WO2024019069A1 - Polyolefin microporous membrane, separator for batteries, and battery - Google Patents

Polyolefin microporous membrane, separator for batteries, and battery Download PDF

Info

Publication number
WO2024019069A1
WO2024019069A1 PCT/JP2023/026352 JP2023026352W WO2024019069A1 WO 2024019069 A1 WO2024019069 A1 WO 2024019069A1 JP 2023026352 W JP2023026352 W JP 2023026352W WO 2024019069 A1 WO2024019069 A1 WO 2024019069A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyolefin
molecular weight
membrane
microporous
stretching
Prior art date
Application number
PCT/JP2023/026352
Other languages
French (fr)
Japanese (ja)
Inventor
寛也 岡本
和久 光畑
颯也 熊谷
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024019069A1 publication Critical patent/WO2024019069A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/26Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a solid phase from a macromolecular composition or article, e.g. leaching out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a polyolefin microporous membrane, a battery separator, and a battery.
  • Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors.
  • filters such as filtration membranes and dialysis membranes
  • separators for batteries and separators for electrolytic capacitors.
  • a battery separator used in lithium ion batteries which are small, lightweight, and have high energy density.
  • Battery separators are required to have various properties such as electrical insulation, chemical stability, mechanical strength, and ion permeability from the viewpoint of battery safety and output characteristics.
  • lithium-ion batteries have a high energy density, so if a short circuit occurs, the battery temperature will rise rapidly, leading to the risk of fire or explosion. Therefore, separators used in lithium ion batteries are required to have a shutdown (SD) function that melts the separator to close the pores and stop the battery reaction when the temperature rises excessively.
  • SD shutdown
  • microporous polyolefin membranes are particularly preferably used from the viewpoint of chemical stability and shutdown characteristics.
  • separators are required to be thinner and have higher ion permeability. As the separator becomes thinner, the distance between the electrodes becomes shorter and short circuits are more likely to occur. Therefore, the separator is required to have higher voltage resistance (dielectric breakdown field strength). In addition to this, in recent years there has been a demand for improvements in the mechanical strength of separators and reductions in shutdown temperatures in order to improve battery safety.
  • Patent Document 1 describes that a separator with excellent voltage resistance can be produced by controlling the viscosity average molecular weight of the polyolefin constituting a microporous polyolefin membrane.
  • Patent Document 2 describes that by containing polypropylene as a raw material and making it a laminated separator with a polyethylene layer, a separator with excellent permeability can be produced despite having small pores.
  • lithium-ion battery separators The ion permeability, voltage resistance, mechanical strength, and low-temperature shutdown characteristics required of lithium-ion battery separators are often in a trade-off relationship, and it is extremely difficult to achieve high levels of both.
  • Patent Document 1 describes that by increasing the viscosity average molecular weight of the polyolefin constituting a microporous polyolefin membrane, the pore diameter can be made smaller and more uniform, and a separator with excellent voltage resistance can be produced. There is. However, such a separator with a small pore size has a high air permeation resistance and tends to have insufficient ion permeability. Furthermore, there is no quantitative description of the uniformity of pore diameters, and the relationship with voltage resistance is not clear.
  • Patent Document 2 uses the ratio of distribution intensity near the pore diameter that shows the maximum peak in the pore size distribution curve as a measure of pore diameter uniformity, but does not describe the relationship between the ratio and withstand voltage property. do not have. Since dielectric breakdown is likely to occur in the large pore diameter region of the separator, the evaluation index of pore diameter uniformity described in Patent Document 2 is insufficient to guarantee the voltage resistance of the separator.
  • the separator described in Patent Document 2 has a laminated structure of a layer containing polypropylene and a layer consisting only of polyethylene to achieve both small pore size and high permeability. The structure is not uniform and is considered to be disadvantageous in terms of voltage resistance.
  • the present invention aims to provide a separator that achieves both ion permeability and voltage resistance at a high level by appropriately controlling the pore diameter of a microporous polyolefin membrane. .
  • a polyolefin microporous membrane having the following characteristics A and B A.
  • the average flow diameter measured with a porometer is 32 nm or less.
  • the skewness in the pore size distribution curve measured with a porometer is -1.0 or more and 1.5 or less.
  • microporous polyolefin membrane according to any one of (1) to (3) above, which has a shutdown temperature of 138° C. or lower.
  • a battery separator comprising the microporous polyolefin membrane according to any one of (1) to (4) above.
  • a battery comprising the battery separator described in (5) above.
  • the microporous polyolefin membrane of the present invention has both high ion permeability and high voltage resistance, and can provide a high level of output characteristics and short circuit resistance in a battery incorporated as a battery separator.
  • the present invention relates to a microporous polyolefin membrane with defined mean flow diameter and skewness in a pore size distribution curve.
  • the polyolefin microporous membrane of the present invention has an average flow diameter of 32 nm or less.
  • the thickness is more preferably 31 nm or less, and even more preferably 30 nm or less.
  • the polyolefin microporous membrane has excellent voltage resistance.
  • the lower limit of the average flow diameter is substantially 10 nm or more.
  • the polyolefin microporous membrane has excellent ion permeability. Setting the average flow diameter within the above range can be achieved by appropriately adjusting the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane and the film forming conditions.
  • the molecular weight of the polyolefin constituting the polyolefin microporous membrane is increased, or when the concentration of the polyolefin resin in the polyolefin solution is increased, the number of crosslinking points of molecular chains increases during melt-kneading of the polyolefin solution, which tends to reduce the average flow diameter.
  • ⁇ Skewness in pore size distribution curve> The skewness in the pore size distribution curve of the microporous polyolefin membrane of the present invention was determined by POROUS MATERIALS, INC. under the measurement conditions described below. The values are measured using a palm porometer (model: CFP-1500A) manufactured by Co., Ltd. or a palm porometer with an equivalent measurement function.
  • the polyolefin microporous membrane of the present invention has a skewness of ⁇ 1.0 or more and 1.5 or less in a pore size distribution curve described below. More preferably -0.8 or more and 1.0 or less, still more preferably -0.5 or more and 0.5 or less.
  • Skewness in a pore size distribution curve represents the degree of bias in the distribution; a high value means that there is a large distribution of pore diameters larger than the average flow diameter, and a low value means that there are many distributions with pore diameters smaller than the average flow diameter. It means that.
  • the skewness is strongly influenced by the pore diameter, which has a large difference from the average flow diameter.
  • the ion permeability of the polyolefin microporous membrane will be low due to the presence of regions with insufficient openings, and if it is too high, the ion permeability of the polyolefin microporous membrane will be low when a voltage is applied. Since the acceleration of the charges is promoted, the voltage resistance of the polyolefin microporous membrane becomes low. In particular, dielectric breakdown of a microporous polyolefin film is a local phenomenon, and if there is even a partial portion with large pores, it is thought that the voltage resistance of the microporous polyolefin film will be significantly reduced.
  • microporous polyolefin membranes Although it is not necessarily clear why some areas have large pores, the pore-opening process in microporous polyolefin membranes proceeds through the destruction of spherulites due to yielding during stretching, followed by the opening of micropores through stretching. Therefore, it is estimated that if there is structural unevenness or stretching unevenness at the time of crystallization, large pores created in the step of spherulite destruction at the initial stage of stretching will remain, and the distribution will tend to be biased towards the large pore diameter side.
  • the polyolefin microporous membrane has an excellent balance between air permeability resistance and voltage resistance. Setting the skewness in the pore size distribution curve within the above range can be achieved by appropriately adjusting the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane and the film forming conditions.
  • increasing the molecular weight of the polyolefin constituting a microporous polyolefin membrane, or increasing the concentration of polyolefin resin in the polyolefin solution increases the number of crosslinking points in molecular chains during melt-kneading of the polyolefin solution, which reduces structural unevenness and stretching unevenness. , the absolute value of skewness becomes smaller. Further, by narrowing the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane, structural unevenness and stretching unevenness are similarly reduced, and the absolute value of the skewness is reduced. Increasing the stretching ratio is also effective as a means for eliminating stretching unevenness.
  • the polyolefin microporous membrane of the present invention has a differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane obtained by GPC, in which the value dw/dlog (M) obtained by differentiating the concentration fraction w by the logarithm of the molecular weight is the maximum.
  • the molecular weight (hereinafter referred to as the molecular weight at the maximum peak) is preferably 4.0 ⁇ 10 5 or more, more preferably 5.0 ⁇ 10 5 or more.
  • the upper limit is preferably 1.0 ⁇ 10 6 or less from the viewpoint of shutdown temperature and the like.
  • the high molecular weight component will form the main skeleton of the polyolefin that makes up the microporous polyolefin membrane, and the number of crosslinking points in the molecular chain will increase, which will prevent the formation of unopened pores and large pores. suppressed. Therefore, the absolute value of skewness tends to become small. Further, when the stretching ratio is increased, the pore size is promoted to be smaller, and in addition, the puncture strength can be increased.
  • the area ratio of the molecular weight of 30,000 or less in the entire differential molecular weight distribution curve of the polyolefin constituting the microporous polyolefin membrane measured by GPC is 15% or more. Moreover, it is preferably 25% or less, more preferably 20% or less.
  • the shutdown temperature can be reduced while maintaining the crosslinking point density and strength of the skeleton structure of the polyolefin microporous membrane at a high level.
  • the maximum peak molecular weight in the differential molecular weight distribution curve and the area ratio with a molecular weight of 30,000 or less can be controlled by the molecular weight of the raw material used for the microporous polyolefin membrane and the melt-kneading conditions.
  • the molecular weight at the maximum peak in the differential molecular weight distribution curve can be increased by using a high molecular weight raw material and a low molecular weight raw material and setting the ratio of the low molecular weight raw materials to a certain level or more.
  • the molecular weight at the maximum peak in the differential molecular weight distribution curve can be increased by increasing the ratio of the extrusion amount to the screw rotation speed in a twin-screw extruder to suppress molecular weight deterioration due to shearing during melt-kneading. Can be done.
  • the polyolefin microporous membrane of the present invention preferably has a value obtained by dividing the maximum load by the basis weight in a puncture test described below (hereinafter referred to as basis weight equivalent puncture strength) of 80 gf/(g/m 2 ) or more. Note that in the description of the puncture test described below, the model number of the device used is specified, but this does not preclude the use of a measuring device with equivalent functionality.
  • basis weight equivalent puncture strength 80 gf/(g/m 2 ) or more.
  • the upper limit of the puncture strength in terms of fabric weight is not particularly limited, but is preferably 130 gf/(g/m 2 ) or less from the viewpoint of suppressing a rise in shutdown temperature. Setting the puncture strength within the above range is possible by adjusting the molecular weight of the polyolefin constituting the microporous polyolefin membrane and film forming conditions. For example, by increasing the molecular weight of the polyolefin constituting the microporous polyolefin membrane, the entanglement between molecular chains becomes stronger and the puncture strength can be controlled to be higher. In addition, by increasing the stretching ratio, oriented crystallization of molecular chains is promoted, and the puncture strength can be controlled in a direction that increases.
  • the polyolefin microporous membrane of the present invention preferably has a shutdown temperature of 138°C or lower. If the shutdown temperature is within the above range, even if the battery temperature suddenly rises, the separator will melt before ignition and stop the battery reaction by blocking the flow of ions, which will improve safety in the event of an abnormality. It can be made into The lower limit of the shutdown temperature is preferably 120° C. or higher from the viewpoint of the operating temperature range of the battery. Setting the shutdown temperature within the above range is possible by adding low molecular weight components or adjusting film forming conditions.
  • the shutdown temperature can be reduced.
  • the low molecular weight range is, for example, a range where the molecular weight is 30,000 or less.
  • oriented crystallization can be suppressed and the shutdown temperature can be lowered by decreasing the stretching ratio or increasing the stretching temperature, but this reduces the puncture strength. Therefore, achieving both desired puncture strength and shutdown temperature is achieved by controlling the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane and adjusting film forming conditions suitable for the molecular weight distribution.
  • ⁇ Dielectric breakdown voltage> This is a characteristic measured by a withstand voltage test described later, and the minimum voltage at which a short circuit occurs when a voltage is applied to a microporous polyolefin membrane is called a dielectric breakdown voltage. Note that in the description of the withstand voltage test described later, the model number of the device used is specified, but this does not preclude the use of a measuring device with equivalent functionality. Since the dielectric breakdown voltage is proportional to the film thickness, it is necessary to increase the dielectric breakdown voltage per film thickness in order to obtain a high dielectric breakdown voltage even if the film is made thinner. The dielectric breakdown voltage per film thickness is preferably 0.20 kV/ ⁇ m or more.
  • the upper limit is not particularly determined, it is preferably 0.50 kV/ ⁇ m or less from the viewpoint of suppressing an increase in air permeability resistance.
  • the separator provided with the polyolefin microporous membrane of the present invention has suitable voltage resistance when used in a battery.
  • Air permeability resistance This is a property measured by the test described below, and represents the difficulty of air passing through a microporous polyolefin membrane.
  • the air permeability resistance is low, the lithium ion permeability of the polyolefin microporous membrane is improved.
  • the air permeability resistance is proportional to the film thickness, and the air permeation resistance per film thickness is preferably in the range of 10 seconds/100 cc/ ⁇ m to 20 seconds/100 cc/ ⁇ m. By setting it within the above range, the ion permeability and membrane strength of the polyolefin microporous membrane become suitable.
  • the polyolefin microporous membrane of the present invention is preferably a single layer from the viewpoint of structural uniformity, but may be a multilayer microporous membrane consisting of a plurality of layers.
  • the number of laminated layers is not particularly limited, and may be two layers or three or more layers.
  • the direction parallel to the film forming direction of the polyolefin microporous membrane is referred to as the film forming direction, longitudinal direction, or MD (Machine Direction), and the direction perpendicular to the film forming direction within the surface of the polyolefin microporous membrane is referred to as the film forming direction.
  • MD Machine Direction
  • TD Transverse Direction
  • the manufacturing method for manufacturing the polyolefin microporous membrane of the present invention preferably includes the following steps (1) to (6).
  • the polyolefin microporous membrane is a microporous membrane containing one or more types of polyolefin resins, and may contain two or more different types of polyolefin resins. In addition, from the viewpoint of achieving both mechanical strength and shutdown characteristics, it is particularly preferable to contain two or more types of polyolefin resins.
  • the polyolefin resin is preferably a homopolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, etc., and a homopolymer of ethylene (polyethylene) is particularly preferred.
  • Polyethylene may be a homopolymer of ethylene or a copolymer containing ethylene and other ⁇ -olefins.
  • the polyolefin resin used in the present invention must contain 40% by mass or more of an ultra-high molecular weight polyolefin resin (UHPO) having a weight average molecular weight (Mw) of 1.0 ⁇ 10 6 or more when the entire polyolefin resin is 100% by mass. is preferred.
  • UHPO ultra-high molecular weight polyolefin resin
  • Mw weight average molecular weight
  • the content of the ultra-high molecular weight polyolefin resin is more preferably 45% by mass or more, and even more preferably 50% by mass or more.
  • ultra-high molecular weight polyolefin resin UHPO
  • Mw 1.0 x 10 6
  • the network of molecular chains during melt kneading becomes strong and the number of crosslinking points increases, resulting in formation of large pores.
  • the average flow diameter becomes smaller, and the skewness in the pore size distribution becomes smaller.
  • the stretching stress increases, making it easier to obtain a high-strength microporous polyolefin membrane.
  • HDPO high-density polyolefin
  • the content of the high-density polyolefin resin having a Mw of 3.0 ⁇ 10 5 or less is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more.
  • the microporous polyolefin membrane may contain resin components other than polyethylene resin and polypropylene resin as necessary.
  • various additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, antiblocking agents, fillers, crystal nucleating agents, and crystallization retarders may be added to the extent that they do not impair the effects of the present invention. May be contained.
  • the polyolefin solution is prepared by heating and dissolving the polyolefin resin in a plasticizer.
  • the plasticizer is not particularly limited as long as it is a solvent that can sufficiently dissolve the polyolefin resin, but in order to enable stretching at a high magnification, it is preferable to use a solvent that is liquid at room temperature.
  • a solvent aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil fractions with boiling points corresponding to these, and dibutyl phthalate
  • examples include phthalic acid esters that are liquid at room temperature, such as dioctyl phthalate.
  • the concentration of the polyolefin resin in the polyolefin solution when the polyolefin resin is dissolved in the plasticizer is preferably 20 to 35 parts by mass, more preferably 23 to 30 parts by mass, based on the plasticizer. As the concentration of the polyolefin resin in the polyolefin solution increases, the pore size becomes smaller, and the skewness in the pore size distribution becomes smaller, making it possible to obtain a microporous polyolefin membrane with an excellent balance between voltage resistance and permeability.
  • the concentration of the polyolefin resin in the polyolefin solution becomes too high, the fluidity of the polyolefin solution decreases, causing uneven kneading, and the appearance of the polyolefin microporous membrane deteriorates.
  • the polyolefin resin concentration in the polyolefin solution within the above range, a microporous polyolefin membrane with an excellent balance of voltage resistance, permeability, and appearance can be obtained.
  • melt-kneading temperature The resin temperature during melt-kneading (abbreviated as melt-kneading temperature) needs to be set differently depending on the polyolefin resin used, but it ranges from (melting point of polyolefin resin + 10°C) to (melting point of polyolefin resin + 120°C). It is preferable to do so. More preferably, the temperature range is from (melting point of polyolefin resin +20°C) to (melting point of polyolefin resin +100°C).
  • the melting point refers to a value measured by DSC based on JIS K7121:2012 (the same applies hereinafter).
  • the melt-kneading temperature is preferably 130 to 260°C, more preferably 160 to 230°C.
  • melt-kneading temperature By setting the melt-kneading temperature within the above range, it is possible to suppress the generation of unmelted substances in the extrudate, which may cause membrane rupture or the like in the subsequent stretching step.
  • thermal decomposition of the polyolefin is suppressed, and a decrease in strength of the resulting microporous polyolefin membrane can be suppressed.
  • a gel-like sheet is obtained by cooling the obtained extrudate. Cooling allows the solvent-separated polyolefin microphase to be immobilized.
  • the gel sheet is preferably cooled to 10 to 50°C. Cooling is preferably carried out at a rate of 30° C./min or more until the temperature reaches 100° C. or less. If the cooling rate is less than 30° C./min, the crystallinity will increase and it will be difficult to form a gel-like sheet suitable for stretching. Generally, when the cooling rate is slow, relatively large crystals are formed, so that the higher-order structure of the gel-like sheet becomes coarse and the gel structure forming it also becomes large. On the other hand, when the cooling rate is high, relatively small crystals are formed, so that the higher-order structure of the gel-like sheet becomes dense, which leads to uniform stretching and increased toughness of the film.
  • Cooling methods include direct contact with cold air, cooling water, or other cooling medium, contact with a roll cooled with a refrigerant, and use of a casting drum.
  • the microporous polyolefin membrane of the present invention may be a laminate in which gel-like sheets each containing a desired resin are laminated to the extent that the effects of the present invention are not impaired.
  • desired resins are prepared as necessary, these resins are separately fed to an extruder, mixed with a solvent, melted at a desired temperature, and the polymer is made into a laminate.
  • There is a method of forming a laminate by merging them inside a tube or die and extruding them from a slit-shaped die to the desired thickness of each layer.
  • Stretching process Next, the obtained gel-like sheet is stretched.
  • Stretching methods used include MD uniaxial stretching using a roll stretching machine, TD uniaxial stretching using a tenter, sequential biaxial stretching using a combination of a roll stretching machine and a tenter, or a combination of a tenter and a tenter, and simultaneous biaxial stretching using a simultaneous biaxial tenter.
  • the stretching ratio varies depending on the thickness of the gel-like sheet from the viewpoint of uniformity of film thickness, it is preferable to stretch the gel sheet to 5 times or more in any direction.
  • the area magnification is preferably 25 times or more, more preferably 35 times or more, and even more preferably 45 times or more.
  • the area magnification is preferably 150 times or less. By setting the area magnification to 150 times or less, it is possible to prevent tearing during the production of the microporous polyolefin membrane and reduce productivity, and also to prevent the melting point and shutdown of the microporous polyolefin membrane due to excessive orientation. Prevents temperature from rising.
  • the stretching temperature is preferably below the melting point of the gel-like sheet +10°C, and more preferably within the range of (crystal dispersion temperature T cd of the polyolefin resin) to (melting point of the gel-like sheet +5°C).
  • a polyethylene composition has a crystal dispersion temperature of about 90 to 100°C, so the stretching temperature is preferably 90 to 130°C, more preferably 90 to 125°C.
  • the crystal dispersion temperature T cd is determined from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D4065 (1995).
  • cleaning solvents include saturated hydrocarbons such as pentane, hexane, and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; ethers such as diethyl ether and dioxane; ketones such as methyl ethyl ketone; and trifluoroethane. Examples include chain fluorocarbons.
  • cleaning solvents have low surface tension, so the network structure that forms micropores suppresses shrinkage due to the surface tension of the air-liquid interface during drying after cleaning, and polyolefins with suitable porosity and ion permeability are used. A microporous membrane is obtained.
  • cleaning solvents are appropriately selected depending on the plasticizer and used alone or in combination.
  • Cleaning can be carried out by immersing the gel-like sheet in a cleaning solvent and extracting it, by showering the gel-like sheet with a cleaning solvent, or by a combination of these methods.
  • the amount of cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more per 100 parts by mass of the gel sheet.
  • the washing temperature may be 15 to 30°C, and if necessary, the temperature may be heated to 80°C or lower.
  • the above-mentioned cleaning is preferably carried out until the residual solvent in the gel sheet, that is, the polyolefin microporous membrane after cleaning, becomes less than 1% by mass.
  • the solvent in the polyolefin microporous membrane is dried and removed.
  • the drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, etc. can be selected.
  • the drying temperature is preferably 40 to 100°C, more preferably 40 to 80°C. Sufficient drying can suppress a decrease in porosity and deterioration in ion permeability of the polyolefin microporous membrane in the subsequent heat treatment step.
  • the dried microporous polyolefin membrane may be stretched (re-stretched) in at least one direction.
  • Re-stretching can be carried out by the tenter method or the like in the same manner as the above-mentioned stretching while heating the polyolefin microporous membrane.
  • the re-stretching may be uniaxial or biaxial stretching.
  • the re-stretching temperature is preferably below the melting point of the polyolefin composition, more preferably within the range of (T cd -20°C) to the melting point. Specifically, the temperature is preferably 70 to 135°C, more preferably 110 to 132°C. Most preferably it is 120-130°C.
  • the re-stretching ratio is preferably 1.01 to 2.0 times, particularly TD is preferably 1.1 to 1.8 times, and more preferably 1.2 to 1.6 times.
  • the MD and TD are preferably 1.01 to 1.6 times each. Note that the re-stretching ratio may be different between MD and TD.
  • the porosity and average flow diameter can be increased, and the ion permeability can be increased.
  • the orientation becomes appropriate and the melting point and shutdown temperature of the microporous polyolefin membrane become suitable.
  • the relaxation rate from the maximum re-stretching ratio is preferably 0.95 or less, more preferably 0.9 or less.
  • the wound body obtained by winding up the polyolefin microporous membrane may be subjected to an aging treatment in a constant temperature warehouse.
  • an aging treatment temperature is preferably 40°C to 80°C, more preferably 45°C to 75°C, even more preferably 50°C to 70°C.
  • shrinkage due to heat from outside air is suppressed during storage or transportation in a high-temperature environment.
  • Setting the temperature to 80° C. or lower is preferable because it prevents the product from shrinking excessively and decreasing the width-cutting yield of the product since it is close to the crystal dispersion temperature.
  • the polyolefin microporous membrane of the present invention has both high ion permeability and high voltage resistance by controlling the average flow rate diameter and skewness in the pore size distribution curve within a predetermined range.
  • a battery separator comprising the above is preferable because it has both high levels of ion permeability and voltage resistance.
  • a battery equipped with the battery separator of the present invention is preferable because it has both safety and output characteristics.
  • ⁇ Film thickness> A test piece was cut into a 95 mm square piece from an arbitrary position of the polyolefin microporous membrane. Using a contact film thickness meter (manufactured by Mitutoyo, "Lightmatic" (registered trademark), VL-50B (carbide spherical measuring tip ⁇ 10.5 mm)), measure each of five arbitrary points on the test piece. The thickness of the sample was measured at a measurement pressure of 0.01N. The average value of the thicknesses at these five points was defined as the thickness of the polyolefin microporous membrane. The measurement environment was within the range of 23 ⁇ 2°C.
  • ⁇ Piercing strength converted to basis weight> A microporous polyolefin membrane with a basis weight of W1 (g/m 2 ) fixed on a sample holder was pierced at a speed of 2 (mm/sec) with a needle with a diameter of 1 mm and a spherical tip using Kato Tech's KES-G5.
  • the maximum load La at that time was measured under the following conditions. This measurement is sometimes abbreviated as a puncture test.
  • a sample in a dry state (hereinafter also simply referred to as “dry sample”) and a sample in a wet state whose pores are filled with a measurement liquid Galwick (perfluoropolyether) whose surface tension is known (hereinafter simply referred to as “ (also referred to as “wet sample”), POROUS MATERIALS, INC.
  • dry sample a sample in a dry state
  • wet sample a sample in a wet state whose pores are filled with a measurement liquid Galwick (perfluoropolyether) whose surface tension is known
  • the relationship between air pressure and air flow rate was measured using a Palm porometer (model: CFP-1500A) manufactured by CFP Corporation, and a ventilation curve (DryCurve) for a dry sample and a ventilation curve (WetCurve) for a wet sample were obtained.
  • a wet sample whose pores are filled with the measuring liquid exhibits properties similar to those of a capillary tube filled with liquid.
  • the air pressure overcomes the surface tension of the liquid to be measured in the pores, starting with the pores with the largest diameter, and the liquid to be measured is forced out of the pores.
  • the sample eventually becomes dry. Therefore, the pore diameter can be calculated by measuring the pressure at which liquid is forced out of the pore.
  • the skewness S in the pore size distribution curve was determined by the following formula.
  • the pore size distribution PSF sj was obtained by normalizing the total value of the pore size distribution PSF j to 1 using (Equation 4), and the average pore diameter was obtained from the pore size distribution curve using (Equation 5), and was set as D avg .
  • the skewness S was determined using (Equation 6).
  • PSF sj PSF j / ⁇ PSF j ...
  • the weight average molecular weights of the polyolefin resin and the polyolefin constituting the microporous polyolefin membrane were determined by gel permeation chromatography (GPC) under the following measurement conditions.
  • the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane was calculated by the following procedure.
  • Detection intensity (elution curve) with respect to elution time was calculated from the differential refractive index detector (RI detector) of GPC, and the elution time was converted into molecular weight.
  • RI detector differential refractive index detector
  • the baseline of the elution curve was set as the starting point at the retention time at the peak rise, the end point at the retention time at the peak end, and the peak detection interval was 0.017 minutes.
  • (C) Calculate the differential value of the curve with respect to the logarithm of each molecular weight, and the horizontal axis is the logarithm of the molecular weight log(M), and the vertical axis is the value dw/dlog(M) obtained by differentiating the concentration fraction with the logarithm of the molecular weight.
  • a differential molecular weight distribution curve was obtained by plotting. In the obtained differential molecular weight distribution curve, the molecular weight at which the value dw/dlog (M) obtained by differentiating the concentration fraction by the logarithm of the molecular weight was maximized was determined.
  • the area percentage of the molecular weight of 30,000 or less was calculated when the entire area percentage of the obtained differential molecular weight distribution curve was taken as 100%.
  • Measurement conditions/measuring device Agilent high temperature GPC device PL-GPC220 ⁇ Column: Agilent PL1110-6200 (20 ⁇ m MIXED-A) x 2 ⁇ Column temperature: 160°C ⁇ Solvent (mobile phase): 1,2,4-trichlorobenzene ⁇ Solvent flow rate: 1.0 mL/min ⁇ Sample concentration: 0.1% by mass (dissolution conditions: 160°C/3.5 hours) ⁇ Injection volume: 500 ⁇ L ⁇ Detector: Agilent differential refractive index detector (RI detector) - Viscometer: Agilent viscosity detector - Calibration curve: Created by the universal calibration curve method using a monodisperse polystyrene standard sample.
  • RI detector refractive index detector
  • Viscometer Agilent viscosity
  • the shutdown temperature of the polyolefin microporous membrane was measured by the following method.
  • the polyolefin microporous membrane is exposed to an atmosphere at 30°C, and the air permeation resistance is measured while increasing the temperature at a rate of 5°C/min.
  • the temperature at which the air permeability resistance of the polyolefin microporous membrane reached 100,000 seconds/100 cc was defined as the shutdown temperature.
  • the air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009.
  • Air permeability resistance> A test piece was cut into a 5 cm square piece from an arbitrary position of the microporous polyolefin membrane. Using the digital Oken type air resistance tester EGO-1T manufactured by Asahi Seiko Co., Ltd., fix the test piece so that there are no wrinkles in the measurement area, and measure the air resistance in accordance with JIS P8117:2009. The degree was measured.
  • the dielectric breakdown voltage of the polyolefin microporous membrane was evaluated using the following method.
  • a polyolefin microporous membrane cut into a circle with a diameter of 60 mm was placed on a square aluminum plate with sides of 150 mm, and a brass cylindrical electrode with a diameter of 50 mm, a height of 30 mm, and a weight of 500 g was placed on top of the membrane.
  • An industrial TOS9201 dielectric breakdown property tester was connected.
  • a voltage was applied at a boost rate of 0.1 kV/sec, and the voltage value at which dielectric breakdown occurred was defined as the dielectric breakdown voltage.
  • the above operation was repeated 10 times by replacing the sample, and the average value of the obtained dielectric breakdown voltage values was determined.
  • the average value of the obtained dielectric breakdown voltage values was converted into a value per film thickness, and was defined as the thickness-converted dielectric breakdown voltage (dielectric breakdown voltage/film thickness) of the microporous polyolefin film.
  • Example 1 21 parts by mass of a polyolefin resin containing 70% by mass of ultra-high molecular weight polyethylene with a Mw of 1.5 ⁇ 10 6 and a melting point of 136°C and 30% by mass of high-density polyethylene with a Mw of 1.0 ⁇ 10 5 and a melting point of 132°C.
  • the mixture was charged into a screw extruder, and 79 parts by mass of liquid paraffin [35 cSt (40° C.)] was added from the side feeder of the twin screw extruder, and the mixture was melted and kneaded in the twin screw extruder to prepare a polyolefin solution.
  • the obtained polyolefin solution was supplied from a twin-screw extruder to a T-die and extruded into a sheet-like molded product.
  • the extruded molded product was taken up with a cooling roll to form a gel-like sheet.
  • the obtained gel-like sheet was longitudinally stretched by a roll method at a stretching temperature of 109.0° C. so that the stretching temperature was 6.1 times. Subsequently, it was introduced into a tenter and transversely stretched at a stretching temperature of 127.0° C. and a stretching ratio of 7.6 times.
  • the membrane after stretching was washed in a methylene chloride washing tank to remove liquid paraffin.
  • the washed membrane was dried, re-stretched in a tenter at 130.8° C. at a stretching ratio of 1.6 times, and then thermally relaxed at a relaxation rate of 0.94%.
  • the wound body was placed in a thermostatic chamber at 60° C. for 24 hours for aging treatment, and a microporous polyolefin membrane was obtained.
  • Example 2 In polyethylene resin, the mixing ratio of ultra-high molecular weight polyethylene, the mixing ratio of low molecular weight polyethylene, the mixing ratio of polyolefin resin and liquid paraffin, the magnification and temperature of longitudinal stretching, the magnification and temperature of transverse stretching, and the magnification and temperature of re-transverse stretching.
  • the polyolefin was produced in the same manner as in Example 1, except that the conditions were changed to those listed in Table 1, and the rotational speed and discharge rate of the twin-screw extruder were adjusted so that the final film thickness became the values listed in Table 1. A microporous membrane was obtained.
  • Example 3 20 parts by mass of a polyolefin resin containing 90% by mass of ultra-high molecular weight polyethylene with a Mw of 1.5 ⁇ 10 6 and a melting point of 136° C. and 10% by mass of high-density polyethylene with a Mw of 1.0 ⁇ 10 5 and a melting point of 132°C.
  • the mixture was charged into a screw extruder, 80 parts by mass of liquid paraffin [35 cSt (40° C.)] was added from the side feeder of the twin screw extruder, and the mixture was melted and kneaded in the twin screw extruder to prepare a polyolefin solution.
  • the obtained polyolefin solution was supplied from a twin-screw extruder to a T-die and extruded into a sheet-like molded product.
  • the extruded molded product was taken up with a cooling roll to form a gel-like sheet.
  • the obtained gel-like sheet was introduced into a tenter, and longitudinally stretched at a stretching temperature of 115.0°C to a stretching ratio of 8.0 times, and transversely stretched at a stretching temperature of 115.0°C to a stretching ratio of 8.0 times. was carried out.
  • the membrane after stretching was washed in a methylene chloride washing tank to remove liquid paraffin.
  • the washed membrane was dried and heat-treated at 125.0°C in a constant temperature bath to obtain a microporous polyolefin membrane.
  • a polyethylene resin composition consisting of 30% by mass of ultra-high molecular weight polyethylene with a Mw of 2.0 ⁇ 10 6 and a melting point of 133°C, and 70% by mass of high-density polyethylene with a Mw of 5.0 ⁇ 10 5 and a melting point of 135°C.
  • the mixing ratio of polyolefin resin and liquid paraffin, the magnification and temperature of longitudinal stretching, the magnification and temperature of transverse stretching, and the magnification and temperature of re-transverse stretching were changed to the conditions listed in Table 1, and the final film thickness was as shown in Table 1.
  • a microporous polyolefin membrane was obtained in the same manner as in Example 1, except that the rotational speed and discharge amount of the twin-screw extruder were adjusted to the values described in Example 1.
  • a polyethylene resin composition consisting of 30% by mass of ultra-high molecular weight polyethylene with a Mw of 2.0 ⁇ 10 6 and a melting point of 133°C, and 70% by mass of high-density polyethylene with a Mw of 5.0 ⁇ 10 5 and a melting point of 135°C.
  • the mixing ratio of polyolefin resin and liquid paraffin, the magnification and temperature of longitudinal stretching, the magnification and temperature of transverse stretching, and the magnification and temperature of re-transverse stretching were changed to the conditions listed in Table 1, and the final film thickness was as shown in Table 1.
  • a microporous polyolefin membrane was obtained in the same manner as in Example 1, except that the rotational speed and discharge amount of the twin-screw extruder were adjusted to the values described in Example 1.
  • Second polyolefin solution 30 parts by mass of a second polyolefin resin consisting of 50% by mass of ultra-high molecular weight polyethylene with an Mw of 5.0 ⁇ 10 5 and 50% by mass of polypropylene with an Mw of 1.6 ⁇ 10 6 were charged into a twin-screw extruder. 70 parts by mass of liquid paraffin [35 cSt (40° C.)] was supplied from the side feeder of the axial extruder and melt-kneaded to prepare a second polyolefin solution.
  • a second polyolefin resin consisting of 50% by mass of ultra-high molecular weight polyethylene with an Mw of 5.0 ⁇ 10 5 and 50% by mass of polypropylene with an Mw of 1.6 ⁇ 10 6 were charged into a twin-screw extruder. 70 parts by mass of liquid paraffin [35 cSt (40° C.)] was supplied from the side feeder of the axial extruder and melt-kneaded to prepare a second polyolefin
  • the first and second polyolefin solutions are supplied from each twin-screw extruder to the three-layer die, and the layer thickness ratio of the first layer/second layer/first layer is 35/30/35. I pushed it out like that.
  • the extruded product was cooled while being taken up by a cooling roll whose temperature was controlled at 30° C. to form an unstretched gel-like three-layer sheet.
  • the obtained unstretched gel-like three-layer sheet was subjected to simultaneous biaxial stretching of 5 times in MD and 5 times in TD using a tenter device set at a temperature of 113.0° C. as a first stretch. Heat setting was performed at 0°C to obtain a biaxially stretched sheet.
  • the obtained biaxially stretched sheet was washed with methylene chloride to extract and remove residual liquid paraffin, and then dried.
  • the dried biaxially stretched sheet was heated to 111.0°C for second stretching using a tenter-type stretching machine, and then laterally stretched again to a width 1.4 times the width at the entrance of the stretching machine, and then fixed. Heat treatment was performed at a temperature of 110.0° C.
  • the polyolefin microporous membranes of Examples 1 to 3 had small and large pores with an average flow diameter of 26.5 to 30.4 nm and a skewness of 0.3 to 1.1 in the pore size distribution curve. This resulted in a microporous polyolefin membrane with a suppressed pore size distribution on the pore diameter side, and was able to achieve both high voltage resistance and air permeation resistance.
  • the battery separator according to the embodiment of the present invention is applicable to nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium ion secondary batteries, lithium polymer secondary batteries, lithium-sulfur batteries, etc. It can be suitably used as a separator for batteries such as secondary batteries. In particular, it is preferable to use it as a separator for lithium ion secondary batteries.

