JP6791526B2 - Heat-resistant polyolefin-based microporous membrane and its manufacturing method - Google Patents

Heat-resistant polyolefin-based microporous membrane and its manufacturing method Download PDF

Info

Publication number
JP6791526B2
JP6791526B2 JP2020076913A JP2020076913A JP6791526B2 JP 6791526 B2 JP6791526 B2 JP 6791526B2 JP 2020076913 A JP2020076913 A JP 2020076913A JP 2020076913 A JP2020076913 A JP 2020076913A JP 6791526 B2 JP6791526 B2 JP 6791526B2
Authority
JP
Japan
Prior art keywords
mass
polyolefin
film
copolymer
plasticizer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020076913A
Other languages
Japanese (ja)
Other versions
JP2020183522A (en
Inventor
栗林 功
功 栗林
一石 佐藤
一石 佐藤
雅王 西村
雅王 西村
Original Assignee
有限会社ケー・イー・イー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社ケー・イー・イー filed Critical 有限会社ケー・イー・イー
Priority to PCT/JP2020/017846 priority Critical patent/WO2020218583A1/en
Priority to EP20794148.5A priority patent/EP3960813A4/en
Priority to US17/606,426 priority patent/US20220213306A1/en
Publication of JP2020183522A publication Critical patent/JP2020183522A/en
Application granted granted Critical
Publication of JP6791526B2 publication Critical patent/JP6791526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cell Separators (AREA)

Description

本発明は、ポリオレフィン系樹脂組成物、ポリオレフィン系微多孔膜及びその製造方法に関する。
より具体的には、リチウムイオン二次電池の安全性を高めるセパレータとして有用な耐熱性ポリオレフィン系微多孔膜、特には、140℃以下のシャットダウン温度、および190℃以上液体電解液が熱分解して失活するまで非溶融(ノンメルトダウン)である特性を共に有し、かつ高温時の低収縮性、機械的特性、透気度に優れた、極薄膜である耐熱性ポリオレフィン系微多孔膜、ならびにその製造方法に関する。
The present invention relates to a polyolefin-based resin composition, a polyolefin-based microporous membrane, and a method for producing the same.
More specifically, a heat-resistant polyolefin-based microporous membrane useful as a separator that enhances the safety of a lithium ion secondary battery, particularly a shutdown temperature of 140 ° C. or lower, and a liquid electrolytic solution of 190 ° C. or higher are thermally decomposed. A heat-resistant polyolefin microporous membrane that is an ultra-thin film that has both the characteristics of being non-melted (non-melted down) until it is deactivated, and has excellent low shrinkage at high temperatures, mechanical properties, and air permeability. And its manufacturing method.

ポリオレフィン系微多孔膜は、電池用セパレータ、電解コンデンサー用隔膜、各種フィルター、透湿防水衣料、逆浸透濾過膜、限外濾過膜、精密濾過膜等の各種用途に用いられている。ポリオレフィン系微多孔膜を、電池用セパレータ、特にリチウムイオン二次電池用セパレ−タとして用いる場合、電池特性、電池生産性及び電池安全性が重要である。そのためには、優れた透気度、機械的特性、耐熱性、低収縮性、シャットダウン特性、ノンメルトダウン特性等が要求される。例えば機械的強度が低いと、電池セパレータとして用いた場合に、電極の短絡により電池の電圧が低下してしまうことがある。また金属異物が電池内に混入している場合、あるいは誤用によるリチウム金属デンドライト(樹枝状突起物)が発生する場合に、電池セパレータの突き刺し強度が低いと電極の短絡を起して電池の異常発熱に至る。
リチウムイオン二次電池は近年、例えばノートブック型パソコン、携帯電話、一体型カムコーダー等の携帯用電子機器の主電源として広範に使用されている。これらの携帯用電子機器の更なる高性能化と長時間駆動の要求から、リチウムイオン二次電池において、さらなる高エネルギー密度化・高容量化・高出力化のための技術開発が進められている。
限られた電池内容積に出来るだけ多くの正・負極活物質を含むことにより電池容量を上げる観点から、電池セパレータの限りなき薄膜化が要求されている。一方、ハイブリッド車、電気自動車(EV)用、航空機用の電源としての大型リチウムイオン二次電池においては、安全性のために、電池セパレータの収縮更には溶融を起こして破膜による短絡が起きて、発煙・発火にいたることを避けなければならない。シャットダウン特性に加え、メルトダウンしない(ノンメルトダウン)特性の観点で、十分な耐熱性を有することも要求されている。近年、電池容量を大きくする要請から、薄膜化が容易であるポリエチレンセパレータ(12−9ミクロン厚み)の表面に、耐熱性を補うためにアルミナ、シリカ等のセラミックスを塗布して2−3ミクロン厚みの表層を形成する工夫がなされてきている。しかしながら、セラミックス粒子が表層にあるために、電解液が含浸した後のリチウムイオン電導性が、上記塗布が無い物に比べて劣る。
Polyform microporous membranes are used in various applications such as battery separators, electrolytic condenser membranes, various filters, moisture permeable and waterproof clothing, reverse osmosis filtration membranes, ultrafiltration membranes, and microfiltration membranes. When a polyolefin-based microporous membrane is used as a battery separator, particularly a separator for a lithium ion secondary battery, battery characteristics, battery productivity, and battery safety are important. For that purpose, excellent air permeability, mechanical properties, heat resistance, low shrinkage, shutdown characteristics, non-meltdown characteristics and the like are required. For example, if the mechanical strength is low, the voltage of the battery may drop due to a short circuit of the electrodes when used as a battery separator. In addition, when metallic foreign matter is mixed in the battery, or when lithium metal dendrites (dendritic protrusions) are generated due to misuse, if the piercing strength of the battery separator is low, the electrodes will short-circuit and abnormal heat generation of the battery will occur. To reach.
In recent years, lithium-ion secondary batteries have been widely used as a main power source for portable electronic devices such as notebook personal computers, mobile phones, and integrated camcorders. Due to the demand for higher performance and long-term driving of these portable electronic devices, technological development is underway to further increase the energy density, capacity, and output of lithium-ion secondary batteries. ..
From the viewpoint of increasing the battery capacity by containing as much positive and negative electrode active materials as possible in the limited internal volume of the battery, an unlimited thin film of the battery separator is required. On the other hand, in large lithium-ion secondary batteries as power sources for hybrid vehicles, electric vehicles (EVs), and aircraft, for safety reasons, the battery separator shrinks and melts, causing a short circuit due to film rupture. , It is necessary to avoid smoking and ignition. In addition to the shutdown characteristics, it is also required to have sufficient heat resistance from the viewpoint of non-meltdown characteristics. In recent years, due to the demand to increase the battery capacity, ceramics such as alumina and silica are applied to the surface of a polyethylene separator (12-9 micron thickness), which is easy to thin, to supplement heat resistance, and the thickness is 2-3 microns. Ingenuity has been made to form the surface layer of silica. However, since the ceramic particles are on the surface layer, the lithium ion conductivity after impregnation with the electrolytic solution is inferior to that without the above coating.

