WO2015194504A1 - Polyolefin microporous membrane, separator for cell, and cell - Google Patents

Polyolefin microporous membrane, separator for cell, and cell Download PDF

Info

Publication number
WO2015194504A1
WO2015194504A1 PCT/JP2015/067178 JP2015067178W WO2015194504A1 WO 2015194504 A1 WO2015194504 A1 WO 2015194504A1 JP 2015067178 W JP2015067178 W JP 2015067178W WO 2015194504 A1 WO2015194504 A1 WO 2015194504A1
Authority
WO
WIPO (PCT)
Prior art keywords
microporous membrane
stretching
polyolefin microporous
film
polyolefin
Prior art date
Application number
PCT/JP2015/067178
Other languages
French (fr)
Japanese (ja)
Inventor
みのり 廣田
慎太郎 菊地
秀人 光岡
Original Assignee
東レバッテリーセパレータフィルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レバッテリーセパレータフィルム株式会社 filed Critical 東レバッテリーセパレータフィルム株式会社
Priority to JP2016529329A priority Critical patent/JP6680206B2/en
Priority to CN201580033098.3A priority patent/CN106575734B/en
Priority to KR1020167034112A priority patent/KR102320739B1/en
Publication of WO2015194504A1 publication Critical patent/WO2015194504A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane, a battery separator and a battery.
  • Polyolefin microporous membranes are widely used as separators and filters.
  • separators for lithium ion secondary batteries nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, and reverse osmosis filtration membranes, ultrafiltration membranes for filters
  • it is used for moisture-permeable and waterproof clothing, medical materials, etc.
  • it uses suitably as a separator for lithium ion secondary batteries.
  • Lithium ion secondary batteries are widely used not only for small electronic devices such as notebook computers and mobile phones, but also for power tools such as electric tools and hybrid electric vehicles in recent years.
  • the separator has a function of preventing a short circuit between the positive electrode and the negative electrode while maintaining ion permeability.
  • the separator due to the influence of the expansion / contraction of the electrode accompanying the charging / discharging of the battery, the separator is repeatedly loaded / released with force in the thickness direction, resulting in changes in deformation and permeability, resulting in a decrease in battery capacity (cycle characteristics). It has been pointed out that there is a risk of causing deterioration. Therefore, in order to maintain the cycle characteristics of the battery, it is required to suppress the deformation of the separator and the change in permeability due to compression.
  • Patent Document 1 describes a microporous film having a content of ultrahigh molecular weight polyethylene having a mass average molecular weight of 1 ⁇ 10 6 or more and having polyethylene as a main component of polyethylene of 100% by mass as a whole and 5% by mass or less. ing.
  • the microporous film of Patent Document 1 has a porosity of 25 to 80%, and the rate of change in film thickness after heating and compression at a pressure of 2.2 MPa for 90 degrees and 5 minutes is the film thickness before compression. 20% or less as 100%, reaching air resistance after heat compression under the above conditions (Gurley value) is described to be less 700sec / 100cm 3 / 20 ⁇ m.
  • a polyolefin having a viscosity average molecular weight (Mv) of less than 300,000, a polyolefin having an Mv of 500,000 or more, and electrochemically inert particles larger than a film thickness are essential components, and the particles are formed on the film surface.
  • the air permeability resistance was 190 to 430 sec when compressed by a press machine at 55 ° C. for 5 seconds so as to be 80% of the initial total thickness including protruding particles.
  • Patent Document 3 proposes a microporous membrane having heat resistance and flexibility by extruding an ⁇ -olefin and a propylene-based elastomer with a polyolefin resin, forming into a sheet shape, stretching, washing, and drying. .
  • the porosity of the microporous film is 35 to 75%, and the rate of change in film thickness after heating and compression at 90 ° C. for 5 minutes under a pressure of 2.2 MPa by a press machine is the film thickness before compression. It is described that the ultimate air resistance (Gurley value) after heating and compression under the above conditions is 600 seconds / 100 ml / 20 ⁇ m or less.
  • the separator's air resistance is high, the flow of ions will be hindered, and if the adhesion is not sufficient, a gap will be created between the separator and the electrode due to expansion of the electrolyte or electrode, which promotes lithium deposition. It is. Therefore, in order to suppress the deterioration of the cycle characteristics, it is necessary to suppress an increase in the air permeability resistance of the separator and improve the adhesion between the separator and the electrode.
  • the present invention provides a polyolefin microporous membrane that can prevent deterioration of the air permeability of the separator due to high-pressure press working in the battery manufacturing process and has excellent compression resistance. Moreover, if the polyolefin microporous film of the present invention is used, a battery having excellent cycle characteristics can be provided.
  • the battery separator of the present invention has the following configuration. That is, Polyolefin microporous membrane having a rate of change in air resistance after heating and compression at a temperature of 90 ° C. and a pressure of 5.0 MPa for 5 minutes of 50% or less, and at a temperature of 90 ° C. and a pressure of 5.0 MPa for 5 minutes. It is a polyolefin microporous film whose rate of change in thickness after heat compression is 10% or less with the film thickness of the polyolefin microporous film before heat compression as 100%.
  • the content of ultrahigh molecular weight polyethylene having a weight average molecular weight (Mw) of 1 ⁇ 10 6 or more is preferably 10 to 40% by mass with respect to 100% by mass of the total mass of polyethylene.
  • the polyolefin microporous membrane of the present invention preferably has a thickness of 16 ⁇ m or less.
  • the polyolefin microporous membrane of the present invention preferably has a porosity of 25 to 40%.
  • the polyolefin microporous membrane of the present invention preferably has an average pore size determined by a palm porometer of 0.05 ⁇ m or less and a bubble point (BP) pore size of 0.06 ⁇ m or less.
  • the polyolefin microporous membrane of the present invention is preferably a battery separator.
  • the battery of the present invention has the following configuration. That is, The battery uses a battery separator made of the polyolefin microporous membrane.
  • the present invention provides a polyolefin microporous membrane excellent in compression resistance, which can prevent deterioration of the air permeability resistance of the separator due to high pressure pressing in the battery manufacturing process. Moreover, if the polyolefin microporous film of the present invention is used, a battery having excellent cycle characteristics can be provided.
  • the polyolefin resin constituting the polyolefin microporous membrane of the present invention contains a polyethylene resin as a main component.
  • the content of the polyethylene resin is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass, where the total mass of the polyolefin resin is 100% by mass. Therefore, in the polyolefin microporous membrane of the present invention, the polymer component is preferably made of polyethylene resin, and in that case, polypropylene is not included.
  • polystyrene resin examples include a two-stage polymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methylpentene-1, 1-hexene, or a copolymer and a blend thereof.
  • the polyethylene resin that is the main component of the polyolefin resin is a polyethylene having a weight average molecular weight (Mw) of less than 1 ⁇ 10 6 (hereinafter referred to as “polyethylene (A)”) and an ultra-high Mw of 1 ⁇ 10 6 or more.
  • a polyethylene composition comprising a molecular weight polyethylene hereinafter referred to as “polyethylene (B)” is more preferred.
  • the polyethylene (A) may be any of high density polyethylene (HDPE), medium density polyethylene (MDPE), and low density polyethylene (LDPE), and two or more types having different Mw or density may be used. In particular, it is preferable to use high-density polyethylene as the polyethylene (A).
  • the Mw of the polyethylene (A) is preferably 1 ⁇ 10 4 or more and less than 5 ⁇ 10 5 , more preferably 5 ⁇ 10 4 or more and less than 4 ⁇ 10 5 .
  • the polyethylene (B) is ultra high molecular weight polyethylene (UHMWPE), and Mw is 1 ⁇ 10 6 or more, and Mw is more preferably 1 ⁇ 10 6 to 3 ⁇ 10 6 . By making Mw of polyethylene (B) 3 ⁇ 10 6 or less, melt extrusion can be facilitated.
  • UHMWPE ultra high molecular weight polyethylene
  • the content of polyethylene (B) in the polyethylene resin is preferably 10% by mass or more and 40% by mass or less, more preferably 15% by mass or more and 30% by mass or less, based on 100% by mass of the total mass of the polyethylene resin.
  • the content of polyethylene (B) is within the above-mentioned preferable range, the average pore diameter of the entire film can be reduced under the same production conditions, and the pores are not easily crushed by compression.
  • a heat shrinkage rate can be restrained low as content of polyethylene (B) exists in the said preferable range.
  • the Mw of the polyolefin resin is preferably 1 ⁇ 10 6 or less, more preferably 1 ⁇ 10 5 to 1 ⁇ 10 6 , still more preferably 2 ⁇ 10 5 to 1 ⁇ 10 6 .
  • the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn (molecular weight distribution)) of polyethylene (A), polyethylene (B), and polyolefin resin is not limited, but preferably 5 to 300 for all. 5 to 100 is more preferable, and 5 to 25 is more preferable. When Mw / Mn is in the above preferred range, melt extrusion can be facilitated and the strength of the resulting polyolefin microporous membrane can be increased.
  • the polyolefin resin may contain a polyolefin imparting a shutdown function.
  • LDPE or polyethylene wax can be added as the polyolefin imparting the shutdown function.
  • the LDPE is preferably at least one selected from the group consisting of branched LDPE, linear LDPE (LLDPE), and an ethylene / ⁇ -olefin copolymer produced by a single site catalyst.
  • the addition amount is preferably 20% by mass or less, based on 100% by mass of the total mass of the polyolefin resin. Strength fall can be prevented by making addition amount into the said preferable range.
  • additives such as an antioxidant and finely divided silicic acid (pore forming agent) may be added as long as the effects of the present invention are not impaired.
  • the method for producing a polyolefin microporous membrane of the present invention is as follows. (1) After adding a film-forming solvent to the polyolefin resin, melt-kneading to prepare a polyolefin resin solution.
  • the method for producing a polyolefin microporous membrane of the present invention is a wet method that undergoes the following “preparation step of polyolefin resin solution” and “formation step of gel-like molded product”.
  • a production method that does not go through the “preparation step of polyolefin resin solution” is called a dry method.
  • (1) Preparation Step of Polyolefin Resin Solution After adding a suitable film-forming solvent to the polyolefin resin, it is melt-kneaded to prepare a polyolefin resin solution.
  • the melt-kneading method is known, detailed description thereof is omitted, but as the melt-kneading method, for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.
  • the polyolefin resin concentration of the polyolefin resin solution is preferably 25 to 50% by mass, more preferably 25 to 45% by mass, with the total mass of the polyolefin resin and the film-forming solvent being 100% by mass. It is. By making the ratio of the polyolefin resin within the above-mentioned preferable range, it is possible to prevent a decrease in productivity and a decrease in moldability of the gel-like molded product.
  • Step of forming a gel-like molded product A polyolefin resin solution is extruded from a die through an extruder and cooled to form a gel-like molded product.
  • the rate of cooling the polyolefin resin solution extruded from the die to 50 ° C. or less is preferably 180 ° C./min or more, more preferably 200 ° C./min or more, and further preferably 210 ° C./min or more.
  • the cooling rate within the above preferable range, the number of crystal nuclei is increased and the number of microcrystals is increased.
  • the gel-like molded product is easy to orientate crystals when stretched, the fibril strength is improved, and the resulting microporous film is less likely to be crushed by increasing the strength against compression in the film thickness direction.
  • Extrusion methods and gel-like molded product formation methods are known and will not be described here. For example, the methods disclosed in Japanese Patent Nos. 2132327 and 3347835 can be used.
  • the gel-like molded product is stretched in at least a uniaxial direction.
  • the first stretching causes cleavage between the polyethylene crystal lamella layers, the polyethylene phase is refined, and a large number of fibrils are formed.
  • the obtained fibrils form a three-dimensional network structure (a network structure that is irregularly connected three-dimensionally). Since the gel-like molded product contains a film-forming solvent, it can be stretched uniformly.
  • the first stretching can be carried out at a predetermined magnification by heating the gel-like molded product and then using a normal tenter method, roll method, inflation method, rolling method, or a combination of these methods.
  • the first stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be performed.
  • the draw ratio varies depending on the thickness of the gel-like molded product, it is preferably 2 times or more, more preferably 3 to 50 times in uniaxial stretching. In biaxial stretching, at least 3 times or more is preferable in any direction.
  • the first stretching temperature is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin to the crystal dispersion temperature + 30 ° C., more preferably in the range of the crystal dispersion temperature + 10 ° C. to the crystal dispersion temperature + 25 ° C., It is particularly preferable to set the temperature within the range of crystal dispersion temperature + 15 ° C. to crystal dispersion temperature + 20 ° C.
  • the crystal dispersion temperature refers to a value obtained by measuring temperature characteristics of dynamic viscoelasticity based on ASTM D4065.
  • the polyolefin resin is polyethylene
  • the crystal dispersion temperature is generally 90 to 100 ° C. Therefore, the stretching temperature is usually preferably 90 to 130 ° C, more preferably 100 to 125 ° C, and further preferably 105 to 120 ° C.
  • ⁇ Multi-stage stretching at different temperatures may be performed during the first stretching.
  • the stretching is preferably performed at two different temperatures, the temperature of the subsequent stage being higher than the temperature of the previous stage.
  • the difference in the stretching temperature between the former stage and the latter stage is 5 ° C. or more.
  • the former (a) is preferred. In any case, it is preferable to rapidly heat at the time of temperature rise. Specifically, heating is preferably performed at a temperature rising rate of 0.1 ° C./second or more, more preferably heating at a temperature rising rate of 1 to 5 ° C./second. Needless to say, the stretching temperature and the total stretching ratio of the former stage and the latter stage are within the above ranges, respectively.
  • the film may be stretched with a temperature distribution in the film thickness direction, whereby a polyolefin microporous film having further excellent mechanical strength can be obtained.
  • the method for example, the method disclosed in Japanese Patent No. 3347854 can be used.
  • a cleaning solvent is used to remove (wash) the film forming solvent. Since the polyolefin phase is phase-separated from the film-forming solvent, a porous film can be obtained by removing the film-forming solvent.
  • the cleaning solvent and the method for removing the film-forming solvent using the same are well known and will not be described here. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • Membrane drying step The polyolefin microporous membrane obtained by removing the film-forming solvent is dried by a heat drying method, an air drying method or the like.
  • Second stretching step The dried film is stretched again in at least a uniaxial direction.
  • the second stretching can be performed by a tenter method or the like, similar to the first stretching, while heating the film.
  • the second stretching may be uniaxial stretching or biaxial stretching.
  • the temperature of the second stretching is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin constituting the microporous membrane to the crystal dispersion temperature + 40 ° C. or less, and the crystal dispersion temperature + 10 ° C. or more to the crystal dispersion temperature + 40 ° C. More preferably, it is within the following range.
  • the temperature of the second stretching By setting the temperature of the second stretching within the above preferable range, it is possible to suppress the occurrence of variations in the air permeability resistance particularly in the stretched sheet width direction.
  • the temperature of the second stretching within the above-mentioned preferable range, the polyolefin resin can be sufficiently softened, and the film can be prevented from being broken in the stretching and can be stretched uniformly.
  • the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 140 ° C.
  • the magnification in the uniaxial direction of the second stretching is preferably 1.0 to 1.8 times.
  • the length is 1.0 to 1.8 times in the longitudinal direction (machine direction: MD direction) or TD direction.
  • MD direction machine direction
  • TD direction 1.0 to 1.8 times each in the MD direction and the TD direction.
  • each stretching ratio in the MD direction and TD direction may be different in each direction as long as it is 1.0 to 1.8 times, but is preferably the same.
  • the second stretching speed is preferably 3% / second or more in the direction of the stretching axis.
  • the stretching speed (% / second) in the stretching axis direction is the ratio of the length stretched per second with the length in the stretching axis direction before re-stretching being 100% in the region where the film (sheet) is re-stretched. Represents.
  • the stretching speed of the second stretching is preferably 5% / second or more, and more preferably 10% / second or more.
  • each stretching speed in the MD direction and TD direction may be different from each other in the MD direction and the TD direction as long as it is 3% / second or more, but is preferably the same.
  • Heat treatment process The film
  • heat setting treatment and / or heat relaxation treatment may be used.
  • the crystal of the film is stabilized by the heat setting treatment.
  • the heat setting treatment is performed within a temperature range from the crystal dispersion temperature to the melting point of the polyolefin resin constituting the microporous membrane.
  • the heat setting treatment is performed by a tenter method, a roll method or a rolling method.
  • the thermal relaxation treatment may be performed by a tenter method, a roll method or a compression method, or may be performed using a belt conveyor or a floating roll.
  • the thermal relaxation treatment is preferably performed in at least one direction in a range where the relaxation rate is 20% or less, more preferably in a range where the relaxation rate is 10% or less.
  • the heat setting treatment temperature and the heat relaxation temperature are preferably within the range of the second stretching temperature ⁇ 5 ° C., which stabilizes the physical properties. This temperature is more preferably within the range of the temperature of the second stretching ⁇ 3 ° C.
  • the thermal relaxation treatment method for example, the method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be used.
  • the polyolefin microporous film after film formation is wound around a cylindrical core to form a wound film roll, which is then heat-treated.
  • the temperature of the heat treatment is preferably 50 to 70 ° C.
  • the core for winding the film is cylindrical, and the material thereof is not particularly limited, and examples thereof include paper, plastic, and a combination thereof.
  • the winding method include a method of winding a polyolefin microporous film around the core by applying a tension with a winding motor.
  • the winding tension at the time of winding the polyolefin microporous film around the core is preferably 5 to 15N, more preferably 7 to 15N.
  • an in-line method in which the first stretching, the solvent removal for film formation, the drying process, the second stretching and the heat treatment are continuously performed on a series of lines.
  • an off-line system in which the film after the drying treatment is once wound to form a film roll and the second stretching and heat treatment are performed while rewinding may be adopted.
  • any one of a heat setting treatment step, a heat roll treatment step and a heat solvent treatment step is provided. May be. Moreover, you may provide the process which heat-sets with respect to the film
  • Heat setting treatment The method of heat-setting the stretched gel-like molded product before and / or after washing and the film in the second stretching step may be the same as described above.
  • Hot roll treatment process You may perform the process (hot roll process) which makes a hot roll contact at least one surface of the stretched gel-like molded object before washing
  • the hot roll treatment for example, a method described in JP-A-2007-106992 can be used.
  • the stretched gel-like molded product is brought into contact with a heated roll adjusted to a crystal dispersion temperature of the polyolefin resin + 10 ° C. or higher and lower than the melting point of the polyolefin resin.
  • the contact time between the heating roll and the stretched gel-like molded product is preferably 0.5 seconds to 1 minute.
  • the heating roll may be either a smooth roll or a roll having a function of sucking a stretched gel-like molded product toward the roll, or a concavo-convex roll having irregularities on the contact surface (outer peripheral surface) with the stretched gel-like molded product.
  • thermo solvent treatment process You may perform the process which makes the extending
  • the hot solvent treatment method for example, the method disclosed in WO2000 / 20493 can be used.
  • the polyolefin microporous membrane according to a preferred embodiment of the present invention has the following physical properties.
  • Film thickness ( ⁇ m) The film thickness of the polyolefin microporous membrane is preferably 3 to 16 ⁇ m, more preferably 5 to 12 ⁇ m, and even more preferably 6 to 10 ⁇ m because of the recent progress of high density and high capacity batteries.
  • the polyolefin microporous membrane preferably has an average pore size determined by a palm porometer of 0.05 ⁇ m or less.
  • the bubble point (BP) pore diameter is preferably 0.06 ⁇ m or less.
  • Air permeability resistance sec / 100 cm 3
  • the air permeability resistance (Gurley value) is preferably 300 sec / 100 cm 3 or less. If it is 300 sec / 100 cm 3 or less, it has good permeability when used in a battery.
  • the porosity is preferably 25 to 80%. When the porosity is 25% or more, good air resistance can be obtained. When the porosity is 80% or less, the strength when the microporous membrane is used as a battery separator is sufficient, and a short circuit can be suppressed. A porosity of 25 to 40% is preferable because the pores of the separator are not easily crushed during compression.
  • Puncture strength (mN) The puncture strength is 1,300 mN or more. If the puncture strength is less than 1,300 mN, a short circuit between the electrodes may occur when the microporous membrane is incorporated in a battery as a battery separator.
  • the tensile strength at break is preferably 80 MPa or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
  • the tensile strength at break in the MD direction is preferably 110 MPa or more, more preferably 140 MPa.
  • the tensile strength at break in the TD direction is preferably 120 MPa or more, and more preferably 170 MPa.
  • Tensile elongation at break (%) The tensile elongation at break is 60% or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
  • Thermal shrinkage (%) after exposure for 8 hours at 105 ° C The thermal shrinkage after exposure for 8 hours at a temperature of 105 ° C. is 15% or less in both the MD and TD directions.
  • the thermal shrinkage rate exceeds 15%, when the microporous membrane is used as a lithium battery separator, the end of the separator shrinks during heat generation, and the possibility of short circuit between the electrodes increases.
  • the thermal shrinkage rate is preferably 8% or less in both the MD direction and the TD direction.
  • the thermal contraction rate is more preferably 4% or less in both the MD direction and the TD direction.
  • the rate of change in air resistance after heating and compression at 90 ° C. for 5 minutes under a pressure of 5.0 MPa is preferably 50% or less, more preferably It is 40% or less, more preferably 35% or less.
  • the air permeability resistance change rate is 50% or less, when used as a battery separator, the cycle characteristics of the target battery can be obtained even through a hot press process at a high pressure during battery manufacture.
  • the film thickness change rate after heat compression and the air resistance change rate (%) after heat compression are easily affected by crystal orientation, film pore structure, heat shrinkage rate, and the like. Therefore, it can be controlled by the composition of the polyolefin resin, the cooling rate after extruding the polyolefin resin solution from the die lip, the heat treatment of the wound body, and the like.
  • An electrochemical cell including an electrolyte in which a separator using a polyolefin microporous membrane according to a preferred embodiment of the present invention is disposed between an anode and a cathode is as follows. It has the physical properties of (1) Impedance change rate (%) The change rate of the impedance of the cell measured by the measurement method described later is preferably 7% or less. When the rate of change in impedance is within the above preferable range, deterioration of the cycle characteristics of the battery can be suppressed.
  • Cell thickness change rate (%) The cell thickness change rate measured by the measurement method described later is preferably 15% or less. When the rate of change in cell thickness is 15% or less, the separator and the electrode are sufficiently adhered by hot pressing, and lithium is unlikely to precipitate during initial charging.
  • the separator made of the polyolefin microporous membrane of the present invention is not particularly limited in the type of battery using this, but is particularly suitable for lithium secondary battery applications.
  • a well-known electrode and electrolyte may be used for the lithium secondary battery using the separator made of the microporous membrane of the present invention.
  • the structure of the lithium secondary battery using the separator made of the microporous membrane of the present invention may also be a known one.
  • the physical properties of the polyolefin microporous membrane were measured by the following methods.
  • the average pore diameter (average flow pore diameter) and bubble point (BP) pore diameter (nm) of the polyolefin microporous membrane were measured as follows. Using a palm porometer (trade name, model: CFP-1500A) manufactured by PMI, measurement was performed in the order of Dry-up and Wet-up.
  • d C ⁇ ⁇ / P (where d ( ⁇ m) is the pore diameter of the microporous membrane, ⁇ (dynes / cm) is the surface tension of the liquid, P (Pa) is the pressure, and C is the pressure constant (2860). is there.)
  • Air permeability resistance (sec / 100 cm 3 ) The air resistance (Gurley value) was measured according to JIS P8117 against microporous membrane having an average thickness T AV.
  • Puncture strength The puncture strength was measured by measuring the maximum load value when a polyolefin microporous membrane was pierced at a speed of 2 mm / sec using a needle having a diameter of 1 mm (0.5 mmR).
  • Tensile strength at break (kPa) The tensile strength at break was measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
  • Tensile elongation at break (%) The tensile elongation at break was determined by taking three strips of a 10 mm wide strip from the central portion in the width direction of the polyolefin microporous membrane, measuring by ASTM D882, and calculating the average value.
  • Thermal shrinkage after exposure for 8 hours at 105 ° C (%) The thermal shrinkage was determined by measuring the shrinkage in the MD and TD directions three times each when the microporous membrane was exposed at 105 ° C. for 8 hours, and calculating the average value.
  • Film thickness change rate after heat compression (%) The film thickness was measured with a contact thickness meter (manufactured by Mitutoyo Corporation). The polyolefin microporous membrane is sandwiched between a pair of press plates having a high smooth surface, and this is heated and compressed at 90 ° C. for 5 minutes under a pressure of 5.0 MPa by a press. The value obtained by subtracting the film thickness after compression (b ( ⁇ m)) from the film thickness before compression (a ( ⁇ m)) and dividing by (a ( ⁇ m)) is expressed as a percentage ((ab) ⁇ a X100) is defined as the film thickness change rate (%). The film thickness was obtained by taking three points from the central portion in the width direction of the polyolefin microporous film, measuring it, and calculating the average value.
  • the physical properties of the cell using the polyolefin microporous membrane were measured by the following method.
  • Cell impedance change rate (%) A cell was sandwiched between a pair of press plates having a high smooth surface, and this was heated and compressed at 90 ° C. for 5 minutes under a pressure of 3.0 MPa and 5.0 MPa, respectively, and then an impedance measurement device (manufactured by Solartron, SI1250, SI1287). Subtract the impedance value (B) at high pressure (5.0 MPa) from the impedance value (A) at normal press pressure (3.0 MPa), and divide by (A) as the impedance change rate (%). To do.
  • Impedance change rate (%) ⁇ (A) ⁇ (B) ⁇ / (A) ⁇ 100
  • Example 1 Polyethylene (melting point: 135 ° C.) consisting of 18% by mass of UHMWPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and 82% by mass of HDPE (Mw / Mn: 6) having an Mw of 3.0 ⁇ 10 5 Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane as an antioxidant and polyethylene 100 0.2 parts by mass per mass part was dry blended to prepare a polyethylene composition.
  • a 40 mm ⁇ 40 mm sheet including a LiCoO 2 layer having a unit area mass of 13.4 mg / cm 2 and a density of 3.55 g / cm 3 on an aluminum substrate having a thickness of 15 ⁇ m was used.
  • a 45 mm ⁇ 45 mm sheet containing natural graphite having a unit area mass of 5.5 mg / cm 2 and a density of 1.65 g / cm 3 on a 10 ⁇ m thick copper film substrate was used. The cell was assembled after the anode and cathode were dried in a 120 ° C. vacuum oven.
  • Example 2 The first stretching temperature is 117.0 ° C., the second stretching ratio is 1.41 times, the relaxation rate in relaxation after the second stretching is set to 7%, and the winding tension is set to 9N.
  • a polyolefin microporous membrane having a thickness of 9.4 ⁇ m was produced in the same manner as in Example 1 except that. Using this polyolefin microporous membrane, a cell was also produced in the same manner as in Example 1.
  • Example 3 The same as in Example 1 except that the temperature of the first stretching was 112.0 ° C., the magnification of the second stretching was 1.34 times, and the relaxation rate in the relaxation after the second stretching was set to 2%. Thus, a polyolefin microporous membrane having a thickness of 5.3 ⁇ m was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Example 4 Polyethylene (melting point: 135 ° C.) comprising 30% by mass of UHMWPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and 70% by mass of HDPE (Mw / Mn: 6) having an Mw of 3.0 ⁇ 10 5 Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), the cooling rate in the cooling roll is set to 200 ° C./min, the temperature of the first stretching is set to 118.5 ° C., and the second stretching is performed.
  • a polyolefin having a thickness of 11.7 ⁇ m was made in the same manner as in Example 1 except that the magnification of 1.40 was set, the relaxation rate in the relaxation after the second stretching was set to 14%, and the winding tension was set to 9N.
  • a microporous membrane was produced.
  • a cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Example 5 Polyethylene consisting of 40% by mass of UHMWPE (Mw / Mn: 8) with Mw of 2.0 ⁇ 10 6 and 60% by mass of HDPE (Mw / Mn: 6) with Mw of 3.0 ⁇ 10 5 (melting point: 135 ° C.
  • Crystal dispersion temperature 100 ° C., Mw / Mn: 10.0
  • 25 parts by mass of the obtained polyethylene composition is supplied to a twin screw extruder
  • the temperature of the first stretching is 110 ° C.
  • the second Polyolefin microporous having a thickness of 3.0 ⁇ m as in Example 1 except that the stretching ratio of 1.60 times, the stretching temperature was 127 ° C., and the relaxation rate in the relaxation after the second stretching was set to 9%.
  • a membrane was produced.
  • a cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Example 6 Polyethylene consisting of 40% by mass of UHMWPE (Mw / Mn: 8) with Mw of 2.0 ⁇ 10 6 and 60% by mass of HDPE (Mw / Mn: 6) with Mw of 3.0 ⁇ 10 5 (melting point: 135 ° C. Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), 25 parts by mass of the obtained polyethylene composition is supplied to a twin-screw extruder, and the first draw ratio is 7 in both the longitudinal direction and the width direction.
  • a polyolefin microporous membrane having a thickness of 3.0 ⁇ m was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Example 7 Polyethylene (melting point: 135 ° C.) comprising 30% by mass of UHMWPE (Mw / Mn: 8) having an Mw of 2.0 ⁇ 10 6 and 70% by mass of HDPE (Mw / Mn: 6) having an Mw of 3.0 ⁇ 10 5 And 28.5 parts by mass of the obtained polyethylene composition are fed to a twin-screw extruder using a crystal dispersion temperature of 100 ° C. and Mw / Mn of 10.0). Polyolefin microporous having a thickness of 3.0 ⁇ m as in Example 1 except that the stretching ratio of 1.60 times, the stretching temperature was 127 ° C., and the relaxation rate in the relaxation after the second stretching was set to 9%. A membrane was produced.
  • Example 8 Thickness 3. As in Example 1, except that the first stretching temperature was 110 ° C., the second stretching ratio was 1.60 times, and the relaxation rate in relaxation after the second stretching was set to 9%. A 0 ⁇ m polyolefin microporous membrane was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Comparative Example 1 Polyethylene consisting of 2% by mass of UHMWPE (Mw / Mn: 8) with an Mw of 2.0 ⁇ 10 6 and 98% by mass of HDPE (Mw / Mn: 6) with an Mw of 3.0 ⁇ 10 5 (melting point: 135 ° C. Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), and a polyolefin solution was prepared with 40 parts by mass of the obtained polyethylene composition and 60 parts by mass of liquid paraffin.
  • This polyolefin solution was extruded, the temperature of the first stretching was 119.5 ° C., the magnification of the second stretching was 1.4 times, and after the second stretching, it was not relaxed and wound with a winding tension of 9 N
  • a polyolefin microporous membrane having a thickness of 9.0 ⁇ m was produced in the same manner as in Example 1 except that.
  • a cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Comparative Example 2 A polyolefin microporous membrane having a thickness of 7.0 ⁇ m was produced in the same manner as in Example 1 except that the cooling rate was set to 160 ° C./min and winding was performed with a winding tension of 16 N. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Comparative Example 3 Polyethylene consisting of 40% by mass of UHMWPE (Mw / Mn: 8) with Mw of 2.0 ⁇ 10 6 and 60% by mass of HDPE (Mw / Mn: 6) with Mw of 3.0 ⁇ 10 5 (melting point: 135 ° C. Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), and a polyolefin solution was prepared with 23 parts by mass of the obtained polyethylene composition and 77 parts by mass of liquid paraffin. This polyolefin solution was extruded, the first stretching temperature was 117.0 ° C., the second stretching temperature was stretched to 1.6 times at 128 ° C., and then relaxed by 12% in the width direction.
  • a polyolefin microporous membrane having a thickness of 11.8 ⁇ m was produced in the same manner as in Example 1 except that the film was wound up.
  • a cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Comparative Example 4 A polyolefin solution is prepared with 25 parts by mass of a polyethylene composition and 75 parts by mass of liquid paraffin, the polyolefin solution is extruded, cooled at a cooling rate of 160 ° C./min, the temperature of the first stretching is set to 118.0 ° C., and the second A polyolefin microporous membrane having a thickness of 12.0 ⁇ m was produced in the same manner as in Example 1 except that the stretching temperature was stretched to 1.4 times at 126 ° C. and no relaxation was performed after the second stretching. . A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
  • Tables 1 to 4 show the production conditions of Examples 1 to 8 and Comparative Examples 1 to 4, the obtained polyolefin microporous membranes, and the physical properties of the cells using the polyolefin microporous membranes.

