JPWO2018180714A1 - Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery - Google Patents

Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JPWO2018180714A1
JPWO2018180714A1 JP2019509353A JP2019509353A JPWO2018180714A1 JP WO2018180714 A1 JPWO2018180714 A1 JP WO2018180714A1 JP 2019509353 A JP2019509353 A JP 2019509353A JP 2019509353 A JP2019509353 A JP 2019509353A JP WO2018180714 A1 JPWO2018180714 A1 JP WO2018180714A1
Authority
JP
Japan
Prior art keywords
tensile strength
polyolefin
tensile
membrane
tensile elongation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019509353A
Other languages
Japanese (ja)
Other versions
JP6665966B2 (en
Inventor
勝彦 松下
勝彦 松下
亘祐 春本
亘祐 春本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JPWO2018180714A1 publication Critical patent/JPWO2018180714A1/en
Application granted granted Critical
Publication of JP6665966B2 publication Critical patent/JP6665966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本発明は、セパレータとして電池に組み入れた際の耐衝撃性及び電池特性に優れたポリオレフィン微多孔膜を提供することを課題とする。本発明は下記の特性(1)〜(5)を有する、ポリオレフィン微多孔膜である。(1)MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)が下記関係式(I)を満たす[(MD方向の引張強度×MD方向の引張伸度/100)2+(TD方向の引張強度×TD方向の引張伸度/100)2]1/2≧300・・・式(I)(2)MD方向及びTD方向の引張強度が196MPa以上(3)パームポロメーターを用いて測定した最大孔径が60nm以下(4)パームポロメーターを用いて測定した平均流量孔径が40nm以下(5)空孔率が40%以上【選択図】 なしAn object of the present invention is to provide a microporous polyolefin membrane having excellent impact resistance and battery characteristics when incorporated into a battery as a separator. The present invention is a microporous polyolefin membrane having the following properties (1) to (5). (1) The tensile strength (MPa) and tensile elongation (%) in the MD and TD directions satisfy the following relational expression (I) [(tensile strength in MD direction × tensile elongation in MD direction / 100) 2+ (TD Tensile strength in the direction × tensile elongation in the TD direction / 100) 2] 1/2 ≧ 300 Formula (I) (2) The tensile strength in the MD direction and the TD direction is 196 MPa or more. (3) Using a Palm Porometer (4) The average flow pore size measured using a palm porometer is 40 nm or less. (5) The porosity is 40% or more.

Description

本発明は、ポリオレフィン微多孔膜、非水電解液系二次電池用セパレータ、及び非水電解液系二次電池に関するものである。   The present invention relates to a microporous polyolefin membrane, a separator for a non-aqueous electrolyte secondary battery, and a non-aqueous electrolyte secondary battery.

微多孔膜は、ろ過膜、透析膜などのフィルター、電池用セパレータや電解コンデンサー用のセパレータなどの種々の分野に用いられる。これらの中でも、ポリオレフィンを樹脂材料とするポリオレフィン微多孔膜は、耐薬品性、絶縁性、機械的強度などに優れ、シャットダウン特性を有するため、近年、電池用セパレータとして広く用いられる。   Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors. Among these, a polyolefin microporous membrane using a polyolefin as a resin material is excellent in chemical resistance, insulation, mechanical strength, and the like, and has shutdown characteristics, and thus is widely used as a battery separator in recent years.

二次電池、例えばリチウムイオン二次電池は、エネルギー密度が高いため、パーソナルコンピュータ、携帯電話などに用いる電池として広く使用されている。また、二次電池は、電気自動車やハイブリッド自動車のモータ駆動用電源としても用いられている。   Secondary batteries, for example, lithium ion secondary batteries, have a high energy density and are therefore widely used as batteries for personal computers, mobile phones, and the like. The secondary battery is also used as a power source for driving a motor of an electric vehicle or a hybrid vehicle.

特に、大型高容量リチウムイオン電池の場合、電池としての特性とともに、より高い信頼性が重要であり、これらの電池に用いられるセパレータに対しても、安全性の観点から、高い耐衝撃性が求められている。   In particular, in the case of large high-capacity lithium-ion batteries, higher reliability is important together with the characteristics of the batteries, and the separators used in these batteries are also required to have high impact resistance from the viewpoint of safety. Have been.

セパレータの耐衝撃性を向上させるためには、高い膜強度、及び、高い伸度が必要である。しかしながら、ポリオレフィン微多孔膜の強度及び伸度は、トレードオフの関係であり、伸度を維持したまま、膜を高強度化することは困難であった。これまで、膜強度や伸度を向上させたポリオレフィン微多孔膜について、いくつか報告されている。   In order to improve the impact resistance of the separator, high film strength and high elongation are required. However, the strength and elongation of the microporous polyolefin membrane are in a trade-off relationship, and it has been difficult to increase the strength of the membrane while maintaining the elongation. Some reports have been made on polyolefin microporous membranes having improved membrane strength and elongation.

例えば、特許文献1には、気孔率10%以上55%未満、MD及びTDの引張強度が50〜300MPa、MD引張強度とTD引張強度の合計が100〜600MPa、MD及びTDの引張伸びが10〜200%、MD引張伸びとTD引張伸びの合計が20〜250%である、ポリオレフィン微多孔膜が記載されている。特許文献1によれば、このポリオレフィン微多孔膜は、変形しにくく、耐破膜性、応力緩和特性に優れるとされている。   For example, Patent Document 1 discloses that the porosity is 10% or more and less than 55%, the tensile strength of MD and TD is 50 to 300 MPa, the total of MD tensile strength and TD tensile strength is 100 to 600 MPa, and the tensile elongation of MD and TD is 10 A polyolefin microporous membrane is described, which has a total MD tensile elongation and TD tensile elongation of 20-250%. According to Patent Literature 1, this microporous polyolefin membrane is hardly deformed, and is excellent in film rupture resistance and stress relaxation characteristics.

特許文献2には、幅方向の引張強度に対する長さ方向の引張強度の比が0.75〜1.25であり、かつ120℃における前記幅方向の熱収縮率が10%未満であるポリオレフィン微多孔膜が記載されている。特許文献2によれば、このポリオレフィン微多孔膜は、異物などに対する良好な耐性を有するとされている。   Patent Literature 2 discloses that a ratio of tensile strength in the length direction to tensile strength in the width direction is 0.75 to 1.25, and that the heat shrinkage in the width direction at 120 ° C. is less than 10%. A porous membrane is described. According to Patent Document 2, this microporous polyolefin membrane has good resistance to foreign substances and the like.

特許文献3には、ポリプロピレンを含み、横方向破断強度が100〜230MPaであり、横方向引張破断伸度が10〜110%であり、横方向引張破断強度に対する縦方向引張破断強度が0.8〜1.3であるポリオレフィン微多孔膜が記載されている。   Patent Document 3 contains polypropylene, has a transverse rupture strength of 100 to 230 MPa, a transverse tensile rupture elongation of 10 to 110%, and a longitudinal tensile rupture strength of 0.8 to the transverse tensile rupture strength. A polyolefin microporous membrane of ~ 1.3 is described.

特許文献4には、バブルポイントが500〜700kPaであり、長さ方向(MD)引張強度/幅方向(TD)引張強度の比が1.0〜5.5であり、シャットダウン温度が130〜140℃であるポリオレフィン微多孔膜が記載されている。特許文献4によれば、このポリオレフィン微多孔膜は、良好なサイクル特性と高い耐電圧特性とを両立するとされている。   In Patent Document 4, the bubble point is 500 to 700 kPa, the ratio of the tensile strength in the length direction (MD) / tensile strength in the width direction (TD) is 1.0 to 5.5, and the shutdown temperature is 130 to 140. A polyolefin microporous membrane at a temperature of ° C. is described. According to Patent Document 4, this polyolefin microporous membrane is considered to have both good cycle characteristics and high withstand voltage characteristics.

特開2006−124652号公報JP 2006-124652 A 国際公開2010/070930号International Publication No. 2010/070930 国際公開2009/123015号International Publication No. 2009/123015 特開2013−234263号公報JP 2013-234263 A

上記特許文献1〜4には、電池特性を維持しつつ、引張強度や引張伸度を向上させたポリオレフィン微多孔膜が記載されているが、近年の電池性能向上に伴いさらなる耐衝撃性の向上が要求されている。加えて、強度及び伸度と、出力特性、サイクル特性などの電池性能とを両立させるのは、さらに困難であり、耐衝撃性と出力特性などの電池特性とを両立させたセパレータが求められている。   Patent Literatures 1 to 4 describe microporous polyolefin membranes having improved tensile strength and tensile elongation while maintaining battery characteristics. However, with the recent improvement in battery performance, further improvement in impact resistance has been described. Is required. In addition, it is more difficult to balance strength and elongation with battery performance such as output characteristics and cycle characteristics.Therefore, there is a need for a separator that balances battery characteristics such as impact resistance and output characteristics. I have.

本発明は、上記事情に鑑みて、耐衝撃性に非常に優れるポリオレフィン微多孔膜を提供することを目的とする。また、電池用セパレータとして用いた場合、耐衝撃性と電池特性(出力特性、耐デンドライト特性など)とを高いレベルで両立させたポリオレフィン微多孔膜を提供することを目的とする。   In view of the above circumstances, an object of the present invention is to provide a microporous polyolefin membrane having extremely excellent impact resistance. It is another object of the present invention to provide a microporous polyolefin membrane having a high level of both impact resistance and battery characteristics (output characteristics, dendrite resistance, etc.) when used as a battery separator.

本発明は、下記の特性(1)〜(5)を有するポリオレフィン微多孔膜である。
(1)MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)が下記関係式(I)を満たす。
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧300・・・式(I)
(2)MD方向及びTD方向の引張強度が196MPa以上である。
(3)パームポロメーターを用いて測定した最大孔径が60nm以下である。
(4)パームポロメーターを用いて測定した平均流量孔径が40nm以下である。
(5)空孔率が40%以上である。
The present invention is a microporous polyolefin membrane having the following properties (1) to (5).
(1) The tensile strength (MPa) and the tensile elongation (%) in the MD and TD directions satisfy the following relational expression (I).
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 300 formula (I)
(2) The tensile strength in the MD and TD directions is 196 MPa or more.
(3) The maximum pore size measured using a palm porometer is 60 nm or less.
(4) The average flow pore diameter measured using a palm porometer is 40 nm or less.
(5) The porosity is 40% or more.

また、本発明のポリオレフィン微多孔膜は、下記の特性(6)を有してもよい。
(6)MD方向及びTD方向の引張強度の比(MD方向の引張強度/TD方向の引張強度)が、0.8以上1.2以下である。
Further, the microporous polyolefin membrane of the present invention may have the following property (6).
(6) The ratio of the tensile strength in the MD direction and the tensile strength in the TD direction (tensile strength in the MD direction / tensile strength in the TD direction) is 0.8 or more and 1.2 or less.

また、本発明のポリオレフィン微多孔膜は、下記の特性(7)を有してもよい。
(7)MD方向及びTD方向の引張伸度の比(MD方向の引張伸度/TD方向の引張伸度)が0.75以上1.25以下である。
Further, the microporous polyolefin membrane of the present invention may have the following property (7).
(7) The ratio of the tensile elongation in the MD direction and the TD direction (tensile elongation in the MD direction / tensile elongation in the TD direction) is 0.75 or more and 1.25 or less.

また、本発明のポリオレフィン微多孔膜は、下記の特性(8)を有してもよい。
(8)MD方向及びTD方向の引張伸度が、それぞれ90%以上である。
Further, the microporous polyolefin membrane of the present invention may have the following property (8).
(8) The tensile elongation in the MD and TD directions is 90% or more, respectively.

また、上記ポリオレフィン微多孔膜は、膜厚12μmに換算した突刺強度が5N以上であってもよい。また、上記ポリオレフィン微多孔膜は、MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)が下記関係式(II)を満たしてもよい。
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧350・・・(II)。
In addition, the microporous polyolefin membrane may have a puncture strength of 5 N or more in terms of a film thickness of 12 μm. Further, the microporous polyolefin membrane may have a tensile strength (MPa) and a tensile elongation (%) in the MD and TD directions satisfying the following relational expression (II).
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 350 (II).

また本発明は、本発明のポリオレフィン微多孔膜を用いてなる非水電解液系二次電池用セパレータである。   The present invention also provides a non-aqueous electrolyte secondary battery separator using the microporous polyolefin membrane of the present invention.

また本発明は、本発明の非水電解液系二次電池用セパレータを含む非水電解液系二次電池である。   The present invention is also a non-aqueous electrolyte secondary battery including the non-aqueous electrolyte secondary battery separator of the present invention.