また、塗布のために追加設備を必要とする。せっかく形成された気孔が塗布工程で閉鎖されやすい。リチウムイオン電導性に関係する透気度を良好に保持するように、塗布膜を出来るだけ薄くする必要があるが、耐熱性と相反することであり、製品コストがかさむ。またセラミック塗布膜がポリオレフィン系微多孔膜の可撓性を損ねて、特に円筒型電池の巻回シャフト付近でのクラック発生、塗布膜からの粉末発生が起きることもある。
一方、ポリオレフィン系微多孔膜は、電解液による劣化がほとんどない利点を有している。最近、セパレータの特性についてはリチウムイオン電導性の良否を、気孔率の測定結果と透気度の試験結果により簡便に判断することができる。
12ミクロン以下の薄膜にする場合には、機械的強度だけでなく、サイクル特性等の電池寿命に関わる特性や、電解液注入性等の電池生産性に関わる特性も重視される。特にリチウムイオン二次電池の電極は、充放電に伴う膨張/収縮を繰り返す。それ故に電池セパレータに対して、その厚さ方向に加わる力の負荷/解放が繰り返される。長寿命の電池にするためには、セパレータと電極との界面の密着性も高めておく必要がある。近年の電池の高容量化に伴う電極サイズや電極密度の増大等により、電池組み立て時にセパレータに対する圧迫がより強くなる傾向にある。このような状況において、電池の特性を維持するには圧迫によるセパレータの透過性変化小さいことが求められる。セパレータが圧縮されやすいと、電池の容量低下(サイクル特性悪化)を招く恐れが高い。また上記のような電池の高容量化に伴う電極サイズの増大等により、電池への電解液注入性が低下しており、電池生産性の低下を引き起こしている。電解液注入性もセパレータを改良する上で留意しなければならない。
It also requires additional equipment for coating. The pores formed with great care are easily closed in the coating process. It is necessary to make the coating film as thin as possible so as to maintain good air permeability related to lithium ion conductivity, but this is contrary to heat resistance and increases the product cost. In addition, the ceramic coating film impairs the flexibility of the polyolefin-based microporous film, and cracks may occur in the vicinity of the winding shaft of the cylindrical battery, and powder may be generated from the coating film.
On the other hand, the polyolefin-based microporous membrane has an advantage that it is hardly deteriorated by the electrolytic solution. Recently, regarding the characteristics of a separator, the quality of lithium ion conductivity can be easily judged from the measurement result of porosity and the test result of air permeability.
In the case of forming a thin film of 12 microns or less, not only mechanical strength but also characteristics related to battery life such as cycle characteristics and characteristics related to battery productivity such as electrolyte injection property are emphasized. In particular, the electrodes of a lithium ion secondary battery repeatedly expand / contract with charging / discharging. Therefore, the load / release of the force applied to the battery separator in the thickness direction is repeated. In order to obtain a long-life battery, it is necessary to improve the adhesion at the interface between the separator and the electrode. Due to an increase in electrode size and electrode density due to an increase in battery capacity in recent years, the pressure on the separator tends to become stronger during battery assembly. In such a situation, in order to maintain the characteristics of the battery, it is required that the change in the permeability of the separator due to compression is small. If the separator is easily compressed, there is a high possibility that the capacity of the battery will decrease (cycle characteristics will deteriorate). Further, due to the increase in the electrode size due to the increase in the capacity of the battery as described above, the property of injecting the electrolytic solution into the battery is lowered, which causes a decrease in the productivity of the battery. Electrolyte injection properties must also be taken into consideration when improving the separator.

特開2011−184671号公報Japanese Unexamined Patent Publication No. 2011-184671 特許第5766291号公報Japanese Patent No. 5766291 特開平8−250097号公報Japanese Unexamined Patent Publication No. 8-25007 特開平10−17693号公報Japanese Unexamined Patent Publication No. 10-17693 特開2017−88836号公報JP-A-2017-88836 特開2018−76476号公報JP-A-2018-76476 WO-A1-2012/020671号公報WO-A1-2012 / 020671 WO-A1-2017/170288号公報WO-A1-2017 / 170288 WO-A1-2016/104791号公報WO-A1-2016 / 104791 WO-A1-2016/104790号公報WO-A1-2016 / 104790 特表2012-530619号公報Special Table 2012-530619 特表2012-530618号公報Special Table 2012-530618

「リチウムイオン二次電池 第二版」芳尾 真幸・小沢昭弥(編)、足立 厚(第8章の著者)、日刊工業新聞社2000年、p.107−p.120"Lithium Ion Rechargeable Battery 2nd Edition" Masayuki Yoshio and Akiya Ozawa (eds.), Atsushi Adachi (author of Chapter 8), Nikkan Kogyo Shimbun, 2000, p.107-p.120 「無名の電池の開発秘話」、栗林 功、有限会社ケー・イー・イー社、2015年、p.101−p.105"Unnamed Battery Development Secret Story", Isao Kuribayashi, KEE Co., Ltd., 2015, p.101-p.105

特許文献1および2には、ポリ(4−メチルペンテン−1)樹脂(PMP)とポリエチレン系樹脂を混合して微多孔膜を得ることが開示されているが、ポリブタジエン、ポリイソプレン、あるいはブタジエン‐イソプレンコポリマーの水素添加物への言及はない。特許文献2には、エチレンを構成成分として含むオレフィンブロック共重合体を混合することが開示されている。
特許文献3および4は、3層からなる膜において、ポリ(4−メチルペンテン−1)からなる層を両面層とすし、ポリエチレンからなる層を中間層とすることが開示されているが、ポリ(4−メチルペンテン−1)とポリエチレンからなる層への言及はない。
特許文献5および6は、膜厚5ミクロン、6ミクロンの下限を示唆しており、7から25ミクロンを好ましいとしている。しかし、延伸中に破膜せずに安定的に微多孔膜を製造する方法が記載されていない。
特許文献7は、3層構造を目的としており、ポリメチルペンテンの量は最大で約12.0重量%(表層中での量と推察される)とされ、その場合に外観は、約6%の場合に比べて劣るという記載がある。
特許文献8、9および10は、ポリエチレンとポリメチルペンテンとの組成物を記載しているが、ポリエチレン系微多孔膜として逸脱しない範囲としてポリメチルペンテンの量を10質量%以下としている。特許文献11および12は、2層以上多層からなる微多孔膜を開示しており、いずれの層にもポリプロピレンエラストマーとか両末端がポリエチレンブロックであるブロック共重合体についての言及がない。
非特許文献1には、単層のポリエチレン微多孔膜、単層のポリプロピレン微多孔膜、三層のポリエチレン/ポリプロピレン/ポリエチレンからなるポリオレフィン系微多孔膜およびその特性が示されているが、いずれも185℃以上では、熱的に特性を保持できないことが示されている。非特許文献2には、シャットダウン特性を有し、高温において低収縮性の耐熱性ポリオレフィン系微多孔膜が存在することが示されているが、組成および製造法の詳細は、開示されていない。
Patent Documents 1 and 2 disclose that a poly (4-methylpentene-1) resin (PMP) and a polyethylene-based resin are mixed to obtain a microporous film, but polybutadiene, polyisoprene, or butadiene- There is no mention of the hydrogenated additives in the isoprene copolymer. Patent Document 2 discloses mixing an olefin block copolymer containing ethylene as a constituent component.
Patent Documents 3 and 4 disclose that, in a film composed of three layers, a layer made of poly (4-methylpentene-1) is used as a double-sided layer and a layer made of polyethylene is used as an intermediate layer. There is no mention of a layer consisting of (4-methylpentene-1) and polyethylene.
Patent Documents 5 and 6 suggest lower limits of film thickness of 5 microns and 6 microns, preferably 7 to 25 microns. However, there is no description of a method for stably producing a microporous film without breaking the film during stretching.
Patent Document 7 aims at a three-layer structure, and the maximum amount of polymethylpentene is about 12.0% by weight (presumed to be the amount in the surface layer), in which case the appearance is about 6%. There is a description that it is inferior to the case of.
Patent Documents 8, 9 and 10 describe the composition of polyethylene and polymethylpentene, but the amount of polymethylpentene is 10% by mass or less so as not to deviate from the polyethylene-based microporous membrane. Patent Documents 11 and 12 disclose microporous membranes composed of two or more layers, and there is no reference to polypropylene elastomer or block copolymer having polyethylene blocks at both ends in any of the layers.
Non-Patent Document 1 describes a single-layer polyethylene microporous membrane, a single-layer polypropylene microporous membrane, a polyolefin-based microporous membrane composed of three layers of polyethylene / polypropylene / polyethylene, and their characteristics, all of which are described. It has been shown that above 185 ° C., the properties cannot be thermally retained. Non-Patent Document 2 shows that a heat-resistant polyolefin-based microporous membrane having a shutdown property and low shrinkage at high temperatures exists, but details of the composition and the manufacturing method are not disclosed.

本発明は、高温時の低収縮性、機械的特性、透気度に優れ、膜厚が薄いポリオレフィン系微多孔膜を提供することを目的とする。該ポリオレフィン系微多孔膜は、リチウムイオン二次電池の安全性と寿命を高めるセパレータとして有用な、140℃以下のシャットダウン温度を有し、190℃以上まで、液体電解液が熱分解して失活するまで非溶融(ノンメルトダウン)である両特性を同時に有していることが好ましい。また、本発明はかかる膜を製造する方法を提供することを目的とする。 An object of the present invention is to provide a polyolefin-based microporous membrane having low shrinkage at high temperature, excellent mechanical properties, air permeability, and a thin film thickness. The polyolefin-based microporous membrane has a shutdown temperature of 140 ° C. or lower, which is useful as a separator for enhancing the safety and life of a lithium ion secondary battery, and the liquid electrolyte is thermally decomposed and deactivated up to 190 ° C. or higher. It is preferable to have both characteristics of non-melting (non-meltdown) at the same time. Another object of the present invention is to provide a method for producing such a film.