Abstract

 The present invention provides a polyolefin microporous film in which it is possible to prevent degradation in the air permeability of a separator due to high-pressure press-working during the procedure of manufacturing a cell, the polyolefin microporous film having exceptional compression resistance. In addition, using this polyolefin microporous film makes it possible to provide a cell having exceptional cycle characteristics. A polyolefin microporous film in which the rate of change in the air permeation resistance after 5 minutes of heat-compression at a temperature of 90°C and a pressure of 5.0 MPa is 50% or less, and the rate of change in the film thickness after 5 minutes of heat-compression at a temperature of 90°C and a pressure of 5.0 MPa is 10% or less in relation to the film thickness of the polyolefin microporous film before the heat-compression.

Description

ポリオレフィン微多孔質膜、電池用セパレータ及び電池Polyolefin microporous membrane, battery separator and battery
 本発明は、ポリオレフィン微多孔質膜、電池用セパレータ及び電池に関する。 The present invention relates to a polyolefin microporous membrane, a battery separator and a battery.
 ポリオレフィン微多孔質膜は、隔離材やフィルター等として広く用いられている。たとえば、隔離材としてはリチウムイオン二次電池、ニッケル-水素電池、ニッケル-カドミウム電池、ポリマー電池に用いる電池用セパレータや、電気二重層コンデンサ用セパレータ、フィルターとしては逆浸透濾過膜、限外濾過膜、精密濾過膜等、その他にも透湿防水衣料、医療用材料等に用いられている。なかでも、特に、リチウムイオン二次電池用セパレータとして好適に用いられる。 Polyolefin microporous membranes are widely used as separators and filters. For example, separators for lithium ion secondary batteries, nickel-hydrogen batteries, nickel-cadmium batteries, polymer batteries, separators for electric double layer capacitors, and reverse osmosis filtration membranes, ultrafiltration membranes for filters In addition, it is used for moisture-permeable and waterproof clothing, medical materials, etc. Especially, it uses suitably as a separator for lithium ion secondary batteries.
 リチウムイオン二次電池はノートパソコン、携帯電話といった小型電子機器だけでなく、近年、電動工具等のパワーツールやハイブリッド電気自動車等に広く用いられている。 Lithium ion secondary batteries are widely used not only for small electronic devices such as notebook computers and mobile phones, but also for power tools such as electric tools and hybrid electric vehicles in recent years.
 リチウムイオン二次電池において、セパレータはイオンの透過性を維持しながら、正極と負極との間の短絡を防止する機能を担っている。しかし、電池の充放電に伴う電極の膨張/収縮の影響により、セパレータは厚さ方向に対して力の負荷/解放が繰り返され、変形や透過性に変化が生じ、電池の容量低下(サイクル特性悪化)を招くおそれがあることが指摘されていた。そこで、電池のサイクル特性を維持するために、圧迫によるセパレータの変形や透過性の変化を小さく抑えることが求められている。 In a lithium ion secondary battery, the separator has a function of preventing a short circuit between the positive electrode and the negative electrode while maintaining ion permeability. However, due to the influence of the expansion / contraction of the electrode accompanying the charging / discharging of the battery, the separator is repeatedly loaded / released with force in the thickness direction, resulting in changes in deformation and permeability, resulting in a decrease in battery capacity (cycle characteristics). It has been pointed out that there is a risk of causing deterioration. Therefore, in order to maintain the cycle characteristics of the battery, it is required to suppress the deformation of the separator and the change in permeability due to compression.
 そのため、近年では耐圧縮性に着目したセパレータの開発が進められている。
 特許文献1には、質量平均分子量が1×10以上の超高分子量ポリエチレンの含有量が、ポリエチレン全体を100質量%として5質量%以下のポリエチレンを主成分とする微多孔質膜について記載されている。この特許文献1の微多孔質膜では、空孔率が25~80%であり、2.2MPaの圧力下で90度5分間加熱圧縮した後の膜厚変化率は、圧縮前の膜厚を100%として20%以下であり、上記条件で加熱圧縮した後の到達透気抵抗度(ガーレー値)は700sec/100cm/20μm以下であることが記載されている。
Therefore, in recent years, the development of separators focusing on compression resistance has been promoted.
Patent Document 1 describes a microporous film having a content of ultrahigh molecular weight polyethylene having a mass average molecular weight of 1 × 10 6 or more and having polyethylene as a main component of polyethylene of 100% by mass as a whole and 5% by mass or less. ing. The microporous film of Patent Document 1 has a porosity of 25 to 80%, and the rate of change in film thickness after heating and compression at a pressure of 2.2 MPa for 90 degrees and 5 minutes is the film thickness before compression. 20% or less as 100%, reaching air resistance after heat compression under the above conditions (Gurley value) is described to be less 700sec / 100cm 3 / 20μm.
 特許文献2では、粘度平均分子量(Mv)が30万未満であるポリオレフィンと、Mvが50万以上であるポリオレフィン及び、膜厚より大きい電気化学的不活性粒子を必須成分とし、前記粒子が膜表面から突出した部分の高さA(μm)と、膜厚B(μm)との間に、0<A/B×100<25が成り立つことを特徴とするポリオレフィン微多孔質膜が記載されている。両面より突出した粒子が選択的に圧縮されるため、孔構造を有している他の部分への圧縮負荷を低減し、空孔率は39~43%、サンプルを50mm×50mmに切り出し20枚重ねたのち、突出した粒子を含む初期全体厚みの80%となるように55℃で5秒間、プレス機で圧縮したときの透気抵抗度が190~430secであったことが記載されている。 In Patent Document 2, a polyolefin having a viscosity average molecular weight (Mv) of less than 300,000, a polyolefin having an Mv of 500,000 or more, and electrochemically inert particles larger than a film thickness are essential components, and the particles are formed on the film surface. A polyolefin microporous membrane characterized in that 0 <A / B × 100 <25 holds between the height A (μm) of the portion protruding from the film and the film thickness B (μm). . Particles protruding from both sides are selectively compressed, reducing the compression load on other parts of the hole structure, porosity of 39-43%, and cutting 20 samples into 50 mm x 50 mm samples It is described that after being stacked, the air permeability resistance was 190 to 430 sec when compressed by a press machine at 55 ° C. for 5 seconds so as to be 80% of the initial total thickness including protruding particles.
 特許文献3は、α‐オレフィンとプロピレン系エラストマーをポリオレフィン樹脂と押し出し、シート状に成形し、延伸、洗浄、乾燥することにより、耐熱性と柔軟性を兼ね備えた微多孔質膜を提案している。前記微多孔質膜の空孔率は、35~75%であり、プレス機により、2.2MPaの圧力下、90℃で5分間加熱圧縮した後の膜厚変化率は、圧縮前の膜厚を100%として20%以下であることが望ましく、上記条件で加熱圧縮した後の到達透気抵抗度(ガーレー値)は600秒/100ml/20μm以下であることが記載されている。 Patent Document 3 proposes a microporous membrane having heat resistance and flexibility by extruding an α-olefin and a propylene-based elastomer with a polyolefin resin, forming into a sheet shape, stretching, washing, and drying. . The porosity of the microporous film is 35 to 75%, and the rate of change in film thickness after heating and compression at 90 ° C. for 5 minutes under a pressure of 2.2 MPa by a press machine is the film thickness before compression. It is described that the ultimate air resistance (Gurley value) after heating and compression under the above conditions is 600 seconds / 100 ml / 20 μm or less.
特開2008-81513号公報JP 2008-81513 A 特開2007-262203号公報JP 2007-262203 A 特開2013-57045号公報JP 2013-57045 A
 特許文献1~3に開示された技術により耐圧縮性は改善され、電池のサイクル特性の悪化が抑制されてはいるものの、いまだ十分ではない。
 サイクル特性の悪化の一因として、リチウムイオン二次電池の初期充電時におけるリチウムの析出が挙げられる。リチウムが析出すると、電解質中のリチウムイオン濃度が低下する等によりサイクル特性が悪化する。そして、初期充電時におけるリチウムの析出を抑制するためには、セパレータの透気抵抗度及びセパレータと電極との密着性が重要であることがわかった。セパレータの透気抵抗度が大きいとイオンの流れが阻害され、また、密着性が十分でないと電解液や電極の膨張によりセパレータと電極との間に隙間ができ、リチウムの析出を促しているためである。したがって、サイクル特性の悪化を抑制するためには、セパレータの透気抵抗度の上昇抑制及びセパレータと電極との密着性向上が必要である。
Although the compression resistance is improved by the techniques disclosed in Patent Documents 1 to 3 and deterioration of the cycle characteristics of the battery is suppressed, it is still not sufficient.
One cause of the deterioration of the cycle characteristics is the precipitation of lithium during the initial charging of the lithium ion secondary battery. When lithium is deposited, the cycle characteristics deteriorate due to a decrease in the lithium ion concentration in the electrolyte. And in order to suppress precipitation of lithium at the time of initial charge, it turned out that the air permeability resistance of a separator and the adhesiveness of a separator and an electrode are important. If the separator's air resistance is high, the flow of ions will be hindered, and if the adhesion is not sufficient, a gap will be created between the separator and the electrode due to expansion of the electrolyte or electrode, which promotes lithium deposition. It is. Therefore, in order to suppress the deterioration of the cycle characteristics, it is necessary to suppress an increase in the air permeability resistance of the separator and improve the adhesion between the separator and the electrode.
 本発明者らは、セパレータの透気抵抗度及びセパレータと電極との密着性について鋭意検討した結果、電池の製造過程において、電池素子を作製し、これを電解液と共に外装に封入して、最後に熱プレスする工程があるが、高い圧力で熱プレスすることでセパレータの透気性及びセパレータと電極との密着性が損なわれ、サイクル特性の悪化につながっていることを見出した。すなわち、上記熱プレスでの圧力によっても透気抵抗度及び電極との密着性を維持できるセパレータによりサイクル特性の悪化を抑制できることを見出し、本発明に到達した。特許文献1~3の技術は、電池の充放電に伴う2.2MPa程度の圧力を想定しているのみで、上記熱プレスでの圧力(3~5MPa程度)は考慮されていない。 As a result of intensive investigations on the air permeability resistance of the separator and the adhesion between the separator and the electrode, the inventors of the present invention produced a battery element in the battery manufacturing process, sealed the battery element together with the electrolyte, However, it has been found that by performing hot pressing at a high pressure, the air permeability of the separator and the adhesion between the separator and the electrode are impaired, leading to deterioration of cycle characteristics. That is, the inventors have found that deterioration of cycle characteristics can be suppressed by a separator that can maintain air permeability resistance and adhesion with an electrode even by the pressure in the hot press, and the present invention has been achieved. The techniques of Patent Documents 1 to 3 only assume a pressure of about 2.2 MPa accompanying charging / discharging of the battery, and do not consider the pressure in the hot press (about 3 to 5 MPa).
 本発明は、電池の製造工程における高圧力のプレス加工によるセパレータの透気性の悪化を防ぐことのでき、耐圧縮性に優れたポリオレフィン微多孔膜を提供する。また、本発明のポリオレフィン微多孔膜を用いれば、サイクル特性に優れた電池を提供することができる。 The present invention provides a polyolefin microporous membrane that can prevent deterioration of the air permeability of the separator due to high-pressure press working in the battery manufacturing process and has excellent compression resistance. Moreover, if the polyolefin microporous film of the present invention is used, a battery having excellent cycle characteristics can be provided.
 上記課題を解決するために本発明の電池用セパレータは以下の構成を有する。
すなわち、
 ポリオレフィン微多孔質膜であって、温度90℃、圧力5.0MPaで5分間の加熱圧縮後の透気抵抗度変化率が50%以下、かつ、温度90℃、圧力5.0MPaで5分間の加熱圧縮後の膜厚変化率が加熱圧縮前のポリオレフィン微多孔質膜の膜厚を100%として10%以下であるポリオレフィン微多孔質膜である。
 本発明のポリオレフィン微多孔質膜は、重量平均分子量(Mw)が1×10以上の超高分子量ポリエチレンの含有量がポリエチレン全質量を100質量%として10~40質量%であることが好ましい。
 本発明のポリオレフィン微多孔質膜は、膜厚が16μm以下であることが好ましい。
 本発明のポリオレフィン微多孔質膜は、空孔率が25~40%であることが好ましい。
 本発明のポリオレフィン微多孔質膜は、パームポロメータにより求めた平均孔径が0.05μm以下であり、バブルポイント(BP)細孔径が0.06μm以下であることが好ましい。
 本発明のポリオレフィン微多孔質膜は、電池用セパレータであることが好ましい。
 上記課題を解決するために本発明の電池は以下の構成を有する。
すなわち、
 前記ポリオレフィン微多孔質膜からなる電池用セパレータを用いた電池である。
In order to solve the above problems, the battery separator of the present invention has the following configuration.
That is,
Polyolefin microporous membrane having a rate of change in air resistance after heating and compression at a temperature of 90 ° C. and a pressure of 5.0 MPa for 5 minutes of 50% or less, and at a temperature of 90 ° C. and a pressure of 5.0 MPa for 5 minutes. It is a polyolefin microporous film whose rate of change in thickness after heat compression is 10% or less with the film thickness of the polyolefin microporous film before heat compression as 100%.
In the polyolefin microporous membrane of the present invention, the content of ultrahigh molecular weight polyethylene having a weight average molecular weight (Mw) of 1 × 10 6 or more is preferably 10 to 40% by mass with respect to 100% by mass of the total mass of polyethylene.
The polyolefin microporous membrane of the present invention preferably has a thickness of 16 μm or less.
The polyolefin microporous membrane of the present invention preferably has a porosity of 25 to 40%.
The polyolefin microporous membrane of the present invention preferably has an average pore size determined by a palm porometer of 0.05 μm or less and a bubble point (BP) pore size of 0.06 μm or less.
The polyolefin microporous membrane of the present invention is preferably a battery separator.
In order to solve the above problems, the battery of the present invention has the following configuration.
That is,
The battery uses a battery separator made of the polyolefin microporous membrane.
 本発明によれば、本発明は、電池の製造工程における高圧力のプレス加工によるセパレータの透気抵抗度の悪化を防ぐことのできる、耐圧縮性に優れたポリオレフィン微多孔膜を提供する。また、本発明のポリオレフィン微多孔膜を用いれば、サイクル特性に優れた電池を提供することができる。 According to the present invention, the present invention provides a polyolefin microporous membrane excellent in compression resistance, which can prevent deterioration of the air permeability resistance of the separator due to high pressure pressing in the battery manufacturing process. Moreover, if the polyolefin microporous film of the present invention is used, a battery having excellent cycle characteristics can be provided.
 以下、本発明のポリオレフィン微多孔膜について詳細に説明する。
[1]ポリオレフィン樹脂
 本発明のポリオレフィン微多孔質膜を構成するポリオレフィン樹脂は、ポリエチレン樹脂を主成分とする。ポリエチレン樹脂の含有量はポリオレフィン樹脂の全質量を100質量%として、70質量%以上であるのが好ましく、より好ましくは90質量%以上、さらに好ましくは100質量%である。従って、本発明のポリオレフィン微多孔質膜は、ポリマー成分がポリエチレン樹脂からなることが好ましく、その場合にはポリプロピレンを含まない。
Hereinafter, the polyolefin microporous membrane of the present invention will be described in detail.
[1] Polyolefin resin The polyolefin resin constituting the polyolefin microporous membrane of the present invention contains a polyethylene resin as a main component. The content of the polyethylene resin is preferably 70% by mass or more, more preferably 90% by mass or more, and further preferably 100% by mass, where the total mass of the polyolefin resin is 100% by mass. Therefore, in the polyolefin microporous membrane of the present invention, the polymer component is preferably made of polyethylene resin, and in that case, polypropylene is not included.
 ポリオレフィンとしては、エチレン、プロピレン、1-ブテン、4-メチルペンテン-1、1-ヘキセンなどを重合した2段重合体、又は共重合体及びこれらのブレンド物等が挙げられる。 Examples of the polyolefin include a two-stage polymer obtained by polymerizing ethylene, propylene, 1-butene, 4-methylpentene-1, 1-hexene, or a copolymer and a blend thereof.
 ポリオレフィン樹脂の主成分であるポリエチレン樹脂は、重量平均分子量(Mw)が1×10未満のポリエチレン(以下、「ポリエチレン(A)」とよぶ。)と、Mwが1×10以上の超高分子量ポリエチレン(以下、「ポリエチレン(B)」とよぶ。)からなるポリエチレン組成物がさらに好ましい。 The polyethylene resin that is the main component of the polyolefin resin is a polyethylene having a weight average molecular weight (Mw) of less than 1 × 10 6 (hereinafter referred to as “polyethylene (A)”) and an ultra-high Mw of 1 × 10 6 or more. A polyethylene composition comprising a molecular weight polyethylene (hereinafter referred to as “polyethylene (B)”) is more preferred.