Abstract

The present invention addresses the problem of providing a separator which achieves a good balance between ion permeability and withstand voltage properties at high levels by adequately controlling the pore diameters of a polyolefin microporous membrane. The present invention provides a polyolefin microporous membrane which has the features (1) and (2) described below. (1) The mean flow pore diameter as determined by a porometer is 32 nm or less. (2) With respect to the pore diameter distribution as determined by a porometer, the skewness is -1.0 to 1.5.

Description

ポリオレフィン微多孔膜、電池用セパレータおよび電池Polyolefin microporous membrane, battery separator and battery
 本発明はポリオレフィン微多孔膜、電池用セパレータおよび電池に関する。 The present invention relates to a polyolefin microporous membrane, a battery separator, and a battery.
 微多孔膜は、濾過膜、透析膜などのフィルター、電池用セパレータや電解コンデンサー用セパレータなどの種々の分野に用いられる。その中でも、近年、小型で軽量であり、エネルギー密度が高いリチウムイオン電池に用いる電池用セパレータとして注目されている。 Microporous membranes are used in various fields such as filters such as filtration membranes and dialysis membranes, separators for batteries and separators for electrolytic capacitors. Among these, in recent years, it has attracted attention as a battery separator used in lithium ion batteries, which are small, lightweight, and have high energy density.
 電池用セパレータには、電池の安全性および出力特性の観点から、電気絶縁性、化学的安定性、機械的強度、イオン透過性等様々な特性が要求される。特にリチウムイオン電池では、エネルギー密度が高いことから、短絡が生じると電池温度が急激に上昇して発火や爆発を伴う危険性がある。そこで、リチウムイオン電池に用いられるセパレータには、温度が過度に上昇した際に、セパレータが溶融することで孔を閉塞し、電池反応を停止させるシャットダウン(SD)機能が求められる。リチウムイオン電池用セパレータとしては、化学的安定性やシャットダウン特性の観点から、ポリオレフィン微多孔膜が特に好適に利用されている。 Battery separators are required to have various properties such as electrical insulation, chemical stability, mechanical strength, and ion permeability from the viewpoint of battery safety and output characteristics. In particular, lithium-ion batteries have a high energy density, so if a short circuit occurs, the battery temperature will rise rapidly, leading to the risk of fire or explosion. Therefore, separators used in lithium ion batteries are required to have a shutdown (SD) function that melts the separator to close the pores and stop the battery reaction when the temperature rises excessively. As a separator for lithium ion batteries, microporous polyolefin membranes are particularly preferably used from the viewpoint of chemical stability and shutdown characteristics.
 近年、リチウムイオン電池の高容量化、高出力化のため、セパレータとしては、薄膜化や高いイオン透過性が求められている。セパレータの薄膜化に伴い、電極間距離が短くなり短絡を生じやすくなるため、セパレータにはより高い耐電圧性(絶縁破壊電界強度)が求められる。またこの他にも、近年では電池安全性の向上に向けて、セパレータの機械的強度の向上やシャットダウン温度の低減が求められている。 In recent years, in order to increase the capacity and output of lithium ion batteries, separators are required to be thinner and have higher ion permeability. As the separator becomes thinner, the distance between the electrodes becomes shorter and short circuits are more likely to occur. Therefore, the separator is required to have higher voltage resistance (dielectric breakdown field strength). In addition to this, in recent years there has been a demand for improvements in the mechanical strength of separators and reductions in shutdown temperatures in order to improve battery safety.
 例えば、特許文献1にはポリオレフィン微多孔膜を構成するポリオレフィンの粘度平均分子量を制御することで、耐電圧性に優れたセパレータを作製できる旨が記載されている。 For example, Patent Document 1 describes that a separator with excellent voltage resistance can be produced by controlling the viscosity average molecular weight of the polyolefin constituting a microporous polyolefin membrane.
 また、特許文献2には原料としてポリプロピレンを含有し、かつポリエチレン層との積層セパレータとすることで小孔径ながら透過性に優れたセパレータを作製できる旨が記載されている。 Additionally, Patent Document 2 describes that by containing polypropylene as a raw material and making it a laminated separator with a polyethylene layer, a separator with excellent permeability can be produced despite having small pores.
特開2022-051238号公報JP2022-051238A 特開2022-059158号公報JP2022-059158A
 リチウムイオン電池用セパレータに要求されるイオン透過性、耐電圧性、機械的強度や低温でのシャットダウン特性は、しばしばトレードオフの関係にあり、これらを高い水準で両立させることは極めて困難である。 The ion permeability, voltage resistance, mechanical strength, and low-temperature shutdown characteristics required of lithium-ion battery separators are often in a trade-off relationship, and it is extremely difficult to achieve high levels of both.
 例えば、特許文献1にはポリオレフィン微多孔膜を構成するポリオレフィンの粘度平均分子量を高くすることで、孔径を小さく、かつ均一にしやすくなり、耐電圧性に優れたセパレータを作製できる旨が記載されている。しかしながらこのような小孔径のセパレータは透気抵抗度が高く、イオン透過性が不十分となりやすい。また、孔径の均一性については定量的な記載がなく、耐電圧性との関係は明確ではない。 For example, Patent Document 1 describes that by increasing the viscosity average molecular weight of the polyolefin constituting a microporous polyolefin membrane, the pore diameter can be made smaller and more uniform, and a separator with excellent voltage resistance can be produced. There is. However, such a separator with a small pore size has a high air permeation resistance and tends to have insufficient ion permeability. Furthermore, there is no quantitative description of the uniformity of pore diameters, and the relationship with voltage resistance is not clear.
 特許文献2には、孔径の均一性の尺度として、孔径分布曲線において最大ピークを示す孔径付近の分布強度の割合が使用されているが、その割合と耐電圧性との関係については記載されていない。絶縁破壊はセパレータの大孔径領域で生じやすいことから、特許文献2に記載の孔径均一性の評価指標では、セパレータの耐電圧性を保証するには不十分である。また、特許文献2に記載のセパレータはポリプロピレンを含有する層とポリエチレンのみからなる層を積層構造とすることで小孔径と高透過性を両立しているが、積層構造であるためにセパレータ全体の構造としては均一ではなく、耐電圧性に対しては不利と考えられる。 Patent Document 2 uses the ratio of distribution intensity near the pore diameter that shows the maximum peak in the pore size distribution curve as a measure of pore diameter uniformity, but does not describe the relationship between the ratio and withstand voltage property. do not have. Since dielectric breakdown is likely to occur in the large pore diameter region of the separator, the evaluation index of pore diameter uniformity described in Patent Document 2 is insufficient to guarantee the voltage resistance of the separator. In addition, the separator described in Patent Document 2 has a laminated structure of a layer containing polypropylene and a layer consisting only of polyethylene to achieve both small pore size and high permeability. The structure is not uniform and is considered to be disadvantageous in terms of voltage resistance.
 このような事情に鑑みて、本発明はポリオレフィン微多孔膜の孔径を適切に制御することで、イオン透過性と耐電圧性を高い水準で両立したセパレータを提供することを目的とするものである。 In view of these circumstances, the present invention aims to provide a separator that achieves both ion permeability and voltage resistance at a high level by appropriately controlling the pore diameter of a microporous polyolefin membrane. .
 前記課題を解決するために、本発明者らは鋭意検討した結果、ポリオレフィン微多孔膜の平均流量径および孔径分布曲線における歪度を所定の範囲に制御することで、高いイオン透過性と高い耐電圧性の両立が可能であることを見出し、本発明に到達した。本発明の構成を以下に示す。
(1)下記AおよびBの特徴を有するポリオレフィン微多孔膜。
A.ポロメータで測定される平均流量径が32nm以下であること。
B.ポロメータで測定される孔径分布曲線における歪度が-1.0以上1.5以下であること。
(2)下記CおよびDの特徴を有する前記(1)に記載のポリオレフィン微多孔膜。
C.GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、最大ピークにおける分子量が4.0×10以上であること。
D.GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、分子量3.0×10以下の面積比率が15%以上であること。
(3)目付換算突刺強度が80gf/(g/m)以上である前記(1)または(2)に記載のポリオレフィン微多孔膜。
(4)シャットダウン温度が138℃以下である前記(1)~(3)のいずれかに記載のポリオレフィン微多孔膜。
(5)前記(1)~(4)のいずれかに記載のポリオレフィン微多孔膜を備える電池用セパレータ。
(6)前記(5)に記載の電池用セパレータを備える電池。
In order to solve the above problems, the present inventors conducted intensive studies and found that by controlling the average flow diameter and skewness in the pore size distribution curve of a microporous polyolefin membrane within a predetermined range, high ion permeability and high resistance can be achieved. It was discovered that it is possible to achieve both voltage characteristics, and the present invention was achieved. The configuration of the present invention is shown below.
(1) A polyolefin microporous membrane having the following characteristics A and B.
A. The average flow diameter measured with a porometer is 32 nm or less.
B. The skewness in the pore size distribution curve measured with a porometer is -1.0 or more and 1.5 or less.
(2) The polyolefin microporous membrane described in (1) above, which has the characteristics C and D below.
C. In the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane measured by GPC, the molecular weight at the maximum peak is 4.0 × 10 5 or more.
D. In the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane measured by GPC, the area ratio of the molecular weight of 3.0 x 10 4 or less is 15% or more.
(3) The microporous polyolefin membrane according to (1) or (2) above, which has a puncture strength in terms of basis weight of 80 gf/(g/m 2 ) or more.
(4) The microporous polyolefin membrane according to any one of (1) to (3) above, which has a shutdown temperature of 138° C. or lower.
(5) A battery separator comprising the microporous polyolefin membrane according to any one of (1) to (4) above.
(6) A battery comprising the battery separator described in (5) above.
 本発明のポリオレフィン微多孔膜は、高いイオン透過性と高い耐電圧性の両方を有し、電池用セパレータとして組み込んだ電池において出力特性と耐短絡性を高い水準で併せ持たせることができる。 The microporous polyolefin membrane of the present invention has both high ion permeability and high voltage resistance, and can provide a high level of output characteristics and short circuit resistance in a battery incorporated as a battery separator.
 本発明は平均流量径および孔径分布曲線における歪度を規定したポリオレフィン微多孔膜に関する。 The present invention relates to a microporous polyolefin membrane with defined mean flow diameter and skewness in a pore size distribution curve.
 以下に、本発明の構成を実施の形態の一例に基づいて詳細に説明するが、本発明はこれに限定されるものではなく、その要旨を逸脱しない範囲で様々な変形が可能である。 The configuration of the present invention will be described in detail below based on an example of an embodiment, but the present invention is not limited thereto, and various modifications can be made without departing from the gist thereof.
 <平均流量径>
 本発明におけるポリオレフィン微多孔膜の平均流量径は、後述する測定条件において、POROUSMATERIALS,INC.製のパームポロメーター(型式:CFP-1500A)または同等の測定機能を有するパームポロメーターを用いて得た乾燥試料の通気曲線(DryCurve)および湿潤試料の通気曲線(WetCurve)を用いて算出される値を表す。
<Average flow diameter>
The average flow diameter of the polyolefin microporous membrane in the present invention was determined by POROUS MATERIALS, INC. under the measurement conditions described below. Calculated using the dry sample ventilation curve (DryCurve) and wet sample ventilation curve (WetCurve) obtained using a Palm porometer (Model: CFP-1500A) made by Co., Ltd. or a Palm porometer with an equivalent measurement function. represents a value.
 本発明のポリオレフィン微多孔膜は、平均流量径が32nm以下である。より好ましくは31nm以下、さらに好ましくは30nm以下が好ましい。平均流量径を32nm以下とすることにより、ポリオレフィン微多孔膜の耐電圧性が優れたものとなる。平均流量径の下限値は、実質的に10nm以上である。平均流量径を10nm以上とすることにより、ポリオレフィン微多孔膜のイオン透過性が優れたものとなる。平均流量径を上記の範囲とすることは、ポリオレフィン微多孔膜を構成するポリオレフィンの分子量分布および製膜条件を適宜調整することで可能である。例えばポリオレフィン微多孔膜を構成するポリオレフィンの分子量を高くする、あるいはポリオレフィン溶液中のポリオレフィン樹脂濃度を高くすると、ポリオレフィン溶液の溶融混練時に分子鎖の架橋点が増えるため、平均流量径が小さくなりやすい。ポリオレフィン微多孔膜を構成するポリオレフィンの分子量を高くするには、分子量の高いポリオレフィン原料を使用するか、あるいは二軸押出機における押出量に対するスクリュー回転数の比を高くすること等により、溶融混練時のせん断による分子量劣化を抑制する等の方法が挙げられる。 The polyolefin microporous membrane of the present invention has an average flow diameter of 32 nm or less. The thickness is more preferably 31 nm or less, and even more preferably 30 nm or less. By setting the average flow diameter to 32 nm or less, the polyolefin microporous membrane has excellent voltage resistance. The lower limit of the average flow diameter is substantially 10 nm or more. By setting the average flow diameter to 10 nm or more, the polyolefin microporous membrane has excellent ion permeability. Setting the average flow diameter within the above range can be achieved by appropriately adjusting the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane and the film forming conditions. For example, when the molecular weight of the polyolefin constituting the polyolefin microporous membrane is increased, or when the concentration of the polyolefin resin in the polyolefin solution is increased, the number of crosslinking points of molecular chains increases during melt-kneading of the polyolefin solution, which tends to reduce the average flow diameter. In order to increase the molecular weight of the polyolefin constituting the polyolefin microporous membrane, it is possible to increase the molecular weight during melt-kneading by using a polyolefin raw material with a high molecular weight or by increasing the ratio of screw rotation speed to extrusion amount in a twin-screw extruder. Examples of methods include suppressing molecular weight deterioration due to shearing.
 <孔径分布曲線における歪度>
 本発明のポリオレフィン微多孔膜の孔径分布曲線における歪度は、後述する測定条件において、POROUSMATERIALS,INC.製のパームポロメーター(型式:CFP-1500A)または同等の測定機能を有するパームポロメーターを用いて測定される値を表す。
<Skewness in pore size distribution curve>
The skewness in the pore size distribution curve of the microporous polyolefin membrane of the present invention was determined by POROUS MATERIALS, INC. under the measurement conditions described below. The values are measured using a palm porometer (model: CFP-1500A) manufactured by Co., Ltd. or a palm porometer with an equivalent measurement function.
 本発明のポリオレフィン微多孔膜は、後述する孔径分布曲線における歪度が-1.0以上1.5以下である。より好ましくは-0.8以上1.0以下、さらに好ましくは、-0.5以上0.5以下が好ましい。孔径分布曲線における歪度は、分布の偏り度合を表し、その値が高いと平均流量径より大きい孔径の分布が多いことを意味し、その値が低いと平均流量径より小さい孔径の分布が多いことを意味する。また、歪度には平均流量径との差が大きい孔径の影響が強く表れる。そのため孔径分布曲線における歪度が低すぎると、開孔が不十分な領域が存在するためにポリオレフィン微多孔膜のイオン透過性が低くなり、高すぎると電圧が印加された際に大孔径領域での電荷の加速が促進されるために、ポリオレフィン微多孔膜の耐電圧性が低くなる。特にポリオレフィン微多孔膜の絶縁破壊は局所的な現象であり、部分的にでも孔径の大きな箇所があるとポリオレフィン微多孔膜としての耐電圧性は著しく低下すると考えられる。部分的に孔径の大きな箇所が発生する理由は必ずしも明らかではないが、ポリオレフィン微多孔膜の開孔プロセスは、延伸時の降伏現象による球晶の破壊、次いで延伸による微細孔の開孔、と進むため、結晶化時点での構造ムラや延伸ムラがあると延伸初期の球晶破壊のステップでできた大きな孔が残り、大孔径側に分布が偏りやすくなると推定している。 The polyolefin microporous membrane of the present invention has a skewness of −1.0 or more and 1.5 or less in a pore size distribution curve described below. More preferably -0.8 or more and 1.0 or less, still more preferably -0.5 or more and 0.5 or less. Skewness in a pore size distribution curve represents the degree of bias in the distribution; a high value means that there is a large distribution of pore diameters larger than the average flow diameter, and a low value means that there are many distributions with pore diameters smaller than the average flow diameter. It means that. In addition, the skewness is strongly influenced by the pore diameter, which has a large difference from the average flow diameter. Therefore, if the skewness in the pore size distribution curve is too low, the ion permeability of the polyolefin microporous membrane will be low due to the presence of regions with insufficient openings, and if it is too high, the ion permeability of the polyolefin microporous membrane will be low when a voltage is applied. Since the acceleration of the charges is promoted, the voltage resistance of the polyolefin microporous membrane becomes low. In particular, dielectric breakdown of a microporous polyolefin film is a local phenomenon, and if there is even a partial portion with large pores, it is thought that the voltage resistance of the microporous polyolefin film will be significantly reduced. Although it is not necessarily clear why some areas have large pores, the pore-opening process in microporous polyolefin membranes proceeds through the destruction of spherulites due to yielding during stretching, followed by the opening of micropores through stretching. Therefore, it is estimated that if there is structural unevenness or stretching unevenness at the time of crystallization, large pores created in the step of spherulite destruction at the initial stage of stretching will remain, and the distribution will tend to be biased towards the large pore diameter side.