本発明は、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン―イソプレンコポリマーから選ばれた1以上のポリマーの水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物を提供する。以下において、該樹脂組成物を「ポリオレフィン系樹脂組成物」と言うことがある。
また、本発明は、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン―イソプレンコポリマーから選ばれた1以上のポリマーの水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物10質量部〜49質量部および可塑剤90質量部〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去し、更に二軸延伸で該膜を追加延伸すること、を含む、ポリオレフィン系微多孔膜の製造方法を提供する。
更に、本発明は、工程1において、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエンイソプレンコポリマーから選ばれた1以上の樹脂の水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物10質量部〜49質量部および可塑剤90質量部〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去し、更に二軸延伸で追加延伸して膜Aを得ること、
工程2において、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル−1−ペンテンと炭素数3以上のα−オレフィンの共重合体樹脂35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン-イソプレンコポリマーから選ばれた1以上の樹脂の水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物であって、該水素添加物の量が上記工程1における水素添加物の量と異なるところの樹脂組成物10〜49質量部および可塑剤90〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去し、更に二軸延伸で追加延伸して膜Bを得ること、
工程3において、上記膜Aの1枚以上と上記膜Bの一枚以上とを交互に重ね、更に二軸延伸で追加延伸すること、
を包含するポリオレフィン系微多孔膜の製造方法を提供する。
The present invention comprises 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. Provided is a resin composition containing 0.1 to 2% by mass of a hydrogenated product of one or more polymers selected from polybutadiene, polyisoprene and a butadiene-isoprene copolymer, and 0.5 to 5% by mass of a propylene-based elastomer resin. To do. Hereinafter, the resin composition may be referred to as a “polyolefin resin composition”.
Further, in the present invention, 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. A resin composition containing 0.1 to 2% by mass of a hydrogenated product of one or more polymers selected from polybutadiene, polyisoprene and a butadiene-isoprene copolymer, and 0.5 to 5% by mass of a propylene-based elastomer resin. 10 parts by mass to 49 parts by mass and 90 parts by mass to 51 parts by mass of the plasticizer are supplied to a twin-screw extruder, melt-kneaded, extruded from a die, and cooled to obtain a gel-like sheet molded product. This includes biaxially stretching the molded sheet to obtain a film, and removing a part of the plasticizer from the film by dissolving it in a solvent, and further stretching the film by biaxial stretching. Provided is a method for producing a polyolefin-based microporous film.
Further, in the step 1, the present invention is a copolymer 35 of ultrahigh molecular weight polyethylene 25 to 50% by mass, polyethylene 1 to 15% by mass, 4-methyl-1-pentene, and α-olefin having 3 or more carbon atoms. Includes ~ 65% by weight, 0.1 to 2% by weight of hydrogenated one or more resins selected from polybutadiene, polyisoprene and butadiene isoprene copolymers, and 0.5 to 5% by weight of propylene elastomer resins. 10 parts by mass to 49 parts by mass of the resin composition and 90 parts by mass to 51 parts by mass of the plasticizer are supplied to a twin-screw extruder, melt-kneaded, extruded from a die, and cooled to obtain a gel sheet molded product. , The gel-like sheet molded product is biaxially stretched to obtain a film, and a part of the plasticizer is dissolved and removed from the film in a solvent, and further biaxially stretched to obtain a film A. thing,
In step 2, 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. , Polybutadiene, polyisoprene and butadiene-isoprene copolymers in a resin composition comprising 0.1 to 2% by weight of a hydrogenated additive of one or more resins and 0.5 to 5% by weight of a propylene-based elastomer resin. Therefore, 10 to 49 parts by mass of the resin composition and 90 to 51 parts by mass of the plasticizer in which the amount of the hydrogen additive is different from the amount of the hydrogen additive in the above step 1 are supplied to the twin-screw extruder and melt-kneaded. Then, it is extruded from a die and cooled to obtain a gel-like sheet molded product, the gel-like sheet molded product is biaxially stretched to obtain a film, and a part of a plasticizing agent is used as a solvent from the film. Dissolve and remove, and further stretch by biaxial stretching to obtain film B,
In step 3, one or more of the film A and one or more of the film B are alternately laminated, and further stretched by biaxial stretching.
Provided is a method for producing a polyolefin-based microporous membrane including.

本発明により、高温時の低収縮性、機械的特性、透気度に優れ、膜厚が薄いポリオレフィン系微多孔膜が提供される。該ポリオレフィン系微多孔膜は、リチウムイオン二次電池の安全性と寿命を高めるセパレータとして有用な、140℃以下のシャットダウン温度を有し、190℃以上まで、液体電解液が熱分解して失活するまで非溶融(ノンメルトダウン)である両特性を同時に有していることが好ましい。また、本発明により、かかる膜を製造する方法が提供される。本発明の高耐熱性、高温低収縮性を有するポリオレフィン系微多孔膜は、190℃まで高耐熱性を有する故に、従来のポリエチレンセパレータにおけるような耐熱性向上のためのセラミックス粒子の塗布を必要としない。また、単層構造(押出、延伸された2枚の膜を重ねた場合においても、次にさらに二軸延伸する過程で実質的に1層になる)の耐熱性ポリオレフィン系微多孔膜であり、電池組み立て工程で、セパレータとして取り扱われる際に、まくが屈曲性、可撓性を有するので、作業性が損われることがない。既存の湿式セパレータ設備を活用し、ポリエチレンの代わりに本発明の樹脂組成物を用いて、強混練りスクリューユニットにおいて押出機温度、膜延伸温度等の加工温度を調整することにより、ポリオレフィン系微多孔膜を容易に量産できる。 INDUSTRIAL APPLICABILITY The present invention provides a polyolefin-based microporous membrane having low shrinkage at high temperature, excellent mechanical properties, air permeability, and a thin film thickness. The polyolefin-based microporous membrane has a shutdown temperature of 140 ° C. or lower, which is useful as a separator for enhancing the safety and life of a lithium ion secondary battery, and the liquid electrolyte is thermally decomposed and deactivated up to 190 ° C. or higher. It is preferable to have both characteristics of non-melting (non-meltdown) at the same time. The present invention also provides a method for producing such a film. Since the polyolefin-based microporous membrane having high heat resistance and high temperature and low shrinkage of the present invention has high heat resistance up to 190 ° C., it is necessary to apply ceramic particles for improving heat resistance as in a conventional polyethylene separator. do not do. Further, it is a heat-resistant polyolefin-based microporous membrane having a single-layer structure (even when two extruded and stretched membranes are laminated, they become substantially one layer in the process of further biaxial stretching). When handled as a separator in the battery assembly process, the sowing has flexibility and flexibility, so that workability is not impaired. By utilizing the existing wet separator equipment and using the resin composition of the present invention instead of polyethylene to adjust the processing temperature such as the extruder temperature and the film stretching temperature in the strong kneading screw unit, the polyolefin-based microporous Membranes can be easily mass-produced.

また本発明では、当該単層構造のポリオレフィン系微多孔膜の表面に架橋性ポリマーの溶液を塗布して極薄皮膜を形成することにより、パウチ型電池、プリズム型電池、円筒缶電池での容量保持の長寿命化をもたらす表面修飾を行い、表面修飾ポリオレフィン系微多孔膜も提供される。 Further, in the present invention, the capacity of a pouch-type battery, a prism-type battery, or a cylindrical can battery is formed by applying a solution of a crosslinkable polymer to the surface of the polyolefin-based microporous film having a single-layer structure to form an ultrathin film. Surface-modified polyolefin-based microporous membranes that are surface-modified to provide longer retention life are also provided.