 ポリエチレン(A)としては、高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)及び低密度ポリエチレン(LDPE)のいずれでもよく、Mw又は密度の異なるものを二種以上用いてもよい。特に、ポリエチレン(A)として高密度ポリエチレンを用いるのが好ましい。ポリエチレン(A)のMwは1×10以上~5×10未満が好ましく、より好ましくは5×10以上~4×10未満である。 The polyethylene (A) may be any of high density polyethylene (HDPE), medium density polyethylene (MDPE), and low density polyethylene (LDPE), and two or more types having different Mw or density may be used. In particular, it is preferable to use high-density polyethylene as the polyethylene (A). The Mw of the polyethylene (A) is preferably 1 × 10 4 or more and less than 5 × 10 5 , more preferably 5 × 10 4 or more and less than 4 × 10 5 .
 ポリエチレン(B)は超高分子量ポリエチレン(UHMWPE)であって、Mwは1×10以上であるが、Mwは1×10~3×10がより好ましい。ポリエチレン(B)のMwを3×10以下にすることにより、溶融押し出しを容易にすることができる。 The polyethylene (B) is ultra high molecular weight polyethylene (UHMWPE), and Mw is 1 × 10 6 or more, and Mw is more preferably 1 × 10 6 to 3 × 10 6 . By making Mw of polyethylene (B) 3 × 10 6 or less, melt extrusion can be facilitated.
 ポリエチレン樹脂中のポリエチレン(B)の含有量は、ポリエチレン樹脂の全質量を100質量%として10質量%以上、40質量%以下が好ましく、より好ましくは15質量%以上、30質量%以下である。ポリエチレン(B)の含有量が上記好ましい範囲内であると、同製造条件で、フィルム全体の平均孔径を小さくでき、圧縮により孔がつぶれにくくなる。また、ポリエチレン(B)の含有量が上記好ましい範囲内であると、熱収縮率を低く抑えることができる。 The content of polyethylene (B) in the polyethylene resin is preferably 10% by mass or more and 40% by mass or less, more preferably 15% by mass or more and 30% by mass or less, based on 100% by mass of the total mass of the polyethylene resin. When the content of polyethylene (B) is within the above-mentioned preferable range, the average pore diameter of the entire film can be reduced under the same production conditions, and the pores are not easily crushed by compression. Moreover, a heat shrinkage rate can be restrained low as content of polyethylene (B) exists in the said preferable range.
 ポリオレフィン樹脂のMwは1×10以下が好ましく、より好ましくは1×10~1×10、さらに好ましくは2×10~1×10である。ポリオレフィン樹脂のMwを上記好ましい範囲にすることで二軸押出機での押出がしやすく、延伸時に破断を防ぐことができる。 The Mw of the polyolefin resin is preferably 1 × 10 6 or less, more preferably 1 × 10 5 to 1 × 10 6 , still more preferably 2 × 10 5 to 1 × 10 6 . By making Mw of polyolefin resin into the said preferable range, it is easy to extrude with a twin-screw extruder, and it can prevent a fracture | rupture at the time of extending | stretching.
 ポリエチレン(A)、ポリエチレン(B)及びポリオレフィン樹脂の重量平均分子量(Mw)と数平均分子量(Mn)の比(Mw/Mn(分子量分布))は限定的でないが、いずれも5~300が好ましく、5~100がより好ましく、5~25がさらに好ましい。Mw/Mnが上記好ましい範囲であると、溶融押出を容易にし、得られるポリオレフィン微多孔質膜の強度を高くできる。 The ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) (Mw / Mn (molecular weight distribution)) of polyethylene (A), polyethylene (B), and polyolefin resin is not limited, but preferably 5 to 300 for all. 5 to 100 is more preferable, and 5 to 25 is more preferable. When Mw / Mn is in the above preferred range, melt extrusion can be facilitated and the strength of the resulting polyolefin microporous membrane can be increased.
 電池用セパレータ用途としての特性を向上させるため、ポリオレフィン樹脂はシャットダウン機能を付与するポリオレフィンを含んでもよい。シャットダウン機能を付与するポリオレフィンとして、例えばLDPEやポリエチレンワックスを添加することができる。LDPEとしては、分岐状のLDPE、線状LDPE(LLDPE)、及びシングルサイト触媒により製造されたエチレン/α‐オレフィン共重合体からなる群から選ばれた少なくとも一種が好ましい。但し、その添加量はポリオレフィン樹脂の全質量を100質量%として20質量%以下であるのが好ましい。添加量を上記好ましい範囲内とすることで強度低下を防ぐことができる。 In order to improve the characteristics as a battery separator, the polyolefin resin may contain a polyolefin imparting a shutdown function. For example, LDPE or polyethylene wax can be added as the polyolefin imparting the shutdown function. The LDPE is preferably at least one selected from the group consisting of branched LDPE, linear LDPE (LLDPE), and an ethylene / α-olefin copolymer produced by a single site catalyst. However, the addition amount is preferably 20% by mass or less, based on 100% by mass of the total mass of the polyolefin resin. Strength fall can be prevented by making addition amount into the said preferable range.
 必要に応じて酸化防止剤、微粉珪酸(孔形成剤)等の各種添加剤を本発明の効果を損なわない範囲で添加しても良い。 If necessary, various additives such as an antioxidant and finely divided silicic acid (pore forming agent) may be added as long as the effects of the present invention are not impaired.
[2]ポリオレフィン微多孔質膜の製造方法
 本発明のポリオレフィン微多孔質膜の製造方法は、(1)上記ポリオレフィン樹脂に成膜用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する工程、(2)ポリオレフィン樹脂溶液をダイリップより押し出した後、冷却してゲル状成形物を形成する工程、(3)ゲル状成形物を少なくとも一軸方向に延伸する工程(第一の延伸工程)、(4)成膜用溶剤を除去する工程、(5)得られた膜を乾燥する工程、(6)乾燥した膜を少なくとも一軸方向に再び延伸する工程(第二の延伸工程)、(7)熱処理する工程、及び(8)巻取工程を含む。必要に応じて、(4)の成膜用溶剤除去工程の前に熱固定処理工程、熱ロール処理工程及び熱溶剤処理工程のいずれかを設けてもよい。更に(1)~(7)の工程の後、乾燥工程、熱処理工程、電離放射による架橋処理工程、親水化処理工程、表面被覆処理工程等を設けることができる。
[2] Method for Producing Polyolefin Microporous Membrane The method for producing a polyolefin microporous membrane of the present invention is as follows. (1) After adding a film-forming solvent to the polyolefin resin, melt-kneading to prepare a polyolefin resin solution. A step, (2) a step of extruding a polyolefin resin solution from a die lip and then cooling to form a gel-like molded product, (3) a step of stretching the gel-like molded product in at least a uniaxial direction (first stretching step), (4) a step of removing the film-forming solvent, (5) a step of drying the obtained film, (6) a step of stretching the dried film in at least a uniaxial direction (second stretching step), (7) A heat treatment step, and (8) a winding step. If necessary, any one of a heat setting treatment step, a heat roll treatment step, and a heat solvent treatment step may be provided before the film forming solvent removal step (4). Further, after the steps (1) to (7), a drying step, a heat treatment step, a crosslinking treatment step by ionizing radiation, a hydrophilization treatment step, a surface coating treatment step, and the like can be provided.
 本発明のポリオレフィン微多孔膜の製造方法としては、下記の「ポリオレフィン樹脂溶液の調製工程」および「ゲル状成形物の形成工程」を経る湿式法であることが重要である。「ポリオレフィン樹脂溶液の調製工程」を経ない製造方法は乾式法と呼ばれる。
(1)ポリオレフィン樹脂溶液の調製工程
 ポリオレフィン樹脂に適当な成膜用溶剤を添加した後、溶融混練し、ポリオレフィン樹脂溶液を調製する。溶融混練方法は公知であるので詳細な説明は省略するが、溶融混練方法として、例えば特許第2132327号公報及び特許第3347835号公報に記載の二軸押出機を用いる方法を利用することができる。ただし、ポリオレフィン樹脂溶液のポリオレフィン樹脂濃度は、ポリオレフィン樹脂と成膜用溶剤との合計質量を100質量%として、ポリオレフィン樹脂が25~50質量%であることが好ましく、より好ましくは25~45質量%である。ポリオレフィン樹脂の割合を上記好ましい範囲内にすることで生産性の低下を防ぎ、ゲル状成形物の成形性の低下を防ぐことができる。
It is important that the method for producing a polyolefin microporous membrane of the present invention is a wet method that undergoes the following “preparation step of polyolefin resin solution” and “formation step of gel-like molded product”. A production method that does not go through the “preparation step of polyolefin resin solution” is called a dry method.
(1) Preparation Step of Polyolefin Resin Solution After adding a suitable film-forming solvent to the polyolefin resin, it is melt-kneaded to prepare a polyolefin resin solution. Since the melt-kneading method is known, detailed description thereof is omitted, but as the melt-kneading method, for example, a method using a twin-screw extruder described in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. However, the polyolefin resin concentration of the polyolefin resin solution is preferably 25 to 50% by mass, more preferably 25 to 45% by mass, with the total mass of the polyolefin resin and the film-forming solvent being 100% by mass. It is. By making the ratio of the polyolefin resin within the above-mentioned preferable range, it is possible to prevent a decrease in productivity and a decrease in moldability of the gel-like molded product.
(2)ゲル状成形物の形成工程
 ポリオレフィン樹脂溶液を押出機を介してダイから押し出し、冷却してゲル状成形物を形成する。ダイより押し出されたポリオレフィン樹脂溶液を50℃以下まで冷却する速度は180℃/min以上が好ましく、より好ましくは200℃/min以上、さらに好ましくは210℃/min以上である。上記好ましい範囲内の冷却速度にすることで結晶核を増やし、微結晶の数を増加させる。これによりゲル状成形物は延伸時に結晶が配向しやすくなり、フィブリル強度が向上し、得られる微多孔膜は膜厚方向の圧縮に対する強度が上がることで潰れにくくなる。押出方法及びゲル状成形物の形成方法は公知であるので説明を省略するが、例えば特許第2132327号公報及び特許第3347835号公報に開示の方法を利用することができる。
(2) Step of forming a gel-like molded product A polyolefin resin solution is extruded from a die through an extruder and cooled to form a gel-like molded product. The rate of cooling the polyolefin resin solution extruded from the die to 50 ° C. or less is preferably 180 ° C./min or more, more preferably 200 ° C./min or more, and further preferably 210 ° C./min or more. By setting the cooling rate within the above preferable range, the number of crystal nuclei is increased and the number of microcrystals is increased. As a result, the gel-like molded product is easy to orientate crystals when stretched, the fibril strength is improved, and the resulting microporous film is less likely to be crushed by increasing the strength against compression in the film thickness direction. Extrusion methods and gel-like molded product formation methods are known and will not be described here. For example, the methods disclosed in Japanese Patent Nos. 2132327 and 3347835 can be used.
(3)第一の延伸工程
 ゲル状成形物を少なくとも一軸方向に延伸する。第一の延伸によりポリエチレン結晶ラメラ層間の開裂が起こり、ポリエチレン相が微細化し、多数のフィブリルが形成される。得られるフィブリルは三次元網目構造(三次元的に不規則に連結したネットワーク構造)を形成する。ゲル状成形物は成膜用溶剤を含むので、均一に延伸できる。第一の延伸は、ゲル状成形物を加熱後、通常のテンター法、ロール法、インフレーション法、圧延法又はこれらの方法の組合せにより所定の倍率で行うことができる。第一の延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸又は逐次延伸のいずれを施してもよい。
(3) First stretching step The gel-like molded product is stretched in at least a uniaxial direction. The first stretching causes cleavage between the polyethylene crystal lamella layers, the polyethylene phase is refined, and a large number of fibrils are formed. The obtained fibrils form a three-dimensional network structure (a network structure that is irregularly connected three-dimensionally). Since the gel-like molded product contains a film-forming solvent, it can be stretched uniformly. The first stretching can be carried out at a predetermined magnification by heating the gel-like molded product and then using a normal tenter method, roll method, inflation method, rolling method, or a combination of these methods. The first stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, either simultaneous biaxial stretching or sequential stretching may be performed.
 延伸倍率はゲル状成形物の厚さにより異なるが、一軸延伸では2倍以上にするのが好ましく、3~50倍にするのがより好ましい。二軸延伸ではいずれの方向でも少なくとも3倍以上が好ましい。 Although the draw ratio varies depending on the thickness of the gel-like molded product, it is preferably 2 times or more, more preferably 3 to 50 times in uniaxial stretching. In biaxial stretching, at least 3 times or more is preferable in any direction.
 第一の延伸の温度はポリオレフィン樹脂の結晶分散温度以上~結晶分散温度+30℃の範囲内にするのが好ましく、結晶分散温度+10℃~結晶分散温度+25℃の範囲内にするのがより好ましく、結晶分散温度+15℃~結晶分散温度+20℃の範囲内にするのが特に好ましい。延伸温度を上記好ましい範囲内にすることで延伸後の分子鎖の配向性の悪化を防ぎ、樹脂が十分に軟化することで、延伸による破膜を防ぎ、高倍率の延伸ができる。ここで結晶分散温度とは、ASTM D4065に基づいて動的粘弾性の温度特性測定により求められる値をいう。ポリオレフィン樹脂がポリエチレンの場合、その結晶分散温度は、一般的に90~100℃である。よって、延伸温度は、通常90~130℃が好ましく、より好ましくは100~125℃であり、さらに好ましくは105~120℃である。 The first stretching temperature is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin to the crystal dispersion temperature + 30 ° C., more preferably in the range of the crystal dispersion temperature + 10 ° C. to the crystal dispersion temperature + 25 ° C., It is particularly preferable to set the temperature within the range of crystal dispersion temperature + 15 ° C. to crystal dispersion temperature + 20 ° C. By setting the stretching temperature within the above preferred range, deterioration of the orientation of molecular chains after stretching is prevented, and when the resin is sufficiently softened, film breakage due to stretching can be prevented and stretching at a high magnification can be performed. Here, the crystal dispersion temperature refers to a value obtained by measuring temperature characteristics of dynamic viscoelasticity based on ASTM D4065. When the polyolefin resin is polyethylene, the crystal dispersion temperature is generally 90 to 100 ° C. Therefore, the stretching temperature is usually preferably 90 to 130 ° C, more preferably 100 to 125 ° C, and further preferably 105 to 120 ° C.
 第一の延伸時に、温度の異なる多段階の延伸を施してもよい。この場合、前段の温度より後段の温度が高い二段階の異なる温度で延伸するのが好ましい。その結果、強度低下や幅方向の物性低下を伴わずに、細孔径が大きく、高透過性を示す高次構造の微多孔質膜が得られる。限定的ではないが、前段と後段の延伸温度の差は5℃以上にするのが好ましい。前段から後段にかけて膜の温度を上げる際、(a)延伸を継続しながら昇温してもよいし、(b)昇温する間は延伸を止めて所定の温度に到達したのち後段の延伸を開始してもよいが、前者(a)が好ましい。いずれの場合でも、昇温の際に急熱するのが好ましい。具体的には0.1℃/秒以上の昇温速度で加熱するのが好ましく、1~5℃/秒の昇温速度で加熱するのがより好ましい。言うまでもないが、前段及び後段の延伸温度並びにトータル延伸倍率は各々上記範囲内とする。 ¡Multi-stage stretching at different temperatures may be performed during the first stretching. In this case, the stretching is preferably performed at two different temperatures, the temperature of the subsequent stage being higher than the temperature of the previous stage. As a result, a highly porous microporous membrane having a large pore size and high permeability can be obtained without lowering strength or reducing physical properties in the width direction. Although not limited, it is preferable that the difference in the stretching temperature between the former stage and the latter stage is 5 ° C. or more. When the temperature of the film is increased from the former stage to the latter stage, (a) the temperature may be raised while continuing the stretching, or (b) the stretching is stopped while reaching the predetermined temperature while the temperature is raised, and the latter stage stretching is performed. Although it may be started, the former (a) is preferred. In any case, it is preferable to rapidly heat at the time of temperature rise. Specifically, heating is preferably performed at a temperature rising rate of 0.1 ° C./second or more, more preferably heating at a temperature rising rate of 1 to 5 ° C./second. Needless to say, the stretching temperature and the total stretching ratio of the former stage and the latter stage are within the above ranges, respectively.
 所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよく、これにより一層、機械的強度に優れたポリオレフィン微多孔質膜が得られる。その方法としては、例えば特許第3347854号公報に開示の方法を用いることができる。 Depending on the desired physical properties, the film may be stretched with a temperature distribution in the film thickness direction, whereby a polyolefin microporous film having further excellent mechanical strength can be obtained. As the method, for example, the method disclosed in Japanese Patent No. 3347854 can be used.
(4)成膜用溶剤除去工程
 成膜用溶剤の除去(洗浄)には洗浄溶媒を用いる。ポリオレフィン相は成膜用溶剤と相分離しているので、成膜用溶剤を除去すると多孔質の膜が得られる。洗浄溶媒及びこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略するが、例えば特許第2132327号公報や特開2002‐256099号公報に開示の方法を利用することができる。
(4) Film forming solvent removal step A cleaning solvent is used to remove (wash) the film forming solvent. Since the polyolefin phase is phase-separated from the film-forming solvent, a porous film can be obtained by removing the film-forming solvent. The cleaning solvent and the method for removing the film-forming solvent using the same are well known and will not be described here. For example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent Application Laid-Open No. 2002-256099 can be used.