本発明のポリオレフィン微多孔膜は、耐衝撃性に非常に優れ、電池用セパレータとして用いた場合、耐衝撃性と電池特性(出力特性、耐デンドライト特性、サイクル特性)とを高いレベルで両立させることができる。   The microporous polyolefin membrane of the present invention has excellent impact resistance, and when used as a battery separator, achieves both high impact resistance and battery characteristics (output characteristics, dendrite resistance, and cycle characteristics) at a high level. Can be.

以下、本発明の本実施形態について説明する。なお、ただし、本発明は以下に説明する実施形態に限定されるものではない。   Hereinafter, the present embodiment of the present invention will be described. However, the present invention is not limited to the embodiments described below.

1.ポリオレフィン微多孔膜
本明細書において、ポリオレフィン微多孔膜とは、ポリオレフィンを主成分として含む微多孔膜をいい、例えば、ポリオレフィンを微多孔膜全量に対して90質量%以上含む微多孔膜をいう。以下、本実施形態のポリオレフィン微多孔膜の物性について説明する。
1. Polyolefin microporous membrane In this specification, a polyolefin microporous membrane refers to a microporous membrane containing polyolefin as a main component, for example, a microporous membrane containing 90% by mass or more of polyolefin with respect to the total amount of the microporous membrane. Hereinafter, the physical properties of the microporous polyolefin membrane of the present embodiment will be described.

[引張強度及び引張伸度の関係]
ポリオレフィン微多孔膜においては、高い引張強度又は高い引張伸度を有するだけでは耐衝撃耐性が十分でないことがある。本発明者は、より高い衝撃耐性を有するポリオレフィン微多孔膜を得るためには、MD方向(機械方向、長手方向、縦方向)及びTD方向(ポリオレフィン微多孔膜を平面でみたときに、MD方向に直交する方向:幅方向、横手方向)の両方の方向において、高い引張強度と高い引張伸度とをバランス良く有すること(良等方性)が重要であることを見出した。また、本発明者は、MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)が特定の関係を有する場合、耐衝撃性に非常に優れるポリオレフィン微多孔膜となることを見出した。
[Relationship between tensile strength and tensile elongation]
In a polyolefin microporous membrane, impact resistance may not be sufficient if it has only high tensile strength or high tensile elongation. In order to obtain a polyolefin microporous membrane having higher impact resistance, the present inventor has found that in the MD direction (mechanical direction, longitudinal direction, longitudinal direction) and TD direction (when the polyolefin microporous membrane is viewed in a plane, the MD direction). It has been found that it is important to have a high balance between high tensile strength and high tensile elongation (good isotropy) in both directions perpendicular to (width direction and transverse direction). Further, the present inventor has found that when the tensile strength (MPa) and the tensile elongation (%) in the MD direction and the TD direction have a specific relationship, a polyolefin microporous film having extremely excellent impact resistance is obtained. .

すなわち、本実施形態のポリオレフィン微多孔膜は、MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)との関係が、下記式(I)を満たす。ポリオレフィン微多孔膜が下記式(I)を満たす場合、耐衝撃性を向上させることができる。
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧300・・・式(I)。
That is, in the microporous polyolefin membrane of the present embodiment, the relationship between the tensile strength (MPa) and the tensile elongation (%) in the MD direction and the TD direction satisfies the following expression (I). When the polyolefin microporous membrane satisfies the following formula (I), the impact resistance can be improved.
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 300 formula (I).

また、本実施形態のポリオレフィン微多孔膜は、より耐衝撃性を向上させるという観点から、MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)との関係が、下記式(II)を満たすことがより好ましく、(III)を満たすことがさらに好ましい。
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧330・・・式(II)
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧350・・・式(III)。
From the viewpoint of further improving the impact resistance, the microporous polyolefin membrane of the present embodiment has a relation between the tensile strength (MPa) and the tensile elongation (%) in the MD direction and the TD direction represented by the following formula (II). ) Is more preferably satisfied, and (III) is more preferably satisfied.
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 330 formula (II)
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 350 Expression (III).

なお、上記[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2の値の上限は、特に限定されないが、収縮特性の観点より、例えば1000以下、好ましくは800以下、より好ましくは600以下である。The upper limit of the value of [(tensile strength in the MD direction × tensile elongation in the MD direction / 100) 2 + (tensile strength in the TD direction × tensile elongation in the TD direction / 100) 2 ] 1/2 is particularly limited. Although not limited, it is, for example, 1000 or less, preferably 800 or less, and more preferably 600 or less from the viewpoint of shrinkage characteristics.

[引張強度]
本実施形態のポリオレフィン微多孔膜は、MD方向及びTD方向の引張強度が、それぞれ196MPa以上であり、好ましくは200MPa以上であり、より好ましくは230MPa以上である。引張強度が上記範囲である場合、膜強度により優れ、電池製造工程における電極体巻回時に高いテンションをかけることができ、かつ、電池内において異物や衝撃などによる破膜が抑制される。また、MD方向及びTD方向の引張強度の上限は、耐収縮性の観点から、好ましくは500MPa以下であり、より好ましくは450MPa以下であり、さらに好ましくは400MPa以下である。なお、引張強度については、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定することができる。
[Tensile strength]
The microporous polyolefin membrane of the present embodiment has a tensile strength in the MD and TD directions of 196 MPa or more, preferably 200 MPa or more, and more preferably 230 MPa or more. When the tensile strength is within the above range, the film strength is more excellent, a high tension can be applied when the electrode body is wound in the battery manufacturing process, and the rupture of the film due to foreign matter or impact in the battery is suppressed. The upper limit of the tensile strength in the MD and TD directions is preferably 500 MPa or less, more preferably 450 MPa or less, and further preferably 400 MPa or less from the viewpoint of shrink resistance. In addition, the tensile strength can be measured by a method according to ASTM D882 using a strip-shaped test piece having a width of 10 mm.

[引張伸度]
本実施形態のポリオレフィン微多孔膜は、MD方向及びTD方向の引張伸度が、それぞれ90%以上であることが好ましい。引張伸度が上記範囲である場合、電池内において衝撃を受けた際に、その柔軟性により、セパレータの破膜、及び、ショート(短絡)の発生を抑制する。また、MD方向及びTD方向の引張伸度の上限は、特に限定されないが、例えば、400%以下であり、好ましくは300%以下、より好ましくは200%以下である。引張伸度が上記範囲である場合、電極巻回時に、セパレータが伸びて変形することなく、巻回性が良好である。なお、引張伸度は、ASTM D−882Aに準拠した方法により測定することができる。
[Tensile elongation]
The microporous polyolefin membrane of the present embodiment preferably has a tensile elongation of 90% or more in each of the MD direction and the TD direction. When the tensile elongation is within the above range, when a shock is applied in the battery, the flexibility of the battery suppresses the film breakage of the separator and the occurrence of a short circuit (short circuit). The upper limit of the tensile elongation in the MD and TD directions is not particularly limited, but is, for example, 400% or less, preferably 300% or less, and more preferably 200% or less. When the tensile elongation is in the above range, the winding property is good without the separator being stretched and deformed when the electrode is wound. The tensile elongation can be measured by a method according to ASTM D-882A.

[MD方向の引張強度/TD方向の引張強度の比]
本実施形態のポリオレフィン微多孔膜は、MD方向及びTD方向の引張強度の比(MD方向の引張強度/TD方向の引張強度)が、好ましくは0.8以上1.2以下である。引張強度の比が上記範囲である場合、全方向の衝撃に対して、より均一に力がかかるため、耐衝撃性が向上し、より安定して破膜及びショート(短絡)を抑制することができる。
[Ratio of tensile strength in MD direction / tensile strength in TD direction]
In the microporous polyolefin membrane of the present embodiment, the ratio of the tensile strength in the MD direction and the tensile strength in the TD direction (tensile strength in the MD direction / tensile strength in the TD direction) is preferably 0.8 or more and 1.2 or less. When the ratio of the tensile strength is in the above range, the force is more uniformly applied to the impact in all directions, so that the impact resistance is improved, and the film rupture and short circuit (short circuit) can be more stably suppressed. it can.

[MD方向の引張伸度/TD方向の引張伸度の比]
本実施形態のポリオレフィン微多孔膜は、MD方向及びTD方向の引張伸度の比(MD方向の引張伸度/TD方向の引張伸度)が、好ましくは0.75以上1.25以下である。引張伸度の比が上記範囲である場合、全方向の衝撃に対して、より均一に力がかかるため、耐衝撃性が向上し、より安定して破膜及びショート(短絡)を抑制することができる。
[Ratio of MD elongation / TD elongation]
In the microporous polyolefin membrane of the present embodiment, the ratio of the tensile elongation in the MD and TD directions (tensile elongation in the MD direction / tensile elongation in the TD direction) is preferably 0.75 or more and 1.25 or less. . When the tensile elongation ratio is in the above range, a more uniform force is applied to impacts in all directions, so that impact resistance is improved, and film breakage and short circuit (short circuit) are more stably suppressed. Can be.

上記引張強度及び引張伸度の比は、全方向の衝撃に対してより安定して破膜を抑制するという観点から、1に近い方が好ましい。また、MD方向の引張強度が大きすぎる場合、MD方向の裂けが生じることがある。TD方向の引張強度が大きすぎる場合、TD方向の裂けや電極タブ接着部分の結合外れが生じて、短絡しやすくなることがある。   The ratio between the tensile strength and the tensile elongation is preferably closer to 1 from the viewpoint of more stably suppressing the rupture of the membrane against impacts in all directions. Further, if the tensile strength in the MD direction is too large, tearing in the MD direction may occur. If the tensile strength in the TD direction is too large, a tear in the TD direction or disconnection of the electrode tab bonding portion may occur, and a short circuit may easily occur.

[突刺強度]
ポリオレフィン微多孔膜の突刺強度は、膜厚12μmに換算した突刺強度が好ましくは5N以上であり、より好ましくは5.2N以上であり、さらに好ましくは6N以上である。突刺し強度の上限は、特に限定されないが、例えば、10N以下である。突刺強度が上記範囲である場合、ポリオレフィン微多孔膜の膜強度に優れ、かつ良好な物性バランスを示すことができる。また、このポリオレフィン微多孔膜をセパレータとして用いた二次電池は、電極の凹凸や衝撃等に対する耐性に優れ、電極の短絡の発生などが抑制される。
[Puncture strength]
The piercing strength of the microporous polyolefin membrane is preferably 5 N or more, more preferably 5.2 N or more, and still more preferably 6 N or more, when converted to a film thickness of 12 μm. The upper limit of the piercing strength is not particularly limited, but is, for example, 10 N or less. When the puncture strength is in the above range, the membrane strength of the microporous polyolefin membrane is excellent and a good balance of physical properties can be exhibited. Also, a secondary battery using this microporous polyolefin membrane as a separator has excellent resistance to unevenness and impact of the electrode, and suppresses the occurrence of a short circuit in the electrode.

突刺強度は、先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T(μm)のポリオレフィン微多孔膜を2mm/秒の速度で突刺したときの最大荷重(N)を測定した値である。また、膜厚T(μm)のポリオレフィン微多孔膜に対して、膜厚12μm換算の突刺強度(N/12μm)は、下記式で求めることができる。
式:突刺強度(12μm換算)=測定された突刺強度(N)×12(μm)/膜厚T(μm)
[膜厚]
ポリオレフィン微多孔膜の膜厚の上限は、特に限定されないが、例えば、20μm以下であり、好ましくは、17μm以下、より好ましくは13μm以下である。膜厚が上記範囲である場合、透過性や膜抵抗により優れ、また、薄膜化により電池容量を向上させることができる。一方、膜厚の下限は、特に限定されないが、好ましくは2μm以上、より好ましくは3μm以上、さらに好ましくは4μm以上である。膜厚が上記範囲である場合、より膜強度が向上する。
The piercing strength is determined by the maximum load (N) when a microporous polyolefin film having a thickness of T 1 (μm) is pierced at a speed of 2 mm / sec with a needle having a spherical surface (curvature radius R: 0.5 mm) and a diameter of 1 mm. ) Is the measured value. The puncture strength (N / 12 μm) in terms of a film thickness of 12 μm for a polyolefin microporous film having a film thickness T 1 (μm) can be obtained by the following equation.
Formula: Puncture strength (12 μm conversion) = Puncture strength measured (N) × 12 (μm) / Film thickness T 1 (μm)
[Thickness]
The upper limit of the thickness of the microporous polyolefin membrane is not particularly limited, but is, for example, 20 μm or less, preferably 17 μm or less, and more preferably 13 μm or less. When the film thickness is in the above range, the film has excellent transparency and film resistance, and the battery capacity can be improved by thinning. On the other hand, the lower limit of the film thickness is not particularly limited, but is preferably 2 μm or more, more preferably 3 μm or more, and further preferably 4 μm or more. When the film thickness is in the above range, the film strength is further improved.

