η]が5.6dl/gでMvが70万で融点が135℃であるホモポリマーのポリエチレン100wt%として、上記ポリエチレン30wt%に対して、流動パラフィン(37.78℃における動粘度75.90cSt)70wt%をサイドフィードで表層用の押出機に注入した以外は、実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
電池評価の結果、オーブン試験において、良好な結果が得られなかった。
[比較例5]
表面層の組成を、[η]が1.7dl/gでMvが12万で融点が125℃であるコポリマーのポリエチレン50wt%と、[η]が2.8dl/gでMvが25万で融点が136℃であるホモポリマーのポリエチレン50wt%として、二軸延伸機の温度を121℃として、熱処理温度を115℃とする以外は、実施例5と同様に微多孔膜を作製した。作製した微多孔膜の物性を表1および2に示す。
電池評価の結果、オーブン試験において、良好な結果が得られなかった。
[Comparative Example 4]
The composition of the surface layer is 100 wt% of a homopolymer having [η] of 5.6 dl / g, Mv of 700,000 and a melting point of 135 ° C., and liquid paraffin (at 37.78 ° C. with respect to 30 wt% of the polyethylene). A microporous membrane was prepared in the same manner as in Example 5 except that 70 wt% of the kinematic viscosity 75.90 cSt) was injected into the surface layer extruder by side feed. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
As a result of battery evaluation, good results were not obtained in the oven test.
[Comparative Example 5]
The composition of the surface layer is 50 wt% of copolymer polyethylene with [η] of 1.7 dl / g, Mv of 120,000 and melting point of 125 ° C., [η] of 2.8 dl / g and Mv of 250,000. A microporous membrane was prepared in the same manner as in Example 5 except that the homopolymer polyethylene was 50 wt% at 136 ° C., the temperature of the biaxial stretching machine was 121 ° C., and the heat treatment temperature was 115 ° C. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
As a result of battery evaluation, good results were not obtained in the oven test.

[比較例6]
[η]が5.6dl/gでMvが70万で融点が135℃であるホモポリマーのポリエチレンを46.5wt%と、[η]が2.5dl/gでMvが25万で融点が136℃であるホモポリマーのポリエチレンを46.5wt%と、[η]が4.9dl/gでMv40万のホモポリマーのポリプロピレンを7wt%の単層膜である以外は、実施例5と同様に微多孔膜を作製した。得られた微多孔膜の物性を表1に示す。作製した微多孔膜の物性を表1および2に示す。
電池評価の結果、オーブン試験において、良好な結果が得られなかった。
[Comparative Example 6]
46.5 wt% of homopolymer polyethylene having [η] of 5.6 dl / g, Mv of 700,000 and a melting point of 135 ° C., [η] of 2.5 dl / g, Mv of 250,000 and a melting point of 136 The same as in Example 5, except that the homopolymer polyethylene at 4 ° C. is a single layer film of 46.5 wt% and [η] is 4.9 dl / g and the homopolymer polypropylene of Mv 400,000 is 7 wt%. A porous membrane was produced. Table 1 shows the physical properties of the obtained microporous membrane. The physical properties of the produced microporous membrane are shown in Tables 1 and 2.
As a result of battery evaluation, good results were not obtained in the oven test.

[比較例7]
両表層がポリプロピレンからなり、中間層がポリエチレンである3層が貼り合わされてなる市販の乾式膜を用いて同様に行った。
電池評価の結果、衝突試験において、良好な結果が得られなかった。
[Comparative Example 7]
It carried out similarly using the commercially available dry-type film | membrane with which both surface layers consisted of polypropylene and the intermediate | middle layer was 3 layers which are polyethylene.
As a result of battery evaluation, good results were not obtained in the collision test.

Figure 2007116672
Figure 2007116672

Figure 2007116672
Figure 2007116672

本発明は、物質の分離や選択透過分離膜、及び隔離材等に用いられている微多孔膜に関し、特にリチウムイオン電池などのセパレーターとして好適に使用される。   The present invention relates to a microporous membrane used for separation of substances, a permselective separation membrane, a separator, and the like, and particularly suitably used as a separator for lithium ion batteries and the like.

本発明の微多孔膜の孔閉塞温度の測定装置の概略図を示す。The schematic of the measuring apparatus of the hole obstruction | occlusion temperature of the microporous film of this invention is shown.