(5)膜の乾燥工程
 成膜用溶剤除去により得られたポリオレフィン微多孔質膜は、加熱乾燥法、風乾法等により乾燥する。
(5) Membrane drying step The polyolefin microporous membrane obtained by removing the film-forming solvent is dried by a heat drying method, an air drying method or the like.
(6)第二の延伸工程
 乾燥後の膜を再び少なくとも一軸方向に延伸する。第二の延伸は、膜を加熱しながら、第一の延伸と同様にテンター法等により行うことができる。第二の延伸は一軸延伸でも二軸延伸でもよい。
(6) Second stretching step The dried film is stretched again in at least a uniaxial direction. The second stretching can be performed by a tenter method or the like, similar to the first stretching, while heating the film. The second stretching may be uniaxial stretching or biaxial stretching.
 第二の延伸の温度は、微多孔質膜を構成するポリオレフィン樹脂の結晶分散温度以上~結晶分散温度+40℃以下の範囲内にするのが好ましく、結晶分散温度+10℃以上~結晶分散温度+40℃以下の範囲内にするのがより好ましい。第二の延伸の温度を上記好ましい範囲内にすることで、透気性の低下と、横方向(幅方向:TD方向)に延伸した場合のシート幅方向の物性のばらつきの発生とを防ぐことができる。第二の延伸の温度を上記好ましい範囲内にすることで、特に透気抵抗度の延伸シート幅方向のばらつきの発生を抑えることができる。また、第二の延伸の温度を上記好ましい範囲内にすることで、ポリオレフィン樹脂が十分に軟化することができ、延伸において破膜を防ぎ、均一に延伸できる。ポリオレフィン樹脂がポリエチレンのみからなる場合、延伸温度を通常90~140℃の範囲内にし、好ましくは100~140℃の範囲内にする。 The temperature of the second stretching is preferably in the range of not less than the crystal dispersion temperature of the polyolefin resin constituting the microporous membrane to the crystal dispersion temperature + 40 ° C. or less, and the crystal dispersion temperature + 10 ° C. or more to the crystal dispersion temperature + 40 ° C. More preferably, it is within the following range. By setting the temperature of the second stretching within the above preferable range, it is possible to prevent a decrease in air permeability and occurrence of variations in physical properties in the sheet width direction when stretched in the lateral direction (width direction: TD direction). it can. By setting the temperature of the second stretching within the above preferable range, it is possible to suppress the occurrence of variations in the air permeability resistance particularly in the stretched sheet width direction. In addition, by setting the temperature of the second stretching within the above-mentioned preferable range, the polyolefin resin can be sufficiently softened, and the film can be prevented from being broken in the stretching and can be stretched uniformly. When the polyolefin resin consists of polyethylene only, the stretching temperature is usually in the range of 90 to 140 ° C, preferably in the range of 100 to 140 ° C.
 第二の延伸の一軸方向への倍率は1.0~1.8倍にするのが好ましい。例えば一軸延伸の場合、長手方向(機械方向:MD方向)又はTD方向に1.0~1.8倍にする。二軸延伸の場合、MD方向及びTD方向に各々1.0~1.8倍にする。二軸延伸の場合、MD方向及びTD方向の各延伸倍率は1.0~1.8倍である限り、各方向で互いに異なってもよいが、同じであるのが好ましい。倍率を上記好ましい範囲内にすることで、透過性、電解液吸収性及び耐圧縮性の低下を防ぐことができる。また、倍率を上記好ましい範囲内にすることで、フィブリルが細くなり過ぎることと、耐熱収縮性の低下とを防ぐことができる。第二の延伸の倍率は1.2~1.6倍にするのがより好ましい。 The magnification in the uniaxial direction of the second stretching is preferably 1.0 to 1.8 times. For example, in the case of uniaxial stretching, the length is 1.0 to 1.8 times in the longitudinal direction (machine direction: MD direction) or TD direction. In the case of biaxial stretching, 1.0 to 1.8 times each in the MD direction and the TD direction. In the case of biaxial stretching, each stretching ratio in the MD direction and TD direction may be different in each direction as long as it is 1.0 to 1.8 times, but is preferably the same. By setting the magnification within the above preferable range, it is possible to prevent a decrease in permeability, electrolyte solution absorbability, and compression resistance. Moreover, it can prevent that a fibril becomes thin too much and a heat-resistant shrinkage fall by making a magnification into the said preferable range. The magnification of the second stretching is more preferably 1.2 to 1.6 times.
 第二の延伸の速度は延伸軸方向に3%/秒以上にするのが好ましい。例えば、一軸延伸の場合、MD方向又はTD方向に3%/秒以上にする。二軸延伸の場合、MD方向及びTD方向に各々3%/秒以上にする。延伸軸方向における延伸速度(%/秒)とは、膜(シート)が再延伸される領域において再延伸前の延伸軸方向の長さを100%とし、1秒間当りに伸ばされる長さの割合を表す。延伸速度を上記好ましい範囲内にすることで、透過性の低下を防ぐとともに、TD方向に延伸した場合にシート幅方向における物性のばらつきが大きくなるのを防ぐ。延伸速度を上記好ましい範囲内にすることで、特に延伸シート幅方向における透気抵抗度のばらつきの発生を防ぐことができる。第二の延伸の速度は5%/秒以上にするのが好ましく、10%/秒以上にするのがより好ましい。二軸延伸の場合、MD方向及びTD方向の各延伸速度は3%/秒以上である限り、MD方向とTD方向で互いに異なってもよいが、同じであるのが好ましい。第二の延伸の速度の上限に特に制限はないが、破断防止の観点から50%/秒以下であるのが好ましい。 The second stretching speed is preferably 3% / second or more in the direction of the stretching axis. For example, in the case of uniaxial stretching, it is 3% / second or more in the MD direction or TD direction. In the case of biaxial stretching, it is 3% / second or more in the MD direction and TD direction, respectively. The stretching speed (% / second) in the stretching axis direction is the ratio of the length stretched per second with the length in the stretching axis direction before re-stretching being 100% in the region where the film (sheet) is re-stretched. Represents. By setting the stretching speed within the above preferable range, a decrease in the permeability is prevented, and a variation in physical properties in the sheet width direction when the film is stretched in the TD direction is prevented. By setting the stretching speed within the above preferable range, it is possible to prevent the occurrence of variation in the air resistance particularly in the width direction of the stretched sheet. The speed of the second stretching is preferably 5% / second or more, and more preferably 10% / second or more. In the case of biaxial stretching, each stretching speed in the MD direction and TD direction may be different from each other in the MD direction and the TD direction as long as it is 3% / second or more, but is preferably the same. Although there is no restriction | limiting in particular in the upper limit of the speed | rate of 2nd extending | stretching, It is preferable that it is 50% / second or less from a viewpoint of fracture | rupture prevention.
(7)熱処理工程
 第二の延伸後の膜を熱処理する。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いればよい。特に熱固定処理により膜の結晶が安定化する。熱固定処理を行うことにより、第二の延伸により形成されたフィブリルからなる網状組織が保持され、細孔径が大きく、強度に優れた微多孔質膜を作製できる。熱固定処理は、微多孔質膜を構成するポリオレフィン樹脂の結晶分散温度以上~融点以下の温度範囲内で行う。熱固定処理は、テンター方式、ロール方式又は圧延方式により行う。また、熱緩和処理は、テンター方式、ロール方式又は圧縮方式により行うか、ベルトコンベア若しくはフローティングロールを用いて行ってもよい。熱緩和処理は少なくとも一方向に緩和率が20%以下の範囲で行うのが好ましく、更に好ましくは緩和率が10%以下の範囲で行う。
(7) Heat treatment process The film | membrane after 2nd extending | stretching is heat-processed. As the heat treatment method, heat setting treatment and / or heat relaxation treatment may be used. In particular, the crystal of the film is stabilized by the heat setting treatment. By performing the heat setting treatment, it is possible to maintain a network composed of fibrils formed by the second stretching, to produce a microporous membrane having a large pore diameter and excellent strength. The heat setting treatment is performed within a temperature range from the crystal dispersion temperature to the melting point of the polyolefin resin constituting the microporous membrane. The heat setting treatment is performed by a tenter method, a roll method or a rolling method. Further, the thermal relaxation treatment may be performed by a tenter method, a roll method or a compression method, or may be performed using a belt conveyor or a floating roll. The thermal relaxation treatment is preferably performed in at least one direction in a range where the relaxation rate is 20% or less, more preferably in a range where the relaxation rate is 10% or less.
 熱固定処理温度及び熱緩和温度は、第二の延伸の温度±5℃の範囲内であるのが好ましく、これにより物性が安定化する。この温度は第二の延伸の温度±3℃の範囲内であるのがより好ましい。熱緩和処理方法としては、例えば特開2002‐256099号公報に開示の方法を利用できる。 The heat setting treatment temperature and the heat relaxation temperature are preferably within the range of the second stretching temperature ± 5 ° C., which stabilizes the physical properties. This temperature is more preferably within the range of the temperature of the second stretching ± 3 ° C. As the thermal relaxation treatment method, for example, the method disclosed in Japanese Patent Application Laid-Open No. 2002-256099 can be used.
(8)巻取工程
 製膜後のポリオレフィン微多孔質膜は、円筒形コアに巻きつけて巻き取りフィルムロールとし、熱処理をする。熱処理の温度は好ましくは50~70℃である。本発明においてフィルムを巻き取るためのコアは、円筒形のもので、その材質は特に限定せず、紙やプラスチック、及びそれらを合わせたものなどがある。巻き取り方法は、巻き取りモーターにより張力をかけてコアにポリオレフィン微多孔質膜を巻取る方法が挙げられる。ポリオレフィン微多孔質膜をコアに巻き取る際の巻取張力は5~15Nが好ましく、より好ましくは7~15Nである。15N以上の巻き取り張力で巻くと、巻き取り後にロールの状態での延伸によるひずみが残りやすく、巻き出した後の熱収縮が大きくなる。1N以下の巻き取り張力では、巻きズレや巻き姿が悪化し、シワ不良の原因となる。さらに、フィルムロールを60℃で熱処理をすることで、収縮により3次元構造でのひずみが残りにくく、得られるポリオレフィン微多孔膜は熱プレス時の収縮が小さくなり、熱圧縮後の透気抵抗度変化率が小さくなる。
(8) Winding process The polyolefin microporous film after film formation is wound around a cylindrical core to form a wound film roll, which is then heat-treated. The temperature of the heat treatment is preferably 50 to 70 ° C. In the present invention, the core for winding the film is cylindrical, and the material thereof is not particularly limited, and examples thereof include paper, plastic, and a combination thereof. Examples of the winding method include a method of winding a polyolefin microporous film around the core by applying a tension with a winding motor. The winding tension at the time of winding the polyolefin microporous film around the core is preferably 5 to 15N, more preferably 7 to 15N. When winding at a winding tension of 15 N or more, distortion due to stretching in the roll state tends to remain after winding, and thermal shrinkage after unwinding increases. When the winding tension is 1 N or less, winding deviation and winding shape are deteriorated, which causes a wrinkle defect. Furthermore, by heat-treating the film roll at 60 ° C., the strain in the three-dimensional structure hardly remains due to the shrinkage, and the resulting polyolefin microporous film has a small shrinkage during hot pressing, and the air resistance after heat compression The rate of change is reduced.
 限定的ではないが、第一の延伸、成膜用溶剤除去、乾燥処理、第二の延伸及び熱処理を一連のライン上で連続的に施すインライン方式を採用するのが好ましい。ただし、必要に応じて乾燥処理後の膜を一旦巻いてフィルムロールとし、これを巻き戻しながら第二の延伸及び熱処理を施すオフライン方式を採用してもよい。 Although not limited, it is preferable to adopt an in-line method in which the first stretching, the solvent removal for film formation, the drying process, the second stretching and the heat treatment are continuously performed on a series of lines. However, if necessary, an off-line system in which the film after the drying treatment is once wound to form a film roll and the second stretching and heat treatment are performed while rewinding may be adopted.
(9)その他の工程
 第一の延伸を施したゲル状成形物から成膜用溶剤を除去(洗浄)する前に、熱固定処理工程、熱ロール処理工程及び熱溶剤処理工程のいずれかを設けてもよい。また洗浄後や第二の延伸工程中の膜に対して熱固定処理する工程を設けてもよい。
(i)熱固定処理
 洗浄前及び/又は後の延伸ゲル状成形物、並びに第二の延伸工程中の膜を熱固定処理する方法は上記と同じでよい。
(9) Other steps Before removing (cleaning) the film-forming solvent from the gel-like molded product subjected to the first stretching, any one of a heat setting treatment step, a heat roll treatment step and a heat solvent treatment step is provided. May be. Moreover, you may provide the process which heat-sets with respect to the film | membrane after a washing | cleaning or a 2nd extending | stretching process.
(I) Heat setting treatment The method of heat-setting the stretched gel-like molded product before and / or after washing and the film in the second stretching step may be the same as described above.
(ii)熱ロール処理工程
 洗浄前の延伸ゲル状成形物の少なくとも一面に熱ロールを接触させる処理(熱ロール処理)を施してもよい。熱ロール処理として、例えば特開2007‐106992号公報に記載の方法を利用できる。特開2007‐106992号公報に記載の方法を利用すると、ポリオレフィン樹脂の結晶分散温度+10℃以上~ポリオレフィン樹脂の融点未満に温調した加熱ロールに、延伸ゲル状成形物を接触させる。加熱ロールと延伸ゲル状成形物との接触時間は0.5秒~1分間が好ましい。熱ロール処理としては、ロール表面に加熱オイルを保持した状態で接触させてもよい。加熱ロールとしては、平滑ロール又は延伸ゲル状成形物をロール側に吸引する機能を有するロール、あるいは延伸ゲル状成形物との接触面(外周面)に凹凸を有する凹凸ロールのいずれでもよい。
(Ii) Hot roll treatment process You may perform the process (hot roll process) which makes a hot roll contact at least one surface of the stretched gel-like molded object before washing | cleaning. As the hot roll treatment, for example, a method described in JP-A-2007-106992 can be used. When the method described in Japanese Patent Application Laid-Open No. 2007-106992 is used, the stretched gel-like molded product is brought into contact with a heated roll adjusted to a crystal dispersion temperature of the polyolefin resin + 10 ° C. or higher and lower than the melting point of the polyolefin resin. The contact time between the heating roll and the stretched gel-like molded product is preferably 0.5 seconds to 1 minute. As a hot roll process, you may make it contact in the state which hold | maintained heating oil on the roll surface. The heating roll may be either a smooth roll or a roll having a function of sucking a stretched gel-like molded product toward the roll, or a concavo-convex roll having irregularities on the contact surface (outer peripheral surface) with the stretched gel-like molded product.
(iii)熱溶剤処理工程
 洗浄前の延伸ゲル状成形物を熱溶剤に接触させる処理を施してもよい。熱溶剤処理方法としては、例えばWO2000/20493号に開示の方法を利用できる。
(Iii) Thermal solvent treatment process You may perform the process which makes the extending | stretching gel-shaped molding before washing | cleaning contact a thermal solvent. As the hot solvent treatment method, for example, the method disclosed in WO2000 / 20493 can be used.
[3]ポリオレフィン微多孔質膜の物性
 本発明の好ましい実施態様によるポリオレフィン微多孔質膜は、次の物性を有する。
(1)膜厚(μm)
 ポリオレフィン微多孔質膜の膜厚は、近年は電池の高密度高容量化が進んでいるため、3~16μmが好ましく、より好ましくは5~12μm、さらに好ましくは6~10μmである。
[3] Physical Properties of Polyolefin Microporous Membrane The polyolefin microporous membrane according to a preferred embodiment of the present invention has the following physical properties.
(1) Film thickness (μm)
The film thickness of the polyolefin microporous membrane is preferably 3 to 16 μm, more preferably 5 to 12 μm, and even more preferably 6 to 10 μm because of the recent progress of high density and high capacity batteries.
(2)平均孔径(平均流量孔径)及びバブルポイント(BP)細孔径(nm)
 ポリオレフィン微多孔質膜は、パームポロメータにより求めた平均孔径が0.05μm以下であることが好ましい。また、バブルポイント(BP)細孔径は0.06μm以下が好ましい。膜全体の孔径を小孔径にすることで孔が潰れにくくなり、膜厚と透気抵抗度の変化が小さくなる。
(2) Average pore diameter (average flow pore diameter) and bubble point (BP) pore diameter (nm)
The polyolefin microporous membrane preferably has an average pore size determined by a palm porometer of 0.05 μm or less. The bubble point (BP) pore diameter is preferably 0.06 μm or less. By making the pore diameter of the entire membrane small, the pores are not easily crushed, and the change in film thickness and air resistance is reduced.
(3)透気抵抗度(sec/100cm
 透気抵抗度(ガーレー値)は、300sec/100cm以下が好ましい。300sec/100cm以下であれば、電池に用いたときに、良好な透過性を有する。
(3) Air permeability resistance (sec / 100 cm 3 )
The air permeability resistance (Gurley value) is preferably 300 sec / 100 cm 3 or less. If it is 300 sec / 100 cm 3 or less, it has good permeability when used in a battery.