[空孔率]
ポリオレフィン微多孔膜の空孔率は、電池用セパレータとして用いる場合、好ましくは40%以上であり、より好ましくは40%以上70%以下である。また、空孔率の上限は、製膜性、機械的強度及び絶縁性の観点から、より好ましくは60%以下であり、さらに好ましくは55%以下である。空孔率が上記範囲であることにより、電解液の保持量を高め、高いイオン透過性を確保することができ、出力特性に優れる。空孔率が低い場合、電池用セパレータとして用いた場合、イオン透過を妨げるフィブリルの増加、及び電解液含有量の減少により出力特性が劣る事があり、かつ電池反応中に発生する副生成物による目詰まりが増加し、サイクル特性が急激に悪化する事がある。空孔率は、製造過程において、ポリオレフィン樹脂の組成や延伸倍率などを調節することにより、上記範囲とできる。
[Porosity]
When used as a battery separator, the porosity of the microporous polyolefin membrane is preferably 40% or more, more preferably 40% or more and 70% or less. In addition, the upper limit of the porosity is more preferably 60% or less, and further preferably 55% or less, from the viewpoints of film forming properties, mechanical strength, and insulating properties. When the porosity is in the above range, the holding amount of the electrolytic solution can be increased, high ion permeability can be secured, and the output characteristics are excellent. When the porosity is low, when used as a battery separator, the output characteristics may be inferior due to an increase in fibrils that impede ion permeation, and a decrease in electrolyte content, and by-products generated during the battery reaction Clogging may increase and the cycle characteristics may rapidly deteriorate. The porosity can be set in the above range by adjusting the composition of the polyolefin resin, the stretching ratio, and the like in the production process.

空孔率は、微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式(1)によって、測定できる。
空孔率(%)=(w−w)/w×100・・・(1)。
Porosity, the microporous membrane weight w 1 and its equivalent pore-free weight w 2 of the polymer (width, length, same polymer composition) were compared, and by the following equation (1), measured it can.
Porosity (%) = (w 2 −w 1 ) / w 2 × 100 (1).

[平均流量孔径]
ポリオレフィン微多孔膜の平均孔径(平均流量孔径)は、40nm以下であり、好ましくは10nm以上40nm以下である。平均孔径が上記範囲である場合、強度と透過性のバランスに優れると同時に、粗大孔に由来する自己放電が抑制される。また、平均孔径が40nmを超える場合、イオン透過流路が選択的に粗大孔に集中する事による電気抵抗の増加や、電解液分解副生成物の局所的な目詰まりによるサイクル特性の悪化を起こすことがある。平均孔径は、ASTM E1294−89に準拠した方法(ハーフドライ法)により測定される値である。測定器としてPMI社製のパームポロメータ(型番:CFP−1500A)を、測定液としてGalwick(15.9dyn/cm)を用いることができる。
[Average flow hole diameter]
The average pore size (average flow pore size) of the microporous polyolefin membrane is 40 nm or less, preferably 10 nm or more and 40 nm or less. When the average pore diameter is within the above range, the balance between strength and permeability is excellent, and at the same time, self-discharge originating from the coarse pores is suppressed. When the average pore diameter exceeds 40 nm, the ion permeation flow path is selectively concentrated on the coarse pores to increase the electric resistance, and the cycle characteristics are deteriorated due to local clogging of the electrolyte decomposition by-product. Sometimes. The average pore diameter is a value measured by a method (half dry method) based on ASTM E1294-89. A palm porometer (model number: CFP-1500A) manufactured by PMI can be used as a measuring device, and Galwick (15.9 dyn / cm) can be used as a measuring solution.

[最大孔径(バブルポイント径)]
最大孔径(バブルポイント径:BP径)は、好ましくは60nm以下であり、より好ましくは、30nm以上60nm以下である。最大孔径が60nmを超える場合、正極と負極が互いに接触(微小短絡)が発生したり、リチウム樹枝状結晶(デンドライト)によって破壊されて、短絡が生じたりすることがある。一方、最大孔径が小さ過ぎる場合、電池の電気抵抗が高くなり、サイクル性能が不十分となって、高速放電時の容量保持率が低くなることがある。
[Maximum hole diameter (bubble point diameter)]
The maximum pore diameter (bubble point diameter: BP diameter) is preferably 60 nm or less, more preferably 30 nm or more and 60 nm or less. When the maximum pore diameter exceeds 60 nm, the positive electrode and the negative electrode may come into contact with each other (small short circuit) or may be broken by lithium dendrites (dendrites) to cause a short circuit. On the other hand, when the maximum pore size is too small, the electric resistance of the battery becomes high, the cycle performance becomes insufficient, and the capacity retention at the time of high-speed discharge may become low.

[透気抵抗度]
ポリオレフィン微多孔膜の膜厚12μm換算の透気抵抗度の上限は、特に限定されないが、例えば、300秒/100cmAir/12μm以下であり、好ましくは200秒/100cmAir/12μm以下である。また、透気抵抗度の下限は、例えば、50秒/100cmAir以上である。透気抵抗度が上記範囲である場合、電池用セパレータとして用いた際、イオン透過性に優れ、このセパレータを組み込んだ二次電池は、インピーダンスが低下し出力特性やレート特性が向上する。透気抵抗度は、ポリオレフィン微多孔膜を製造する際の延伸条件などを調節することにより、上記範囲とすることができる。
[Air resistance]
The upper limit of the air permeability of the polyolefin microporous membrane in terms of the film thickness of 12 μm is not particularly limited, but is, for example, 300 seconds / 100 cm 3 Air / 12 μm or less, and preferably 200 seconds / 100 cm 3 Air / 12 μm or less. . The lower limit of the air resistance is, for example, 50 seconds / 100 cm 3 Air or more. When the air permeability resistance is in the above range, when used as a battery separator, the separator has excellent ion permeability, and a secondary battery incorporating this separator has reduced impedance and improved output characteristics and rate characteristics. The air permeability resistance can be set to the above range by adjusting the stretching conditions and the like when producing the microporous polyolefin membrane.

透気抵抗度は、JIS P−8117王研式試験機法に準拠して、透気度計(旭精工株式会社製、EGO−1T)で測定することができる値P(秒/100cmAir)である。また、膜厚T(μm)の微多孔膜に対して、膜厚12μm換算の透気抵抗度P(秒/100cmAir/12μm))は、下記式で求めることのできる値である。
式:P=P(秒/100cmAir)×12(μm)/膜厚T(μm)
2.ポリオレフィン微多孔膜の製造方法
ポリオレフィン微多孔膜の製造方法は、上記の特性を有するポリオレフィン微多孔膜が得られれば、特に限定されず、公知のポリオレフィン微多孔膜の製造方法を用いることができる。本実施形態のポリオレフィン微多孔膜の製造方法としては、膜の構造及び物性の制御の容易性の観点から湿式の製膜方法が好ましい。湿式の製膜方法としては、例えば、日本国特許第2132327号及び日本国特許第3347835号の明細書、国際公開2006/137540号等に記載された方法を用いることができる。
The air permeability resistance is a value P 1 (sec / 100 cm 3 ) which can be measured by an air permeability meter (EGO-1T, manufactured by Asahi Seiko Co., Ltd.) in accordance with JIS P-8117 Oken type testing machine method. Air). For a microporous film having a film thickness T 1 (μm), the air permeability resistance P 2 (second / 100 cm 3 Air / 12 μm) in terms of a film thickness of 12 μm can be obtained by the following equation. .
Formula: P 2 = P 1 (sec / 100 cm 3 Air) × 12 (μm) / Film thickness T 1 (μm)
2. Method for Producing a Microporous Polyolefin Membrane The method for producing a microporous polyolefin membrane is not particularly limited as long as a polyolefin microporous membrane having the above properties can be obtained, and a known method for producing a microporous polyolefin membrane can be used. As the method for producing the microporous polyolefin membrane of the present embodiment, a wet membrane production method is preferred from the viewpoint of easy control of the membrane structure and physical properties. As the wet film forming method, for example, the methods described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835, WO 2006/137540 and the like can be used.

以下、ポリオレフィン微多孔膜の製造方法(湿式の製膜方法)の一例について説明する。なお、以下の説明は、製造方法の一例であって、この方法に限定するものではない。   Hereinafter, an example of a method for producing a microporous polyolefin membrane (wet membrane production method) will be described. Note that the following description is an example of a manufacturing method, and is not limited to this method.

(1)ポリオレフィン溶液の調製
まず、原料となるポリオレフィン樹脂と成膜用溶剤とを溶融混練して、ポリオレフィン溶液を調製する。溶融混練方法としては、例えば日本国特許第2132327号及び日本国特許第3347835号の明細書に記載の二軸押出機を用いる方法を利用することができる。溶融混練方法は公知であるので説明を省略する。
(1) Preparation of Polyolefin Solution First, a polyolefin resin as a raw material and a solvent for film formation are melt-kneaded to prepare a polyolefin solution. As the melt-kneading method, for example, a method using a twin-screw extruder described in the specifications of Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used. The melt-kneading method is well-known, and therefore the description is omitted.

(ポリオレフィン樹脂)
原料となるポリオレフィン樹脂としては、例えば、ポリエチレン、ポリプロピレンなどを用いることができる。ポリエチレンとしては、特に限定されず、種々のポリエチレンを用いることができ、例えば、超高分子量ポリエチレン(UHMwPE)、高密度ポリエチレン(HDPE)、中密度ポリエチレン、分岐状低密度ポリエチレン、直鎖状低密度ポリエチレン等が用いられる。なお、ポリエチレンは、エチレンの単独重合体であってもよく、エチレンと他のα−オレフィンとの共重合体であってもよい。α−オレフィンとしては、プロピレン、ブテン−1、ヘキセン−1、ペンテン−1、4−メチルペンテン−1、オクテン、酢酸ビニル、メタクリル酸メチル、スチレン等が挙げられる。
(Polyolefin resin)
As the polyolefin resin as a raw material, for example, polyethylene, polypropylene, or the like can be used. The polyethylene is not particularly limited, and various polyethylenes can be used. For example, ultra high molecular weight polyethylene (UHMwPE), high density polyethylene (HDPE), medium density polyethylene, branched low density polyethylene, linear low density polyethylene Polyethylene or the like is used. In addition, polyethylene may be a homopolymer of ethylene or a copolymer of ethylene and another α-olefin. Examples of the α-olefin include propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, octene, vinyl acetate, methyl methacrylate, and styrene.

ポリオレフィン樹脂は、超高分子量ポリエチレン(UHMwPE)を含むことが好ましい。超高分子量ポリエチレンを含む場合、得られるポリオレフィン微多孔膜の膜強度を向上させることができる。また、ポリオレフィン微多孔膜のフィブリルを微細化(緻密化)することができ、膜全体に対して均一に小孔径な膜を発現することができる。なお、超高分子量ポリエチレンは1種を単独で、または2種以上を併用して用いることができ、例えばMwの異なる二種以上の超高分子量ポリエチレン同士を混合して用いてもよい。   Preferably, the polyolefin resin includes ultra high molecular weight polyethylene (UHMwPE). When ultra-high molecular weight polyethylene is contained, the membrane strength of the resulting microporous polyolefin membrane can be improved. Further, the fibrils of the polyolefin microporous membrane can be miniaturized (densified), and a membrane having a small pore size can be uniformly formed over the entire membrane. The ultra-high molecular weight polyethylene can be used alone or in combination of two or more. For example, two or more ultra-high molecular weight polyethylenes having different Mw may be used as a mixture.

超高分子量ポリエチレンの重量平均分子量(Mw)は、1×10以上(10万以上)であり、好ましくは2×10以上4×10未満であることが好ましい。Mwが上記範囲である場合、製膜性が良好となる。超高分子量ポリエチレンのMwが4×10以上である場合、溶融物の粘度が高くなりすぎるために、口金(ダイ)から樹脂を押し出せないなど製膜工程において不具合が出ることがある。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。The weight average molecular weight (Mw) of the ultrahigh molecular weight polyethylene is 1 × 10 6 or more (100,000 or more), and preferably 2 × 10 6 or more and less than 4 × 10 6 . When Mw is within the above range, the film-forming properties are good. When the Mw of the ultra-high molecular weight polyethylene is 4 × 10 6 or more, the viscosity of the melt becomes too high, so that a problem may be caused in a film forming process such that a resin cannot be extruded from a die. In addition, Mw is a value measured by gel permeation chromatography (GPC).