 孔径分布曲線における歪度が上記の範囲内であると、ポリオレフィン微多孔膜の透気抵抗度と耐電圧性のバランスが優れたものとなる。孔径分布曲線における歪度を上記の範囲とすることは、ポリオレフィン微多孔膜を構成するポリオレフィンの分子量分布および製膜条件を適宜調整することで可能である。例えばポリオレフィン微多孔膜を構成するポリオレフィンの分子量を高くする、あるいはポリオレフィン溶液中のポリオレフィン樹脂濃度を高くすると、ポリオレフィン溶液の溶融混練時に分子鎖の架橋点が増え、構造ムラや延伸ムラが少なくなるために、歪度の絶対値が小さくなる。また、ポリオレフィン微多孔膜を構成するポリオレフィンの分子量分布を狭くすることによっても同様に構造ムラや延伸ムラが少なくなり、歪度の絶対値が小さくなる。延伸ムラをなくす手段としては、延伸倍率を高くすること等も有効である。 When the skewness in the pore size distribution curve is within the above range, the polyolefin microporous membrane has an excellent balance between air permeability resistance and voltage resistance. Setting the skewness in the pore size distribution curve within the above range can be achieved by appropriately adjusting the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane and the film forming conditions. For example, increasing the molecular weight of the polyolefin constituting a microporous polyolefin membrane, or increasing the concentration of polyolefin resin in the polyolefin solution, increases the number of crosslinking points in molecular chains during melt-kneading of the polyolefin solution, which reduces structural unevenness and stretching unevenness. , the absolute value of skewness becomes smaller. Further, by narrowing the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane, structural unevenness and stretching unevenness are similarly reduced, and the absolute value of the skewness is reduced. Increasing the stretching ratio is also effective as a means for eliminating stretching unevenness.
 <微分分子量分布曲線におけるピーク分子量>
 本発明のポリオレフィン微多孔膜は、GPCで得られたポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、濃度分率wを分子量の対数で微分した値dw/dlog(M)が最大となる分子量(以下最大ピークにおける分子量と記載する)が4.0×10以上であることが好ましく、5.0×10以上であることがより好ましい。上限は、シャットダウン温度等の観点から、1.0×10以下が好ましい。最大ピークにおける分子量が上記の範囲にあると、高分子量成分がポリオレフィン微多孔膜を構成するポリオレフィンの主骨格を形成し、分子鎖の架橋点が増えることで未開孔部や大孔径部の発生が抑制される。そのため歪度の絶対値が小さくなりやすい。また延伸倍率を高くした際に小孔径化が促進され、加えて突刺強度を高くすることができる。
<Peak molecular weight in differential molecular weight distribution curve>
The polyolefin microporous membrane of the present invention has a differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane obtained by GPC, in which the value dw/dlog (M) obtained by differentiating the concentration fraction w by the logarithm of the molecular weight is the maximum. The molecular weight (hereinafter referred to as the molecular weight at the maximum peak) is preferably 4.0×10 5 or more, more preferably 5.0×10 5 or more. The upper limit is preferably 1.0×10 6 or less from the viewpoint of shutdown temperature and the like. If the molecular weight at the maximum peak is within the above range, the high molecular weight component will form the main skeleton of the polyolefin that makes up the microporous polyolefin membrane, and the number of crosslinking points in the molecular chain will increase, which will prevent the formation of unopened pores and large pores. suppressed. Therefore, the absolute value of skewness tends to become small. Further, when the stretching ratio is increased, the pore size is promoted to be smaller, and in addition, the puncture strength can be increased.
 <微分分子量分布曲線における分子量3万以下の面積比率>
 本発明のポリオレフィン微多孔膜は、GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線全体に占める、分子量3万以下の面積比率が15%以上であることが好ましい。また、25%以下であることが好ましく、より好ましくは20%以下である。分子量3万以下の面積比率が上記の範囲にあると、ポリオレフィン微多孔膜の骨格構造の架橋点密度や強度を高い水準で維持したまま、シャットダウン温度を低減させることができる。
<Area ratio with a molecular weight of 30,000 or less in the differential molecular weight distribution curve>
In the microporous polyolefin membrane of the present invention, it is preferable that the area ratio of the molecular weight of 30,000 or less in the entire differential molecular weight distribution curve of the polyolefin constituting the microporous polyolefin membrane measured by GPC is 15% or more. Moreover, it is preferably 25% or less, more preferably 20% or less. When the area ratio of the molecular weight of 30,000 or less is within the above range, the shutdown temperature can be reduced while maintaining the crosslinking point density and strength of the skeleton structure of the polyolefin microporous membrane at a high level.
 前記微分分子量分布曲線における最大ピーク分子量や、分子量3万以下の面積比率は、ポリオレフィン微多孔膜に用いる原料の分子量や溶融混練条件により制御できる。例えば、高分子量の原料と、低分子量の原料を用いつつ、低分子量の原料比率を一定以上とすることにより微分分子量分布曲線における最大ピークにおける分子量を高くすることができる。また、二軸押出機における押出量とスクリュー回転数の比を高くし、溶融混練時のせん断による分子量劣化を抑制する等の方法によっても、前記微分分子量分布曲線における最大ピークにおける分子量を高くすることができる。 The maximum peak molecular weight in the differential molecular weight distribution curve and the area ratio with a molecular weight of 30,000 or less can be controlled by the molecular weight of the raw material used for the microporous polyolefin membrane and the melt-kneading conditions. For example, the molecular weight at the maximum peak in the differential molecular weight distribution curve can be increased by using a high molecular weight raw material and a low molecular weight raw material and setting the ratio of the low molecular weight raw materials to a certain level or more. In addition, the molecular weight at the maximum peak in the differential molecular weight distribution curve can be increased by increasing the ratio of the extrusion amount to the screw rotation speed in a twin-screw extruder to suppress molecular weight deterioration due to shearing during melt-kneading. Can be done.
 <目付換算突刺強度>
 本発明のポリオレフィン微多孔膜は、後述する突刺試験における最大荷重を目付で除した値(以下、目付換算突刺強度とする)が、80gf/(g/m)以上であることが好ましい。なお、後述する突刺試験の記載においては使用する装置の型番を特定しているが、同等の機能を有する測定装置の使用を排除するものではない。目付換算突刺強度が上記の範囲にあると、電池として倦回した際に電極の突起や異物による破膜を防止し、短絡耐性が高くなる。目付換算突刺強度の上限値は、特に限定されないが、シャットダウン温度の上昇を抑制する観点から、130gf/(g/m)以下が好ましい。突刺強度を上記の範囲にすることは、ポリオレフィン微多孔膜を構成するポリオレフィンの分子量や製膜条件の調整によって可能である。例えばポリオレフィン微多孔膜を構成するポリオレフィンの分子量を高くすることで、分子鎖同士の絡み合いが強くなり突刺強度を高くする方向に制御できる。また延伸倍率を高くすることで、分子鎖の配向結晶化が促進され、突刺強度を高くする方向に制御できる。
<Piercing strength converted to basis weight>
The polyolefin microporous membrane of the present invention preferably has a value obtained by dividing the maximum load by the basis weight in a puncture test described below (hereinafter referred to as basis weight equivalent puncture strength) of 80 gf/(g/m 2 ) or more. Note that in the description of the puncture test described below, the model number of the device used is specified, but this does not preclude the use of a measuring device with equivalent functionality. When the puncture strength in terms of basis weight is within the above range, membrane rupture due to electrode protrusions or foreign matter is prevented when the battery is rolled up, and short-circuit resistance is increased. The upper limit of the puncture strength in terms of fabric weight is not particularly limited, but is preferably 130 gf/(g/m 2 ) or less from the viewpoint of suppressing a rise in shutdown temperature. Setting the puncture strength within the above range is possible by adjusting the molecular weight of the polyolefin constituting the microporous polyolefin membrane and film forming conditions. For example, by increasing the molecular weight of the polyolefin constituting the microporous polyolefin membrane, the entanglement between molecular chains becomes stronger and the puncture strength can be controlled to be higher. In addition, by increasing the stretching ratio, oriented crystallization of molecular chains is promoted, and the puncture strength can be controlled in a direction that increases.
 <シャットダウン温度>
 本発明のポリオレフィン微多孔膜は、シャットダウン温度が138℃以下であることが好ましい。シャットダウン温度が上記の範囲にあると、電池温度が急上昇しても発火前にセパレータが溶融してイオンの流れを遮断することで電池反応を停止させることができるため、異常時の安全性を優れたものとすることができる。シャットダウン温度の下限値は、電池の稼働温度域の観点から120℃以上が好ましい。シャットダウン温度を上記の範囲とすることは、低分子量成分の添加や製膜条件の調整によって可能である。例えば、ポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、低分子量域の面積比率を大きくするとシャットダウン温度を低減することができる。低分子量域とは、例えば分子量が3万以下の領域である。あるいは、延伸倍率を小さくすることや、延伸温度を高くすることによっても配向結晶化を抑制してシャットダウン温度を低減することができるが、これによって突刺強度は低下してしまう。したがって、所望の突刺強度とシャットダウン温度の両立は、ポリオレフィン微多孔膜を構成するポリオレフィンの分子量分布の制御とその分子量分布に適した製膜条件の調整によって実現される。
<Shutdown temperature>
The polyolefin microporous membrane of the present invention preferably has a shutdown temperature of 138°C or lower. If the shutdown temperature is within the above range, even if the battery temperature suddenly rises, the separator will melt before ignition and stop the battery reaction by blocking the flow of ions, which will improve safety in the event of an abnormality. It can be made into The lower limit of the shutdown temperature is preferably 120° C. or higher from the viewpoint of the operating temperature range of the battery. Setting the shutdown temperature within the above range is possible by adding low molecular weight components or adjusting film forming conditions. For example, in the differential molecular weight distribution curve of the polyolefin constituting the microporous polyolefin membrane, if the area ratio of the low molecular weight region is increased, the shutdown temperature can be reduced. The low molecular weight range is, for example, a range where the molecular weight is 30,000 or less. Alternatively, oriented crystallization can be suppressed and the shutdown temperature can be lowered by decreasing the stretching ratio or increasing the stretching temperature, but this reduces the puncture strength. Therefore, achieving both desired puncture strength and shutdown temperature is achieved by controlling the molecular weight distribution of the polyolefin constituting the microporous polyolefin membrane and adjusting film forming conditions suitable for the molecular weight distribution.
 <絶縁破壊電圧>
 後述する耐電圧試験により測定される特性であり、ポリオレフィン微多孔膜に電圧を印加した際に短絡が生じる最小の電圧を絶縁破壊電圧という。なお、後述する耐電圧試験の記載においては使用する装置の型番を特定しているが、同等の機能を有する測定装置の使用を排除するものではない。絶縁破壊電圧は膜厚に比例するため、薄膜化しても高い絶縁破壊電圧を得るためには膜厚当たりの絶縁破壊電圧を高くする必要がある。膜厚当たりの絶縁破壊電圧は0.20kV/μm以上が好ましい。上限は特に定まらないが、透気抵抗度の上昇を抑制する観点から0.50kV/μm以下が好ましい。絶縁破壊電圧を上記範囲とすることで、本発明のポリオレフィン微多孔膜を備えるセパレータを電池に用いた際に耐電圧性が好適となる。
<Dielectric breakdown voltage>
This is a characteristic measured by a withstand voltage test described later, and the minimum voltage at which a short circuit occurs when a voltage is applied to a microporous polyolefin membrane is called a dielectric breakdown voltage. Note that in the description of the withstand voltage test described later, the model number of the device used is specified, but this does not preclude the use of a measuring device with equivalent functionality. Since the dielectric breakdown voltage is proportional to the film thickness, it is necessary to increase the dielectric breakdown voltage per film thickness in order to obtain a high dielectric breakdown voltage even if the film is made thinner. The dielectric breakdown voltage per film thickness is preferably 0.20 kV/μm or more. Although the upper limit is not particularly determined, it is preferably 0.50 kV/μm or less from the viewpoint of suppressing an increase in air permeability resistance. By setting the dielectric breakdown voltage within the above range, the separator provided with the polyolefin microporous membrane of the present invention has suitable voltage resistance when used in a battery.
 <透気抵抗度>
後述する試験により測定される特性であり、ポリオレフィン微多孔膜の空気の通りにくさを表す。透気抵抗度が低いと、ポリオレフィン微多孔膜のリチウムイオン透過性が向上する。なお、後述する試験の記載においては使用する装置の型番を特定しているが、同等の機能を有する測定装置の使用を排除するものではない。透気抵抗度は膜厚に比例し、膜厚あたりの透気抵抗度は10秒/100cc/μm~20秒/100cc/μmの範囲であることが好ましい。上記範囲内とすることで、ポリオレフィン微多孔膜のイオン透過性および膜強度が好適となる。
<Air permeability resistance>
This is a property measured by the test described below, and represents the difficulty of air passing through a microporous polyolefin membrane. When the air permeability resistance is low, the lithium ion permeability of the polyolefin microporous membrane is improved. Although the model number of the device used is specified in the description of the test described below, this does not preclude the use of a measuring device with equivalent functionality. The air permeability resistance is proportional to the film thickness, and the air permeation resistance per film thickness is preferably in the range of 10 seconds/100 cc/μm to 20 seconds/100 cc/μm. By setting it within the above range, the ion permeability and membrane strength of the polyolefin microporous membrane become suitable.
 <ポリオレフィン微多孔膜の製造方法>
 本発明のポリオレフィン微多孔膜は、構造均一性の観点から単層であることが好ましいが、複数の層からなる多層微多孔膜であってもよい。積層数は特に限定は無く、2層積層であっても3層以上の積層であってもよい。
<Production method of polyolefin microporous membrane>
The polyolefin microporous membrane of the present invention is preferably a single layer from the viewpoint of structural uniformity, but may be a multilayer microporous membrane consisting of a plurality of layers. The number of laminated layers is not particularly limited, and may be two layers or three or more layers.
 なお、本発明においては、ポリオレフィン微多孔膜の製膜する方向に平行な方向を製膜方向、長手方向あるいはMD(Machine Direction)と称し、ポリオレフィン微多孔膜面内で製膜方向に直交する方向を幅方向あるいはTD(Transverse Direction)と称する。 In the present invention, the direction parallel to the film forming direction of the polyolefin microporous membrane is referred to as the film forming direction, longitudinal direction, or MD (Machine Direction), and the direction perpendicular to the film forming direction within the surface of the polyolefin microporous membrane is referred to as the film forming direction. is called the width direction or TD (Transverse Direction).
 本発明のポリオレフィン微多孔膜を製造する製造方法としては、下記の工程(1)~(6)を含むことが好ましい。
(1)ポリオレフィン樹脂を溶剤とともに溶融混練し、ポリオレフィン溶液を調製する工程
(2)前記ポリオレフィン溶液を押出した後、冷却してゲルシートを形成する工程
(3)ゲルシートを一軸あるいは二軸方向に延伸する工程
(4)延伸された膜から溶剤を除去し乾燥する工程
(5)乾燥した膜を一軸あるいは二軸方向に再延伸し熱処理する工程
(6)熱処理した膜をコアに巻き取った後、必要に応じてエージング処理を行う工程
以下、各工程について説明する。
The manufacturing method for manufacturing the polyolefin microporous membrane of the present invention preferably includes the following steps (1) to (6).
(1) A step of melt-kneading a polyolefin resin with a solvent to prepare a polyolefin solution. (2) A step of extruding the polyolefin solution and then cooling it to form a gel sheet. (3) A step of stretching the gel sheet in uniaxial or biaxial directions. Step (4) Step of removing the solvent from the stretched film and drying it. (5) Step of re-stretching the dried film in uniaxial or biaxial directions and heat-treating it. (6) After winding the heat-treated film around a core, Steps of performing aging treatment according to the following. Each step will be explained below.
 (1)ポリオレフィン溶液の調製
 ポリオレフィン微多孔膜は、ポリオレフィン樹脂を1種類以上含む微多孔膜であり、異なる2種類以上のポリオレフィン樹脂を含んでいてもよい。なお、機械的強度とシャットダウン特性の両立という観点から、2種類以上のポリオレフィン樹脂を含有することが特に好ましい。
(1) Preparation of polyolefin solution The polyolefin microporous membrane is a microporous membrane containing one or more types of polyolefin resins, and may contain two or more different types of polyolefin resins. In addition, from the viewpoint of achieving both mechanical strength and shutdown characteristics, it is particularly preferable to contain two or more types of polyolefin resins.
 ポリオレフィン樹脂はエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、1-ヘキセン等の単独重合体が好ましく、エチレンの単独重合体(ポリエチレン)が特に好ましい。ポリエチレンは、エチレンの単独重合体であっても良いし、エチレンと他のα-オレフィンとを含有する共重合体であってもよい。 The polyolefin resin is preferably a homopolymer of ethylene, propylene, 1-butene, 4-methyl-1-pentene, 1-hexene, etc., and a homopolymer of ethylene (polyethylene) is particularly preferred. Polyethylene may be a homopolymer of ethylene or a copolymer containing ethylene and other α-olefins.
 本発明に用いるポリオレフィン樹脂は、ポリオレフィン樹脂全体を100質量%としたとき、重量平均分子量(Mw)が1.0×10以上の超高分子量ポリオレフィン樹脂(UHPО)を40質量%以上含有することが好ましい。超高分子量ポリオレフィン樹脂の含有率は、45質量%以上がより好ましく、50質量%以上がさらに好ましい。Mwが1.0×10以上の超高分子量ポリオレフィン樹脂(UHPO)の含有比率が上記範囲であると、溶融混錬時の分子鎖のネットワークが強くなり、架橋点が増えることで大孔径部の発生を抑制し、平均流量径が小さくなりやすく、かつ孔径分布における歪度が小さくなる。また、延伸応力が大きくなり、高強度のポリオレフィン微多孔膜が得やすくなる。加えて、Mwが3.0×10以下の高密度ポリオレフィン(HDPО)を併せて含有することが好ましい。Mwが3.0×10以下の高密度ポリオレフィン樹脂の含有率は、5質量%以上が好ましく、10質量%以上がより好ましく、15質量%以上がさらに好ましい。Mwが上記範囲の高密度ポリオレフィン樹脂を含有することで、ポリオレフィン微多孔膜の骨格構造に大きく影響を与えることなく、ポリオレフィン微多孔膜全体の融点およびシャットダウン温度を低下させることができる。 The polyolefin resin used in the present invention must contain 40% by mass or more of an ultra-high molecular weight polyolefin resin (UHPO) having a weight average molecular weight (Mw) of 1.0×10 6 or more when the entire polyolefin resin is 100% by mass. is preferred. The content of the ultra-high molecular weight polyolefin resin is more preferably 45% by mass or more, and even more preferably 50% by mass or more. When the content ratio of ultra-high molecular weight polyolefin resin (UHPO) with Mw of 1.0 x 10 6 or more is within the above range, the network of molecular chains during melt kneading becomes strong and the number of crosslinking points increases, resulting in formation of large pores. The average flow diameter becomes smaller, and the skewness in the pore size distribution becomes smaller. In addition, the stretching stress increases, making it easier to obtain a high-strength microporous polyolefin membrane. In addition, it is preferable to also contain high-density polyolefin (HDPO) having an Mw of 3.0×10 5 or less. The content of the high-density polyolefin resin having a Mw of 3.0×10 5 or less is preferably 5% by mass or more, more preferably 10% by mass or more, and even more preferably 15% by mass or more. By containing a high-density polyolefin resin with Mw in the above range, the melting point and shutdown temperature of the entire microporous polyolefin membrane can be lowered without significantly affecting the skeleton structure of the microporous polyolefin membrane.