本発明の微多孔膜は、下記の工程を含む製造方法により好適に製造される。以下好ましい各工程を順次説明する。
(工程1)超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン―イソプレンコポリマーから選ばれた1以上のポリマーの水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物10質量部〜49質量部、および任意成分として酸化防止剤、無機フィラーなどを2軸押出機に供給し、たとえばサイドフィーダーから可塑剤90質量部〜51質量部を供給し、溶融混練し、Tダイより押出し、そしてロールで冷却及び圧延して、ゲル状シート成形物を得る工程;
(工程2)工程1で得られたゲル状シート成形物を2軸方向(MD方向,TD方向)に逐次または同時の2軸延伸法により延伸を行う工程;
(工程3)工程2で得られたフィブリル繊維構造が形成されている薄膜から可塑剤の一部を溶剤により抽出除去し、溶剤を気化させて取り除いて微多孔膜を得る工程;
(工程4)工程3で得られた微多孔膜を加熱加圧する工程、この工程において、空隙率を小さくし、かつフィブリル繊維を半溶融ないし溶融させて、小さいフィブリル径を大きくする;
(工程5)工程4で得られたシート状成形物を2軸方向(MD方向,TD方向)に逐次または同時の2軸延伸により追加延伸を行う工程;
(工程6)工程5で得られた薄膜から溶剤で可塑剤を抽出して実質的に完全に溶剤を除去し、溶剤を気化させる工程、あるいは、より膜厚を小さくするために工程5で得られた薄膜を加熱加圧してから、薄膜から溶剤で可塑剤を抽出して実質的に完全に溶剤を除去し、溶剤を気化させる工程、
(工程7)工程6で得られたポリオレフィン系微多孔膜を必要に応じて熱処理、再延伸、および熱固定する工程。
なお、上記の工程6及び7は、任意である。
あるいは、(工程5-2)工程5において得られた膜Aと、工程1における樹脂組成物とは水素添加物の量が異なる樹脂組成物を用いて工程1〜5を行って得られた膜Bとを重ね、更に2軸方向(MD方向,TD方向)に逐次または同時の2軸延伸により追加延伸を行う工程を行った後、工程6へと進むことが出来る。
更に必要に応じて
(工程8)工程6または7で得られたポリオレフィン系微多孔膜の面に架橋性ポリマーを塗布し、乾燥して、極薄い表層を形成する工程を追加してもよい。架橋性ポリマーは、たとえばUV照射により、架橋されることが出来る。
The microporous membrane of the present invention is suitably produced by a production method including the following steps. Hereinafter, each preferable step will be described in sequence.
(Step 1) 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. 10% by mass of a resin composition containing 0.1 to 2% by mass of a hydrogenated product of one or more polymers selected from polybutadiene, polyisoprene and a butadiene-isoprene copolymer and 0.5 to 5% by mass of a propylene-based elastomer resin. Parts to 49 parts by mass, and antioxidants, inorganic fillers, etc. as optional components are supplied to the twin-screw extruder. For example, 90 parts by mass to 51 parts by mass of the plasticizer is supplied from the side feeder, melt-kneaded, and then melt-kneaded. The process of extruding and cooling and rolling on a roll to obtain a gel sheet polymer;
(Step 2) A step of stretching the gel-like sheet molded product obtained in Step 1 in the biaxial direction (MD direction, TD direction) sequentially or simultaneously by the biaxial stretching method;
(Step 3) A step of extracting and removing a part of the plasticizer from the thin film on which the fibril fiber structure is formed obtained in step 2 with a solvent, and vaporizing and removing the solvent to obtain a microporous film;
(Step 4) A step of heating and pressurizing the microporous membrane obtained in Step 3. In this step, the porosity is reduced and the fibril fibers are semi-melted or melted to increase the small fibril diameter;
(Step 5) A step of additionally stretching the sheet-shaped molded product obtained in step 4 by sequentially or simultaneously biaxial stretching in the biaxial directions (MD direction, TD direction);
(Step 6) A step of extracting a plasticizer with a solvent from the thin film obtained in step 5 to substantially completely remove the solvent and vaporizing the solvent, or a step of obtaining a film in step 5 to further reduce the film thickness. The process of heating and pressurizing the thin film, extracting the plasticizer from the thin film with a solvent to remove the solvent substantially completely, and vaporizing the solvent.
(Step 7) A step of heat-treating, re-stretching, and heat-fixing the polyolefin-based microporous membrane obtained in step 6 as necessary.
The above steps 6 and 7 are optional.
Alternatively, (Step 5-2) Membranes obtained by performing Steps 1 to 5 using the film A obtained in Step 5 and a resin composition in which the amount of hydrogenated material is different from that of the resin composition in Step 1. After stacking B and further performing a step of performing additional stretching by sequentially or simultaneously biaxial stretching in the biaxial directions (MD direction, TD direction), the process can proceed to step 6.
Further, if necessary, a step of applying a crosslinkable polymer to the surface of the polyolefin-based microporous membrane obtained in step 6 or 7 and drying to form an ultrathin surface layer may be added. The crosslinkable polymer can be crosslinked, for example by UV irradiation.

上記ポリオレフィン樹脂組成物あるいはその溶融混練物に、必要に応じて、紫外線吸収剤、アンチブロッキング剤、核剤、顔料、染料、無機充填材等の各種添加剤を本発明の効果を損なわない範囲で添加ことができる。例えば孔形成剤として微粉シリカ、アルミナシリカ等を添加することができる。また、当該微多孔膜の面にアルミナ、シリカ等のセラミックスとバインダーの有機溶剤縣濁物あるいは水縣濁物を塗布して、いわゆるセラミックス含有表層膜を形成することも出来る。 If necessary, various additives such as an ultraviolet absorber, an anti-blocking agent, a nucleating agent, a pigment, a dye, and an inorganic filler are added to the polyolefin resin composition or its melt-kneaded product as long as the effects of the present invention are not impaired. Can be added. For example, fine powder silica, alumina silica and the like can be added as the pore forming agent. Further, a so-called ceramic-containing surface layer film can also be formed by applying a ceramic such as alumina or silica and an organic solvent turbid substance or a water turbid substance of a binder on the surface of the microporous film.

溶融混練の方法は特に限定されないが、二軸押出機中で均一に混練することが好ましい。この方法は当該ポリオレフィン系樹脂混合物の溶融物を調製するのに特に適する。溶融温度はポリオレフィン系樹脂混合物の平均融点である+10℃ 〜 + 60℃ の範囲内であるのが好ましい。特には、溶融温度は、押出温度ゾーンを190〜 240℃ の範囲に設定するのが好ましく、190〜 230℃ の範囲内であるのがより好ましい。可塑剤は、混練中に二軸押出機に分割添加するのが好ましい。
溶融混練にあたってポリオレフィン系樹脂組成物の酸化劣化を防止するために、酸化防止剤を添加するのが好ましい。無機フィラーを任意的に添加することが出来る。
The method of melt-kneading is not particularly limited, but it is preferable to knead uniformly in a twin-screw extruder. This method is particularly suitable for preparing a melt of the polyolefin-based resin mixture. The melting temperature is preferably in the range of + 10 ° C. to + 60 ° C., which is the average melting point of the polyolefin-based resin mixture. In particular, the melting temperature is preferably set in the extrusion temperature zone in the range of 190 to 240 ° C., more preferably in the range of 190 to 230 ° C. The plasticizer is preferably added in portions to the twin-screw extruder during kneading.
In order to prevent oxidative deterioration of the polyolefin resin composition during melt-kneading, it is preferable to add an antioxidant. Inorganic filler can be optionally added.

二軸押出機のスクリューの長さ(L)と直径(D)の比(L/D)は、30〜100の範囲にあるが好ましく、40〜60の範囲がより好ましい。L/Dが30未満であると、溶融混練が不十分となることがあり、特に超高分子量ポリエチレンと4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体樹脂とのミクロ完全溶融混練が困難となる。
L/Dが100超であると、ポリオレフィン混合物溶融物と可塑剤の滞留時間が大き過ぎ、樹脂の熱劣化を招く。スクリュ−の形状は特に制限されないが、樹脂融点の大きく異なる成分を溶融・混練りする観点で、深溝スクリューを選択するのが良い。二軸押出機のシリンダ内径は26〜150mmであるのが好ましい。ポリオレフィン系樹脂組成物を二軸押出機に入れる際、スクリュ−回転数Ns(rpm)に対するポリオレフィン系樹脂組成物と可塑剤との投入量Q(kg/h)の比Q/Nsを0.1〜2 kg/h/rpm、特に0.3〜1.9 kg/h/rpm、にするのが好ましい。上記下限未満では、ポリオレフィン樹脂が過度にせん断破壊されてしまい、膜製品の強度やシャットダウン温度の低下につながる。一方、上記上限を超えると、成分が均一に混練されないこともある。スクリュー回転数Nsは60rpm以上にするのが好ましい。スクリュ−回転数Nsの上限は特に制限されないが、好ましい回転数は150〜300 rpmである。
The ratio (L / D) of the screw length (L) to diameter (D) of the twin-screw extruder is preferably in the range of 30 to 100, more preferably in the range of 40 to 60. If the L / D is less than 30, melt-kneading may be insufficient, and in particular, a copolymer resin of ultra-high molecular weight polyethylene, 4-methyl-1-pentene, and α-olefin having 3 or more carbon atoms. Micro perfect melt kneading becomes difficult.
If the L / D is more than 100, the residence time of the polyolefin mixture melt and the plasticizer is too long, which causes thermal deterioration of the resin. The shape of the screw is not particularly limited, but it is preferable to select a deep groove screw from the viewpoint of melting and kneading components having greatly different resin melting points. The cylinder inner diameter of the twin-screw extruder is preferably 26 to 150 mm. When the polyolefin resin composition is put into a twin-screw extruder, the ratio Q / Ns of the input amount Q (kg / h) of the polyolefin resin composition and the plasticizer to the screw rotation speed Ns (rpm) is 0.1. It is preferably about 2 kg / h / rpm, particularly 0.3 to 1.9 kg / h / rpm. Below the above lower limit, the polyolefin resin is excessively shear-broken, leading to a decrease in the strength of the membrane product and the shutdown temperature. On the other hand, if the above upper limit is exceeded, the components may not be uniformly kneaded. The screw rotation speed Ns is preferably 60 rpm or more. The upper limit of the screw rotation speed Ns is not particularly limited, but the preferred rotation speed is 150 to 300 rpm.