超高分子量ポリエチレンの含有量は、ポリオレフィン樹脂全体100質量%に対して、好ましくは10質量%以上であり、より好ましくは20質量%以上である。超高分子量ポリエチレンの含有量の上限は、特に限定されないが、例えば、50質量%以下である。超高分子量ポリエチレンの含有量が上記範囲である場合、後述する延伸条件などを調整することにより、膜強度と透気抵抗度とを高いレベルで両立させることができる。   The content of the ultrahigh molecular weight polyethylene is preferably 10% by mass or more, more preferably 20% by mass or more, based on 100% by mass of the whole polyolefin resin. The upper limit of the content of the ultrahigh molecular weight polyethylene is not particularly limited, but is, for example, 50% by mass or less. When the content of the ultrahigh molecular weight polyethylene is within the above range, the film strength and the air permeability can be made compatible at a high level by adjusting the stretching conditions described later.

ポリオレフィン樹脂は、高密度ポリエチレン(HDPE、密度:0.942g/cm以上)を含有することができる。また、ポリオレフィン樹脂は、超高分子量ポリエチレンと高密度ポリエチレンとを含むことが好ましい。高密度ポリエチレンを含む場合、溶融押出特性に優れ、均一な延伸加工特性に優れる。高密度ポリエチレンとしては、重量平均分子量(Mw)1×10以上1×10未満のものが例示される。なお、Mwは、ゲルパーミエーションクロマトグラフィー(GPC)により測定される値である。高密度ポリエチレンの含有量は、ポリオレフィン樹脂全体100質量%に対して、好ましくは50質量%以上90質量%以下、より好ましくは50質量%以上80質量%以下である。The polyolefin resin can contain high-density polyethylene (HDPE, density: 0.942 g / cm 3 or more). Further, the polyolefin resin preferably contains ultra high molecular weight polyethylene and high density polyethylene. When high-density polyethylene is contained, it is excellent in melt extrusion characteristics and uniform stretching characteristics. Examples of the high-density polyethylene include those having a weight average molecular weight (Mw) of 1 × 10 4 or more and less than 1 × 10 6 . In addition, Mw is a value measured by gel permeation chromatography (GPC). The content of the high-density polyethylene is preferably from 50% by mass to 90% by mass, more preferably from 50% by mass to 80% by mass, based on 100% by mass of the entire polyolefin resin.

ポリオレフィン樹脂は、ポリプロピレンを含んでもよい。ポリプロピレンとしては、特に限定されず、プロピレンの単独重合体、プロピレンと他のα−オレフィン及び/又はジオレフィンとの共重合体(プロピレン共重合体)、あるいはこれらの混合物を用いることができる。ポリプロピレンの含有量は、ポリオレフィン樹脂全100質量%に対して、例えば、0質量%以上10質量%未満であり、好ましくは0質量%以上5質量%以下である。また、ポリプロピレンを含む場合、得られるポリオレフィン微多孔膜の孔径が大きくなる傾向がある。   The polyolefin resin may include polypropylene. The polypropylene is not particularly limited, and a propylene homopolymer, a copolymer of propylene with another α-olefin and / or diolefin (propylene copolymer), or a mixture thereof can be used. The content of the polypropylene is, for example, 0% by mass or more and less than 10% by mass, and preferably 0% by mass or more and 5% by mass or less based on 100% by mass of the total amount of the polyolefin resin. Further, when polypropylene is contained, the pore size of the resulting microporous polyolefin membrane tends to be large.

また、ポリオレフィン樹脂は、必要に応じて、ポリエチレン及びポリプロピレン以外のその他の樹脂成分を含むことができる。その他の樹脂成分としては、例えば、耐熱性樹脂等を用いることができる。また、ポリオレフィン微多孔膜は、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、ブロッキング防止剤、充填剤、結晶造核剤、結晶化遅延剤等の各種添加剤を含有させてもよい。   In addition, the polyolefin resin can contain other resin components other than polyethylene and polypropylene, if necessary. As the other resin component, for example, a heat-resistant resin or the like can be used. In addition, the polyolefin microporous membrane is an antioxidant, a heat stabilizer, an antistatic agent, an ultraviolet absorber, an antiblocking agent, a filler, a crystal nucleating agent, and a crystallization retarder as long as the effects of the present invention are not impaired. And other various additives.

(成膜用溶剤)
成膜用溶剤としては、ポリオレフィン樹脂を十分に溶解できる溶剤であれば特に限定されずに用いることができる。成膜用溶剤は、比較的高倍率の延伸を可能とするために、溶剤は室温で液体であるのが好ましい。成膜用溶剤としては、例えば、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、及び沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルなどが挙げられる。中でも、流動パラフィンのような不揮発性の液体溶剤を用いるのが好ましい。なお、溶融混練状態では、ポリオレフィン樹脂と混和するが、室温では固体の溶剤と、上記成膜用溶剤とを混合して用いてもよい。このような固体溶剤として、ステアリルアルコール、セリルアルコール、パラフィンワックス等が挙げられる。
(Solvent for film formation)
As the solvent for film formation, any solvent can be used without particular limitation as long as it can sufficiently dissolve the polyolefin resin. The solvent for film formation is preferably a liquid at room temperature in order to enable stretching at a relatively high magnification. Examples of the solvent for film formation include aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, and liquid paraffin, and mineral oil fractions whose boiling points correspond to these. And room temperature liquid phthalates such as dibutyl phthalate and dioctyl phthalate. Among them, it is preferable to use a non-volatile liquid solvent such as liquid paraffin. In the melt-kneaded state, it is miscible with the polyolefin resin. However, a solvent that is solid at room temperature and the above-mentioned solvent for film formation may be mixed and used. Examples of such a solid solvent include stearyl alcohol, ceryl alcohol, and paraffin wax.

(ポリオレフィン溶液)
ポリオレフィン溶液中、ポリオレフィン樹脂と成膜用溶剤との配合割合は、特に限定されないが、ポリオレフィン樹脂溶液100質量部に対して、ポリオレフィン樹脂20〜35質量部であることが好ましい。ポリオレフィン樹脂の割合が上記範囲内であると、ポリオレフィン溶液を押し出す際にダイ出口でスウェルやネックインが防止でき、押出し成形体(ゲル状成形体)の成形性及び自己支持性が良好となる。
(Polyolefin solution)
The mixing ratio of the polyolefin resin and the solvent for film formation in the polyolefin solution is not particularly limited, but is preferably 20 to 35 parts by mass of the polyolefin resin with respect to 100 parts by mass of the polyolefin resin solution. When the proportion of the polyolefin resin is within the above range, swelling and neck-in can be prevented at the die exit when extruding the polyolefin solution, and the extruded body (gel-shaped body) has good moldability and self-supporting property.

(2)ゲル状シートの形成
次いで、上記で調製したポリオレフィン溶液を押出機からダイに送給し、シート状に押し出し、得られた押出し成形体を冷却することによりゲル状シートを形成する。冷却はポリオレフィン樹脂の結晶分散温度(Tcd)以下である90℃まで冷却することが好ましく、より好ましくは50℃以下、さらに好ましくは40℃以下まで行うのが好ましい。冷却により、成膜用溶剤によって分離されたポリオレフィンのミクロ相を固定化することができる。冷却速度が上記範囲内であると結晶化度が適度な範囲に保たれ、延伸に適したゲル状シートとなる。冷却方法としては冷風、冷却水等の冷媒に接触させる方法、冷却ロールに接触させる方法等を用いることができるが、冷媒で冷却したロールに接触させて冷却させることが好ましい。なお、同一または異なる組成の複数のポリオレフィン溶液を、複数の押出機から一つのダイに送給し、そこで層状に積層し、シート状に押出してもよい。ゲル状シートの形成方法として、例えば日本国特許第2132327号公報及び日本国特許第3347835号公報に開示の方法を利用することができる。
(2) Formation of Gel Sheet Next, the polyolefin solution prepared above is fed from an extruder to a die, extruded into a sheet, and the obtained extruded product is cooled to form a gel sheet. Cooling is preferably performed to 90 ° C., which is lower than the crystal dispersion temperature (Tcd) of the polyolefin resin, more preferably 50 ° C. or lower, and further preferably 40 ° C. or lower. By cooling, the microphase of the polyolefin separated by the film-forming solvent can be fixed. When the cooling rate is within the above range, the crystallinity is kept in an appropriate range, and a gel-like sheet suitable for stretching is obtained. As a cooling method, a method of contacting with a cooling medium such as cold air or cooling water, a method of contacting with a cooling roll, or the like can be used. A plurality of polyolefin solutions having the same or different compositions may be fed from a plurality of extruders to one die, where they may be laminated in layers and extruded into sheets. As a method for forming the gel-like sheet, for example, the methods disclosed in Japanese Patent No. 2132327 and Japanese Patent No. 3347835 can be used.

(3)延伸
次いで、ゲル状シートを少なくとも一軸方向に延伸する。ゲル状シートの延伸は、湿式延伸ともいう。延伸は一軸延伸でも二軸延伸でもよいが、二軸延伸が好ましい。二軸延伸の場合、同時二軸延伸、逐次延伸及び多段延伸(例えば同時二軸延伸及び逐次延伸の組合せ)のいずれでもよいが、逐次延伸が好ましく、MD方向(機械方向、長手方向)に延伸した後、TD方向(幅方向、横手方向)に延伸することが好ましい。MD方向とTD方向との延伸を別々に行う場合、延伸の際に、各方向にのみ延伸張力がかかり、分子配向が進みやすくなると考えられる。なお、TD方向とは、微多孔膜を平面でみたときにMD方向に直交する方向である。
(3) Stretching Next, the gel-like sheet is stretched in at least a uniaxial direction. The stretching of the gel-like sheet is also referred to as wet stretching. The stretching may be uniaxial stretching or biaxial stretching, but biaxial stretching is preferred. In the case of biaxial stretching, any of simultaneous biaxial stretching, sequential stretching, and multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching) may be used, but sequential stretching is preferred, and stretching is performed in the MD direction (machine direction, longitudinal direction). Then, it is preferable to stretch in the TD direction (width direction, lateral direction). When the stretching in the MD direction and the stretching in the TD direction are performed separately, it is considered that in stretching, a stretching tension is applied only in each direction, and the molecular orientation easily proceeds. The TD direction is a direction orthogonal to the MD direction when the microporous membrane is viewed in a plane.

延伸工程における、最終的な面積延伸倍率(面倍率)は、30倍以上150倍以下であることが必要である。面倍率が上記範囲である場合、製膜性が良好であり、また、配向していない遊びの分子の割合が減少し、高い強度を有するポリオレフィン微多孔膜を得ることができる。面積延伸倍率は35倍以上120倍以下が好ましい。また、MD方向及びTD方向の延伸倍率はいずれも5倍を超えることが好ましい。   In the stretching step, the final area stretching ratio (area ratio) needs to be 30 times or more and 150 times or less. When the areal magnification is in the above range, the film-forming properties are good, the ratio of unoriented free molecules is reduced, and a polyolefin microporous film having high strength can be obtained. The area stretching ratio is preferably 35 times or more and 120 times or less. Further, it is preferable that the stretching ratio in both the MD direction and the TD direction exceeds 5 times.