 ポリオレフィン微多孔膜は、必要に応じてポリエチレン系樹脂及びポリプロピレン系樹脂以外の樹脂成分を含んでもよい。また、本発明の効果を損なわない範囲において、酸化防止剤、熱安定剤、帯電防止剤、紫外線吸収剤、ブロッキング防止剤や充填剤、結晶造核剤、結晶化遅延剤などの各種添加物を含有してもよい。 The microporous polyolefin membrane may contain resin components other than polyethylene resin and polypropylene resin as necessary. In addition, various additives such as antioxidants, heat stabilizers, antistatic agents, ultraviolet absorbers, antiblocking agents, fillers, crystal nucleating agents, and crystallization retarders may be added to the extent that they do not impair the effects of the present invention. May be contained.
 ポリオレフィン溶液の調製は、ポリオレフィン樹脂を、可塑剤に加熱溶解させることで行う。可塑剤としては、ポリオレフィン樹脂を十分に溶解できる溶剤であれば特に限定されないが、高倍率での延伸を可能とするために、室温で液体の溶剤を用いることが好ましい。溶剤としては、ノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族、環式脂肪族又は芳香族の炭化水素、および沸点がこれらに対応する鉱油留分、並びにジブチルフタレート、ジオクチルフタレート等の室温では液状のフタル酸エステルが挙げられる。液体溶剤の含有量が安定したゲル状シートを得るために、流動パラフィンのような不揮発性の液体溶剤を用いることが特に好ましい。ポリオレフィン樹脂を可塑剤に溶解させた際のポリオレフィン溶液中のポリオレフィン樹脂の濃度は、可塑剤に対し、20~35質量部が好ましく、23~30質量部がより好ましい。ポリオレフィン溶液中のポリオレフィン樹脂の濃度が高くなると小孔径となり、さらに孔径分布における歪度が小さくなることで耐電圧性と透過性のバランスに優れたポリオレフィン微多孔膜を得ることができる。一方、ポリオレフィン溶液中のポリオレフィン樹脂の濃度が高くなりすぎると、ポリオレフィン溶液の流動性が低下することで混練ムラが発生し、ポリオレフィン微多孔膜の外観が悪くなる。ポリオレフィン溶液中のポリオレフィン樹脂濃度を上記の範囲とすることで、耐電圧性と透過性、外観のバランスに優れたポリオレフィン微多孔膜を得ることができる。 The polyolefin solution is prepared by heating and dissolving the polyolefin resin in a plasticizer. The plasticizer is not particularly limited as long as it is a solvent that can sufficiently dissolve the polyolefin resin, but in order to enable stretching at a high magnification, it is preferable to use a solvent that is liquid at room temperature. As the solvent, aliphatic, cycloaliphatic or aromatic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, liquid paraffin, mineral oil fractions with boiling points corresponding to these, and dibutyl phthalate, Examples include phthalic acid esters that are liquid at room temperature, such as dioctyl phthalate. In order to obtain a gel-like sheet with a stable liquid solvent content, it is particularly preferable to use a nonvolatile liquid solvent such as liquid paraffin. The concentration of the polyolefin resin in the polyolefin solution when the polyolefin resin is dissolved in the plasticizer is preferably 20 to 35 parts by mass, more preferably 23 to 30 parts by mass, based on the plasticizer. As the concentration of the polyolefin resin in the polyolefin solution increases, the pore size becomes smaller, and the skewness in the pore size distribution becomes smaller, making it possible to obtain a microporous polyolefin membrane with an excellent balance between voltage resistance and permeability. On the other hand, if the concentration of the polyolefin resin in the polyolefin solution becomes too high, the fluidity of the polyolefin solution decreases, causing uneven kneading, and the appearance of the polyolefin microporous membrane deteriorates. By setting the polyolefin resin concentration in the polyolefin solution within the above range, a microporous polyolefin membrane with an excellent balance of voltage resistance, permeability, and appearance can be obtained.
 (2)押出物の形成およびゲルシートの形成
 押出機中では、ポリオレフィン樹脂が完全に溶融する温度で、ポリオレフィン溶液を均一に混合する。溶融混練時の樹脂温度(溶融混練温度と略記する)は、使用するポリオレフィン樹脂によって設定を異なる温度とする必要があるが、(ポリオレフィン樹脂の融点+10℃)~(ポリオレフィン樹脂の融点+120℃)とするのが好ましい。さらに好ましくは(ポリオレフィン樹脂の融点+20℃)~(ポリオレフィン樹脂の融点+100℃)である。ここで、融点とは、JIS K7121:2012に基づき、DSCにより測定した値をいう(以下、同じ)。具体的には、例えばポリエチレン組成物は約120~140℃の融点を有するので、溶融混練温度は130~260℃が好ましく、160~230℃がさらに好ましい。
(2) Formation of extrudate and gel sheet In the extruder, the polyolefin solution is uniformly mixed at a temperature at which the polyolefin resin completely melts. The resin temperature during melt-kneading (abbreviated as melt-kneading temperature) needs to be set differently depending on the polyolefin resin used, but it ranges from (melting point of polyolefin resin + 10°C) to (melting point of polyolefin resin + 120°C). It is preferable to do so. More preferably, the temperature range is from (melting point of polyolefin resin +20°C) to (melting point of polyolefin resin +100°C). Here, the melting point refers to a value measured by DSC based on JIS K7121:2012 (the same applies hereinafter). Specifically, for example, since the polyethylene composition has a melting point of about 120 to 140°C, the melt-kneading temperature is preferably 130 to 260°C, more preferably 160 to 230°C.
 溶融混練温度を上記範囲とすることで、押出物に未溶融物が発生し、後の延伸工程で破膜等を引き起こす原因となることを抑制することができる。また、ポリオレフィンの熱分解が抑制され、得られるポリオレフィン微多孔膜の強度の低下を抑制することができる。さらに、押出物の分解物が冷却ロールや延伸工程上のロールなどに析出し、シートに付着することによる外観悪化を抑制することから好ましい。 By setting the melt-kneading temperature within the above range, it is possible to suppress the generation of unmelted substances in the extrudate, which may cause membrane rupture or the like in the subsequent stretching step. In addition, thermal decomposition of the polyolefin is suppressed, and a decrease in strength of the resulting microporous polyolefin membrane can be suppressed. Furthermore, it is preferable because deterioration of the appearance due to decomposition products of the extrudate depositing on cooling rolls, rolls during the stretching process, etc. and adhering to the sheet is suppressed.
 次に、得られた押出物を冷却することによりゲル状シートが得られる。冷却により、溶剤で分離されたポリオレフィンのミクロ相を固定化することができる。冷却工程においては、ゲル状シートを10~50℃まで冷却するのが好ましい。冷却は100℃以下までは30℃/分以上の速度で行うのが好ましい。冷却速度が30℃/分未満では、結晶化度が上昇し、延伸に適したゲル状シートとなりにくい。一般に冷却速度が遅いと、比較的大きな結晶が形成されるので、ゲル状シートの高次構造が粗くなり、それを形成するゲル構造も大きなものとなる。対して冷却速度が速いと、比較的小さな結晶が形成されるので、ゲル状シートの高次構造が密となり、均一延伸に加え、フィルムの高タフネス化に繋がる。 Next, a gel-like sheet is obtained by cooling the obtained extrudate. Cooling allows the solvent-separated polyolefin microphase to be immobilized. In the cooling step, the gel sheet is preferably cooled to 10 to 50°C. Cooling is preferably carried out at a rate of 30° C./min or more until the temperature reaches 100° C. or less. If the cooling rate is less than 30° C./min, the crystallinity will increase and it will be difficult to form a gel-like sheet suitable for stretching. Generally, when the cooling rate is slow, relatively large crystals are formed, so that the higher-order structure of the gel-like sheet becomes coarse and the gel structure forming it also becomes large. On the other hand, when the cooling rate is high, relatively small crystals are formed, so that the higher-order structure of the gel-like sheet becomes dense, which leads to uniform stretching and increased toughness of the film.
 冷却方法としては、冷風、冷却水、その他の冷却媒体に直接接触させる方法、冷媒で冷却したロールに接触させる方法、キャスティングドラムを用いる方法等がある。 Cooling methods include direct contact with cold air, cooling water, or other cooling medium, contact with a roll cooled with a refrigerant, and use of a casting drum.
 本発明のポリオレフィン微多孔膜は、上述した単層の他に、本発明の効果を損なわない範囲において、それぞれ所望の樹脂を含んでなるゲル状シートを積層させた積層体を用いても良い。ポリオレフィン微多孔膜を積層体とする方法としては、例えば、所望の樹脂を必要に応じて調製し、これらの樹脂を別々に押出機に供給して溶剤と混ぜ、所望の温度で溶融させ、ポリマー管あるいはダイ内部で合流させて、目的とするそれぞれの積層厚みでスリット状ダイから押出すことで、積層体を形成する方法がある。 In addition to the above-mentioned single layer, the microporous polyolefin membrane of the present invention may be a laminate in which gel-like sheets each containing a desired resin are laminated to the extent that the effects of the present invention are not impaired. To make a laminate from a polyolefin microporous membrane, for example, desired resins are prepared as necessary, these resins are separately fed to an extruder, mixed with a solvent, melted at a desired temperature, and the polymer is made into a laminate. There is a method of forming a laminate by merging them inside a tube or die and extruding them from a slit-shaped die to the desired thickness of each layer.
 (3)延伸工程
 次に、得られたゲル状シートを延伸する。用いられる延伸方法としては、ロール延伸機によるMD一軸延伸、テンターによるTD一軸延伸、ロール延伸機とテンター、或いはテンターとテンターとの組み合わせによる逐次二軸延伸、同時二軸テンターによる同時二軸延伸などが挙げられる。延伸倍率は、膜厚の均一性の観点より、ゲル状シートの厚さによって異なるが、いずれの方向でも5倍以上に延伸することが好ましい。面積倍率では、25倍以上が好ましく、さらに好ましくは35倍以上、さらにより好ましくは45倍以上である。面積倍率を上記の範囲とすることで、延伸が不十分で膜の均一性が損なわれることを抑制し、耐電圧性および強度の観点から優れたポリオレフィン微多孔膜が得られ、好適となる。また、面積倍率は150倍以下が好ましい。面積倍率を150倍以下とすることで、ポリオレフィン微多孔膜の製造中に破れが発生して生産性が低下することを防止すると共に、配向が過度に進むことでポリオレフィン微多孔膜の融点およびシャットダウン温度が上昇することを抑制する。
(3) Stretching process Next, the obtained gel-like sheet is stretched. Stretching methods used include MD uniaxial stretching using a roll stretching machine, TD uniaxial stretching using a tenter, sequential biaxial stretching using a combination of a roll stretching machine and a tenter, or a combination of a tenter and a tenter, and simultaneous biaxial stretching using a simultaneous biaxial tenter. can be mentioned. Although the stretching ratio varies depending on the thickness of the gel-like sheet from the viewpoint of uniformity of film thickness, it is preferable to stretch the gel sheet to 5 times or more in any direction. The area magnification is preferably 25 times or more, more preferably 35 times or more, and even more preferably 45 times or more. By setting the area magnification within the above range, it is possible to prevent the uniformity of the film from being impaired due to insufficient stretching, and to obtain a polyolefin microporous film that is excellent in terms of voltage resistance and strength. Further, the area magnification is preferably 150 times or less. By setting the area magnification to 150 times or less, it is possible to prevent tearing during the production of the microporous polyolefin membrane and reduce productivity, and also to prevent the melting point and shutdown of the microporous polyolefin membrane due to excessive orientation. Prevents temperature from rising.
 延伸温度はゲル状シートの融点+10℃以下にするのが好ましく、(ポリオレフィン樹脂の結晶分散温度Tcd)~(ゲル状シートの融点+5℃)の範囲にするのがより好ましい。具体的には、例えばポリエチレン組成物の場合は約90~100℃の結晶分散温度を有するので、延伸温度は好ましくは90~130℃であり、より好ましくは90~125℃である。結晶分散温度TcdはASTMD4065(1995)に従って測定した動的粘弾性の温度特性から求められる。延伸温度を90℃以上とすることで、開孔が十分となり膜厚の均一性が得られ、空孔率も好適となる。延伸温度を130℃以下とすることで、シートの融解による孔の閉塞を抑制し、イオン透過性が好適となる。 The stretching temperature is preferably below the melting point of the gel-like sheet +10°C, and more preferably within the range of (crystal dispersion temperature T cd of the polyolefin resin) to (melting point of the gel-like sheet +5°C). Specifically, for example, a polyethylene composition has a crystal dispersion temperature of about 90 to 100°C, so the stretching temperature is preferably 90 to 130°C, more preferably 90 to 125°C. The crystal dispersion temperature T cd is determined from the temperature characteristics of dynamic viscoelasticity measured according to ASTM D4065 (1995). By setting the stretching temperature to 90° C. or higher, the openings become sufficient, uniformity of the film thickness is obtained, and the porosity becomes suitable. By setting the stretching temperature to 130° C. or lower, clogging of pores due to melting of the sheet is suppressed, and ion permeability becomes suitable.
 (4)洗浄・乾燥工程
 次に、延伸されたゲル状シート中に残留する溶剤を、洗浄溶剤を用いて除去する。ポリオレフィン相と溶媒相とは分離しているので、溶剤の除去によりポリオレフィン微多孔膜が得られる。洗浄溶剤としては、例えばペンタン、ヘキサン、ヘプタン等の飽和炭化水素、塩化メチレン、四塩化炭素等の塩素化炭化水素、ジエチルエーテル、ジオキサン等のエーテル類、メチルエチルケトン等のケトン類、三フッ化エタン等の鎖状フルオロカーボン等があげられる。これらの洗浄溶剤は表面張力が低いため、微多孔を形成する網状構造が洗浄後の乾燥時に気-液界面の表面張力により収縮することを抑制し、空孔率およびイオン透過性が好適なポリオレフィン微多孔膜が得られる。これらの洗浄溶剤は可塑剤に応じて適宜選択し、単独または混合して用いる。
(4) Washing/Drying Step Next, the solvent remaining in the stretched gel-like sheet is removed using a washing solvent. Since the polyolefin phase and the solvent phase are separated, a microporous polyolefin membrane is obtained by removing the solvent. Examples of cleaning solvents include saturated hydrocarbons such as pentane, hexane, and heptane; chlorinated hydrocarbons such as methylene chloride and carbon tetrachloride; ethers such as diethyl ether and dioxane; ketones such as methyl ethyl ketone; and trifluoroethane. Examples include chain fluorocarbons. These cleaning solvents have low surface tension, so the network structure that forms micropores suppresses shrinkage due to the surface tension of the air-liquid interface during drying after cleaning, and polyolefins with suitable porosity and ion permeability are used. A microporous membrane is obtained. These cleaning solvents are appropriately selected depending on the plasticizer and used alone or in combination.
 洗浄は、ゲル状シートを洗浄溶剤に浸漬し抽出する方法、ゲル状シートに洗浄溶剤をシャワーする方法、またはこれらの組み合わせによる方法等により行うことができる。洗浄溶剤の使用量は洗浄方法により異なるが、一般にゲル状シート100質量部に対して300質量部以上であるのが好ましい。洗浄温度は15~30℃でよく、必要に応じて80℃以下に加熱する。この時、溶剤の洗浄効果を高める観点、得られるポリオレフィン微多孔膜の物性のTDおよび/またはMDのポリオレフィン微多孔膜の物性が不均一にならないようにする観点、ポリオレフィン微多孔膜の機械的物性および電気的物性を向上させる観点から、ゲル状シートが洗浄溶剤に浸漬している時間は長ければ長い方が良い。上述のような洗浄は、洗浄後のゲル状シート、すなわちポリオレフィン微多孔膜中の残留溶剤が1質量%未満になるまで行うのが好ましい。 Cleaning can be carried out by immersing the gel-like sheet in a cleaning solvent and extracting it, by showering the gel-like sheet with a cleaning solvent, or by a combination of these methods. The amount of cleaning solvent used varies depending on the cleaning method, but is generally preferably 300 parts by mass or more per 100 parts by mass of the gel sheet. The washing temperature may be 15 to 30°C, and if necessary, the temperature may be heated to 80°C or lower. At this time, the viewpoints of improving the cleaning effect of the solvent, preventing the physical properties of the obtained microporous polyolefin membrane from becoming uneven in TD and/or MD, and the mechanical properties of the microporous polyolefin membrane And from the viewpoint of improving electrical properties, the longer the time the gel-like sheet is immersed in the cleaning solvent, the better. The above-mentioned cleaning is preferably carried out until the residual solvent in the gel sheet, that is, the polyolefin microporous membrane after cleaning, becomes less than 1% by mass.
 その後、乾燥工程でポリオレフィン微多孔膜中の溶剤を乾燥させ除去する。乾燥方法としては、特に限定は無く、金属加熱ロールを用いる方法や熱風を用いる方法などを選択することができる。乾燥温度は40~100℃であることが好ましく、40~80℃がより好ましい。乾燥が十分であると、後の熱処理工程におけるポリオレフィン微多孔膜の空孔率低下・イオン透過性悪化を抑制できる。 Thereafter, in a drying step, the solvent in the polyolefin microporous membrane is dried and removed. The drying method is not particularly limited, and a method using a metal heating roll, a method using hot air, etc. can be selected. The drying temperature is preferably 40 to 100°C, more preferably 40 to 80°C. Sufficient drying can suppress a decrease in porosity and deterioration in ion permeability of the polyolefin microporous membrane in the subsequent heat treatment step.
 (5)再延伸・熱処理工程
 乾燥したポリオレフィン微多孔膜は、少なくとも一軸方向に延伸(再延伸)されてもよい。再延伸は、ポリオレフィン微多孔膜を加熱しながら上述の延伸と同様にテンター法等により行うことができる。再延伸は一軸延伸でも二軸延伸でもよい。
(5) Re-stretching/heat treatment step The dried microporous polyolefin membrane may be stretched (re-stretched) in at least one direction. Re-stretching can be carried out by the tenter method or the like in the same manner as the above-mentioned stretching while heating the polyolefin microporous membrane. The re-stretching may be uniaxial or biaxial stretching.
 再延伸の温度は、ポリオレフィン組成物の融点以下にすることが好ましく、(Tcd-20℃)~融点の範囲内にするのがより好ましい。具体的には、70~135℃が好ましく、110~132℃がより好ましい。最も好ましくは、120~130℃である。 The re-stretching temperature is preferably below the melting point of the polyolefin composition, more preferably within the range of (T cd -20°C) to the melting point. Specifically, the temperature is preferably 70 to 135°C, more preferably 110 to 132°C. Most preferably it is 120-130°C.