(4)空孔率(%)
 空孔率は25~80%が好ましい。空孔率が25%以上であると良好な透気抵抗度が得られる。空孔率が80%以下であると、微多孔質膜を電池セパレータとして用いた場合の強度が十分であり、短絡を抑えることができる。空孔率が25~40%であると、圧縮時にセパレータの細孔がつぶれにくく好ましい。
(4) Porosity (%)
The porosity is preferably 25 to 80%. When the porosity is 25% or more, good air resistance can be obtained. When the porosity is 80% or less, the strength when the microporous membrane is used as a battery separator is sufficient, and a short circuit can be suppressed. A porosity of 25 to 40% is preferable because the pores of the separator are not easily crushed during compression.
(5)突刺強度(mN)
 突刺強度は1,300mN以上である。突刺強度が1,300mN未満では、微多孔質膜を電池用セパレータとして電池に組み込んだ場合に、電極間の短絡が発生する恐れがある。
(5) Puncture strength (mN)
The puncture strength is 1,300 mN or more. If the puncture strength is less than 1,300 mN, a short circuit between the electrodes may occur when the microporous membrane is incorporated in a battery as a battery separator.
(6)引張破断強度(MPa)
 引張破断強度はMD方向及びTD方向のいずれにおいても80MPa以上であることが好ましい。これにより破膜の心配がない。MD方向における引張破断強度は110MPa以上が好ましく、より好ましくは140MPaである。TD方向における引張破断強度は120MPa以上が好ましく、より好ましくは170MPaである。引張破断強度が上記好ましい範囲であると、電池の製造工程において高圧力で熱プレスされても破膜しにくく、細孔がつぶれにくい。
(6) Tensile strength at break (MPa)
The tensile strength at break is preferably 80 MPa or more in both the MD direction and the TD direction. This eliminates the worry of rupture. The tensile strength at break in the MD direction is preferably 110 MPa or more, more preferably 140 MPa. The tensile strength at break in the TD direction is preferably 120 MPa or more, and more preferably 170 MPa. When the tensile strength at break is in the above-mentioned preferable range, even when hot pressing is performed at a high pressure in the battery production process, the film is hardly broken and the pores are not easily collapsed.
(7)引張破断伸度(%)
 引張破断伸度はMD方向及びTD方向のいずれにおいても60%以上である。これにより破膜の心配がない。
(7) Tensile elongation at break (%)
The tensile elongation at break is 60% or more in both the MD direction and the TD direction. This eliminates the worry of rupture.
(8)105℃の温度で8時間暴露後の熱収縮率(%)
 105℃の温度で8時間暴露後の熱収縮率はMD方向及びTD方向ともに15%以下である。熱収縮率が15%を超えると、微多孔質膜をリチウム電池用セパレータとして用いた場合、発熱時にセパレータ端部が収縮し、電極間の短絡が発生する可能性が高くなる。熱収縮率はMD方向及びTD方向ともに8%以下であるのが好ましい。熱収縮率は更に好ましくはMD方向、TD方向共に4%以下であるのが好ましい。
(8) Thermal shrinkage (%) after exposure for 8 hours at 105 ° C
The thermal shrinkage after exposure for 8 hours at a temperature of 105 ° C. is 15% or less in both the MD and TD directions. When the thermal shrinkage rate exceeds 15%, when the microporous membrane is used as a lithium battery separator, the end of the separator shrinks during heat generation, and the possibility of short circuit between the electrodes increases. The thermal shrinkage rate is preferably 8% or less in both the MD direction and the TD direction. The thermal contraction rate is more preferably 4% or less in both the MD direction and the TD direction.
(9)加熱圧縮した後の膜厚変化率(%)
 5.0MPaの圧力下、90℃で5分間加熱圧縮した後の膜厚変化率は圧縮前の膜厚を100%として10%以下が好ましく、より好ましくは5%以下、さらに好ましくは3%以下である。膜厚変化率が10%以下であると、微多孔質膜を電池セパレータとして用いた場合に、リチウムの析出を防ぎ、サイクル特性が良好な電池を得ることができる。
(9) Change rate of film thickness after heat compression (%)
The rate of change in thickness after heating and compression at 90 ° C. for 5 minutes under a pressure of 5.0 MPa is preferably 10% or less, more preferably 5% or less, even more preferably 3% or less, with the film thickness before compression being 100%. It is. When the film thickness change rate is 10% or less, when a microporous film is used as a battery separator, lithium deposition can be prevented and a battery having good cycle characteristics can be obtained.
(10)加熱圧縮した後の透気抵抗度変化率(%)
 5.0MPaの圧力下、90℃で5分間加熱圧縮した後の透気抵抗度変化率(加熱圧縮前後のガーレー値(sec/100cm)の変化率)は50%以下が好ましく、より好ましくは40%以下、さらに好ましくは35%以下である。透気抵抗度変化率が50%以下であると、電池セパレータとして用いた場合に、電池製造時の高圧での熱プレス工程を経ても、目標とした電池のサイクル特性を出すことができる。
(10) Permeability change rate after heat compression (%)
The rate of change in air resistance after heating and compression at 90 ° C. for 5 minutes under a pressure of 5.0 MPa (the rate of change in the Gurley value (sec / 100 cm 3 ) before and after heating and compression) is preferably 50% or less, more preferably It is 40% or less, more preferably 35% or less. When the air permeability resistance change rate is 50% or less, when used as a battery separator, the cycle characteristics of the target battery can be obtained even through a hot press process at a high pressure during battery manufacture.
 加熱圧縮した後の膜厚変化率及び加熱圧縮した後の透気抵抗度変化率(%)は、結晶の配向性、膜の細孔構造、熱収縮率等に影響されやすい。したがって、ポリオレフィン樹脂の組成、ポリオレフィン樹脂溶液をダイリップより押し出した後の冷却速度、捲回体の熱処理等により制御することができる。 The film thickness change rate after heat compression and the air resistance change rate (%) after heat compression are easily affected by crystal orientation, film pore structure, heat shrinkage rate, and the like. Therefore, it can be controlled by the composition of the polyolefin resin, the cooling rate after extruding the polyolefin resin solution from the die lip, the heat treatment of the wound body, and the like.
[4]ポリオレフィン微多孔質膜を用いたセルの物性
 本発明の好ましい実施態様によるポリオレフィン微多孔質膜を用いたセパレータをアノードとカソードとの間に配置し、電解質を含む電気化学セルは、次の物性を有する。
(1)インピーダンスの変化率(%)
 後述する測定方法で測定したセルのインピーダンスの変化率は7%以下が好ましい。インピーダンスの変化率が上記好ましい範囲内であると、電池のサイクル特性の悪化を抑えることができる。
[4] Physical Properties of Cell Using Polyolefin Microporous Membrane An electrochemical cell including an electrolyte in which a separator using a polyolefin microporous membrane according to a preferred embodiment of the present invention is disposed between an anode and a cathode is as follows. It has the physical properties of
(1) Impedance change rate (%)
The change rate of the impedance of the cell measured by the measurement method described later is preferably 7% or less. When the rate of change in impedance is within the above preferable range, deterioration of the cycle characteristics of the battery can be suppressed.
(2)セルの厚み変化率(%)
 後述する測定方法で測定したセルの厚みの変化率は15%以下が好ましい。セルの厚みの変化率が15%以下であると、熱プレスによりセパレータと電極が十分に密着しており、初期充電時においてリチウムが析出しにくい。
(2) Cell thickness change rate (%)
The cell thickness change rate measured by the measurement method described later is preferably 15% or less. When the rate of change in cell thickness is 15% or less, the separator and the electrode are sufficiently adhered by hot pressing, and lithium is unlikely to precipitate during initial charging.
[5]電池
 本発明のポリオレフィン微多孔質膜からなるセパレータは、これを用いる電池の種類に特に制限はないが、特にリチウム二次電池用途に好適である。本発明の微多孔質膜からなるセパレータを用いたリチウム二次電池には、公知の電極及び電解液を使用すればよい。また本発明の微多孔質膜からなるセパレータを使用するリチウム二次電池の構造も公知のものでよい。
[5] Battery The separator made of the polyolefin microporous membrane of the present invention is not particularly limited in the type of battery using this, but is particularly suitable for lithium secondary battery applications. A well-known electrode and electrolyte may be used for the lithium secondary battery using the separator made of the microporous membrane of the present invention. The structure of the lithium secondary battery using the separator made of the microporous membrane of the present invention may also be a known one.
 本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
 ポリオレフィン微多孔質膜の物性は以下の方法により測定した。
(1)平均孔径(平均流量孔径)及びバブルポイント(BP)細孔径(nm)
 ポリオレフィン微多孔質膜の平均孔径(平均流量孔径)及びバブルポイント(BP)細孔径(nm)は下記のように測定した。
 PMI社のパームポロメータ(商品名、型式:CFP-1500A)を用いて、Dry-up、Wet-upの順で測定した。Wet-upには表面張力が既知のGalwick(商品名)で十分に浸したポリオレフィン微多孔質膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径を最大孔径とした。平均流量径については、Dry-up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet-up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P(式中、d(μm)は微多孔質膜の孔径、γ(dynes/cm)は液体の表面張力、P(Pa)は圧力、Cは圧力定数(2860)である。)
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.
The physical properties of the polyolefin microporous membrane were measured by the following methods.
(1) Average pore diameter (average flow pore diameter) and bubble point (BP) pore diameter (nm)
The average pore diameter (average flow pore diameter) and bubble point (BP) pore diameter (nm) of the polyolefin microporous membrane were measured as follows.
Using a palm porometer (trade name, model: CFP-1500A) manufactured by PMI, measurement was performed in the order of Dry-up and Wet-up. In the wet-up, pressure was applied to a polyolefin microporous film sufficiently soaked with Galwick (trade name) having a known surface tension, and the pore diameter converted from the pressure at which air began to penetrate was defined as the maximum pore diameter. For the average flow diameter, the hole diameter was converted from the pressure at the point where the curve showing a half of the pressure / flow curve in the Dry-up measurement and the curve of the Wet-up measurement intersect. The following formula was used for conversion of pressure and pore diameter.
d = C · γ / P (where d (μm) is the pore diameter of the microporous membrane, γ (dynes / cm) is the surface tension of the liquid, P (Pa) is the pressure, and C is the pressure constant (2860). is there.)
(2)透気抵抗度(sec/100cm
 透気抵抗度(ガーレー値)は、平均膜厚TAVの微多孔膜に対してJIS P8117に準拠して測定した。
(2) Air permeability resistance (sec / 100 cm 3 )
The air resistance (Gurley value) was measured according to JIS P8117 against microporous membrane having an average thickness T AV.
(3)空孔率(%)
 空孔率は微多孔膜の質量wと、微多孔膜と同じポリエチレン組成物からなる同サイズの空孔のない膜の質量wから、空孔率(%)=(w-w)/w×100により算出した。
(3) Porosity (%)
The porosity is calculated from the mass w 1 of the microporous membrane and the mass w 2 of the same size non-porous membrane made of the same polyethylene composition as the microporous membrane, and the porosity (%) = (w 2 −w 1 ) / W 2 × 100.
(4)突刺強度(mN)
 突刺強度は、直径1mm(0.5mmR)の針を用い、速度2mm/secでポリオレフィン微多孔質膜を突刺したときの最大荷重値を測定した。
(4) Puncture strength (mN)
The puncture strength was measured by measuring the maximum load value when a polyolefin microporous membrane was pierced at a speed of 2 mm / sec using a needle having a diameter of 1 mm (0.5 mmR).
(5)引張破断強度(kPa)
 引張破断強度は、幅10mmの短冊状試験片を用いてASTM D882により測定した。
(5) Tensile strength at break (kPa)
The tensile strength at break was measured by ASTM D882 using a strip-shaped test piece having a width of 10 mm.
(6)引張破断伸度(%)
 引張破断伸度は、幅10mmの短冊状試験片をポリオレフィン微多孔質膜の幅方向の中心部分より3点取り、ASTM D882により測定し、平均値を算出することにより求めた。
(6) Tensile elongation at break (%)
The tensile elongation at break was determined by taking three strips of a 10 mm wide strip from the central portion in the width direction of the polyolefin microporous membrane, measuring by ASTM D882, and calculating the average value.
(7)105℃の温度で8時間暴露後の熱収縮率(%)
 熱収縮率は、微多孔質膜を105℃で8時間暴露したときのMD方向及びTD方向の収縮率をそれぞれ3回ずつ測定し、平均値を算出することにより求めた。
(7) Thermal shrinkage after exposure for 8 hours at 105 ° C (%)
The thermal shrinkage was determined by measuring the shrinkage in the MD and TD directions three times each when the microporous membrane was exposed at 105 ° C. for 8 hours, and calculating the average value.
(8)加熱圧縮した後の膜厚変化率(%)
 膜厚は接触厚さ計((株)ミツトヨ製)により測定した。
 ポリオレフィン微多孔膜を、高平滑面を有する一対のプレス板の間に挟み、これをプレス機により5.0MPaの圧力下、90℃で5分間加熱圧縮する。圧縮前の膜厚み(a(μm))から圧縮後の膜厚み(b(μm))を引き、(a(μm))で割った値を百分率であらわしたもの((a-b)÷a×100)を膜厚変化率(%)とする。膜厚みはポリオレフィン微多孔質膜の幅方向の中心部分より3点取り、測定し、平均値を算出することにより求めた。
(8) Film thickness change rate after heat compression (%)
The film thickness was measured with a contact thickness meter (manufactured by Mitutoyo Corporation).
The polyolefin microporous membrane is sandwiched between a pair of press plates having a high smooth surface, and this is heated and compressed at 90 ° C. for 5 minutes under a pressure of 5.0 MPa by a press. The value obtained by subtracting the film thickness after compression (b (μm)) from the film thickness before compression (a (μm)) and dividing by (a (μm)) is expressed as a percentage ((ab) ÷ a X100) is defined as the film thickness change rate (%). The film thickness was obtained by taking three points from the central portion in the width direction of the polyolefin microporous film, measuring it, and calculating the average value.
(9)加熱圧縮した後の透気抵抗度変化率(sec/100cm
 上記(8)と同条件でポリオレフィン微多孔膜を加熱圧縮し、加熱圧縮する前の透気抵抗度(α(sec/100cm))を加熱圧縮した後の透気抵抗度(β(sec/100cm))から引き、(α(sec/100cm))で割った値を百分率であらわしたもの((β-α)÷α×100)を透気抵抗度変化率(%)とする。透気抵抗度はポリオレフィン微多孔質膜の幅方向の中心部分より3点取り、測定し、平均値を算出することにより求めた。
(9) Permeability change rate after heat compression (sec / 100 cm 3 )
The polyolefin microporous membrane is heated and compressed under the same conditions as in (8) above, and the air permeability resistance (α (sec / 100 cm 3 )) before heat compression is heated and compressed (β (sec / sec). 100 cm 3)) subtracted from, the (alpha (sec / 100 cm 3)) in that represents a value obtained by dividing a percentage ((β-α) ÷ α × 100) the air resistance change ratio (%). The air resistance was obtained by taking three points from the central portion in the width direction of the polyolefin microporous membrane, measuring it, and calculating an average value.
 ポリオレフィン微多孔膜を用いたセルの物性は以下の方法により測定した。
(1)セルのインピーダンスの変化率(%)
 高平滑面を有する一対のプレス板の間にセルを挟み、これをプレス機により3.0MPa及び5.0MPa圧力下でそれぞれ、90℃で5分間加熱圧縮した後に、インピーダンス測定装置(ソーラトロン製、SI1250、SI1287)を用いて測定した。通常のプレス圧力(3.0MPa)のインピーダンスの値(A)から高圧力(5.0MPa)でのインピーダンスの値(B)を引き、(A)で割った値をインピーダンス変化率(%)とする。
インピーダンス変化率(%)={(A)-(B)}/(A)×100
(2)セルの厚み変化率(%)
 高平滑面を有する一対のプレス板の間にセルを挟み、これをプレス機により3.0MPa及び5.0MPa圧力下でそれぞれ、90℃で5分間加熱圧縮した後に下記条件で充電し、セル厚みを充電前と充電後で測定した。セルの厚みはセルの中央部を接触厚さ計((株)ミツトヨ製)により測定した。圧縮前のセル厚み(a)から圧縮後のセル厚み(b)を引き、(a)で割った値をセル厚み変化率(%)とする。
セル厚み変化率(%)={(a)-(b)}/(a)×100
The physical properties of the cell using the polyolefin microporous membrane were measured by the following method.
(1) Cell impedance change rate (%)
A cell was sandwiched between a pair of press plates having a high smooth surface, and this was heated and compressed at 90 ° C. for 5 minutes under a pressure of 3.0 MPa and 5.0 MPa, respectively, and then an impedance measurement device (manufactured by Solartron, SI1250, SI1287). Subtract the impedance value (B) at high pressure (5.0 MPa) from the impedance value (A) at normal press pressure (3.0 MPa), and divide by (A) as the impedance change rate (%). To do.
Impedance change rate (%) = {(A) − (B)} / (A) × 100
(2) Cell thickness change rate (%)
A cell is sandwiched between a pair of press plates having a high smooth surface, and this is heated and compressed at 90 ° C. for 5 minutes under a pressure of 3.0 MPa and 5.0 MPa, respectively, and then charged under the following conditions to charge the cell thickness. Measured before and after charging. The cell thickness was measured at the center of the cell with a contact thickness meter (manufactured by Mitutoyo Corporation). The cell thickness change rate (%) is obtained by subtracting the cell thickness (b) after compression from the cell thickness (a) before compression and dividing the result by (a).