ゲル状シート成形物を形成する方法としては、二軸押出機で作られた溶融物を二軸押出機から直接に又は別の押出機から、ギアーポンプを介してダイを通して押出し、冷却する方法が好ましい。 As a method for forming the gel-like sheet molded product, a method in which the melt produced by the twin-screw extruder is extruded directly from the twin-screw extruder or from another extruder through a die through a gear pump and cooled is preferable. ..

ダイリップとしては、通常は長方形の口金形状をしたシート用Tダイリップを用いるが、二重円筒状の中空状ダイリップ、インフレーションダイリップ等も用いることができる。
シート用Tダイリップの場合、ダイリップのギャップは通常0.2〜 0.8m mの範囲内であり、押出し時に樹脂混合物の温度は220〜 250℃ の範囲にあるのが好ましい。押出し速度は0.2〜 80m/分の範囲内であるのが好ましい。
As the die lip, a T die lip for a sheet having a rectangular base shape is usually used, but a double cylindrical hollow die lip, an inflation die lip and the like can also be used.
In the case of T-die lips for sheets, the gap of the dies is usually in the range of 0.2 to 0.8 mm, and the temperature of the resin mixture at the time of extrusion is preferably in the range of 220 to 250 ° C. The extrusion speed is preferably in the range of 0.2 to 80 m / min.

冷却は、少なくともゲル化温度以下まで、より好ましくは40℃ 以下まで、行うのが好ましい。ゲル化温度以下まで冷却することにより、可塑剤の「海」相の中にポリオレフィン系樹脂組成物からなる「島」相がミクロ相として分離されている相分離構造を固定することができる。一般に冷却速度が遅いと、得られるゲル状成形物の高次構造が粗くなり、それを形成する擬似細胞単位ミクロ相である「島」が大きくなる傾向がある。冷却速度が速いと、「島」が小さく、密な構造となる。冷却速度が50℃/分未満では、樹脂の結晶化が進行して、延伸に適したゲル状成形物となりにくい。冷却方法としては冷風、冷却水または他の冷却媒体に押出物を直接接触させる方法、冷媒で冷却したロールに押出物を接触させる方法等を用いることができる。他にバッチ式混練機で樹脂と可塑剤を溶融混練した後、圧縮成型機を用いてシート・フィルム状にし、冷却する方法が利用できる。
延伸方法としては、フラット延伸、チューブラ延伸、ロール圧延などが利用可能である。
これらのうち、延伸均一性の観点からフラット延伸が好ましい。延伸温度は、概ね120℃〜ポリオレフィン混合物の平均融点の範囲内において選択することが好ましい。延伸温度を110℃ 未満とすると、過大な延伸応力がかかり、破膜を招き、また耐高温収縮性が悪化する。延伸温度は微多孔膜の熱収縮を低減させるために可能な限り高温にすることが望ましい。しかし、延伸温度は、微多孔膜を構成するポリオレフィン系樹脂混合物の平均融点以下であるのが好ましい。当該樹脂混合物の平均融点温度以下であれば、樹脂の融解による破膜を避けることが可能となる。延伸温度が平均融点温度を超えるとポリオレフィン系樹脂組成物が溶融し、延伸による分子鎖の配向ができない。
Cooling is preferably carried out to at least the gelation temperature or lower, more preferably 40 ° C. or lower. By cooling to a temperature below the gelation temperature, a phase-separated structure in which the "island" phase composed of the polyolefin-based resin composition is separated as a micro phase can be fixed in the "sea" phase of the plasticizer. Generally, when the cooling rate is slow, the higher-order structure of the obtained gel-like molded product becomes coarse, and the "islands" which are the pseudo-cell unit microphases forming the same tend to become large. When the cooling rate is high, the "islands" are small and the structure is dense. If the cooling rate is less than 50 ° C./min, crystallization of the resin proceeds and it is difficult to obtain a gel-like molded product suitable for stretching. As the cooling method, a method of bringing the extrude into direct contact with cold air, cooling water or another cooling medium, a method of bringing the extrude into contact with a roll cooled with a refrigerant, or the like can be used. Alternatively, a method can be used in which the resin and the plasticizer are melt-kneaded with a batch kneader, then formed into a sheet film using a compression molding machine, and cooled.
As the stretching method, flat stretching, tubular stretching, roll rolling and the like can be used.
Of these, flat stretching is preferable from the viewpoint of stretching uniformity. The stretching temperature is preferably selected within the range of approximately 120 ° C. to the average melting point of the polyolefin mixture. When the stretching temperature is less than 110 ° C., an excessive stretching stress is applied, which causes film rupture and deteriorates high temperature shrinkage resistance. The stretching temperature is preferably as high as possible in order to reduce the thermal shrinkage of the microporous membrane. However, the stretching temperature is preferably equal to or lower than the average melting point of the polyolefin-based resin mixture constituting the microporous film. When the temperature is equal to or lower than the average melting point temperature of the resin mixture, it is possible to avoid film rupture due to melting of the resin. When the stretching temperature exceeds the average melting point temperature, the polyolefin-based resin composition melts and the molecular chains cannot be oriented by stretching.

二軸延伸は、ゲル状シート成形物を加熱後、通常のテンター法、ロール法、インフレーション法、圧延法又はこれらの方法の組合せにより行う。同時二軸延伸、逐次延伸又は多段延伸(例えば同時二軸延伸と逐次延伸の組合せ)のいずれでもよい。
本発明の製造方法の過程において起きる現象を以下で説明するが、本発明はそれにより限定されるものではない。本発明では、可塑剤からなる連続相の海構造の状態の間に存在する分散相である島構造の樹脂混合物を、延伸によりフィブリル繊維構造へと変化させることが、肝要である。ゲル状シート成形物を例えば3.5〜6倍に延伸することにより、成形物のゲル状構造が平均50nm−400nmの径を持つフィブリル繊維を含む構造に変化する。シートの破断強度を20〜70MPaまで高めるためには、可塑剤の部分抽出除去により繊維が束になったり、繊維同士が隣接させる。最終構成フィブリル繊維径を200nmから3000nm程度の太い径のフィブリルにする為に、二軸延伸した後に可塑剤を部分除去した後の空隙を圧下しておく必要がある。
Biaxial stretching is performed by heating a gel-like sheet molded product and then using a normal tenter method, a roll method, an inflation method, a rolling method, or a combination of these methods. It may be either simultaneous biaxial stretching, sequential stretching or multi-stage stretching (for example, a combination of simultaneous biaxial stretching and sequential stretching).
The phenomena that occur in the process of the manufacturing method of the present invention will be described below, but the present invention is not limited thereto. In the present invention, it is important to change the resin mixture having an island structure, which is a dispersed phase existing between the states of a continuous phase sea structure composed of a plasticizer, into a fibril fiber structure by stretching. By stretching the gel-like sheet molded product, for example, 3.5 to 6 times, the gel-like structure of the molded product is changed to a structure containing fibril fibers having an average diameter of 50 nm to 400 nm. In order to increase the breaking strength of the sheet to 20 to 70 MPa, the fibers are bundled or the fibers are adjacent to each other by partial extraction and removal of the plasticizer. Final composition In order to make the fibril with a large diameter of about 200 nm to 3000 nm, it is necessary to reduce the voids after the plasticizer is partially removed after biaxial stretching.

ゲル状シート成形物を形成した後に二軸延伸する際に、長手方向(MD)及び横方向(TD)における延伸速度を、未延伸シートが延伸される領域において未延伸時の長手方向及び横方向の長さをそれぞれ1 とし、1 分間当りに伸ばされる長さの割合と定義して、縦方向及び横方向の各延伸速度はともに20倍/分以下が好ましい。縦方向又は横方向の延伸速度を20倍/分超とすると、耐溶融収縮性が悪化する恐れがある。各方向の延伸速度を15 倍/分以下とするのがより好ましく、10 倍/分以下とするのが更に好ましい。 When biaxially stretching after forming a gel-like sheet molded product, the stretching speeds in the longitudinal direction (MD) and the transverse direction (TD) are set in the longitudinal direction and the transverse direction when the unstretched sheet is stretched. The length of each is set to 1, and it is defined as the ratio of the length to be stretched per minute, and the stretching speeds in the vertical direction and the horizontal direction are preferably 20 times / min or less. If the stretching speed in the vertical direction or the horizontal direction is more than 20 times / minute, the melt shrinkage resistance may be deteriorated. The stretching speed in each direction is more preferably 15 times / minute or less, and further preferably 10 times / minute or less.