 再延伸の倍率は、一軸延伸の場合、1.01~2.0倍が好ましく、特にTDは1.1~1.8倍が好ましく、1.2~1.6倍がより好ましい。二軸延伸の場合、MDおよびTDにそれぞれ1.01~1.6倍とするのが好ましい。なお、再延伸の倍率は、MDとTDで異なってもよい。上述の範囲内で延伸することで、空孔率および平均流量径が大きくなり、イオン透過性を上昇させることができる。2.0以下の倍率で延伸を行うことで、配向が適度になり、ポリオレフィン微多孔膜の融点およびシャットダウン温度が好適となる。熱収縮率及びしわやたるみの観点より再延伸最大倍率からの緩和率は0.95以下が好ましく、0.9以下であることがさらに好ましい。 In the case of uniaxial stretching, the re-stretching ratio is preferably 1.01 to 2.0 times, particularly TD is preferably 1.1 to 1.8 times, and more preferably 1.2 to 1.6 times. In the case of biaxial stretching, the MD and TD are preferably 1.01 to 1.6 times each. Note that the re-stretching ratio may be different between MD and TD. By stretching within the above-mentioned range, the porosity and average flow diameter can be increased, and the ion permeability can be increased. By stretching at a magnification of 2.0 or less, the orientation becomes appropriate and the melting point and shutdown temperature of the microporous polyolefin membrane become suitable. From the viewpoint of heat shrinkage rate and wrinkles and sagging, the relaxation rate from the maximum re-stretching ratio is preferably 0.95 or less, more preferably 0.9 or less.
 (6)巻取・エージング工程
 ポリオレフィン微多孔膜を巻き取った捲回体は、恒温庫でエージング処理を行ってもよい。エージングを行うことで、ポリオレフィン微多孔膜の残留応力が緩和され、ポリオレフィン微多孔膜倦回体の保管中や輸送中に生じる常温付近での収縮が小さくなる。エージングは、ポリオレフィンの結晶分散温度よりも低い温度で行うことが望ましい。エージング処理温度は40℃~80℃が好ましく、より好ましくは45℃~75℃であり、更に好ましくは50℃~70℃である。エージング処理温度を40℃以上とすることで、高温環境下での保管中や輸送中に外気の熱により収縮が進行することを抑制する。80℃以下とすることで、結晶分散温度付近であるため過剰に収縮され、製品の幅取り収率が低下することを抑制し、好適となる。
(6) Winding/Aging Step The wound body obtained by winding up the polyolefin microporous membrane may be subjected to an aging treatment in a constant temperature warehouse. By aging, residual stress in the microporous polyolefin membrane is relaxed, and shrinkage around room temperature that occurs during storage or transportation of the microporous polyolefin membrane package is reduced. It is desirable that the aging be performed at a temperature lower than the crystal dispersion temperature of the polyolefin. The aging treatment temperature is preferably 40°C to 80°C, more preferably 45°C to 75°C, even more preferably 50°C to 70°C. By setting the aging treatment temperature to 40° C. or higher, shrinkage due to heat from outside air is suppressed during storage or transportation in a high-temperature environment. Setting the temperature to 80° C. or lower is preferable because it prevents the product from shrinking excessively and decreasing the width-cutting yield of the product since it is close to the crystal dispersion temperature.
 <電池用セパレータ、および、二次電池>
 本発明のポリオレフィン微多孔膜は、その平均流量径および孔径分布曲線における歪度を所定の範囲に制御することで、高いイオン透過性と高い耐電圧性が両立されており、かかるポリオレフィン微多孔膜を備える電池用セパレータは、イオン透過性と耐電圧性を高い水準で両立したものとなることから好ましい。
<Battery separator and secondary battery>
The polyolefin microporous membrane of the present invention has both high ion permeability and high voltage resistance by controlling the average flow rate diameter and skewness in the pore size distribution curve within a predetermined range. A battery separator comprising the above is preferable because it has both high levels of ion permeability and voltage resistance.
 また、本発明の電池用セパレータを備える電池は、安全性および出力特性を兼ね備えたものとなることから好ましい。 Furthermore, a battery equipped with the battery separator of the present invention is preferable because it has both safety and output characteristics.
 実施例にて用いたポリオレフィン微多孔膜の各物性の測定方法を以下に説明する。なお、測定サンプル数が記載されていない測定については、1サンプルのみの測定である。 The method for measuring each physical property of the polyolefin microporous membrane used in the examples will be explained below. Note that for measurements where the number of measurement samples is not listed, only one sample is measured.
 <膜厚>
 ポリオレフィン微多孔膜の任意の位置から95mm角に切り出して試験片とした。厚み接触膜厚計(ミツトヨ(Mitsutoyo)製、“ライトマチック” (登録商標)、VL-50B(測定子超硬球面測定子φ10.5mm))を用いて、試験片の任意の5点の各々の厚みを測定圧力0.01Nで測定した。これら5点の厚みの平均値をポリオレフィン微多孔膜の厚みとした。測定環境は23±2℃の範囲内とした。
<Film thickness>
A test piece was cut into a 95 mm square piece from an arbitrary position of the polyolefin microporous membrane. Using a contact film thickness meter (manufactured by Mitutoyo, "Lightmatic" (registered trademark), VL-50B (carbide spherical measuring tip φ10.5 mm)), measure each of five arbitrary points on the test piece. The thickness of the sample was measured at a measurement pressure of 0.01N. The average value of the thicknesses at these five points was defined as the thickness of the polyolefin microporous membrane. The measurement environment was within the range of 23±2°C.
 <空孔率>
 ポリオレフィン微多孔膜の任意の位置から95mm角に切り出して試験片とした。空孔率は、試験片の体積(cm)と質量(g)から、次式を用いて求めた。
空孔率=(1-試験片の質量/(ポリオレフィン樹脂密度×試験片の体積))×100
ポリオレフィン樹脂密度は0.99g/cmとした。
<Porosity>
A test piece was cut into a 95 mm square piece from an arbitrary position of the polyolefin microporous membrane. The porosity was determined from the volume (cm 3 ) and mass (g) of the test piece using the following formula.
Porosity = (1 - mass of test piece / (polyolefin resin density x volume of test piece)) x 100
The polyolefin resin density was 0.99 g/cm 3 .
 <目付換算突刺強度>
 試料ホルダーに固定した目付W1(g/m)のポリオレフィン微多孔膜に対し、カトーテック製KES-G5を用い、先端が球面の直径1mmの針を、2(mm/sec)の速度で突刺したときの最大荷重Laを以下の条件下で測定した。本測定を突刺試験と略記することもある。
・試料ホルダーの開口部の直径:11.3mm
・針先端の曲率半径:0.5mm
・突刺速度:2mm/sec
・雰囲気温度:23℃
最大荷重の測定値Laと、試料の目付W1から、次式に基づいて目付換算突刺強度Lb(gf/(g/m))を得た。
Lb=La/W1
 <平均流量径および孔径分布曲線における歪度>
 ポリオレフィン微多孔膜の平均流量径および細孔径分布曲線は、以下の方法で測定した。まず、乾燥状態の試料(以下、単に「乾燥試料」とも記す)と、表面張力が既知の測定液Galwick(パーフルオロポリエーテル)が細孔内に充填された湿潤状態の試料(以下、単に「湿潤試料」とも記す)のそれぞれについて、POROUSMATERIALS,INC.製パームポロメーター(型式:CFP-1500A)を用いて空気圧と空気流量の関係を測定し、乾燥試料の通気曲線(DryCurve)および湿潤試料の通気曲線(WetCurve)を得た。
<Piercing strength converted to basis weight>
A microporous polyolefin membrane with a basis weight of W1 (g/m 2 ) fixed on a sample holder was pierced at a speed of 2 (mm/sec) with a needle with a diameter of 1 mm and a spherical tip using Kato Tech's KES-G5. The maximum load La at that time was measured under the following conditions. This measurement is sometimes abbreviated as a puncture test.
・Sample holder opening diameter: 11.3mm
・Curvature radius of needle tip: 0.5mm
・Piercing speed: 2mm/sec
・Ambient temperature: 23℃
From the measured value La of the maximum load and the basis weight W1 of the sample, the basis weight equivalent puncture strength Lb (gf/(g/m 2 )) was obtained based on the following formula.
Lb=La/W1
<Skewness in average flow diameter and pore size distribution curve>
The average flow rate diameter and pore size distribution curve of the polyolefin microporous membrane were measured by the following method. First, a sample in a dry state (hereinafter also simply referred to as "dry sample") and a sample in a wet state whose pores are filled with a measurement liquid Galwick (perfluoropolyether) whose surface tension is known (hereinafter simply referred to as " (also referred to as "wet sample"), POROUS MATERIALS, INC. The relationship between air pressure and air flow rate was measured using a Palm porometer (model: CFP-1500A) manufactured by CFP Corporation, and a ventilation curve (DryCurve) for a dry sample and a ventilation curve (WetCurve) for a wet sample were obtained.
 測定液が細孔内に充填された湿潤試料は、液体を満たした毛細管と同様の特性を示す。湿潤試料をポロメータにセットして空気圧を徐々に高めてゆくと、径の大きい細孔から順に、空気圧が細孔内の測定液の表面張力に打ち勝って測定液が当該細孔内から押し出され、それに伴って空気流量が徐々に増加することで、最終的に試料は乾燥状態となる。そのため、液体がその細孔から押し出される際の圧力を測定する事によって、細孔直径を算出できる。ここで、細孔の形状が円柱状であると仮定すると、直径Dの細孔内に圧力Pの空気が侵入する条件は、測定液の表面張力をγ、測定液の接触角をθとして、下記の式1に示すWashburnの式で表される。
PD=4γcosθ…(式1)
 平均流量径「d(μm)」は、次式を用いて求めた。
d=C・γ/p
 式中、「γ(dynes/cm)」は液体の表面張力、「p(Pa)」はDryCurveの1/2の傾きを示す曲線とWetCurveが交わる点の圧力、「C」は定数である。本実施例の測定に用いたGalwickの表面張力はγ=15.6(dynes/cm)であり、測定に用いた圧力定数Cは2860である。
A wet sample whose pores are filled with the measuring liquid exhibits properties similar to those of a capillary tube filled with liquid. When a wet sample is set in a porometer and the air pressure is gradually increased, the air pressure overcomes the surface tension of the liquid to be measured in the pores, starting with the pores with the largest diameter, and the liquid to be measured is forced out of the pores. As the air flow rate gradually increases accordingly, the sample eventually becomes dry. Therefore, the pore diameter can be calculated by measuring the pressure at which liquid is forced out of the pore. Here, assuming that the shape of the pore is cylindrical, the conditions for air at pressure P to enter the pore of diameter D are as follows: where the surface tension of the measurement liquid is γ, and the contact angle of the measurement liquid is θ It is expressed by the Washburn equation shown in Equation 1 below.
PD=4γcosθ...(Formula 1)
The average flow diameter "d (μm)" was determined using the following formula.
d=C・γ/p
In the formula, "γ (dynes/cm)" is the surface tension of the liquid, "p (Pa)" is the pressure at the point where the WetCurve intersects the curve showing the slope of 1/2 of the DryCurve, and "C" is a constant. The Galwick surface tension used in the measurement of this example is γ=15.6 (dynes/cm), and the pressure constant C used in the measurement is 2860.
 また、パームポロメーターにおいて、各測定点の圧力をPとするとき、圧力Pにおける湿潤試料の空気流量をFwet,j、乾燥試料の空気流量をFdry,jとすると、累積フィルター流量(CFF:CumulativeFilterFlow,単位:%)および細孔径分布(PSF:PoreSizeFrequency,単位:%)は、それぞれ以下の式によって算出される。
CFF=[(Fwet,j/Fdry,j)×100]…(式2)
PSF=(CFF)j+1-(CFF)…(式3)
 上記(式1)~(式3)を組み合わせることにより、乾燥状態および湿潤状態における空気流量の圧力変化に基づいて、細孔の直径Djと孔径分布PSFjの関係を示す孔径分布曲線を求めることができる。
In addition, in a palm porometer, when the pressure at each measurement point is P j , the air flow rate of a wet sample at pressure P j is F wet,j , and the air flow rate of a dry sample is F dry,j , the cumulative filter flow rate is (CFF: Cumulative Filter Flow, unit: %) and pore size distribution (PSF: PoreSizeFrequency, unit: %) are each calculated by the following formulas.
CFF j = [(F wet, j /F dry, j )×100]...(Formula 2)
PSF j = (CFF) j+1 - (CFF) j ... (Formula 3)
By combining the above (Formula 1) to (Formula 3), it is possible to obtain a pore size distribution curve showing the relationship between the pore diameter Dj and the pore size distribution PSFj based on the pressure change of the air flow rate in the dry state and the wet state. can.
 孔径分布曲線における歪度Sは、以下の式によって求めた。まず、(式4)によって孔径分布PSFの合計値を1に規格化した孔径分布PSFsjを求め、(式5)によって孔径分布曲線から平均孔径を求め、Davgとした。さらに、(式6)によって歪度Sを求めた。
PSFsj=PSF/ΣPSF…(式4)
avg=Σ(D×PSFsj)…(式5)
S=Σ((D-Davg×PSFsj)…(式6)。
The skewness S in the pore size distribution curve was determined by the following formula. First, the pore size distribution PSF sj was obtained by normalizing the total value of the pore size distribution PSF j to 1 using (Equation 4), and the average pore diameter was obtained from the pore size distribution curve using (Equation 5), and was set as D avg . Furthermore, the skewness S was determined using (Equation 6).
PSF sj =PSF j /ΣPSF j ... (Formula 4)
D avg = Σ(D j ×PSF sj )...(Formula 5)
S=Σ((D j −D avg ) 3 ×PSF sj ) (Equation 6).
 <重量平均分子量、微分分子量分布曲線における最大ピーク分子量および分子量3万以下の面積比率>
 ポリオレフィン樹脂およびポリオレフィン微多孔膜を構成するポリオレフィンの重量平均分子量は以下の測定条件でゲルパーミエーションクロマトグラフィー(GPC)法により求めた。また、ポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線は次の手順で算出した。
<Weight average molecular weight, maximum peak molecular weight in differential molecular weight distribution curve, and area ratio with molecular weight of 30,000 or less>
The weight average molecular weights of the polyolefin resin and the polyolefin constituting the microporous polyolefin membrane were determined by gel permeation chromatography (GPC) under the following measurement conditions. Moreover, the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane was calculated by the following procedure.
 (A)GPCの示差屈折率検出器(RI検出器)から、溶出時間に対する検出強度(溶出曲線)を算出し、溶出時間を分子量に変換した。ここで、溶出曲線のベースラインは、ピークの立ち上がりの保持時間を起点、ピークエンドの保持時間を終点とし、ピーク検出の間隔は0.017分とした。 (A) Detection intensity (elution curve) with respect to elution time was calculated from the differential refractive index detector (RI detector) of GPC, and the elution time was converted into molecular weight. Here, the baseline of the elution curve was set as the starting point at the retention time at the peak rise, the end point at the retention time at the peak end, and the peak detection interval was 0.017 minutes.
 (B)溶出曲線の全体の面積率を100%としたときの強度面積を求め、それぞれの分子量の濃度分率を求めた。濃度分率を順次積算し、横軸に分子量の対数値log(M)、縦軸に濃度分率wの積算値をプロットすることにより積分分子量曲線を得た。 (B) The intensity area was determined when the entire area ratio of the elution curve was taken as 100%, and the concentration fraction of each molecular weight was determined. An integrated molecular weight curve was obtained by sequentially integrating the concentration fractions and plotting the logarithm of the molecular weight (log (M)) on the horizontal axis and the integrated value of the concentration fraction w on the vertical axis.
 (C)各分子量の対数値における曲線の微分値を求め、横軸に分子量の対数値log(M)、縦軸に濃度分率を分子量の対数値で微分した値dw/dlog(M)をプロットすることで微分分子量分布曲線を得た。得られた微分分子量分布曲線において、濃度分率を分子量の対数値で微分した値dw/dlog(M)が最大となる分子量を求めた。また、得られた微分分子量分布曲線の全体の面積率を100%としたときの分子量3万以下の面積率を算出した。
測定条件
・測定装置: Agilent製高温GPC装置PL-GPC220
・カラム: Agilent製PL1110-6200(20μm MIXED-A)×2本
・カラム温度:160℃
・溶媒(移動相):1,2,4-トリクロロベンゼン
・溶媒流速:1.0mL/分
・試料濃度:0.1質量%(溶解条件:160℃/3.5時間)
・インジェクション量:500μL
・検出器:Agilent製示差屈折率検出器(RI検出器)
・粘度計:Agilent製粘度検出器
・検量線:単分散ポリスチレン標準試料を用いたユニバーサル検量線法にて作成した。
(C) Calculate the differential value of the curve with respect to the logarithm of each molecular weight, and the horizontal axis is the logarithm of the molecular weight log(M), and the vertical axis is the value dw/dlog(M) obtained by differentiating the concentration fraction with the logarithm of the molecular weight. A differential molecular weight distribution curve was obtained by plotting. In the obtained differential molecular weight distribution curve, the molecular weight at which the value dw/dlog (M) obtained by differentiating the concentration fraction by the logarithm of the molecular weight was maximized was determined. Furthermore, the area percentage of the molecular weight of 30,000 or less was calculated when the entire area percentage of the obtained differential molecular weight distribution curve was taken as 100%.
Measurement conditions/measuring device: Agilent high temperature GPC device PL-GPC220
・Column: Agilent PL1110-6200 (20 μm MIXED-A) x 2 ・Column temperature: 160°C
・Solvent (mobile phase): 1,2,4-trichlorobenzene ・Solvent flow rate: 1.0 mL/min ・Sample concentration: 0.1% by mass (dissolution conditions: 160°C/3.5 hours)
・Injection volume: 500μL
・Detector: Agilent differential refractive index detector (RI detector)
- Viscometer: Agilent viscosity detector - Calibration curve: Created by the universal calibration curve method using a monodisperse polystyrene standard sample.
 <シャットダウン温度>
 ポリオレフィン微多孔膜のシャットダウン温度は、以下の方法で測定した。ポリオレフィン微多孔膜を30℃の雰囲気中にさらして、5℃/分の速度で昇温しながら透気抵抗度を測定する。ポリオレフィン微多孔膜の透気抵抗度が100,000秒/100ccに到達した時の温度をシャットダウン温度と定義した。透気抵抗度は、JIS P8117:2009に従って、透気抵抗度計(旭精工株式会社製、EGO-1T)を用いて測定した。
<Shutdown temperature>
The shutdown temperature of the polyolefin microporous membrane was measured by the following method. The polyolefin microporous membrane is exposed to an atmosphere at 30°C, and the air permeation resistance is measured while increasing the temperature at a rate of 5°C/min. The temperature at which the air permeability resistance of the polyolefin microporous membrane reached 100,000 seconds/100 cc was defined as the shutdown temperature. The air resistance was measured using an air resistance meter (manufactured by Asahi Seiko Co., Ltd., EGO-1T) in accordance with JIS P8117:2009.
 <透気抵抗度>
 ポリオレフィン微多孔膜の任意の位置から5cm角に切り出して試験片とした。旭精工(株)社製のデジタル型王研式透気抵抗度試験機EGO-1Tを使用して、試験片の測定部にシワが入らないように固定し、JIS P8117:2009に従って透気抵抗度を測定した。
<Air permeability resistance>