符号の説明Explanation of symbols

1:微多孔膜
2A:ニッケル箔
2B:ニッケル箔
3A:ガラス板
3B:ガラス板
4:電気抵抗測定装置
5:熱電対
6:温度計
7:データコレクター
8:オーブン
1: Microporous film 2A: Nickel foil 2B: Nickel foil 3A: Glass plate 3B: Glass plate 4: Electrical resistance measuring device 5: Thermocouple 6: Thermometer 7: Data collector 8: Oven

Claims (10)

2層の表層と少なくとも1層の中間層を含む3層以上の積層体であるポリオレフィン微多孔膜であって、該中間層の極限粘度[η]が3.0dl/g以上であり、かつ、前記表層の極限粘度[η]は前記中間層の極限粘度[η]よりも小さく、さらに、表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値が10℃未満であることを特徴とするポリオレフィン微多孔膜。   A polyolefin microporous membrane that is a laminate of three or more layers including two surface layers and at least one intermediate layer, wherein the intrinsic viscosity [η] of the intermediate layer is 3.0 dl / g or more, and The intrinsic viscosity [η] of the surface layer is smaller than the intrinsic viscosity [η] of the intermediate layer, and the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is less than 10 ° C. A polyolefin microporous membrane. 両表層がポリエチレンのみで構成されていることを特徴とする請求項1に記載のポリオレフィン微多孔膜。 2. The polyolefin microporous membrane according to claim 1, wherein both surface layers are composed only of polyethylene. 両表層が同じ組成で構成されていることを特徴とする請求項1又は2に記載のポリオレフィン微多孔膜。 Both the surface layers are comprised by the same composition, The polyolefin microporous film of Claim 1 or 2 characterized by the above-mentioned. 膜全体の機械方向と垂直方向(TD方向)の引張強度が30MPa以上であることを特徴とする請求項1〜3のいずれか一項に記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 3, wherein the tensile strength in the direction perpendicular to the machine direction (TD direction) of the entire membrane is 30 MPa or more. 表層の孔閉塞温度と中間層の孔閉塞温度の差の絶対値が5℃以下であることを特徴とする請求項1〜4のいずれか一項に記載のポリオレフィン微多孔膜。   5. The polyolefin microporous membrane according to claim 1, wherein the absolute value of the difference between the pore closing temperature of the surface layer and the pore closing temperature of the intermediate layer is 5 ° C. or less. ポリオレフィンと可塑剤を含有する組成物を用いて製造される請求項1〜5のいずれか一項に記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 5, which is produced using a composition containing a polyolefin and a plasticizer. ポリマー材料と可塑剤を溶融混錬して、共押出しで積層されたシートを形成し、二軸延伸を施し可塑剤を抽出した後に、熱固定する工程を含むことを特徴とする請求項1〜6のいずれか一項に記載のポリオレフィン微多孔膜の製造方法。 A method comprising melt-kneading a polymer material and a plasticizer to form a laminated sheet by coextrusion, biaxial stretching and extracting the plasticizer, followed by heat setting. The method for producing a polyolefin microporous membrane according to claim 6. ポリマー材料と可塑剤を溶融混錬して、共押出しで積層されたシートを形成し、二軸延伸を施し可塑剤を抽出した後に、熱固定することによって得られた請求項1〜5のいずれか一項に記載のポリオレフィン微多孔膜。   Any one of claims 1 to 5 obtained by melt-kneading a polymer material and a plasticizer to form a laminated sheet by coextrusion, biaxial stretching to extract the plasticizer, and then heat setting. The polyolefin microporous membrane according to claim 1. 請求項1〜6および8のいずれか一項に記載のポリオレフィン微多孔膜を用いた非水電解液電池用セパレーター。   The separator for non-aqueous electrolyte batteries using the polyolefin microporous film as described in any one of Claims 1-6 and 8. 請求項9に記載のセパレーターを用いた非水電解液電池。   A non-aqueous electrolyte battery using the separator according to claim 9.
JP2008509737A 2006-03-30 2007-03-26 Polyolefin microporous membrane Active JP4931911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008509737A JP4931911B2 (en) 2006-03-30 2007-03-26 Polyolefin microporous membrane

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006094841 2006-03-30
JP2006094841 2006-03-30
JP2008509737A JP4931911B2 (en) 2006-03-30 2007-03-26 Polyolefin microporous membrane
PCT/JP2007/056170 WO2007116672A1 (en) 2006-03-30 2007-03-26 Polyolefin microporous film

Publications (2)

Publication Number Publication Date
JPWO2007116672A1 true JPWO2007116672A1 (en) 2009-08-20
JP4931911B2 JP4931911B2 (en) 2012-05-16

Family

ID=38580971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008509737A Active JP4931911B2 (en) 2006-03-30 2007-03-26 Polyolefin microporous membrane

Country Status (5)