Cell thickness change rate (%) = {(a) − (b)} / (a) × 100
実施例1
 Mwが2.0×10のUHMWPE(Mw/Mn:8)18質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)82質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)に、酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタンを、ポリエチレン100質量部当たり0.2質量部ドライブレンドし、ポリエチレン組成物を調製した。得られたポリエチレン組成物30質量部を二軸押出機に投入し、この二軸押出機のサイドフィーダーから70質量部の流動パラフィン[50cSt(40℃)]を供給し、210℃および300rpmの条件で溶融混練して、ポリオレフィン溶液を調整した。このポリオレフィン溶液を二軸押出機に設けたTダイから押し出し、30℃に温調した冷却ロールで冷却速度210℃/minで引き取り、ゲル状成形物を形成した。得られたゲル状成形物を、テンター延伸装置により115℃で長手方向および幅方向ともに5倍(面倍率25倍)に同時二軸延伸し[第一の延伸]、そのままテンター延伸装置で長手方向および幅方向の両方向に寸法変化が無いように固定して、110℃の温度で熱固定処理した。次いで延伸したゲル状成形物を塩化メチレン浴中に浸漬し、流動パラフィンを除去し、洗浄して得られた微多孔質膜を風乾した。続いて、得られた微多孔質膜を、テンター延伸装置により130℃で幅方向に1.36倍に再延伸し[第二の延伸]、次いで幅方向に緩和率3%で緩和させ、そのままテンター延伸装置に固定して長手方向および幅方向の両方向に寸法変化が無いように、130℃の温度で熱固定処理した。次いで、ポリオレフィン微多孔質膜を室温まで冷却した後、巻取ロールで7Nの巻取張力で巻き取り、厚さ7.1μmのポリオレフィン微多孔質膜を製造した。
 電池でのセパレータの効果を確認する為に、以下のように、アノード、カソード、セパレータおよび電解質を含む電気化学セルを用いて既述の物性を測定した。カソードは、単位面積質量が13.4mg/cmで厚さ15μmのアルミニウム基板上の密度が3.55g/cmのLiCoO層を含む、40mm×40mmのシートを用いた。アノードは、単位面積質量が5.5mg/cmで厚さ10μmの銅フィルム基板上の密度が1.65g/cmの天然黒鉛を含む、45mm×45mmのシートを用いた。アノードおよびカソードを120℃の真空オーブンで乾燥させた後にセルを組み立てた。セパレータは、長さ50mm、幅60mmの本実施例で製造したポリオレフィン微多孔性膜である。セパレータを、50℃の真空オーブンで乾燥させた後にセルを組み立て、エチレンカーボネートとメチルエチルカーボネートの混合物(エチレンカーボネート/メチルエチルカーボネート=4/6、V/V(体積割合))中にLiPFを溶解させて電解質を調製し、1M溶液を形成した。アルミラミネートの間にアノード、セパレータおよびカソードを積み重ね、セパレータに電解質を含浸させ、次いで真空シールすることによってセルを作製した。
Example 1
Polyethylene (melting point: 135 ° C.) consisting of 18% by mass of UHMWPE (Mw / Mn: 8) having an Mw of 2.0 × 10 6 and 82% by mass of HDPE (Mw / Mn: 6) having an Mw of 3.0 × 10 5 Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), tetrakis [methylene-3- (3,5-ditertiarybutyl-4-hydroxyphenyl) -propionate] methane as an antioxidant and polyethylene 100 0.2 parts by mass per mass part was dry blended to prepare a polyethylene composition. 30 parts by mass of the obtained polyethylene composition was charged into a twin screw extruder, 70 parts by mass of liquid paraffin [50 cSt (40 ° C.)] was supplied from the side feeder of this twin screw extruder, and conditions of 210 ° C. and 300 rpm Was melt-kneaded to prepare a polyolefin solution. This polyolefin solution was extruded from a T-die provided in a twin-screw extruder and taken up at a cooling rate of 210 ° C./min with a cooling roll adjusted to 30 ° C. to form a gel-like molded product. The obtained gel-like molded product was simultaneously biaxially stretched at 115 ° C. by 5 times in both the longitudinal direction and the width direction (surface magnification: 25 times) with a tenter stretching apparatus [first stretching], and directly in the longitudinal direction with a tenter stretching apparatus. And it fixed so that there may be no dimensional change in both directions of the width direction, and heat-fixed at the temperature of 110 degreeC. Next, the stretched gel-like molded product was immersed in a methylene chloride bath to remove liquid paraffin, and the microporous membrane obtained by washing was air-dried. Subsequently, the obtained microporous membrane was re-stretched 1.36 times in the width direction at 130 ° C. by a tenter stretching apparatus [second stretching], and then relaxed at a relaxation rate of 3% in the width direction. It fixed to the tenter stretching apparatus and heat-set at a temperature of 130 ° C. so that there was no dimensional change in both the longitudinal direction and the width direction. Next, after the polyolefin microporous membrane was cooled to room temperature, it was wound with a winding roll with a winding tension of 7 N to produce a polyolefin microporous membrane with a thickness of 7.1 μm.
In order to confirm the effect of the separator in the battery, the physical properties described above were measured using an electrochemical cell including an anode, a cathode, a separator, and an electrolyte as follows. As the cathode, a 40 mm × 40 mm sheet including a LiCoO 2 layer having a unit area mass of 13.4 mg / cm 2 and a density of 3.55 g / cm 3 on an aluminum substrate having a thickness of 15 μm was used. As the anode, a 45 mm × 45 mm sheet containing natural graphite having a unit area mass of 5.5 mg / cm 2 and a density of 1.65 g / cm 3 on a 10 μm thick copper film substrate was used. The cell was assembled after the anode and cathode were dried in a 120 ° C. vacuum oven. The separator is a polyolefin microporous membrane produced in this example having a length of 50 mm and a width of 60 mm. After the separator was dried in a vacuum oven at 50 ° C., the cell was assembled, and LiPF 6 was put in a mixture of ethylene carbonate and methyl ethyl carbonate (ethylene carbonate / methyl ethyl carbonate = 4/6, V / V (volume ratio)). An electrolyte was prepared by dissolving to form a 1M solution. A cell was made by stacking the anode, separator and cathode between aluminum laminates, impregnating the separator with electrolyte and then vacuum sealing.
実施例2
 第一の延伸の温度を117.0℃にし、第二の延伸の倍率を1.41倍にし、第二の延伸後の緩和における緩和率を7%に設定し、巻取張力を9Nに設定した以外は実施例1と同様にして厚さ9.4μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様の方法でセルも作製した。
Example 2
The first stretching temperature is 117.0 ° C., the second stretching ratio is 1.41 times, the relaxation rate in relaxation after the second stretching is set to 7%, and the winding tension is set to 9N. A polyolefin microporous membrane having a thickness of 9.4 μm was produced in the same manner as in Example 1 except that. Using this polyolefin microporous membrane, a cell was also produced in the same manner as in Example 1.
実施例3
 第一の延伸の温度を112.0℃にし、第二の延伸の倍率を1.34倍にし、第二の延伸後の緩和における緩和率を2%に設定した以外は実施例1と同様にして厚さ5.3μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Example 3
The same as in Example 1 except that the temperature of the first stretching was 112.0 ° C., the magnification of the second stretching was 1.34 times, and the relaxation rate in the relaxation after the second stretching was set to 2%. Thus, a polyolefin microporous membrane having a thickness of 5.3 μm was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
実施例4
 Mwが2.0×10のUHMWPE(Mw/Mn:8)30質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)70質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)を用い、冷却ロールにおける冷却速度を200℃/minに設定し、第一の延伸の温度を118.5℃にし、第二の延伸の倍率を1.40倍にし、第二の延伸後の緩和における緩和率を14%に設定し、巻取張力を9Nに設定した以外は実施例1と同様にして厚さ11.7μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Example 4
Polyethylene (melting point: 135 ° C.) comprising 30% by mass of UHMWPE (Mw / Mn: 8) having an Mw of 2.0 × 10 6 and 70% by mass of HDPE (Mw / Mn: 6) having an Mw of 3.0 × 10 5 Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), the cooling rate in the cooling roll is set to 200 ° C./min, the temperature of the first stretching is set to 118.5 ° C., and the second stretching is performed. A polyolefin having a thickness of 11.7 μm was made in the same manner as in Example 1 except that the magnification of 1.40 was set, the relaxation rate in the relaxation after the second stretching was set to 14%, and the winding tension was set to 9N. A microporous membrane was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
実施例5
 Mwが2.0×10のUHMWPE(Mw/Mn:8)40質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)60質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)を用い、得られたポリエチレン組成物25質量部を二軸押出機へ供給し、第一の延伸の温度を110℃にし、第二の延伸倍率を1.60倍、延伸温度を127℃にし、第二の延伸後の緩和における緩和率を9%に設定した以外は実施例1と同様にして厚さ3.0μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Example 5
Polyethylene consisting of 40% by mass of UHMWPE (Mw / Mn: 8) with Mw of 2.0 × 10 6 and 60% by mass of HDPE (Mw / Mn: 6) with Mw of 3.0 × 10 5 (melting point: 135 ° C. , Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), 25 parts by mass of the obtained polyethylene composition is supplied to a twin screw extruder, the temperature of the first stretching is 110 ° C., and the second Polyolefin microporous having a thickness of 3.0 μm as in Example 1 except that the stretching ratio of 1.60 times, the stretching temperature was 127 ° C., and the relaxation rate in the relaxation after the second stretching was set to 9%. A membrane was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
実施例6
 Mwが2.0×10のUHMWPE(Mw/Mn:8)40質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)60質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)を用い、得られたポリエチレン組成物25質量部を二軸押出機へ供給し、第一の延伸倍率を長手方向および幅方向ともに7倍(面倍率49倍)にし、第二の延伸倍率を1.60倍、延伸温度を127℃にし、第二の延伸後の緩和における緩和率を6%に設定した以外は実施例1と同様にして厚さ3.0μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Example 6
Polyethylene consisting of 40% by mass of UHMWPE (Mw / Mn: 8) with Mw of 2.0 × 10 6 and 60% by mass of HDPE (Mw / Mn: 6) with Mw of 3.0 × 10 5 (melting point: 135 ° C. Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), 25 parts by mass of the obtained polyethylene composition is supplied to a twin-screw extruder, and the first draw ratio is 7 in both the longitudinal direction and the width direction. The same as Example 1 except that the second draw ratio was 1.60 times, the draw temperature was 127 ° C., and the relaxation rate in the relaxation after the second draw was set to 6%. Thus, a polyolefin microporous membrane having a thickness of 3.0 μm was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
実施例7
 Mwが2.0×10のUHMWPE(Mw/Mn:8)30質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)70質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)を用い、得られたポリエチレン組成物28.5質量部を二軸押出機へ供給し、第一の延伸温度を110℃、第二の延伸倍率を1.60倍、延伸温度を127℃にし、第二の延伸後の緩和における緩和率を9%に設定した以外は実施例1と同様にして厚さ3.0μmのポリオレフィン微多孔質膜を製造した。
Example 7
Polyethylene (melting point: 135 ° C.) comprising 30% by mass of UHMWPE (Mw / Mn: 8) having an Mw of 2.0 × 10 6 and 70% by mass of HDPE (Mw / Mn: 6) having an Mw of 3.0 × 10 5 And 28.5 parts by mass of the obtained polyethylene composition are fed to a twin-screw extruder using a crystal dispersion temperature of 100 ° C. and Mw / Mn of 10.0). Polyolefin microporous having a thickness of 3.0 μm as in Example 1 except that the stretching ratio of 1.60 times, the stretching temperature was 127 ° C., and the relaxation rate in the relaxation after the second stretching was set to 9%. A membrane was produced.
実施例8
 第一の延伸温度を110℃、第二の延伸倍率を1.60倍にし、第二の延伸後の緩和における緩和率を9%に設定した以外は実施例1と同様にして厚さ3.0μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Example 8
Thickness 3. As in Example 1, except that the first stretching temperature was 110 ° C., the second stretching ratio was 1.60 times, and the relaxation rate in relaxation after the second stretching was set to 9%. A 0 μm polyolefin microporous membrane was produced. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
比較例1
 Mwが2.0×10のUHMWPE(Mw/Mn:8)2質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)98質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)を用い、得られたポリエチレン組成物40質量部と流動パラフィン60質量部でポリオレフィン溶液を調整した。このポリオレフィン溶液を押し出し、第一の延伸の温度を119.5℃、第二の延伸の倍率を1.4倍にし、第二の延伸後に緩和はせず、巻取張力9Nの力で巻き取った以外は実施例1と同様にして厚さ9.0μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Comparative Example 1
Polyethylene consisting of 2% by mass of UHMWPE (Mw / Mn: 8) with an Mw of 2.0 × 10 6 and 98% by mass of HDPE (Mw / Mn: 6) with an Mw of 3.0 × 10 5 (melting point: 135 ° C. Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), and a polyolefin solution was prepared with 40 parts by mass of the obtained polyethylene composition and 60 parts by mass of liquid paraffin. This polyolefin solution was extruded, the temperature of the first stretching was 119.5 ° C., the magnification of the second stretching was 1.4 times, and after the second stretching, it was not relaxed and wound with a winding tension of 9 N A polyolefin microporous membrane having a thickness of 9.0 μm was produced in the same manner as in Example 1 except that. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
比較例2 
 冷却速度を160℃/minに設定し、巻取張力16Nの力で巻き取った以外は実施例1と同様にして厚さ7.0μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Comparative Example 2
A polyolefin microporous membrane having a thickness of 7.0 μm was produced in the same manner as in Example 1 except that the cooling rate was set to 160 ° C./min and winding was performed with a winding tension of 16 N. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
比較例3 
 Mwが2.0×10のUHMWPE(Mw/Mn:8)40質量%、及びMwが3.0×10のHDPE(Mw/Mn:6)60質量%からなるポリエチレン(融点:135℃、結晶分散温度:100℃、Mw/Mn:10.0)を用い、得られたポリエチレン組成物23質量部と流動パラフィン77質量部でポリオレフィン溶液を調整した。このポリオレフィン溶液を押し出し、第一の延伸の温度を117.0℃にし、第二の延伸の温度を128℃で1.6倍まで延伸した後、幅方向に12%緩和し、巻取張力16Nで巻き取った以外は、実施例1と同様にして厚さ11.8μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Comparative Example 3
Polyethylene consisting of 40% by mass of UHMWPE (Mw / Mn: 8) with Mw of 2.0 × 10 6 and 60% by mass of HDPE (Mw / Mn: 6) with Mw of 3.0 × 10 5 (melting point: 135 ° C. Crystal dispersion temperature: 100 ° C., Mw / Mn: 10.0), and a polyolefin solution was prepared with 23 parts by mass of the obtained polyethylene composition and 77 parts by mass of liquid paraffin. This polyolefin solution was extruded, the first stretching temperature was 117.0 ° C., the second stretching temperature was stretched to 1.6 times at 128 ° C., and then relaxed by 12% in the width direction. A polyolefin microporous membrane having a thickness of 11.8 μm was produced in the same manner as in Example 1 except that the film was wound up. A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
比較例4 
 ポリエチレン組成物25質量部と流動パラフィン75質量部でポリオレフィン溶液を調整し、ポリオレフィン溶液を押し出し、冷却速度160℃/minで冷却し、第一の延伸の温度を118.0℃にし、第二の延伸の温度を126℃で1.4倍まで延伸した後、第二の延伸後に緩和を実施しない点以外は、実施例1と同様にして厚さ12.0μmのポリオレフィン微多孔質膜を製造した。このポリオレフィン微多孔質膜を用いて実施例1と同様にセルを作製した。
Comparative Example 4
A polyolefin solution is prepared with 25 parts by mass of a polyethylene composition and 75 parts by mass of liquid paraffin, the polyolefin solution is extruded, cooled at a cooling rate of 160 ° C./min, the temperature of the first stretching is set to 118.0 ° C., and the second A polyolefin microporous membrane having a thickness of 12.0 μm was produced in the same manner as in Example 1 except that the stretching temperature was stretched to 1.4 times at 126 ° C. and no relaxation was performed after the second stretching. . A cell was produced in the same manner as in Example 1 using this polyolefin microporous membrane.
 実施例1~8、比較例1~4の製造条件、得られたポリオレフィン微多孔膜及びそのポリオレフィン微多孔膜を用いたセルの物性を表1~4に示す。 Tables 1 to 4 show the production conditions of Examples 1 to 8 and Comparative Examples 1 to 4, the obtained polyolefin microporous membranes, and the physical properties of the cells using the polyolefin microporous membranes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004