A test piece was cut into a 5 cm square piece from an arbitrary position of the microporous polyolefin membrane. Using the digital Oken type air resistance tester EGO-1T manufactured by Asahi Seiko Co., Ltd., fix the test piece so that there are no wrinkles in the measurement area, and measure the air resistance in accordance with JIS P8117:2009. The degree was measured.
 <絶縁破壊電圧>
 ポリオレフィン微多孔膜の絶縁破壊電圧については以下の方法にて評価した。一辺150mmの正方形のアルミニウム板上に、直径60mmの円状に切り出したポリオレフィン微多孔膜を置き、その上に真鍮製の直径50mm、高さ30mm、重さ500gの円柱電極を置いて、菊水電子工業製TOS9201耐絶縁破壊特性試験器を接続した。0.1kV/秒の昇圧速度で電圧を加え、絶縁破壊したときの電圧値を絶縁破壊電圧とした。以上の操作を、サンプルを交換して10回繰り返し、得られた絶縁破壊電圧値の平均値を求めた。また、得られた絶縁破壊電圧値の平均値を、膜厚当たりの値に換算して当該ポリオレフィン微多孔膜の膜厚換算絶縁破壊電圧(絶縁破壊電圧/膜厚)とした。
<Dielectric breakdown voltage>
The dielectric breakdown voltage of the polyolefin microporous membrane was evaluated using the following method. A polyolefin microporous membrane cut into a circle with a diameter of 60 mm was placed on a square aluminum plate with sides of 150 mm, and a brass cylindrical electrode with a diameter of 50 mm, a height of 30 mm, and a weight of 500 g was placed on top of the membrane. An industrial TOS9201 dielectric breakdown property tester was connected. A voltage was applied at a boost rate of 0.1 kV/sec, and the voltage value at which dielectric breakdown occurred was defined as the dielectric breakdown voltage. The above operation was repeated 10 times by replacing the sample, and the average value of the obtained dielectric breakdown voltage values was determined. In addition, the average value of the obtained dielectric breakdown voltage values was converted into a value per film thickness, and was defined as the thickness-converted dielectric breakdown voltage (dielectric breakdown voltage/film thickness) of the microporous polyolefin film.
 [実施例1]
 Mwが1.5×10、融点136℃の超高分子量ポリエチレン70質量%とMwが1.0×10、融点132℃の高密度ポリエチレン30質量%を含有するポリオレフィン樹脂21質量部を二軸押出機に投入し、流動パラフィン[35cSt(40℃)]79質量部を二軸押出機のサイドフィーダーから加え、二軸押出機にて溶融混錬し、ポリオレフィン溶液を調製した。得られたポリオレフィン溶液を、二軸押出機からTダイに供給し、シート状成形体となるように押し出した。押し出した成形体を、冷却ロールで引き取り、ゲル状シートを形成した。得られたゲル状シートを延伸温度109.0℃で6.1倍になるようにロール方式で縦延伸を行った。引き続いてテンターに導き、延伸温度127.0℃で延伸倍率7.6倍になるように横延伸を実施した。延伸後の膜を塩化メチレンの洗浄槽内にて洗浄し、流動パラフィンを除去した。洗浄した膜を乾燥し、テンター内で130.8℃にて延伸倍率1.6倍に再延伸した後、緩和率0.94%で熱緩和した。巻き取った捲回体を60℃の恒温庫に24時間入れてエージング処理を行い、ポリオレフィン微多孔膜を得た。
[Example 1]
21 parts by mass of a polyolefin resin containing 70% by mass of ultra-high molecular weight polyethylene with a Mw of 1.5×10 6 and a melting point of 136°C and 30% by mass of high-density polyethylene with a Mw of 1.0×10 5 and a melting point of 132°C. The mixture was charged into a screw extruder, and 79 parts by mass of liquid paraffin [35 cSt (40° C.)] was added from the side feeder of the twin screw extruder, and the mixture was melted and kneaded in the twin screw extruder to prepare a polyolefin solution. The obtained polyolefin solution was supplied from a twin-screw extruder to a T-die and extruded into a sheet-like molded product. The extruded molded product was taken up with a cooling roll to form a gel-like sheet. The obtained gel-like sheet was longitudinally stretched by a roll method at a stretching temperature of 109.0° C. so that the stretching temperature was 6.1 times. Subsequently, it was introduced into a tenter and transversely stretched at a stretching temperature of 127.0° C. and a stretching ratio of 7.6 times. The membrane after stretching was washed in a methylene chloride washing tank to remove liquid paraffin. The washed membrane was dried, re-stretched in a tenter at 130.8° C. at a stretching ratio of 1.6 times, and then thermally relaxed at a relaxation rate of 0.94%. The wound body was placed in a thermostatic chamber at 60° C. for 24 hours for aging treatment, and a microporous polyolefin membrane was obtained.
 結果を表1に記す。なお、表中では、「超高分子量ポリエチレン」を「UHPE」、「高密度ポリエチレン」を「HDPE」、「ポリプロピレン」を「PP」、「ポロメータで測定される平均流量径」を「平均流量径」、「ポロメータで測定される孔径分布曲線における歪度」を「孔径分布曲線における歪度」、「GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、最大ピークにおける分子量」を「最大ピークの分子量」、「GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、分子量3万以下の面積比率」を「分子量3万以下の面積比率」と、それぞれ略記した。 The results are shown in Table 1. In addition, in the table, "ultra high molecular weight polyethylene" is referred to as "UHPE", "high density polyethylene" is referred to as "HDPE", "polypropylene" is referred to as "PP", and "average flow diameter measured with a porometer" is referred to as "average flow diameter". ”, “Distortion in the pore size distribution curve measured with a porometer”, “Distortion in the pore size distribution curve”, “Molecular weight at the maximum peak in the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane measured by GPC” " is the "maximum peak molecular weight," and "area ratio with a molecular weight of 30,000 or less in the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane measured by GPC" is "area ratio with a molecular weight of 30,000 or less." Each is abbreviated.
 [実施例2]
 ポリエチレン樹脂における、超高分子量ポリエチレンの混合比率、低分子量ポリエチレンの混合比率、ポリオレフィン樹脂と流動パラフィンの混合比率、縦延伸の倍率・温度、横延伸の倍率・温度、再横延伸の倍率・温度を表1に記載の条件に変更し、最終的な膜厚が表1記載の値になるように二軸押出機の回転数・吐出量を調整した以外は、実施例1と同様の方法でポリオレフィン微多孔膜を得た。
[Example 2]
In polyethylene resin, the mixing ratio of ultra-high molecular weight polyethylene, the mixing ratio of low molecular weight polyethylene, the mixing ratio of polyolefin resin and liquid paraffin, the magnification and temperature of longitudinal stretching, the magnification and temperature of transverse stretching, and the magnification and temperature of re-transverse stretching. The polyolefin was produced in the same manner as in Example 1, except that the conditions were changed to those listed in Table 1, and the rotational speed and discharge rate of the twin-screw extruder were adjusted so that the final film thickness became the values listed in Table 1. A microporous membrane was obtained.
 [実施例3]
 Mwが1.5×10、融点136℃の超高分子量ポリエチレン90質量%とMwが1.0×10、融点132℃の高密度ポリエチレン10質量%を含有するポリオレフィン樹脂20質量部を二軸押出機に投入し、流動パラフィン[35cSt(40℃)]80質量部を二軸押出機のサイドフィーダーから加え、二軸押出機にて溶融混錬し、ポリオレフィン溶液を調製した。得られたポリオレフィン溶液を、二軸押出機からTダイに供給し、シート状成形体となるように押し出した。押し出した成形体を、冷却ロールで引き取り、ゲル状シートを形成した。得られたゲル状シートをテンターに導き、延伸温度115.0℃で8.0倍になるように縦延伸を行い、延伸温度115.0℃で延伸倍率8.0倍になるように横延伸を実施した。延伸後の膜を塩化メチレンの洗浄槽内にて洗浄し、流動パラフィンを除去した。洗浄した膜を乾燥し、恒温槽内で125.0℃にて熱処理し、ポリオレフィン微多孔膜を得た。
[Example 3]
20 parts by mass of a polyolefin resin containing 90% by mass of ultra-high molecular weight polyethylene with a Mw of 1.5×10 6 and a melting point of 136° C. and 10% by mass of high-density polyethylene with a Mw of 1.0×10 5 and a melting point of 132°C. The mixture was charged into a screw extruder, 80 parts by mass of liquid paraffin [35 cSt (40° C.)] was added from the side feeder of the twin screw extruder, and the mixture was melted and kneaded in the twin screw extruder to prepare a polyolefin solution. The obtained polyolefin solution was supplied from a twin-screw extruder to a T-die and extruded into a sheet-like molded product. The extruded molded product was taken up with a cooling roll to form a gel-like sheet. The obtained gel-like sheet was introduced into a tenter, and longitudinally stretched at a stretching temperature of 115.0°C to a stretching ratio of 8.0 times, and transversely stretched at a stretching temperature of 115.0°C to a stretching ratio of 8.0 times. was carried out. The membrane after stretching was washed in a methylene chloride washing tank to remove liquid paraffin. The washed membrane was dried and heat-treated at 125.0°C in a constant temperature bath to obtain a microporous polyolefin membrane.
 [比較例1]
 Mwが7.0×10、融点が136℃の超高分子量ポリエチレン100質量%からなるポリエチレン樹脂組成物を用い、ポリオレフィン樹脂と流動パラフィンの混合比率、縦延伸の倍率・温度、横延伸の倍率・温度、再横延伸の倍率・温度を表1に記載の条件に変更し、最終的な膜厚が表1記載の値になるように二軸押出機の回転数・吐出量を調整した以外は、実施例1と同様の方法でポリオレフィン微多孔膜を得た。
[Comparative example 1]
Using a polyethylene resin composition consisting of 100% by mass of ultra-high molecular weight polyethylene with a Mw of 7.0×10 5 and a melting point of 136° C., the mixing ratio of polyolefin resin and liquid paraffin, the longitudinal stretching ratio and temperature, and the transverse stretching ratio・Other than changing the temperature, the magnification and temperature of re-transverse stretching to the conditions listed in Table 1, and adjusting the rotation speed and discharge amount of the twin-screw extruder so that the final film thickness became the values listed in Table 1. A microporous polyolefin membrane was obtained in the same manner as in Example 1.
 [比較例2]
 Mwが2.0×10、融点が133℃の超高分子量ポリエチレン30質量%と、Mwが5.0×10、融点が135℃の高密度ポリエチレン70質量%からなるポリエチレン樹脂組成物を用い、ポリオレフィン樹脂と流動パラフィンの混合比率、縦延伸の倍率・温度、横延伸の倍率・温度、再横延伸の倍率・温度を表1に記載の条件に変更し、最終的な膜厚が表1記載の値になるように二軸押出機の回転数・吐出量を調整した以外は、実施例1と同様の方法でポリオレフィン微多孔膜を得た。
[Comparative example 2]
A polyethylene resin composition consisting of 30% by mass of ultra-high molecular weight polyethylene with a Mw of 2.0×10 6 and a melting point of 133°C, and 70% by mass of high-density polyethylene with a Mw of 5.0×10 5 and a melting point of 135°C. The mixing ratio of polyolefin resin and liquid paraffin, the magnification and temperature of longitudinal stretching, the magnification and temperature of transverse stretching, and the magnification and temperature of re-transverse stretching were changed to the conditions listed in Table 1, and the final film thickness was as shown in Table 1. A microporous polyolefin membrane was obtained in the same manner as in Example 1, except that the rotational speed and discharge amount of the twin-screw extruder were adjusted to the values described in Example 1.
 [比較例3]
 Mwが2.0×10、融点が133℃の超高分子量ポリエチレン30質量%と、Mwが5.0×10、融点が135℃の高密度ポリエチレン70質量%からなるポリエチレン樹脂組成物を用い、ポリオレフィン樹脂と流動パラフィンの混合比率、縦延伸の倍率・温度、横延伸の倍率・温度、再横延伸の倍率・温度を表1に記載の条件に変更し、最終的な膜厚が表1記載の値になるように二軸押出機の回転数・吐出量を調整した以外は、実施例1と同様の方法でポリオレフィン微多孔膜を得た。
[Comparative example 3]
A polyethylene resin composition consisting of 30% by mass of ultra-high molecular weight polyethylene with a Mw of 2.0×10 6 and a melting point of 133°C, and 70% by mass of high-density polyethylene with a Mw of 5.0×10 5 and a melting point of 135°C. The mixing ratio of polyolefin resin and liquid paraffin, the magnification and temperature of longitudinal stretching, the magnification and temperature of transverse stretching, and the magnification and temperature of re-transverse stretching were changed to the conditions listed in Table 1, and the final film thickness was as shown in Table 1. A microporous polyolefin membrane was obtained in the same manner as in Example 1, except that the rotational speed and discharge amount of the twin-screw extruder were adjusted to the values described in Example 1.
 [比較例4]
 (第1のポリオレフィン溶液の調整)
 Mwが2.0×10の超高分子量ポリエチレン30質量%及びMwが5.0×10の高密度ポリチレン70質量%からなる第1のポリオレフィン樹脂28.5質量部を二軸押出機に投入し、二軸押機のサイドフィーダーから流動パラフィン[35cSt(40℃)]71.5質量部を供給し、溶融混練して第1のポリオレフィン溶液を調製した。
[Comparative example 4]
(Preparation of first polyolefin solution)
28.5 parts by mass of a first polyolefin resin consisting of 30% by mass of ultra-high molecular weight polyethylene with an Mw of 2.0×10 6 and 70% by mass of high-density polyethylene with an Mw of 5.0×10 5 was placed in a twin-screw extruder. Then, 71.5 parts by mass of liquid paraffin [35 cSt (40° C.)] was supplied from the side feeder of the twin-screw press and melt-kneaded to prepare a first polyolefin solution.
 (第2のポリオレフィン溶液の調整)
 Mwが5.0×10の超高分子量ポリエチレン50質量%及びMwが1.6×10のポリプロピレン50質量%からなる第2のポリオレフィン樹脂30質量部を二軸押出機に投入し、二軸押出機のサイドフィーダーから流動パラフィン[35cSt(40℃)]70質量部を供給し、溶融混練して、第2のポリオレフィン溶液を調製した。
(Preparation of second polyolefin solution)
30 parts by mass of a second polyolefin resin consisting of 50% by mass of ultra-high molecular weight polyethylene with an Mw of 5.0×10 5 and 50% by mass of polypropylene with an Mw of 1.6×10 6 were charged into a twin-screw extruder. 70 parts by mass of liquid paraffin [35 cSt (40° C.)] was supplied from the side feeder of the axial extruder and melt-kneaded to prepare a second polyolefin solution.
 (押出)
 第1及び第2のポリオレフィン溶液を、各二軸押出機から3層用口金に供給し、第1の層/第2の層/第1の層の層厚比が35/30/35となるように押し出した。押出成形体を、30℃に温調した冷却ロールで引き取りながら冷却し、未延伸ゲル状三層シートを形成した。
(extrusion)
The first and second polyolefin solutions are supplied from each twin-screw extruder to the three-layer die, and the layer thickness ratio of the first layer/second layer/first layer is 35/30/35. I pushed it out like that. The extruded product was cooled while being taken up by a cooling roll whose temperature was controlled at 30° C. to form an unstretched gel-like three-layer sheet.
 (第1の延伸、成膜用溶剤の除去、乾燥)
 得られた未延伸ゲル状三層シートを、第1の延伸として113.0℃の温度に設定したテンター装置でMDに5倍、TDに5倍とする同時二軸延伸を行った後に119.0℃で熱固定を行い、二軸延伸シートを得た。得られた二軸延伸シートを塩化メチレンで洗浄して残留する流動パラフィンを抽出除去し、乾燥した。乾燥後の二軸延伸シートをテンター方式延伸機にて、第2の延伸として111.0℃まで加温し、延伸機入口幅に対して、1.4倍となるよう再横延伸し、固定温度110.0℃および緩和率0.93にて熱処理を行い、膜厚9.5μmのポリオレフィン微多孔膜を得た。得られたポリオレフィン微多孔膜の各成分の配合割合、製造条件、物性等を表1に記載した。
(First stretching, removal of film-forming solvent, drying)
The obtained unstretched gel-like three-layer sheet was subjected to simultaneous biaxial stretching of 5 times in MD and 5 times in TD using a tenter device set at a temperature of 113.0° C. as a first stretch. Heat setting was performed at 0°C to obtain a biaxially stretched sheet. The obtained biaxially stretched sheet was washed with methylene chloride to extract and remove residual liquid paraffin, and then dried. The dried biaxially stretched sheet was heated to 111.0°C for second stretching using a tenter-type stretching machine, and then laterally stretched again to a width 1.4 times the width at the entrance of the stretching machine, and then fixed. Heat treatment was performed at a temperature of 110.0° C. and a relaxation rate of 0.93 to obtain a polyolefin microporous membrane with a thickness of 9.5 μm. The blending ratio of each component, manufacturing conditions, physical properties, etc. of the obtained microporous polyolefin membrane are listed in Table 1.
 [比較例5]
 ポリオレフィン樹脂と流動パラフィンの混合比率を表1に記載の条件に変更し、最終的な膜厚が表1記載の値になるように二軸押出機の回転数・吐出量を調整した以外は、実施例3と同様の方法でポリオレフィン微多孔膜を得た。
[Comparative example 5]
Except that the mixing ratio of polyolefin resin and liquid paraffin was changed to the conditions listed in Table 1, and the rotation speed and discharge rate of the twin-screw extruder were adjusted so that the final film thickness was the value listed in Table 1. A microporous polyolefin membrane was obtained in the same manner as in Example 3.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 (評価)
 表1に示す通り、実施例1~3のポリオレフィン微多孔膜においては、平均流量径が26.5~30.4nm、孔径分布曲線における歪度が0.3~1.1と小孔径かつ大孔径側の孔径分布が抑制されたポリオレフィン微多孔膜となり、耐電圧性と透気抵抗度を高い水準で両立することができた。
(evaluation)
As shown in Table 1, the polyolefin microporous membranes of Examples 1 to 3 had small and large pores with an average flow diameter of 26.5 to 30.4 nm and a skewness of 0.3 to 1.1 in the pore size distribution curve. This resulted in a microporous polyolefin membrane with a suppressed pore size distribution on the pore diameter side, and was able to achieve both high voltage resistance and air permeation resistance.
 一方、比較例1のポリオレフィン微多孔膜においては、平均流量径が40.1nm、比較例2~5のポリオレフィン微多孔膜においては、孔径分布曲線における歪度が1.6~3.3となり、大孔径側の分布が大きくなった。結果として、耐電圧性が低下あるいは透気抵抗度が上昇してしまった。 On the other hand, in the polyolefin microporous membrane of Comparative Example 1, the average flow diameter was 40.1 nm, and in the polyolefin microporous membranes of Comparative Examples 2 to 5, the skewness in the pore size distribution curve was 1.6 to 3.3. The distribution on the large pore diameter side became larger. As a result, voltage resistance decreased or air permeation resistance increased.
 本発明の実施形態に係る電池用セパレータは、ニッケル-水素電池、ニッケル-カドミ
ウム電池、ニッケル-亜鉛電池、銀-亜鉛電池、リチウムイオン二次電池、リチウムポリ
マー二次電池、及びリチウム-硫黄電池等の二次池等の電池用セパレータとして好適に用いることができる。特に、リチウムイオン二次電池のセパレータとして用いるのが好ましい。
The battery separator according to the embodiment of the present invention is applicable to nickel-hydrogen batteries, nickel-cadmium batteries, nickel-zinc batteries, silver-zinc batteries, lithium ion secondary batteries, lithium polymer secondary batteries, lithium-sulfur batteries, etc. It can be suitably used as a separator for batteries such as secondary batteries. In particular, it is preferable to use it as a separator for lithium ion secondary batteries.