MD方向及びTD方向の延伸倍率の比(MD方向の延伸倍率/TD方向の延伸倍率)は、0.7以上1.0以下であることが必要である。延伸倍率の比が上記範囲である場合、得られるポリオレフィン微多孔膜の引張強度や引張伸度に関しMD方向及びTD方向のバランスが良好となり、膜強度をより向上させることができ、耐衝撃性が向上する。また、膜強度をより向上させるという観点から、MD方向の延伸倍率よりもTD方向の延伸倍率が大きいことが好ましい。この理由は、特に限定されないが、MD方向に延伸した後、TD方向に延伸する場合、MD方向への延伸により、一度、MD方向に向いた分子配向は、TD方向に配向しにくくなっているため、より大きな倍率で、TD方向に延伸することにより、両方の方向において、より均一に分子配向を進めることができるためと考えられる。なお、本ステップにおける延伸倍率とは、本ステップ直前のゲル状シートを基準として、次ステップに供される直前のゲル状シートの延伸倍率のことをいう。MD方向及びTD方向の延伸倍率の比(MD方向の延伸倍率/TD方向の延伸倍率)は、好ましくは0.75以上1.0以下である。   The ratio of the stretching ratio in the MD direction and the TD direction (the stretching ratio in the MD direction / the stretching ratio in the TD direction) needs to be 0.7 or more and 1.0 or less. When the ratio of the stretching ratio is in the above range, the MD and TD directions of the tensile strength and the tensile elongation of the obtained polyolefin microporous film are well-balanced, and the film strength can be further improved, and the impact resistance can be improved. improves. Further, from the viewpoint of further improving the film strength, it is preferable that the stretching ratio in the TD direction is larger than the stretching ratio in the MD direction. The reason for this is not particularly limited, but when stretching in the TD direction after stretching in the MD direction, by stretching in the MD direction, the molecular orientation once oriented in the MD direction is less likely to be oriented in the TD direction. Therefore, it is considered that by stretching in the TD direction at a higher magnification, the molecular orientation can be more uniformly promoted in both directions. The stretching ratio in this step refers to the stretching ratio of the gel sheet immediately before being subjected to the next step, based on the gel sheet immediately before this step. The ratio of the stretching ratio in the MD and TD directions (the stretching ratio in the MD direction / the stretching ratio in the TD direction) is preferably 0.75 or more and 1.0 or less.

延伸温度は、ポリオレフィン樹脂の結晶分散温度(Tcd)以上、ポリオレフィン樹脂の融点以下の範囲内にするのが好ましい。なお、ここで、ポリオレフィン樹脂の融点とは、ゲル状シート中のポリオレフィン樹脂の融点をいう。延伸温度がポリオレフィン樹脂の融点以下である場合、ゲル状シート中のポリオレフィン樹脂の溶融を抑制し、延伸によって、分子鎖を効率的に配向することができる。また、延伸温度がポリオレフィン樹脂の結晶分散温度(Tcd)以上である場合、ゲル状シート中のポリオレフィン樹脂を十分に軟化させ、延伸張力を低くすることができるため、製膜性が良好となり、延伸時の破膜を抑制し、高倍率での延伸が可能となる。延伸温度は、例えば、100℃以上127℃以下とすることができる。ここで、延伸温度とはゲルシートの温度であり、ロール延伸など表裏で温度差のある場合は厚み方向中央温度を言う。   The stretching temperature is preferably in the range from the crystal dispersion temperature (Tcd) of the polyolefin resin to the melting point of the polyolefin resin. Here, the melting point of the polyolefin resin refers to the melting point of the polyolefin resin in the gel sheet. When the stretching temperature is equal to or lower than the melting point of the polyolefin resin, melting of the polyolefin resin in the gel-like sheet can be suppressed, and the molecular chains can be efficiently oriented by stretching. Further, when the stretching temperature is equal to or higher than the crystal dispersion temperature (Tcd) of the polyolefin resin, the polyolefin resin in the gel-like sheet can be sufficiently softened and the stretching tension can be reduced, so that the film-forming property becomes good and The film can be prevented from breaking at the time of stretching, and stretching at a high magnification can be performed. The stretching temperature can be, for example, 100 ° C. or more and 127 ° C. or less. Here, the stretching temperature is the temperature of the gel sheet, and when there is a temperature difference between the front and back sides such as roll stretching, it refers to the center temperature in the thickness direction.

MD方向に延伸した後、TD方向に延伸する場合、TD方向の延伸温度は、MD方向の延伸温度よりも高いことが重要である。詳細は不明であるが、MD方向への延伸により、一度、MD方向に向いた分子配向は、TD方向に配向しにくくなっているため、より高い温度で、TD方向に延伸することにより、両方の方向において、より均一に分子配向を進めることができると考えられる。また、MD方向の延伸温度は、100℃以上110℃以下であり、好ましくは103℃以上110℃以下である。TD方向の延伸温度は、115℃以上127℃以下であり、好ましくは115℃以上125℃である。MD方向及びTD方向の延伸温度が上記範囲である場合、製膜性が良好であり、得られるポリオレフィ微多孔膜の膜強度を向上させ、かつ、孔径を適切な範囲に制御することができる。   When stretching in the TD direction after stretching in the MD direction, it is important that the stretching temperature in the TD direction is higher than the stretching temperature in the MD direction. Although the details are unknown, the molecular orientation once oriented in the MD direction is difficult to be oriented in the TD direction by the stretching in the MD direction. It is considered that the molecular orientation can be promoted more uniformly in the direction. The stretching temperature in the MD direction is 100 ° C. or more and 110 ° C. or less, preferably 103 ° C. or more and 110 ° C. or less. The stretching temperature in the TD direction is from 115 ° C to 127 ° C, preferably from 115 ° C to 125 ° C. When the stretching temperature in the MD and TD directions is within the above range, the film-forming properties are good, the film strength of the resulting microporous polyolefin membrane can be improved, and the pore size can be controlled in an appropriate range.

(4)成膜用溶剤の除去(洗浄)
次いで、上記延伸後のゲル状シートから成膜用溶剤を除去して微多孔膜を得る。溶剤の除去は、洗浄溶媒を用いて洗浄を行う。ポリオレフィン相は成膜用溶剤相と相分離しているので、成膜用溶剤を除去すると、微細な三次元網目構造を形成するフィブリルからなり、三次元的に不規則に連通する孔(空隙)を有する多孔質の膜が得られる。洗浄溶媒及びこれを用いた成膜用溶剤の除去方法は公知であるので説明を省略する。例えば日本国特許第2132327号明細書や特開2002−256099号公報に開示の方法を利用することができる。
(4) Removal (cleaning) of solvent for film formation
Next, the film-forming solvent is removed from the stretched gel-like sheet to obtain a microporous film. The removal of the solvent is performed using a cleaning solvent. Since the polyolefin phase is phase-separated from the solvent phase for film formation, when the solvent for film formation is removed, it is composed of fibrils forming a fine three-dimensional network structure, and pores (voids) communicating irregularly in three dimensions. Is obtained. Since the washing solvent and the method of removing the film-forming solvent using the same are known, their description is omitted. For example, the method disclosed in Japanese Patent No. 2132327 or JP-A-2002-256099 can be used.

(5)乾燥
次いで、成膜用溶剤を除去した微多孔膜を、加熱乾燥法又は風乾法により乾燥する。乾燥温度はポリオレフィン樹脂の結晶分散温度(Tcd)以下であることが好ましく、特にTcdより5℃以上低いのが好ましい。乾燥は、微多孔膜を100質量%(乾燥重量)として、残存洗浄溶媒が5質量%以下になるまで行うことが好ましく、3質量%以下になるまで行うことがより好ましい。残存洗浄溶媒が上記範囲内である場合、ポリオレフィン微多孔膜の空孔率が維持され、透過性の悪化が抑制される。
(5) Drying Next, the microporous film from which the solvent for film formation has been removed is dried by a heat drying method or an air drying method. The drying temperature is preferably equal to or lower than the crystal dispersion temperature (Tcd) of the polyolefin resin, and particularly preferably lower than Tcd by 5 ° C. or more. The drying is preferably performed until the residual washing solvent becomes 5% by mass or less, more preferably 3% by mass or less, with the microporous membrane being 100% by mass (dry weight). When the remaining washing solvent is within the above range, the porosity of the polyolefin microporous membrane is maintained, and deterioration of permeability is suppressed.

(6)その他
また、乾燥後の微多孔膜に熱処理を施してもよい。熱処理方法としては、熱固定処理及び/又は熱緩和処理を用いることができる。熱固定処理とは、膜のTD方向の寸法が変わらないように保持しながら加熱する熱処理である。熱緩和処理とは、膜を加熱中にMD方向及び/又はTD方向に熱収縮させる処理である。熱固定処理は、テンター方式又はロール方式により行うのが好ましい。例えば、熱緩和処理方法としては特開2002−256099号公報に開示の方法があげられる。熱処理温度はポリオレフィン樹脂のTcd〜Tmの範囲内が好ましく、微多孔膜の第二の延伸温度±5℃の範囲内がより好ましく、微多孔膜の第二の延伸温度±3℃の範囲内が特に好ましい。
(6) Others A heat treatment may be applied to the dried microporous film. As the heat treatment method, a heat setting treatment and / or a heat relaxation treatment can be used. The heat setting treatment is a heat treatment in which the film is heated while keeping the dimension in the TD direction unchanged. The thermal relaxation treatment is a treatment for thermally shrinking the film in the MD direction and / or the TD direction during heating. The heat setting treatment is preferably performed by a tenter method or a roll method. For example, as a thermal relaxation treatment method, a method disclosed in JP-A-2002-256099 can be mentioned. The heat treatment temperature is preferably within the range of Tcd to Tm of the polyolefin resin, more preferably within the range of the second stretching temperature of the microporous membrane ± 5 ° C, and within the range of the second stretching temperature of the microporous membrane ± 3 ° C. Particularly preferred.

また、乾燥後の微多孔膜を少なくとも一軸方向に所定の面積延伸倍率で再延伸してもよい。乾燥後の微多孔膜の延伸は、乾式延伸ともいう。   Further, the dried microporous membrane may be stretched at least in a uniaxial direction at a predetermined area stretching ratio. Stretching of the microporous membrane after drying is also referred to as dry stretching.

また、得られたポリオレフィン微多孔膜に架橋処理及び親水化処理を行ってもよい。例えば、ポリオレフィン微多孔膜に対して、α線、β線、γ線、電子線等の電離放射線の照射することに、架橋処理を行う。電子線の照射の場合、0.1〜100Mradの電子線量が好ましく、100〜300kVの加速電圧が好ましい。架橋処理により微多孔膜のメルトダウン温度が上昇する。また、親水化処理は、モノマーグラフト、界面活性剤処理、コロナ放電等により行うことができる。モノマーグラフトは架橋処理後に行うのが好ましい。   Further, the obtained polyolefin microporous membrane may be subjected to a crosslinking treatment and a hydrophilic treatment. For example, a crosslinking treatment is performed by irradiating the microporous polyolefin membrane with ionizing radiation such as α-rays, β-rays, γ-rays, and electron beams. In the case of electron beam irradiation, an electron dose of 0.1 to 100 Mrad is preferable, and an acceleration voltage of 100 to 300 kV is preferable. The crosslinking treatment increases the meltdown temperature of the microporous membrane. The hydrophilic treatment can be performed by monomer grafting, surfactant treatment, corona discharge, or the like. The monomer grafting is preferably performed after the crosslinking treatment.

なお、ポリオレフィン微多孔膜は、単層であってもよいが、ポリオレフィン微多孔膜からなる層を積層してもよい。多層ポリオレフィン微多孔膜は、二層以上の層とすることができる。多層ポリオレフィン微多孔膜の場合、各層を構成するポリオレフィン樹脂の組成は、同一組成でもよく、異なる組成でもよい。   The microporous polyolefin membrane may be a single layer, or a layer composed of the polyolefin microporous membrane may be laminated. The multilayer polyolefin microporous membrane can be composed of two or more layers. In the case of a multilayer polyolefin microporous membrane, the composition of the polyolefin resin constituting each layer may be the same or different.

なお、ポリオレフィン微多孔膜は、その少なくとも一方の表面にポリオレフィン樹脂以外の他の多孔質層を積層して積層ポリオレフィン多孔質膜としてもよい。他の多孔質層としては、特に限定されないが、例えば、バインダーと無機粒子とを含む無機粒子層などのコーティング層を積層してもよい。無機粒子層を構成するバインダー成分としては、特に限定されず、公知の成分を用いることができ、例えば、アクリル樹脂、ポリフッ化ビニリデン樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、芳香族ポリアミド樹脂、ポリイミド樹脂などを用いることができる。無機粒子層を構成する無機粒子としては、特に限定されず、公知の材料を用いることができ、例えば、アルミナ、ベーマイト、硫酸バリウム、酸化マグネシウム、水酸化マグネシウム、炭酸マグネシウム、ケイ素などを用いることができる。また、積層ポリオレフィン多孔質膜としては、多孔質化した前記バインダー樹脂がポリオレフィン微多孔膜の少なくとも一方の表面に積層されたものであってもよい。   The microporous polyolefin membrane may be a laminated polyolefin porous membrane by laminating a porous layer other than the polyolefin resin on at least one surface thereof. The other porous layer is not particularly limited. For example, a coating layer such as an inorganic particle layer containing a binder and inorganic particles may be laminated. The binder component constituting the inorganic particle layer is not particularly limited, and known components can be used, for example, an acrylic resin, a polyvinylidene fluoride resin, a polyamideimide resin, a polyamide resin, an aromatic polyamide resin, a polyimide resin, and the like. Can be used. The inorganic particles constituting the inorganic particle layer are not particularly limited, and known materials can be used.For example, alumina, boehmite, barium sulfate, magnesium oxide, magnesium hydroxide, magnesium carbonate, silicon, and the like can be used. it can. Further, the laminated polyolefin porous membrane may be one in which the porous binder resin is laminated on at least one surface of a polyolefin microporous membrane.