Claims (8)

  1.  温度90℃、圧力5.0MPaで5分間の加熱圧縮後の透気抵抗度変化率が50%以下、かつ、温度90℃、圧力5.0MPaで5分間の加熱圧縮後の膜厚変化率が加熱圧縮前のポリオレフィン微多孔質膜の膜厚を100%として10%以下であるポリオレフィン微多孔質膜。 The rate of change in air resistance after heat compression for 5 minutes at a temperature of 90 ° C. and a pressure of 5.0 MPa is 50% or less, and the rate of change in film thickness after heat compression for 5 minutes at a temperature of 90 ° C. and a pressure of 5.0 MPa A polyolefin microporous membrane having a thickness of 10% or less when the thickness of the polyolefin microporous membrane before heat compression is 100%.
  2.  MD方向の引張強度が110MPa以上であり、TD方向の引張強度が120MPaである請求項1に記載のポリオレフィン微多孔質膜。 The polyolefin microporous membrane according to claim 1, wherein the tensile strength in the MD direction is 110 MPa or more and the tensile strength in the TD direction is 120 MPa.
  3.  重量平均分子量(Mw)が1×10以上の超高分子量ポリエチレンの含有量がポリエチレン全質量を100質量%として10~40質量%である請求項1又は2に記載のポリオレフィン微多孔質膜。 3. The polyolefin microporous membrane according to claim 1, wherein the content of the ultrahigh molecular weight polyethylene having a weight average molecular weight (Mw) of 1 × 10 6 or more is 10 to 40% by mass with respect to 100% by mass of the total mass of polyethylene.
  4.  膜厚が16μm以下である請求項1~3のいずれか1つに記載のポリオレフィン微多孔質膜。 The polyolefin microporous membrane according to any one of claims 1 to 3, wherein the film thickness is 16 µm or less.
  5.  空孔率が25~40%である請求項1~4のいずれか1つに記載のポリオレフィン微多孔質膜。 The polyolefin microporous membrane according to any one of claims 1 to 4, which has a porosity of 25 to 40%.
  6.  パームポロメータにより求めた平均孔径が0.05μm以下であり、バブルポイント(BP)細孔径が0.06μm以下である請求項1~5のいずれか1つに記載のポリオレフィン微多孔質膜。 The polyolefin microporous membrane according to any one of claims 1 to 5, wherein an average pore size determined by a palm porometer is 0.05 µm or less and a bubble point (BP) pore size is 0.06 µm or less.
  7.  請求項1~6のいずれか1つに記載のポリオレフィン微多孔質膜からなる電池用セパレータ。 A battery separator comprising the polyolefin microporous membrane according to any one of claims 1 to 6.
  8.  請求項7の電池用セパレータを用いた電池。 A battery using the battery separator according to claim 7.
PCT/JP2015/067178 2014-06-20 2015-06-15 Polyolefin microporous membrane, separator for cell, and cell WO2015194504A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016529329A JP6680206B2 (en) 2014-06-20 2015-06-15 Polyolefin microporous membrane, battery separator and battery
CN201580033098.3A CN106575734B (en) 2014-06-20 2015-06-15 Polyolefin microporous film, battery separator, and battery
KR1020167034112A KR102320739B1 (en) 2014-06-20 2015-06-15 Polyolefin microporous membrane, separator for cell, and cell