Claims (6)

  1. 下記(1)~(2)の特徴を有するポリオレフィン微多孔膜。
    (1)ポロメータで測定される平均流量径が32nm以下であること。
    (2)ポロメータで測定される孔径分布曲線における歪度が-1.0以上1.5以下であること。
    A microporous polyolefin membrane having the following characteristics (1) to (2).
    (1) The average flow diameter measured with a porometer is 32 nm or less.
    (2) The skewness in the pore size distribution curve measured with a porometer is -1.0 or more and 1.5 or less.
  2. 下記(3)~(4)の特徴を有する請求項1に記載のポリオレフィン微多孔膜。
    (3)GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、最大ピークにおける分子量が4.0×10以上であること。
    (4)GPCで測定されるポリオレフィン微多孔膜を構成するポリオレフィンの微分分子量分布曲線において、分子量3.0×10以下の面積比率が15%以上であること。
    The polyolefin microporous membrane according to claim 1, having the following characteristics (3) to (4).
    (3) In the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane measured by GPC, the molecular weight at the maximum peak is 4.0×10 5 or more.
    (4) In the differential molecular weight distribution curve of the polyolefin constituting the polyolefin microporous membrane measured by GPC, the area ratio of the molecular weight of 3.0×10 4 or less is 15% or more.
  3. 目付換算突刺強度が80gf/(g/m)以上である請求項2に記載のポリオレフィン微多孔膜。 The microporous polyolefin membrane according to claim 2, which has a puncture strength in terms of basis weight of 80 gf/(g/m 2 ) or more.
  4. シャットダウン温度が138℃以下である請求項3に記載のポリオレフィン微多孔膜。 The microporous polyolefin membrane according to claim 3, having a shutdown temperature of 138°C or less.
  5. 請求項1~4のいずれかに記載のポリオレフィン微多孔膜を備える電池用セパレータ。 A battery separator comprising the polyolefin microporous membrane according to any one of claims 1 to 4.
  6. 請求項5に記載の電池用セパレータを備える電池。 A battery comprising the battery separator according to claim 5.
PCT/JP2023/026352 2022-07-20 2023-07-19 Polyolefin microporous membrane, separator for batteries, and battery WO2024019069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-115280 2022-07-20
JP2022115280 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024019069A1 true WO2024019069A1 (en) 2024-01-25