総面積当たりの延伸倍率(以下で、総面積延伸倍率ということがある)は、500倍以下が好ましい。総面積延伸倍率とは、MDにおける延伸倍率(複数回の延伸をした場合には、各延伸倍率の積)と、TDにおける延伸倍率(複数回の延伸をした場合には、各延伸倍率の積)との積である。総面積延伸倍率を500超とすると、耐高温収縮性が悪化する場合がある。総面積延伸倍率は450倍以下が好ましい。
縦方向(MD)及び横方向(TD)における1延伸倍率は夫々、好ましくは3〜 2 0 倍、より好ましくは4 〜 1 5 倍、さらに好ましくは6 〜 1 0 倍である。延伸倍率が上記下限以上であれば、十分な延伸配向が与えられるので、微多孔膜の強度向上が可能である。延伸倍率が上記上限以下であれば、過剰な延伸による微多孔膜の構造破壊を避けることが可能である。生産性の観点から延伸倍率は4 倍以上であるのが好ましい。機械的強度向上の観点から、MD及びTDを夫々4倍以上とすることにより総面積延伸倍率を1 6倍以上とするのがより好ましい。MDにおける延伸倍率とTDにおける延伸倍率の比は、特に制限されないが、同時二軸延伸、逐次二軸延伸又は一段延伸のいずれの場合でも、0.5〜2 であるのが好ましく、0 .7〜 1.3であるのがより好ましく、1であるのが最も好ましい。MDとTDの各方向の延伸速度は20倍/分以下である限り、MDとTDとで互いに異なってもよいが、同じであるのが好ましい。
The stretching ratio per total area (hereinafter, may be referred to as the total area stretching ratio) is preferably 500 times or less. The total area stretching ratio is the product of the stretching ratio in MD (the product of each stretching ratio in the case of multiple stretching) and the stretching ratio in TD (the product of each stretching ratio in the case of multiple stretching). ). When the total area stretching ratio is more than 500, the high temperature shrinkage resistance may be deteriorated. The total area stretching ratio is preferably 450 times or less.
The 1-stretching ratio in the longitudinal direction (MD) and the lateral direction (TD) is preferably 3 to 20 times, more preferably 4 to 15 times, and further preferably 6 to 10 times, respectively. When the draw ratio is equal to or higher than the above lower limit, sufficient draw orientation is given, so that the strength of the microporous membrane can be improved. When the draw ratio is not more than the above upper limit, it is possible to avoid structural destruction of the microporous membrane due to excessive stretching. From the viewpoint of productivity, the draw ratio is preferably 4 times or more. From the viewpoint of improving the mechanical strength, it is more preferable to set the total area stretching ratio to 16 times or more by setting MD and TD to 4 times or more, respectively. The ratio of the draw ratio in MD to the draw ratio in TD is not particularly limited, but is preferably 0.5 to 2 in any case of simultaneous biaxial stretching, sequential biaxial stretching or uniaxial stretching, and 0. It is more preferably 7 to 1.3, and most preferably 1. As long as the stretching speed in each direction of MD and TD is 20 times / minute or less, MD and TD may be different from each other, but are preferably the same.

本発明において、ゲル状シート成形物を延伸して得た膜の2枚以上を重ね、更に延伸することにより、実質上一層の微多孔膜を得ることも出来る。
即ち、工程1において、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル−1−ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエンイソプレンコポリマーから選ばれた1以上の樹脂の水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物10質量部〜49質量部および可塑剤90質量部〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去し、更に二軸延伸で追加延伸して膜Aを得ること、
工程2において、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル−1−ペンテンと炭素数3以上のα−オレフィンの共重合体樹脂35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン-イソプレンコポリマーから選ばれた1以上の樹脂の水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物であって、該水素添加物の量が上記工程1における水素添加物の量と異なるところの樹脂組成物10〜49質量部および可塑剤90〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去し、更に二軸延伸で追加延伸して膜Bを得ること、
工程3において、上記膜Aの1枚以上と上記膜Bの一枚以上とを交互に重ね、更に二軸延伸で追加延伸すること、
を包含するポリオレフィン系微多孔膜の製造方法も本発明の態様である。
工程3において水素添加物の量が異なる2枚以上の膜を重ねた後にカレンダー加工することが好ましい。この態様に従い、膜厚分布がより均一で2ミクロン程度までの極薄い膜を得ることが可能になる。
In the present invention, a substantially one-layer microporous film can be obtained by stacking two or more films obtained by stretching a gel-like sheet molded product and further stretching the film.
That is, in step 1, a copolymer of 25 to 50% by mass of ultra-high molecular weight polyethylene, 1 to 15% by mass of polyethylene, 4-methyl-1-pentene, and α-olefin having 3 or more carbon atoms is 35 to 65% by mass. 10. A resin composition containing 0.1 to 2% by mass of a hydrogenated product of one or more resins selected from polybutadiene, polyisoprene and a butadiene isoprene copolymer, and 0.5 to 5% by mass of a propylene-based elastomer resin. A gel-like sheet molded product is obtained by supplying parts by mass to 49 parts by mass and 90 parts by mass to 51 parts by mass of a plasticizer to a twin-screw extruder, melt-kneading, extruding from a die, and cooling. The sheet molded product is biaxially stretched to obtain a film, and a part of the plasticizer is dissolved and removed from the film in a solvent, and further biaxially stretched to obtain film A.
In step 2, 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. , Polybutadiene, polyisoprene and butadiene-isoprene copolymers in a resin composition comprising 0.1 to 2% by weight of a hydrogenated additive of one or more resins and 0.5 to 5% by weight of a propylene-based elastomer resin. Therefore, 10 to 49 parts by mass of the resin composition and 90 to 51 parts by mass of the plasticizer in which the amount of the hydrogen additive is different from the amount of the hydrogen additive in the above step 1 are supplied to the twin-screw extruder and melt-kneaded. Then, it is extruded from a die and cooled to obtain a gel-like sheet molded product, the gel-like sheet molded product is biaxially stretched to obtain a film, and a part of a plasticizing agent is used as a solvent from the film. Dissolve and remove, and further stretch by biaxial stretching to obtain film B,
In step 3, one or more of the film A and one or more of the film B are alternately laminated, and further stretched by biaxial stretching.
A method for producing a polyolefin-based microporous membrane including the above is also an aspect of the present invention.
In step 3, it is preferable to carry out calendering after stacking two or more films having different amounts of hydrogenated substances. According to this aspect, it becomes possible to obtain an ultrathin film having a more uniform film thickness distribution and up to about 2 microns.

溶剤による可塑剤の除去前の、延伸された微多孔膜の少なくとも一面に熱ロールを接触させる処理(熱ロール処理)を施すのが好ましい。加熱ロールと当該微多孔膜との接触時間は0.1秒〜1分間で良い。ロール表面に加熱された可塑剤を保持した状態で接触させてもよい。加熱ロールとしては、平滑ロールが好ましい。また枚葉には、平板の加熱圧下(たとえば3〜15分間)を圧縮成型機で行ってもよく、本明細書では、これを加熱ロール処理の一形態であるとする。所望の物性に応じて、膜厚方向に温度分布を設けて延伸してもよい。膜厚方向に温度分布を設けて延伸することにより一般的に機械的強度に優れた微多孔膜が得られる。 It is preferable to perform a treatment (heat roll treatment) in which a hot roll is brought into contact with at least one surface of the stretched microporous film before the plasticizer is removed by the solvent. The contact time between the heating roll and the microporous membrane may be 0.1 seconds to 1 minute. The rolled surface may be brought into contact with the heated plasticizer while being held. As the heating roll, a smooth roll is preferable. Further, the single leaf may be subjected to heating reduction of a flat plate (for example, for 3 to 15 minutes) by a compression molding machine, and in the present specification, this is regarded as a form of heat roll treatment. Depending on the desired physical properties, a temperature distribution may be provided in the film thickness direction for stretching. By stretching with a temperature distribution in the film thickness direction, a microporous film having excellent mechanical strength can be generally obtained.

延伸後の膜において、ポリオレフィン系樹脂混合物相と可塑剤相とが相分離しているので、溶剤を用いて可塑剤を除去すると微多孔質の膜が得られる。かかる溶剤及び可塑剤の除去方法は自体は公知である。例えば、可塑剤を含有する膜を、溶剤の浴に通す、あるいは浸漬することによって可塑剤を溶剤に溶解させて膜から除去することが出来る。 Since the polyolefin-based resin mixture phase and the plasticizer phase are phase-separated in the stretched film, a microporous film can be obtained by removing the plasticizer with a solvent. The method for removing such a solvent and a plasticizer is known. For example, the plasticizer can be dissolved in the solvent and removed from the membrane by passing the plasticizer-containing membrane through a solvent bath or immersing it.