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014127483 2014-06-20
JP2014-127483 2014-06-20
JP2014208357 2014-10-09
JP2014-208357 2014-10-09

Publications (1)

Publication Number Publication Date
WO2015194504A1 true WO2015194504A1 (en) 2015-12-23

Family

ID=54935490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/067178 WO2015194504A1 (en) 2014-06-20 2015-06-15 Polyolefin microporous membrane, separator for cell, and cell

Country Status (4)

Country Link
JP (1) JP6680206B2 (en)
KR (1) KR102320739B1 (en)
CN (1) CN106575734B (en)
WO (1) WO2015194504A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254454A1 (en) * 2017-03-03 2018-09-06 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
WO2018164057A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Microporous polyolefin membrane, multilayer microporous polyolefin membrane, laminated microporous polyolefin membrane and separator
WO2018164056A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Polyolefin microporous film
JP2018147688A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
WO2018180714A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte
JP2018163855A (en) * 2017-03-27 2018-10-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery
CN110382605A (en) * 2017-03-22 2019-10-25 东丽株式会社 Polyolefin micro porous polyolefin membrane and the battery for having used the polyolefin micro porous polyolefin membrane
WO2019245346A1 (en) * 2018-06-22 2019-12-26 주식회사 엘지화학 Separator for electrochemical device and electrochemical device comprising same
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
JP2020074276A (en) * 2019-10-02 2020-05-14 住友化学株式会社 Manufacturing method of separator for non-aqueous electrolyte secondary battery
WO2020111457A1 (en) * 2018-11-30 2020-06-04 삼성에스디아이 주식회사 Separator for lithium secondary battery and lithium secondary battery comprising same
WO2020256138A1 (en) * 2019-06-21 2020-12-24 旭化成株式会社 Polyolefin microporous membrane
KR20230065291A (en) 2020-10-30 2023-05-11 아사히 가세이 가부시키가이샤 Polyolefin microporous membrane

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107845756B (en) * 2017-09-28 2020-11-13 广东工业大学 Preparation method of high-temperature-resistant co-extruded unidirectional stretching microporous membrane and microporous membrane
CN110120308B (en) * 2019-05-07 2021-05-07 安徽麦特电子股份有限公司 High-compactness capacitor diaphragm and preparation method thereof
CN116802225A (en) * 2021-07-30 2023-09-22 宁德时代新能源科技股份有限公司 Separator, method for producing separator, electrochemical device, electrochemical apparatus, and electricity-using device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149637A (en) * 2002-10-29 2004-05-27 Tonen Chem Corp Microporous membrane, method for producing the same and use thereof
JP2004161899A (en) * 2002-11-13 2004-06-10 Tonen Chem Corp Film with minute pore and its manufacturing method and use
JP2011184671A (en) * 2010-03-08 2011-09-22 Kee:Kk Heat resistant polyolefin microporous film and manufacturing method thereof
JP2013100487A (en) * 2011-10-14 2013-05-23 Toray Ind Inc Porous film and electricity storage device
WO2014076994A1 (en) * 2012-11-16 2014-05-22 東レバッテリーセパレータフィルム株式会社 Battery separator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002284918A (en) * 2001-03-23 2002-10-03 Tonen Chem Corp Polyolefin microporous film, method for producing the same and use thereof
JP4780960B2 (en) * 2002-08-28 2011-09-28 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane and evaluation method thereof
JP4979252B2 (en) 2006-03-28 2012-07-18 旭化成イーマテリアルズ株式会社 Polyolefin microporous membrane
JP5202816B2 (en) 2006-04-07 2013-06-05 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane and method for producing the same
JP2013057045A (en) 2011-09-06 2013-03-28 Kee:Kk Heat-resistance improved polyolefin microporous membrane and production method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004149637A (en) * 2002-10-29 2004-05-27 Tonen Chem Corp Microporous membrane, method for producing the same and use thereof
JP2004161899A (en) * 2002-11-13 2004-06-10 Tonen Chem Corp Film with minute pore and its manufacturing method and use
JP2011184671A (en) * 2010-03-08 2011-09-22 Kee:Kk Heat resistant polyolefin microporous film and manufacturing method thereof
JP2013100487A (en) * 2011-10-14 2013-05-23 Toray Ind Inc Porous film and electricity storage device
WO2014076994A1 (en) * 2012-11-16 2014-05-22 東レバッテリーセパレータフィルム株式会社 Battery separator

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180254454A1 (en) * 2017-03-03 2018-09-06 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
US20200152943A1 (en) * 2017-03-03 2020-05-14 Sumitomo Chemical Company, Limited Method for producing nonaqueous electrolyte secondary battery separator
US10566594B2 (en) 2017-03-03 2020-02-18 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery separator
CN108539109A (en) * 2017-03-03 2018-09-14 住友化学株式会社 Nonaqueous electrolytic solution secondary battery spacer
JP2018147688A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Separator for nonaqueous electrolyte secondary battery
JP2018147686A (en) * 2017-03-03 2018-09-20 住友化学株式会社 Nonaqueous electrolyte secondary battery separator
JPWO2018164057A1 (en) * 2017-03-08 2020-01-16 東レ株式会社 Polyolefin microporous membrane, multilayer polyolefin microporous membrane, laminated polyolefin microporous membrane, and separator
JP7088163B2 (en) 2017-03-08 2022-06-21 東レ株式会社 Polyolefin microporous membrane, multilayer polyolefin microporous membrane, laminated polyolefin microporous membrane, and separator
CN110114397A (en) * 2017-03-08 2019-08-09 东丽株式会社 Polyolefin micro porous polyolefin membrane
CN110382606A (en) * 2017-03-08 2019-10-25 东丽株式会社 Polyolefin micro porous polyolefin membrane, multi-layer polyolefin microporous membrane, stacking polyolefin micro porous polyolefin membrane and diaphragm
CN115149204A (en) * 2017-03-08 2022-10-04 东丽株式会社 Polyolefin microporous membrane
WO2018164057A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Microporous polyolefin membrane, multilayer microporous polyolefin membrane, laminated microporous polyolefin membrane and separator
WO2018164056A1 (en) * 2017-03-08 2018-09-13 東レ株式会社 Polyolefin microporous film
JPWO2018164056A1 (en) * 2017-03-08 2020-01-16 東レ株式会社 Polyolefin microporous membrane
CN110382605B (en) * 2017-03-22 2022-06-17 东丽株式会社 Polyolefin microporous membrane and battery using the same
CN110382605A (en) * 2017-03-22 2019-10-25 东丽株式会社 Polyolefin micro porous polyolefin membrane and the battery for having used the polyolefin micro porous polyolefin membrane
JP2018163855A (en) * 2017-03-27 2018-10-18 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JPWO2018180714A1 (en) * 2017-03-31 2019-12-26 東レ株式会社 Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
WO2018180714A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte
CN110431176A (en) * 2017-03-31 2019-11-08 东丽株式会社 Polyolefin micro porous polyolefin membrane, nonaqueous electrolytic solution system secondary cell diaphragm and nonaqueous electrolytic solution system secondary cell
CN110431176B (en) * 2017-03-31 2021-03-19 东丽株式会社 Polyolefin microporous membrane, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
TWI700851B (en) * 2017-03-31 2020-08-01 日商東麗股份有限公司 Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
US20210050575A1 (en) * 2018-06-22 2021-02-18 Lg Chem, Ltd. Separator for electrochemical device and electrochemical device including the same
KR20200000372A (en) * 2018-06-22 2020-01-02 주식회사 엘지화학 A separator for an electrochemical device and an electrochemical device comprising the same
WO2019245346A1 (en) * 2018-06-22 2019-12-26 주식회사 엘지화학 Separator for electrochemical device and electrochemical device comprising same
KR102392398B1 (en) * 2018-06-22 2022-04-29 주식회사 엘지에너지솔루션 A separator for an electrochemical device and an electrochemical device comprising the same
WO2020111457A1 (en) * 2018-11-30 2020-06-04 삼성에스디아이 주식회사 Separator for lithium secondary battery and lithium secondary battery comprising same
JPWO2020256138A1 (en) * 2019-06-21 2021-12-16 旭化成株式会社 Polyolefin microporous membrane
WO2020256138A1 (en) * 2019-06-21 2020-12-24 旭化成株式会社 Polyolefin microporous membrane
JP7127216B2 (en) 2019-06-21 2022-08-29 旭化成株式会社 Polyolefin microporous membrane
JP2020074276A (en) * 2019-10-02 2020-05-14 住友化学株式会社 Manufacturing method of separator for non-aqueous electrolyte secondary battery
KR20230065291A (en) 2020-10-30 2023-05-11 아사히 가세이 가부시키가이샤 Polyolefin microporous membrane

Also Published As

Publication number Publication date
KR102320739B1 (en) 2021-11-01
JP6680206B2 (en) 2020-04-15
KR20170020764A (en) 2017-02-24
CN106575734A (en) 2017-04-19
JPWO2015194504A1 (en) 2017-04-20
CN106575734B (en) 2020-04-24

Similar Documents

Publication Publication Date Title
JP6680206B2 (en) Polyolefin microporous membrane, battery separator and battery
JP6443333B2 (en) Polyolefin microporous membrane and method for producing the same
JP5440171B2 (en) Storage device separator
JP5202949B2 (en) Polyolefin multilayer microporous membrane and battery separator
JP6394596B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
US20190088917A1 (en) Polyolefin microporous membrane, method of producing polyolefin microporous membrane, battery separator, and battery
JP5672007B2 (en) Porous polypropylene film roll
JP6394597B2 (en) Polyolefin multilayer microporous membrane and method for producing the same
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JP5604898B2 (en) Porous polypropylene film roll
JP7045862B2 (en) Polyolefin microporous membrane and method for producing polyolefin microporous membrane
JP7047382B2 (en) Polyolefin microporous membrane, lithium ion secondary battery and polyolefin microporous membrane manufacturing method
WO2018043335A1 (en) Microporous membrane, lithium ion secondary battery, and microporous membrane production method
JP2008255307A (en) Polyolefin multilayer microporous film, method for producing the same, separator for battery and battery
WO2018179810A1 (en) Polyolefin microporous membrane and production method thereof
JP7409301B2 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP6988880B2 (en) Polyolefin microporous membrane
JP2012022911A (en) Laminate separator and power storage device
JP2022048518A (en) Polyolefin microporous film, and coating film and secondary battery including the same
JPWO2019151220A1 (en) Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film
WO2022059744A1 (en) Separator for power storage device, and power storage device
JP6791526B2 (en) Heat-resistant polyolefin-based microporous membrane and its manufacturing method
WO2021033734A1 (en) Microporous polyolefin film, separator for battery, and secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809431

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167034112

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016529329

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15809431

Country of ref document: EP

Kind code of ref document: A1