Family

ID=89617731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/026352 WO2024019069A1 (en) 2022-07-20 2023-07-19 Polyolefin microporous membrane, separator for batteries, and battery

Country Status (1)

Country Link
WO (1) WO2024019069A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
WO2016104790A1 (en) * 2014-12-26 2016-06-30 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane, production method therefor, and battery separator
WO2018180714A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte
WO2019065073A1 (en) * 2017-09-27 2019-04-04 東レ株式会社 Microporous membrane made of polyolefin, battery separator and secondary battery
WO2019093184A1 (en) * 2017-11-08 2019-05-16 東レ株式会社 Polyolefin composite porous film, method for producing same, battery separator, and battery
WO2020137336A1 (en) * 2018-12-26 2020-07-02 東レ株式会社 Microporous polyolefin membrane and method for producing microporous polyolefin membrane
WO2020179101A1 (en) * 2019-03-04 2020-09-10 旭化成株式会社 Polyolefin microporous membrane
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000108249A (en) * 1998-10-08 2000-04-18 Tonen Chem Corp Laminated composite film
WO2016104790A1 (en) * 2014-12-26 2016-06-30 東レバッテリーセパレータフィルム株式会社 Polyolefin microporous membrane, production method therefor, and battery separator
WO2018180714A1 (en) * 2017-03-31 2018-10-04 東レ株式会社 Polyolefin microporous membrane, separator for secondary battery with nonaqueous electrolyte, and secondary battery with nonaqueous electrolyte
WO2019065073A1 (en) * 2017-09-27 2019-04-04 東レ株式会社 Microporous membrane made of polyolefin, battery separator and secondary battery
WO2019093184A1 (en) * 2017-11-08 2019-05-16 東レ株式会社 Polyolefin composite porous film, method for producing same, battery separator, and battery
WO2020137336A1 (en) * 2018-12-26 2020-07-02 東レ株式会社 Microporous polyolefin membrane and method for producing microporous polyolefin membrane
WO2020179101A1 (en) * 2019-03-04 2020-09-10 旭化成株式会社 Polyolefin microporous membrane
WO2021033736A1 (en) * 2019-08-22 2021-02-25 東レ株式会社 Polyolefin microporous membrane

Similar Documents

Publication Publication Date Title
US10079378B2 (en) Polyolefin microporous membrane and production method thereof
JP6747289B2 (en) Polyolefin microporous film, method for producing the same, and battery separator
JP7088163B2 (en) Polyolefin microporous membrane, multilayer polyolefin microporous membrane, laminated polyolefin microporous membrane, and separator
JP2012052085A (en) Polyolefin porous film, method and apparatus for producing the same
JP7395827B2 (en) porous polyolefin film
JP7207300B2 (en) porous polyolefin film
JP2015208893A (en) Polyolefin-made laminated microporous film
JP5171012B2 (en) Method for producing polyolefin microporous membrane
US20220298314A1 (en) Polyolefin microporous film, layered body, and battery
JP2004149637A (en) Microporous membrane, method for producing the same and use thereof
JP3699562B2 (en) Polyolefin microporous membrane and method for producing the same
CN110382605B (en) Polyolefin microporous membrane and battery using the same
JPWO2018180713A1 (en) Polyolefin microporous membrane and battery using the same
WO2024019069A1 (en) Polyolefin microporous membrane, separator for batteries, and battery
JP2000248088A (en) Polyolefin microporous membrane and its production
JPH09259858A (en) Polyethylene micro-porous film for separator, and manufacture thereof
JPWO2019189522A1 (en) Method for manufacturing polyolefin microporous membrane and polyolefin microporous membrane
WO2022202095A1 (en) Microporous polyolefin film, separator for battery, and secondary battery
JP2022151659A (en) Polyolefin microporous film, separator for battery and secondary battery
JP2020164791A (en) Polyolefin microporous film and method for producing the same
WO2023176876A1 (en) Polyolefin microporous membrane, separator for batteries, nonaqueous electrolyte secondary battery and filter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842992

Country of ref document: EP

Kind code of ref document: A1