本発明では先に記述した延伸工程における最終的な面積延伸倍率(面倍率)、MD方向及びTD方向の延伸倍率の比(MD方向の延伸倍率/TD方向の延伸倍率)、MD及びTD方向の延伸温度を適宜調整することにより、耐衝撃性に非常に優れ、また、電池用セパレータとして用いた場合、耐衝撃性と電池特性(出力特性、耐デンドライト特性など)とを高いレベルで両立させたポリオレフィン微多孔膜を提供することが可能となる。   In the present invention, the final area stretching ratio (area ratio) in the stretching step described above, the ratio of the MD and TD stretching ratios (MD stretching ratio / TD stretching ratio), MD and TD direction stretching ratios. By appropriately adjusting the stretching temperature, the impact resistance is extremely excellent, and when used as a battery separator, both impact resistance and battery characteristics (output characteristics, dendrite resistance, etc.) are achieved at a high level. It is possible to provide a polyolefin microporous membrane.

以下、本発明を実施例によりさらに詳細に説明する。なお、本発明はこれらの例に限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to Examples. Note that the present invention is not limited to these examples.

1.測定方法と評価方法
[膜厚]
微多孔膜の95mm×95mmの範囲内における5点の膜厚を接触厚み計(株式会社ミツトヨ製ライトマチック)により測定し、平均値を求めた。
1. Measurement method and evaluation method [Thickness]
Five thicknesses of the microporous membrane in a range of 95 mm × 95 mm were measured with a contact thickness meter (Lightmatic, manufactured by Mitutoyo Corporation), and the average value was determined.

[空孔率]
微多孔膜の重量wとそれと等価な空孔のないポリマーの重量w(幅、長さ、組成の同じポリマー)とを比較した、以下の式によって、測定した。
空孔率(%)=(w−w)/w×100
[バブルポイント細孔径(最大孔径)及び平均流量孔径]
PMI社のパームポロメーター(商品名、型式:CFP−1500A)を用いて、Dry−up、Wet−upの順で測定した。Wet−upには表面張力が既知のGalwick(商品名)で十分に浸した微多孔膜に圧力をかけ、空気が貫通し始める圧力から換算される孔径をバブルポイント細孔径(最大孔径)とした。平均流量孔径については、Dry−up測定で圧力、流量曲線の1/2の傾きを示す曲線と、Wet−up測定の曲線が交わる点の圧力から孔径を換算した。圧力と孔径の換算は下記の数式を用いた。
d=C・γ/P
式中、「d(μm)」は微多孔膜の孔径、「γ(mN/m)」は液体の表面張力、「P(Pa)」は圧力、「C」は定数とした。
[Porosity]
The weight w 1 of the microporous membrane was compared with the weight w 2 of a polymer having no pores equivalent thereto (a polymer having the same width, length, and composition) and measured by the following equation.
Porosity (%) = (w 2 −w 1 ) / w 2 × 100
[Bubble point pore size (maximum pore size) and average flow pore size]
The measurement was performed in the order of Dry-up and Wet-up using a palm porometer (trade name, model number: CFP-1500A) manufactured by PMI. In Wet-up, pressure is applied to a microporous membrane sufficiently immersed in Galwick (trade name) with a known surface tension, and the pore diameter calculated from the pressure at which air starts to penetrate is defined as the bubble point pore diameter (maximum pore diameter). . As for the average flow hole diameter, the hole diameter was converted from the pressure at the point where the curve indicating the half of the pressure and flow curve in the Dry-up measurement and the curve in the Wet-up measurement intersect. The following formula was used for conversion of pressure and pore size.
d = C · γ / P
In the formula, “d (μm)” is the pore diameter of the microporous membrane, “γ (mN / m)” is the surface tension of the liquid, “P (Pa)” is the pressure, and “C” is a constant.

[突刺強度]
先端が球面(曲率半径R:0.5mm)の直径1mmの針で、膜厚T(μm)の微多孔膜を2mm/秒の速度で突刺したときの最大荷重L(N)を測定した。また、最大荷重の測定値Lを、式:L=(L×12)/Tにより、膜厚を12μmとしたときの最大荷重L(12μm換算)(N/12μm)を算出した。
[Puncture strength]
The maximum load L 1 (N) is measured when a microporous membrane having a thickness of T 1 (μm) is pierced at a speed of 2 mm / sec with a needle having a spherical surface (radius of curvature R: 0.5 mm) and a diameter of 1 mm. did. Further, the maximum load L 2 (converted to 12 μm) (N / 12 μm) when the film thickness is set to 12 μm is calculated from the measured value L 1 of the maximum load by the formula: L 2 = (L 1 × 12) / T 1. did.

[透気抵抗度]
膜厚T(μm)の微多孔膜に対して、JIS P−8117王研式試験機法に準拠して、透気度計(旭精工株式会社製、EGO−1T)で測定した透気抵抗度P(sec/100cmAir)を測定した。また、式:P=(P×12)/Tにより、膜厚を12μmとしたときの透気抵抗度P(12μm換算)(sec/100cmAir/12μm)を算出した。
[Air resistance]
Air permeability measured with a gas permeability meter (EGO-1T, manufactured by Asahi Seiko Co., Ltd.) for a microporous film having a thickness of T 1 (μm) in accordance with JIS P-8117 Oken type testing machine method. The resistance P 1 (sec / 100 cm 3 Air) was measured. Further, the air permeability resistance P 2 (converted to 12 μm) (sec / 100 cm 3 Air / 12 μm) when the film thickness was 12 μm was calculated from the equation: P 2 = (P 1 × 12) / T 1 .

[重量平均分子量(Mw)]
ポリオレフィン微多孔膜の重量平均分子量(Mw)は以下の条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。
・測定装置:Waters Corporation製GPC−150C
・カラム:昭和電工株式会社製Shodex UT806M
・カラム温度:135℃
・溶媒(移動相):o−ジクロルベンゼン
・溶媒流速:1.0 ml/分
・試料濃度:0.1 wt%(溶解条件:135℃/1h)
・インジェクション量:500μl
・検出器:Waters Corporation製ディファレンシャルリフラクトメーター(RI検出器)
・検量線:単分散ポリスチレン標準試料を用いて得られた検量線から、ポリエチレン換算定数(0.46)を使用した。
[Weight average molecular weight (Mw)]
The weight average molecular weight (Mw) of the microporous polyolefin membrane was determined by a gel permeation chromatography (GPC) method under the following conditions.
-Measuring device: GPC-150C manufactured by Waters Corporation
-Column: Shodex UT806M manufactured by Showa Denko KK
-Column temperature: 135 ° C
-Solvent (mobile phase): o-dichlorobenzene-Solvent flow rate: 1.0 ml / min-Sample concentration: 0.1 wt% (dissolution condition: 135 ° C / 1h)
・ Injection volume: 500 μl
-Detector: Differential refractometer (RI detector) manufactured by Waters Corporation
Calibration curve: A polyethylene conversion constant (0.46) was used from a calibration curve obtained using a monodisperse polystyrene standard sample.

[引張強度]
MD引張強度及びTD引張強度については、幅10mmの短冊状試験片を用いて、ASTM D882に準拠した方法により測定した。
[Tensile strength]
The MD tensile strength and the TD tensile strength were measured by a method according to ASTM D882 using a rectangular test piece having a width of 10 mm.

[引張伸度]
ASTM D−882Aに準拠した方法により測定した。
[Tensile elongation]
It measured by the method based on ASTM D-882A.

[耐衝撃試験]
下記の手順に従って円筒電池を作製し、衝撃試験を実施した。
[Impact test]
A cylindrical battery was manufactured according to the following procedure, and an impact test was performed.

<正極の作製>
活物質としてリチウムコバルト複合酸化物LiCoOを92.2質量%、導電剤としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量%、バインダーとしてポリフッ化ビニリデン(PVDF)3.2質量%をN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを、活物質塗付量250g/m、活物質嵩密度3.00g/cmにて、正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターで塗布した。そして、130℃で3分間乾燥し、ロールプレス機で圧縮成形した後、幅約57mmに切断して帯状にした。
<Preparation of positive electrode>
92.2% by mass of a lithium-cobalt composite oxide LiCoO 2 as an active material, 2.3% by mass of flaky graphite and acetylene black as a conductive agent, and 3.2% by mass of polyvinylidene fluoride (PVDF) as a binder was N. -Dispersed in methylpyrrolidone (NMP) to prepare a slurry. The slurry was applied to one surface of a 20 μm-thick aluminum foil serving as a positive electrode current collector with a die coater at an active material application amount of 250 g / m 2 and an active material bulk density of 3.00 g / cm 3 . Then, it was dried at 130 ° C. for 3 minutes, compression-molded by a roll press, and cut into a band of about 57 mm in width.

<負極の作製>
活物質として人造グラファイト96.9質量%、バインダーとしてカルボキシメチルセルロースのアンモニウム塩1.4質量%とスチレン−ブタジエン共重合体ラテックス1.7質量%を精製水中に分散させてスラリーを調製した。このスラリーを、活物質塗付量106g/m、活物質嵩密度1.55g/cmという高充填密度にて、負極集電体となる厚さ12μmの銅箔の片面にダイコーターで塗付した。そして、120℃で3分間乾燥し、ロールプレス機で圧縮成形した後、幅約58mmに切断して帯状にした。
<Preparation of negative electrode>
96.9% by mass of artificial graphite as an active material, 1.4% by mass of an ammonium salt of carboxymethyl cellulose and 1.7% by mass of a styrene-butadiene copolymer latex as a binder were dispersed in purified water to prepare a slurry. This slurry was coated with a die coater on one surface of a 12 μm thick copper foil serving as a negative electrode current collector at a high packing density of an active material coating amount of 106 g / m 2 and an active material bulk density of 1.55 g / cm 3. Attached. Then, it was dried at 120 ° C. for 3 minutes, compression-molded by a roll press, and then cut into a band of about 58 mm in width.

<非水電解液の調製>
エチレンカーボネート/エチルメチルカーボネート=1/2(体積比)の混合溶媒に、溶質としてLiPFを濃度1.0mol/lとなるように溶解させて調製した。
<Preparation of non-aqueous electrolyte>
It was prepared by dissolving LiPF 6 as a solute at a concentration of 1.0 mol / l in a mixed solvent of ethylene carbonate / ethyl methyl carbonate = 1/2 (volume ratio).

<セパレータ>
実施例、比較例に記載のセパレータを、60mmにスリットして帯状にした。
<Separator>
The separators described in the examples and comparative examples were slit into 60 mm to form strips.

<電池組立て>
帯状負極、セパレータ、帯状正極、セパレータの順に重ね、250gfの巻取張力で渦巻状に複数回捲回することで電極板積層体を作製した。この電極板積層体を、外径が18mmで高さが65mmのステンレス製容器に収納し、正極集電体から導出したアルミニウム製タブを容器蓋端子部に、負極集電体から導出したニッケル製タブを容器壁に溶接した。そして、真空下80℃で12時間の乾燥を行った後、アルゴンボックス内にて容器内に上記非水電解液を注入し、封口した。
<Battery assembly>
The strip-shaped negative electrode, the separator, the strip-shaped positive electrode, and the separator were stacked in this order, and spirally wound with a winding tension of 250 gf to form an electrode plate laminate. The electrode plate laminate was housed in a stainless steel container having an outer diameter of 18 mm and a height of 65 mm, and an aluminum tab derived from the positive electrode current collector was provided on the container lid terminal portion, and a nickel product derived from the negative electrode current collector was provided. The tub was welded to the vessel wall. After drying at 80 ° C. for 12 hours under vacuum, the above non-aqueous electrolyte was injected into the container in an argon box and sealed.