Country Link
JP (1) JP4931911B2 (en)
KR (1) KR101060380B1 (en)
CN (1) CN101384429B (en)
TW (1) TW200808547A (en)
WO (1) WO2007116672A1 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101612532B (en) * 2008-06-27 2011-06-15 中国科学院金属研究所 High-strength sub-micron pore separation membrane, preparation method and application thereof
JP4801706B2 (en) * 2008-09-03 2011-10-26 三菱樹脂株式会社 Laminated porous film for separator and method for producing the same
JP4801717B2 (en) * 2008-11-18 2011-10-26 三菱樹脂株式会社 Battery separator and battery
JP4801705B2 (en) * 2008-09-03 2011-10-26 三菱樹脂株式会社 Laminated porous film for separator and method for producing the same
JP5320464B2 (en) * 2008-11-17 2013-10-23 東レバッテリーセパレータフィルム株式会社 Microporous membranes and methods for making and using such membranes
PL2708359T3 (en) 2009-03-09 2018-06-29 Asahi Kasei Kabushiki Kaisha Polyolefin microporous membrane useful as separator for electricity storage device
JP5541966B2 (en) * 2009-08-06 2014-07-09 旭化成イーマテリアルズ株式会社 Method for producing microporous membrane
CN101724168B (en) * 2009-11-16 2011-09-21 深圳市星源材质科技股份有限公司 Preparation method of polyolefin microporous membrane
KR101895628B1 (en) * 2010-06-25 2018-09-05 도레이 카부시키가이샤 Composite porous membrane, method for producing composite porous membrane and battery separator using same
JP2012015073A (en) * 2010-07-05 2012-01-19 Asahi Kasei E-Materials Corp Microporous film, method for producing the same, and battery separator
CN103785302A (en) * 2012-10-29 2014-05-14 深圳市冠力新材料有限公司 Method for controlling thickness customization aperture porous membrane
JP6516071B2 (en) 2016-08-10 2019-05-22 日産自動車株式会社 Non-aqueous electrolyte secondary battery
JP7017344B2 (en) * 2016-08-31 2022-02-08 旭化成株式会社 Separator for power storage device
US20190247805A1 (en) * 2016-11-04 2019-08-15 Asahi Kasei Medical Co., Ltd. Porous membrane and method for manufacturing porous membrane
JP6886839B2 (en) * 2017-02-27 2021-06-16 旭化成株式会社 Polyolefin microporous membrane
KR20190127690A (en) * 2017-03-17 2019-11-13 도레이 카부시키가이샤 Polyolefin Microporous Membrane
KR102202789B1 (en) * 2018-05-24 2021-01-14 주식회사 엘지화학 Non-destructive thickness measurement method of reinforcing membranes for polymer electrolyte fuel cell having three layer
KR102256444B1 (en) * 2018-11-27 2021-05-26 롯데케미칼 주식회사 Polyethylene porous separator and manufacturing method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3400139B2 (en) * 1994-09-30 2003-04-28 三井化学株式会社 Laminated microporous film of olefin polymer, its production method and its use
JPH09259857A (en) * 1996-03-27 1997-10-03 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP4931163B2 (en) * 2001-04-24 2012-05-16 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
KR100833733B1 (en) * 2003-04-04 2008-05-29 아사히 가세이 케미칼즈 가부시키가이샤 Polyolefin microporous membrane

Also Published As

Publication number Publication date
CN101384429B (en) 2011-10-05
WO2007116672A1 (en) 2007-10-18
KR20080102255A (en) 2008-11-24
TWI348969B (en) 2011-09-21
JP4931911B2 (en) 2012-05-16
KR101060380B1 (en) 2011-08-29
TW200808547A (en) 2008-02-16
CN101384429A (en) 2009-03-11

Similar Documents

Publication Publication Date Title
JP4931911B2 (en) Polyolefin microporous membrane
JP5216327B2 (en) Polyolefin microporous membrane
JP5586152B2 (en) Polyolefin microporous membrane
JP5791087B2 (en) Laminated separator and method for producing the same
JP5213443B2 (en) Polyolefin microporous membrane
US11504674B2 (en) Polyolefin microporous film and lithium-ion secondary cell in which same is used
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
KR20090125007A (en) Polyolefin microporous membrane
JP5592745B2 (en) Polyolefin microporous membrane
CN113891912A (en) Polyolefin microporous membrane
JP5909411B2 (en) Polyolefin microporous membrane and method for producing the same
JP2009138159A (en) Microporous membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111109

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120214

R150 Certificate of patent or registration of utility model

Ref document number: 4931911

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350