毎延伸工程後で、可塑剤除去前または可塑剤除去後において少なくとも1回、熱処理(熱延伸処理 及び/あるいは熱固定処理及び/あるいは熱収縮処理)を行うのが好ましい。熱処理温度は、熱処理による強度変化、透気度変化等に考慮して決めることが好ましい。 It is preferable to perform heat treatment (heat stretching treatment and / or heat fixing treatment and / or heat shrinkage treatment) at least once after each stretching step, before removing the plasticizer or after removing the plasticizer. The heat treatment temperature is preferably determined in consideration of changes in strength and air permeability due to heat treatment.

熱固定処理工程において気孔率等の膜物性を調整するために、通常用いられるテンター方式、ロール方式又は圧延方式により行い、少なくとも一回、少なくとも一軸方向に、一方向における1.01〜 2.0倍、好ましくは1.02〜 1.5倍、の延伸倍率で行うのが好ましい。また、熱固定処理は、テンター方式、ロール方式又は圧延方式により行い、ポリオレフィン系微多孔膜中のポリオレフィン樹脂の結晶化促進とミクロボイド減少を行う。熱収縮処理は、テンター方式、ロール方式若しくは圧延方式により行うか、又はベルトコンベア若しくはフローティングロールを用いて行ってもよい。熱収縮処理は、少なくとも一方向に収縮率50%以下、30%以下、更に好ましくは15%以下で行う。 In order to adjust the film physical properties such as porosity in the heat fixing treatment step, it is carried out by a commonly used tenter method, roll method or rolling method, and at least once, at least once in at least one axial direction, 1.01 to 2.0 in one direction. It is preferably carried out at a stretching ratio of fold, preferably 1.02 to 1.5 times. Further, the heat fixing treatment is performed by a tenter method, a roll method or a rolling method to promote crystallization of the polyolefin resin in the polyolefin-based microporous film and reduce microvoids. The heat shrinkage treatment may be carried out by a tenter method, a roll method or a rolling method, or may be carried out by using a belt conveyor or a floating roll. The heat shrinkage treatment is carried out in at least one direction with a shrinkage rate of 50% or less, 30% or less, more preferably 15% or less.

上述の熱延伸処理、熱固定処理及び熱収縮処理を複数組み合せて行ってもよい。熱ロール(加熱平板を包含する)による処理は洗浄前の延伸ゲル状成形物の少なくとも一面に熱ロールを接触させることにより行われる。ポリオレフィン樹脂の結晶温度+10℃以上〜ポリオレフィン系樹脂組成物の平均融点未満に温調した加熱ロール(加熱平板を包含する)と、当該微多孔膜とを接触時間0.5秒〜1分間で接触させるが好ましい。ロール表面に加熱オイルを保持した状態で接触させてもよい。加熱ロールとしては、平滑な表面を有するクロールメッキロールが好ましい。また加熱平板はステンレススチール板の研磨#400以上#700が好ましい。特に最終延伸処理後に熱収縮処理を行うと、低収縮率、高破断強度の耐熱性ポリオレフィン系微多孔膜が得られ、これが好ましい。 A plurality of the above-mentioned heat stretching treatment, heat fixing treatment, and heat shrinkage treatment may be performed in combination. The treatment with a hot roll (including a heated flat plate) is performed by bringing the hot roll into contact with at least one surface of the stretched gel-like molded product before washing. Contact between a heating roll (including a heating flat plate) whose temperature has been adjusted to a crystal temperature of the polyolefin resin of + 10 ° C. or higher and lower than the average melting point of the polyolefin resin composition and the microporous membrane in a contact time of 0.5 seconds to 1 minute. It is preferable to let it. The heated oil may be brought into contact with the surface of the roll while being held. As the heating roll, a crawl-plated roll having a smooth surface is preferable. Further, the heating flat plate is preferably polished # 400 or more # 700 of a stainless steel plate. In particular, when the heat shrinkage treatment is performed after the final stretching treatment, a heat-resistant polyolefin-based microporous film having a low shrinkage rate and high breaking strength can be obtained, which is preferable.

本発明の好ましい実施態様による耐熱性ポリオレフィン系微多孔膜の膜厚は1〜30μmであり、好ましくは2〜15μm 、より好ましくは2〜10μmである。膜厚は、2μm 以上であれば耐熱性ポリオレフィン系微多孔膜として電池組み立てに必要な機械的強度を有し、30μmでも十分な透過性を有し、2ミクロンでも高い電解液含浸性を有する膜となる。なお微多孔膜の厚さは用途に応じて適宜選択できるが、小型リチウムイオン二次電池用セパレータとして使用する場合は4〜15μmが好ましく、5−9μmがより好ましい。膜厚は、JIS規格K7130に準じて測定する。電気自動車(EV)駆動電源の大型リチウムイオン二次電池用セパレータとして使用する場合でも5〜12μmが好ましい。 The film thickness of the heat-resistant polyolefin-based microporous membrane according to the preferred embodiment of the present invention is 1 to 30 μm, preferably 2 to 15 μm, and more preferably 2 to 10 μm. If the film thickness is 2 μm or more, it has the mechanical strength required for battery assembly as a heat-resistant polyolefin-based microporous membrane, has sufficient permeability even at 30 μm, and has high electrolyte impregnation even at 2 microns. It becomes. The thickness of the microporous membrane can be appropriately selected depending on the intended use, but when used as a separator for a small lithium ion secondary battery, it is preferably 4 to 15 μm, more preferably 5-9 μm. The film thickness is measured according to JIS standard K7130. Even when used as a separator for a large lithium ion secondary battery of an electric vehicle (EV) drive power source, 5 to 12 μm is preferable.

微小孔構造領域と粗大孔構造領域の分布は特に制限されない。通常は、微多孔膜のMD方向及びTD方向のいずれの断面においても、4−メチル−1−ペンテンおよび炭素数3以上のα−オレフィンの共重合体(PMP)と超高分子量ポリエチレン(UHMWPE)とのフィブリル繊維のラメラ構造が生じており、その結果、フィブリル繊維径に分布があり、微小孔構造領域及び粗大孔構造領域が不規則に入り組んでおり、個々の領域の大きさも不規則である。この構造によりシャットダウン特性とノンメルトダウン特性を兼備し、かつ破断強度を適度に保持できるものと推定される。このような構造は、例えば透過型電子顕微鏡(TEM)等により観察することができ、原子間力顕微鏡(AFM)により気孔の表面からの最大高低差として測定することができる。 The distribution of the micropore structure region and the coarse pore structure region is not particularly limited. Usually, a copolymer (PMP) of 4-methyl-1-pentene and an α-olefin having 3 or more carbon atoms and an ultra-high molecular weight polyethylene (UHMWPE) are used in both the MD direction and the TD direction of the microporous film. As a result, the fibril fiber diameter is distributed, the micropore structure region and the coarse pore structure region are irregularly intricate, and the size of each region is also irregular. .. It is presumed that this structure has both shutdown characteristics and non-meltdown characteristics, and can maintain an appropriate breaking strength. Such a structure can be observed by, for example, a transmission electron microscope (TEM) or the like, and can be measured as a maximum height difference from the surface of the pores by an atomic force microscope (AFM).

上記のような粗大孔構造による比較的大きな空間と比較的大きな表面粗さとを有するので、透気度及び電解液吸収性に優れており、しかも、圧力がくわえられた時の透気度の変化が小さい。その故、本発明の膜をリチウムイオン二次電池用セパレータとして用いた場合に、優れた電池の生産性と電池サイクル特性を実現することができる。 Since it has a relatively large space and a relatively large surface roughness due to the coarse pore structure as described above, it is excellent in air permeability and electrolyte absorption, and moreover, the change in air permeability when pressure is applied. Is small. Therefore, when the membrane of the present invention is used as a separator for a lithium ion secondary battery, excellent battery productivity and battery cycle characteristics can be realized.