<耐衝撃試験>
組立てた電池をまず、500mAの定電流で充電し、電池電圧がそれぞれ4.20Vに到達した後は、それぞれの定電圧で電流値が10mA以下になるまで充電して満充電状態の電池を得た。次いで、満充電状態の円筒型電池を長辺が横となるように設置し、61cmの高さから質量9.1kgの直径15.8mmの棒を電池の中心平坦面上に落下させて各電池に衝撃を与えた。3回試験中1度でもこの衝撃により電池が発火を生じたものを×、3回試験中、発火はしないが1度でも発煙を生じたものを△、3回試験中1度も発火や発煙が確認されなかったものを○と評価した。
<Impact resistance test>
First, the assembled battery is charged at a constant current of 500 mA, and after the battery voltage reaches 4.20 V, the battery is charged at each constant voltage until the current value becomes 10 mA or less to obtain a fully charged battery. Was. Next, a fully charged cylindrical battery was placed so that the long sides were horizontal, and a rod having a mass of 9.1 kg and a diameter of 15.8 mm was dropped from a height of 61 cm onto the central flat surface of the battery to obtain a battery. Shocked. If the battery ignited due to this impact even once in the test three times, × if the battery did not ignite during the test three times, but did smoke even once. △ If the battery ignited or smoked once during the test three times. Those in which no was confirmed were evaluated as ○.

[耐デンドライト特性]
最大孔径が60nm未満のものを○とし、その他を×とした。最大孔径が60nmを超える大孔径となると、リチウムイオン二次電池に特有のLi金属が析出することで発生するリチウム樹枝状結晶(デンドライト)が孔の中にまで入り込みやすくなる傾向がある。それによってセパレータが破壊されやすくなり、電池の設計によっては微小短絡につながる。
[Dendrite resistance]
A sample having a maximum pore diameter of less than 60 nm was rated as “○”, and the others were rated as “x”. When the maximum pore diameter is larger than 60 nm, lithium dendrites (dendrites) generated by deposition of Li metal specific to lithium ion secondary batteries tend to easily penetrate into the pores. As a result, the separator is easily broken, which leads to a minute short circuit depending on the battery design.

[膜抵抗(インピーダンス)]
多孔質フィルムから、直径19mmの円形状の測定用サンプル5枚と直径16mmの円形状の測定用サンプル20枚を切り出した。また、CR2032型コインセルの部材(ケース、PPガスケット、スペーサー(直径16mm、厚み1mm)、ワッシャー、キャップ)(宝泉株式会社製)を用意した。
[Membrane resistance (impedance)]
From the porous film, five circular measurement samples having a diameter of 19 mm and 20 circular measurement samples having a diameter of 16 mm were cut out. In addition, CR2032 type coin cell members (case, PP gasket, spacer (diameter 16 mm, thickness 1 mm), washer, cap) (manufactured by Hosen Co., Ltd.) were prepared.

まず、露天温度を−35℃以下としたドライルーム内にて、ケースの上に測定用サンプル(直径19mm)×1を設置し、そのサンプルを固定するようにガスケットを置き、その上に、測定用サンプル(直径16mm)×複数枚、スペーサー、ウェーブワッシャーを順に設置した。直径16mmの測定用のサンプルの枚数は2枚、3枚、4枚とし、測定用サンプルを前記各枚数配置したセルを1個ずつ作製した。次いで、ウェーブワッシャーを設置したセルに、LiPFにエチレンカーボネート(EC)、及びエチルメチルカーボネート(EMC)の混合溶媒(EC/EMC=4:6[体積比])を配合した濃度1Mの電解液(キシダ化学株式会社製)を注液した。注液後、セルを約−50kPaの圧力で10分間静置し、測定用サンプルに電解液を含浸させた。その後、セルにキャップをかぶせ、コインセルカシメ器(宝泉株式会社製)で密閉してサンプルセルを得た。First, a sample for measurement (diameter 19 mm) × 1 is placed on a case in a dry room where the open-air temperature is −35 ° C. or less, and a gasket is placed so as to fix the sample, and the measurement is performed thereon. A sample (diameter 16 mm) × a plurality of pieces, a spacer, and a wave washer were sequentially installed. The number of measurement samples having a diameter of 16 mm was 2, 3, and 4, and one cell in which each of the measurement samples was arranged was produced. Then, a 1 M concentration electrolytic solution in which a mixed solvent (EC / EMC = 4: 6 [volume ratio]) of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was mixed with LiPF 6 in a cell provided with a wave washer. (Manufactured by Kishida Chemical Co., Ltd.) was injected. After the injection, the cell was allowed to stand at a pressure of about −50 kPa for 10 minutes, and the sample for measurement was impregnated with the electrolytic solution. Thereafter, the cell was covered with a cap and sealed with a coin cell caulking device (manufactured by Hosen Co., Ltd.) to obtain a sample cell.

得られたサンプルセルを25℃の恒温槽中に入れ、3時間静置した後、交流インピーダンス測定装置(日置電機株式会社製)を用いて振幅20mVにて該セルの抵抗を測定した。測定されたセルの抵抗成分の値(虚軸の値が0の時の実数の値)を、セルに配置した多孔質フィルムの枚数に対してプロットし、このプロットを線形近似して傾きを求めた。この傾きにスペーサーの面積(2.01cm(=(1.6cm/2)×π)を乗じて得られる値を、多孔質フィルムの膜抵抗の値(Ω・cm)とした。
多孔質フィルムの膜抵抗の値(Ω・cm)が1.4Ωcm/10μm以下であったものを○(良好)、1.4Ωcm/10μmを超えるものを×(不良)とした。
After placing the obtained sample cell in a thermostat at 25 ° C. and allowing it to stand for 3 hours, the resistance of the cell was measured at an amplitude of 20 mV using an AC impedance measuring device (manufactured by Hioki Electric Co., Ltd.). The measured value of the resistance component of the cell (the value of the real number when the value of the imaginary axis is 0) is plotted against the number of porous films arranged in the cell, and the slope is obtained by linearly approximating this plot. Was. The value obtained by multiplying the slope by the area of the spacer (2.01 cm 2 (= (1.6 cm / 2) 2 × π)) was defined as the value of the membrane resistance (Ω · cm 2 ) of the porous film.
Those porous membrane resistance value of the film (Ω · cm 2) was the 1.4Ωcm 2 / 10μm or less ○ (good), was × (poor) to in excess of 1.4Ωcm 2 / 10μm.

膜抵抗(インピーダンス)が1.4Ωcm/10μm以下であると、二次電池中にバッテリーセパレータとして使用した際、電池の出力特性が良好になることが期待できる。When the film resistance (impedance) is 1.4Ωcm 2 / 10μm or less, when used as a battery separator in a secondary battery, it is expected that the output characteristics of the battery is improved.

[サイクル寿命]
<試験用電池の作製>
正極(株式会社八山製)、負極(株式会社八山製)にタブ付けされたものと各微多孔膜を使用して巻回体を作製した。次いで、アルミラミネート袋内に巻回体を設置し、電解液(1.1mol/L,LiPF,エチレンカーボネート/エチルメチルカーボネート/ジエチレンカーボネート=3/5/2(体積比)に0.5重量%ビニレンカーボネート、2重量%フルオロエチレンカーボネートを添加したもの)を750μL滴下し真空ラミネータにて封止した。これを300mAhの試験用電池とした。
[Cycle life]
<Preparation of test battery>
A wound body was produced using the tabs attached to the positive electrode (manufactured by Yayama Corporation) and the negative electrode (manufactured by Yayama Corporation) and each microporous membrane. Next, the wound body was placed in an aluminum laminate bag, and 0.5 wt. In an electrolytic solution (1.1 mol / L, LiPF 6 , ethylene carbonate / ethyl methyl carbonate / diethylene carbonate = 3/5/2 (volume ratio)). % Vinylene carbonate and 2% by weight of fluoroethylene carbonate) were added dropwise in an amount of 750 μL and sealed with a vacuum laminator. This was used as a 300 mAh test battery.

<サイクル性能試験>
上記の試験用電池を用いてサイクル性能試験を以下の充放電条件にて実施した。
充電:1C、4.35V定電流定電圧充電、カットオフ電流0.05C
放電:1C、3V定電流放電
測定温度:25℃
3個の試験用電池にて実施し、1回目の1C充電容量を基にした200回目の充電容量の割合すなわち容量維持率の平均値を導出し、サイクル性能の指標とした。容量維持率の平均値が85%以上であるものを○(良好)、85%未満であるものを×(不良)とした。
<Cycle performance test>
A cycle performance test was performed using the test battery under the following charge / discharge conditions.
Charging: 1C, 4.35V constant current constant voltage charging, cutoff current 0.05C
Discharge: 1C, 3V constant current discharge Measurement temperature: 25 ° C
The test was performed using three test batteries, and the ratio of the 200th charge capacity based on the 1C charge capacity at the first time, that is, the average value of the capacity retention rate was derived and used as an index of cycle performance. When the average value of the capacity retention ratio was 85% or more, it was evaluated as ○ (good), and when it was less than 85%, it was evaluated as x (bad).

容量維持率が85%以上であると、長期間充放電を繰り返しても十分に充電容量を保持可能と判断でき、良好な電池となることが期待できる。   When the capacity retention ratio is 85% or more, it can be determined that the charge capacity can be sufficiently maintained even when charge and discharge are repeated for a long period of time, and a good battery can be expected.

(実施例1〜5)
ポリオレフィン樹脂としてMwが2.5×10の超高分子量ポリエチレン(UHMwPE)及びMwが2.8×10である高密度ポリエチレン(HDPE)をそれぞれ表1に示す配合比(質量%)で含むポリオレフィン樹脂と、流動パラフィン(成膜用溶剤)と、酸化防止剤としてテトラキス[メチレン−3−(3,5−ジターシャリーブチル−4−ヒドロキシフェニル)−プロピオネート]メタン(ポリオレフィン樹脂100質量部当たり0.2質量部)とを、二軸押出機を用いて溶融混練し、ポリオレフィン溶液を調製した。なお、ポリオレフィン溶液中の、ポリオレフィン樹脂及び成膜用溶剤の合計100質量部に対するポリオレフィン樹脂濃度を表1に示す。ポリオレフィン溶液を、二軸押出機からTダイに供給し、押し出した。押出し成形体を、冷却ロールで引き取りながら冷却し、ゲル状シートを形成した。ゲル状シートを、表1に示す条件でMD方向及びTD方向に湿式延伸した。湿式延伸したゲル状シートから塩化メチレンを用いて流動パラフィンを除去、乾燥し、得られたポリオレフィン微多孔膜をテンター延伸機を用いて表1に示した温度と倍率でTD方向に再延伸後、同じ温度で熱緩和処理を実施した。熱緩和処理する量である緩和率(%)は、熱緩和処理前のTD方向フィルム幅をL、熱緩和処理後のTD方向フィルム幅Lとして以下に示す式により算出した。
式:緩和率(%)= (L−L)/L×100
得られたポリオレフィン微多孔膜の評価結果等を表1に記載した。
(Examples 1 to 5)
Ultra-high molecular weight polyethylene (UHMwPE) having Mw of 2.5 × 10 6 and high-density polyethylene (HDPE) having Mw of 2.8 × 10 5 are contained as polyolefin resins at the compounding ratio (% by mass) shown in Table 1, respectively. Polyolefin resin, liquid paraffin (solvent for film formation), and tetrakis [methylene-3- (3,5-ditert-butyl-4-hydroxyphenyl) -propionate] methane as an antioxidant (0 per 100 parts by mass of polyolefin resin) .2 parts by mass) was melt-kneaded using a twin-screw extruder to prepare a polyolefin solution. Table 1 shows the polyolefin resin concentration in the polyolefin solution with respect to the total of 100 parts by mass of the polyolefin resin and the solvent for film formation. The polyolefin solution was fed from a twin screw extruder to a T-die and extruded. The extruded product was cooled while being taken up by a cooling roll to form a gel-like sheet. The gel sheet was wet-drawn in the MD and TD directions under the conditions shown in Table 1. Liquid paraffin was removed from the wet-stretched gel sheet using methylene chloride, dried, and the resulting polyolefin microporous membrane was re-stretched in the TD direction at the temperature and magnification shown in Table 1 using a tenter stretching machine. Heat relaxation treatment was performed at the same temperature. The relaxation rate (%), which is the amount of the heat relaxation treatment, was calculated by the following formula, assuming that the film width in the TD direction before the heat relaxation treatment was L 1 and the film width L 2 in the TD direction after the heat relaxation treatment.
Formula: Relaxation rate (%) = (L 1 −L 2 ) / L 1 × 100
Table 1 shows the evaluation results and the like of the obtained polyolefin microporous membrane.

(比較例1〜13)
表1または表2に示す条件とした以外は、実施例と同様の条件でポリオレフィン微多孔膜を製造した。得られたポリオレフィン微多孔膜の評価結果等を表1(実施例1〜5、比較例1〜比較例4)、または表2(比較例5〜比較例13)に記載した。
(Comparative Examples 1 to 13)
A microporous polyolefin membrane was produced under the same conditions as in the example except that the conditions shown in Table 1 or Table 2 were used. The evaluation results and the like of the obtained polyolefin microporous membrane are described in Table 1 (Examples 1 to 5, Comparative Examples 1 to 4) or Table 2 (Comparative Examples 5 to 13).

Figure 2018180714
Figure 2018180714

Figure 2018180714
Figure 2018180714

本実施形態のポリオレフィン微多孔膜は、セパレータとして二次電池に組み入れた際、耐衝撃性に非常に優れる。また、本実施形態のポリオレフィン微多孔膜は、耐衝撃性と電池特性とを両立することができるため、非水電解液系二次電池用セパレータとして好適に用いることができる。
The microporous polyolefin membrane of the present embodiment is extremely excellent in impact resistance when incorporated in a secondary battery as a separator. Further, the microporous polyolefin membrane of the present embodiment can achieve both impact resistance and battery characteristics, and thus can be suitably used as a separator for a non-aqueous electrolyte secondary battery.

Claims (10)

下記の特性(1)〜(5)を有する、ポリオレフィン微多孔膜。
(1)MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)が下記関係式(I)を満たす。
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧300・・・式(I)
(2)MD方向及びTD方向の引張強度が196MPa以上である。
(3)パームポロメーターを用いて測定した最大孔径が60nm以下である。
(4)パームポロメーターを用いて測定した平均流量孔径が40nm以下である。
(5)空孔率が40%以上である。
A polyolefin microporous membrane having the following properties (1) to (5).
(1) The tensile strength (MPa) and the tensile elongation (%) in the MD and TD directions satisfy the following relational expression (I).
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 300 formula (I)
(2) The tensile strength in the MD and TD directions is 196 MPa or more.
(3) The maximum pore size measured using a palm porometer is 60 nm or less.
(4) The average flow pore diameter measured using a palm porometer is 40 nm or less.
(5) The porosity is 40% or more.
下記の特性(6)を有する、請求項1に記載のポリオレフィン微多孔膜。
(6)MD方向及びTD方向の引張強度の比(MD方向の引張強度/TD方向の引張強度)が、0.8以上1.2以下である。
The polyolefin microporous membrane according to claim 1, which has the following property (6).
(6) The ratio of the tensile strength in the MD direction and the tensile strength in the TD direction (tensile strength in the MD direction / tensile strength in the TD direction) is 0.8 or more and 1.2 or less.
下記の特性(7)を有する、請求項1又は請求項2に記載のポリオレフィン微多孔膜。
(7)MD方向及びTD方向の引張伸度の比(MD方向の引張伸度/TD方向の引張伸度)が0.75以上1.25以下である。
The polyolefin microporous membrane according to claim 1 or 2, having the following property (7).
(7) The ratio of the tensile elongation in the MD direction and the TD direction (tensile elongation in the MD direction / tensile elongation in the TD direction) is 0.75 or more and 1.25 or less.
下記の特性(8)を有する、請求項1〜3のいずれか一項に記載のポリオレフィン微多孔膜。
(8)MD方向及びTD方向の引張伸度が、それぞれ90%以上である。
The polyolefin microporous membrane according to any one of claims 1 to 3, which has the following property (8).
(8) The tensile elongation in the MD and TD directions is 90% or more, respectively.
膜厚が20μm以下である、請求項1〜4のいずれか一項に記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 4, having a thickness of 20 µm or less. 膜厚12μmに換算した突刺強度が5N以上である、請求項1〜5のいずれか一項に記載のポリオレフィン微多孔膜。   The polyolefin microporous membrane according to any one of claims 1 to 5, wherein the piercing strength converted to a film thickness of 12 µm is 5 N or more. MD方向及びTD方向の引張強度(MPa)及び引張伸度(%)が下記関係式(II)を満たす、請求項1〜5のいずれか一項に記載のポリオレフィン微多孔膜。
[(MD方向の引張強度×MD方向の引張伸度/100)+(TD方向の引張強度×TD方向の引張伸度/100)1/2≧350・・・(II)
The polyolefin microporous membrane according to any one of claims 1 to 5, wherein the tensile strength (MPa) and the tensile elongation (%) in the MD direction and the TD direction satisfy the following relational expression (II).
[(Tensile strength in MD direction × tensile elongation in MD direction / 100) 2 + (tensile strength in TD direction × tensile elongation in TD direction / 100) 2 ] 1/2 ≧ 350 (II)
請求項1〜7のいずれか一項に記載のポリオレフィン微多孔膜を用いてなる非水電解液系二次電池用セパレータ。   A non-aqueous electrolyte secondary battery separator comprising the microporous polyolefin membrane according to claim 1. 少なくとも一方の表面に、無機粒子及びバインダー樹脂を含むコーティング層が設けられた請求項8に記載の非水電解液系二次電池用セパレータ。   9. The non-aqueous electrolyte secondary battery separator according to claim 8, wherein a coating layer containing inorganic particles and a binder resin is provided on at least one surface. 請求項8又は請求項9に記載の非水電解液系二次電池用セパレータを含む非水電解液系二次電池。
A non-aqueous electrolyte secondary battery comprising the non-aqueous electrolyte secondary battery separator according to claim 8.
JP2019509353A 2017-03-31 2018-03-19 Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery Active JP6665966B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017071066 2017-03-31
JP2017071066 2017-03-31
PCT/JP2018/010834 WO2018180714A1 (en) 2017-03-31 2018-03-19 Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte

Publications (2)

Publication Number Publication Date
JPWO2018180714A1 true JPWO2018180714A1 (en) 2019-12-26
JP6665966B2 JP6665966B2 (en) 2020-03-13

Family

ID=63675766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019509353A Active JP6665966B2 (en) 2017-03-31 2018-03-19 Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery

Country Status (5)

Country Link
JP (1) JP6665966B2 (en)
KR (1) KR102126212B1 (en)
CN (3) CN113024882A (en)
TW (1) TWI700851B (en)
WO (1) WO2018180714A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3950795A4 (en) * 2019-03-29 2023-01-18 Toray Industries, Inc. Microporous polyolefin film, separator for battery, secondary battery, and method for producing microporous polyolefin film
JPWO2021065585A1 (en) * 2019-09-30 2021-04-08
CN112063006B (en) 2020-09-09 2021-04-09 上海恩捷新材料科技有限公司 Polyolefin microporous membrane and preparation method thereof
CN112864528B (en) * 2021-04-26 2021-07-13 江苏厚生新能源科技有限公司 Biaxial tension coating microporous diaphragm for lithium ion battery and preparation method thereof
KR102629834B1 (en) * 2021-09-02 2024-01-29 주식회사 엘지에너지솔루션 A method for manufacturing the electrode assembly, An electrode assembly for an electrochemical device therefrom and a method for manufacturing the electrochemical device
WO2024019069A1 (en) * 2022-07-20 2024-01-25 東レ株式会社 Polyolefin microporous membrane, separator for batteries, and battery
CN115312973B (en) * 2022-10-12 2023-01-31 中材锂膜有限公司 Polyolefin porous membrane and preparation method thereof, battery diaphragm and electrochemical device
WO2024077927A1 (en) * 2022-10-12 2024-04-18 中材锂膜(南京)有限公司 Polyolefin porous membrane and preparation method therefor, battery separator, and electrochemical device
CN115798613B (en) * 2022-11-30 2023-07-28 四川倍佳新材料有限公司 Evaluation method for mechanical properties of polymer microporous membrane in solution

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124652A (en) * 2004-09-30 2006-05-18 Asahi Kasei Chemicals Corp Microporous polyolefin film
WO2007069560A1 (en) * 2005-12-15 2007-06-21 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
WO2009136648A1 (en) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 Separator for high power density lithium‑ion secondary cell
JP2011527710A (en) * 2008-07-11 2011-11-04 東レ東燃機能膜合同会社 Microporous membrane, method for producing and using microporous membrane
WO2015194504A1 (en) * 2014-06-20 2015-12-23 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane, separator for cell, and cell

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE60035656T3 (en) * 1999-02-19 2013-12-12 Toray Battery Separator Film Co., Ltd. Microporous polyolefin film and process for its preparation
KR101145232B1 (en) 2007-05-14 2012-05-24 에스엠시 가부시키가이샤 Hydraulic shock absorber
KR101101157B1 (en) 2008-12-18 2012-01-05 제일모직주식회사 Flame Retardant Unsaturated Polyester Resin Composition
WO2010070930A1 (en) * 2008-12-19 2010-06-24 旭化成イーマテリアルズ株式会社 Polyolefin micro-porous membrane and lithium ion secondary battery separator
CN102248713B (en) * 2011-04-22 2014-12-31 佛山市东航光电科技有限公司 Polyene microporous multilayer diaphragm and manufacturing method thereof
JP5942145B2 (en) 2012-05-09 2016-06-29 旭化成株式会社 Polyolefin microporous membrane and method for producing the same
WO2014126079A1 (en) * 2013-02-13 2014-08-21 東レバッテリーセパレータフィルム株式会社 Separator for batteries and method for producing separator for batteries
KR101601787B1 (en) * 2013-02-28 2016-03-09 제일모직주식회사 Separator having high-tensile strength and method for manufacturing the same
MY175572A (en) * 2013-12-06 2020-07-01 Toray Industries Polyolefin microporous film, separator for non-aqueous electrolyte secondary battery, wound product of polyolefin microporous film, non-aqueous electrolyte secondary battery, and method for producing polyolefin microporous film
JP6295641B2 (en) * 2013-12-20 2018-03-20 東レ株式会社 Microporous membrane and separator using the same
KR102432328B1 (en) * 2014-12-26 2022-08-11 도레이 카부시키가이샤 Polyolefin microporous membrane, manufacturing method thereof, and battery separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006124652A (en) * 2004-09-30 2006-05-18 Asahi Kasei Chemicals Corp Microporous polyolefin film
WO2007069560A1 (en) * 2005-12-15 2007-06-21 Asahi Kasei Chemicals Corporation Polyolefin microporous membrane
WO2009136648A1 (en) * 2008-05-09 2009-11-12 旭化成イーマテリアルズ株式会社 Separator for high power density lithium‑ion secondary cell
JP2011527710A (en) * 2008-07-11 2011-11-04 東レ東燃機能膜合同会社 Microporous membrane, method for producing and using microporous membrane
WO2015194504A1 (en) * 2014-06-20 2015-12-23 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane, separator for cell, and cell

Also Published As

Publication number Publication date
JP6665966B2 (en) 2020-03-13
KR102126212B1 (en) 2020-06-24
CN113024881A (en) 2021-06-25
WO2018180714A1 (en) 2018-10-04
KR20190127663A (en) 2019-11-13
TWI700851B (en) 2020-08-01
CN110431176B (en) 2021-03-19
CN113024882A (en) 2021-06-25
CN110431176A (en) 2019-11-08
TW201838224A (en) 2018-10-16

Similar Documents

Publication Publication Date Title
JP6665966B2 (en) Polyolefin microporous membrane, separator for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP5876631B1 (en) Polyolefin multilayer microporous membrane and battery separator
JP6367453B2 (en) Separator for electricity storage device and laminate, wound body, lithium ion secondary battery or electricity storage device using the same
JP6988881B2 (en) Separator for secondary batteries containing polyethylene microporous membrane
JPWO2006038532A1 (en) Polyolefin microporous membrane
JP6823718B2 (en) Polyolefin microporous membranes, separators for power storage devices, and power storage devices
JP7386015B2 (en) Battery separator and its manufacturing method
JP7088162B2 (en) Polyolefin microporous membrane
TW201920406A (en) Microporous membrane made of polyolefin, battery separator and secondary battery
JP7409301B2 (en) Microporous polyolefin membrane and method for producing microporous polyolefin membrane
JP2019102126A (en) Battery separator and non-aqueous electrolyte secondary battery
CN111244369B (en) Polyolefin microporous membrane
WO2021065283A1 (en) Polyolefin microporous film, separator for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7152435B2 (en) Polyolefin microporous membrane
JP2022048518A (en) Polyolefin microporous film, and coating film and secondary battery including the same
KR20220069831A (en) Polyolefin microporous membrane, battery separator and secondary battery
JP6988880B2 (en) Polyolefin microporous membrane
JP2021168259A (en) Lithium ion secondary battery
JPWO2019151220A1 (en) Polyolefin microporous film, coating film and battery, and method for producing polyolefin microporous film
JP6741884B1 (en) Microporous polyolefin membrane

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20191101

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20191118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200203

R151 Written notification of patent or utility model registration

Ref document number: 6665966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151