本発明の耐熱性ポリオレフィン系微多孔膜をリチウムイオン二次電池セパレータとして使用すると、電池の高生産性も実現することが可能となり、かつ該膜の優れたサイクル特性により電池が長寿命となる。均一溶融して得られた本発明のポリオレフィン系微多孔膜は、製造コスト、製造設備の観点でも経済性で有利な、実質上単層の膜でありながら高温低熱収縮性を確保しながら190℃以上まで破膜しない、いわゆるノンメルトダウンの特性を有する。従来の耐熱性セパレータではシャットダウン特性が見られない。本発明のポリエチレン微多孔膜では電池安全性に貢献するシャットダウン温度を保持している上に、ノンメルトダウンの特性を有している。またリチウムイオン二次電池に使用されているフッ素系電解質錯塩は、190℃付近で分解してリチウムイオン電導性が失われて電池として不活性(死ぬ)になるので電池の暴走が抑制ないし防止できる。その温度に達するまで、本発明の耐熱性ポリオレフィン系微多孔膜破、メルトダウンせずに、定収縮に留まり、膜としての形状を維持する。本発明の膜からなるセパレータは、高温低熱収縮性の特性により、正極と負極のエッジ部分の短絡を防止できるので、電池の安全性の観点からも優れる。本発明の膜からなるセパレータは、特に大型電池のEV電池用セパレータとして有用である。当該耐熱性ポリオレフィン系微多孔膜をリチウムイオン二次電池セパレータとして使用して電池組み立てをする際に、従来通りの方法で巻回するには、巻く際に発生する風圧で極薄膜の当該膜は浮きやすくテンション制御とシャフト回転数を減じて巻く必要も生じることがある。本発明の電池組み立て法として円筒缶電池、角形電池、EV用の大型電池において予め正極シートに当該セパレータを貼り合わせてロール圧下して固定しておく。同様に、負極シートに当該セパレータを貼り合わせてロール圧下しておいて使用する。円筒缶に挿入する巻回コイルの生産性が向上し、膜厚さを小さくすることにより電池容量も10−20%向上する。正極シートと負極シートを予め重ね合わせておくことにより、従来のセパレータを組み込むよりやり方よりも作業性が向上し、電池容量も10−20%向上する。 When the heat-resistant polyolefin-based microporous membrane of the present invention is used as a lithium ion secondary battery separator, high productivity of the battery can be realized, and the excellent cycle characteristics of the membrane extend the life of the battery. The polyolefin-based microporous membrane of the present invention obtained by uniform meltdown is economically advantageous in terms of manufacturing cost and manufacturing equipment, and is a substantially single-layer membrane, yet secures high temperature and low heat shrinkage at 190 ° C. It has so-called non-meltdown characteristics that do not rupture the film. No shutdown characteristics can be seen with conventional heat-resistant separators. The polyethylene microporous membrane of the present invention maintains a shutdown temperature that contributes to battery safety, and also has non-meltdown characteristics. In addition, the fluorine-based electrolyte complex salt used in the lithium-ion secondary battery decomposes at around 190 ° C and loses its lithium-ion conductivity and becomes inactive (dead) as a battery, so that the runaway of the battery can be suppressed or prevented. .. Until the temperature is reached, the heat-resistant polyolefin-based microporous membrane of the present invention does not break or melt down, but remains at a constant shrinkage and maintains its shape as a membrane. The separator made of the film of the present invention is excellent from the viewpoint of battery safety because it can prevent a short circuit between the edge portions of the positive electrode and the negative electrode due to the characteristics of high temperature and low heat shrinkage. The film separator of the present invention is particularly useful as a separator for EV batteries of large batteries. When assembling a battery using the heat-resistant polyolefin-based microporous membrane as a lithium ion secondary battery separator, in order to wind the battery in the conventional manner, the film of the ultrathin film is formed by the wind pressure generated during the winding. It is easy to float, and it may be necessary to reduce the tension control and shaft rotation speed for winding. As the battery assembly method of the present invention, in a cylindrical can battery, a square battery, and a large battery for EV, the separator is previously attached to a positive electrode sheet and rolled down to be fixed. Similarly, the separator is attached to the negative electrode sheet and rolled down before use. The productivity of the winding coil to be inserted into the cylindrical can is improved, and the battery capacity is also improved by 10 to 20% by reducing the film thickness. By superimposing the positive electrode sheet and the negative electrode sheet in advance, workability is improved and the battery capacity is also improved by 10 to 20% as compared with the method of incorporating the conventional separator.

次に本発明の耐熱性ポリオレフィン系微多孔膜とその製造方法に使用される材料について説明する。 Next, the heat-resistant polyolefin-based microporous membrane of the present invention and the material used in the method for producing the same will be described.

[1] 超高分子量ポリエチレン
本発明のポリオレフィン系微多孔膜を構成する一成分である超高分子量ポリエチレンは、極限粘度から求めた粘度平均分子量が50万から1000万の範囲にあり、超高分子量ポリエチレンの1種類あるいは2種類以上である。エチレンの単独重合体のみならず、他のα−オレフィン単位を少量含有する共重合体も併用してもよい。エチレン以外の他のα−オレフィンとしてはプロピレン、ブテン‐1、ヘキセン‐1、ペンテン‐1、4‐メチルペンテン‐1、オクテン等の炭素数3乃至30のα−オレフィンとの共重合体が挙げられる。
従来は、粘度平均分子量350万以上の超高分子量ポリエチレンは押出し混練が難しいとされており、使用される事例があまり見られなかった。しかし、粘度平均分子量350万以上の超高分子量ポリエチレンと、粘度平均分子量100万〜250万、たとえば100万程度の超高分子量ポリエチレンとを可塑剤と共に混合するやり方により、市販の粘度平均分子量350万を超える640万以上1000万までの超高分子量ポリエチレンを使用することも可能であることが分かった。更に粘度平均分子量700万から1000万までの超高分子量ポリエチレンでも、特に10μm以下の薄い本発明のポリオレフィン系微多孔膜が破断強度、突き刺し強度を良好に保持できることが見出された。
超高分子量ポリエチレンの量は、20〜50質量%、好ましくは25〜40質量%である。
[1] Ultra-high molecular weight polyethylene The ultra-high molecular weight polyethylene, which is one component of the polyolefin-based microporous membrane of the present invention, has an ultra-high molecular weight in the range of 500,000 to 10 million, which is the viscosity average molecular weight obtained from the ultimate viscosity. One type or two or more types of polyethylene. Not only the homopolymer of ethylene but also a copolymer containing a small amount of other α-olefin units may be used in combination. Examples of α-olefins other than ethylene include copolymers with α-olefins having 3 to 30 carbon atoms such as propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, and octene. Be done.
Conventionally, it has been considered difficult to extrude and knead ultra-high molecular weight polyethylene having a viscosity average molecular weight of 3.5 million or more, and there have been few cases of its use. However, by mixing an ultra-high molecular weight polyethylene having a viscosity average molecular weight of 3.5 million or more and an ultra-high molecular weight polyethylene having a viscosity average molecular weight of 1 million to 2.5 million, for example, about 1 million, together with a plasticizer, a commercially available viscosity average molecular weight of 3.5 million It has been found that it is also possible to use ultra-high molecular weight polyethylenes of more than 6.4 million and up to 10 million. Furthermore, it was found that even in ultra-high molecular weight polyethylene having a viscosity average molecular weight of 7 million to 10 million, the polyolefin-based microporous membrane of the present invention, which is particularly thin with a viscosity of 10 μm or less, can maintain good breaking strength and piercing strength.
The amount of ultra-high molecular weight polyethylene is 20 to 50% by mass, preferably 25 to 40% by mass.

[2] ポリエチレン
本発明のポリエチレンは、好ましくは、粘度平均分子量が15万から50万未満、好ましくは20万〜45万の範囲にある高密度ポリエチレン(HDPE)、中密度ポリエチレン(MDPE)、低密度ポリエチレン(LDPE),リニア−低密度ポリエチレン(L−LDPE)であり、これらの単独、ないし2種以上である。エチレンの単独重合体のみならず、他のα−オレフィンを少量含有する共重合体も併用してもよい。エチレン以外の他のα−オレフィンとしてはプロピレン、ブテン‐1、ヘキセン‐1、ペンテン‐1、4‐メチルペンテン‐1、オクテン等の炭素数3乃至30のα−オレフィンとの共重合体が挙げられる。
ポリエチレンの量は、1〜15質量%、好ましくは2〜10質量%である。
[2] Polyethylene The polyethylene of the present invention is preferably high density polyethylene (HDPE), medium density polyethylene (MDPE), low density polyethylene (HDPE) having a viscosity average molecular weight in the range of 150,000 to less than 500,000, preferably 200,000 to 450,000. High-density polyethylene (LDPE) and linear-low-density polyethylene (L-LDPE), which may be used alone or in combination of two or more. Not only the homopolymer of ethylene but also a copolymer containing a small amount of other α-olefin may be used in combination. Examples of α-olefins other than ethylene include copolymers with α-olefins having 3 to 30 carbon atoms such as propylene, butene-1, hexene-1, pentene-1, 4-methylpentene-1, and octene. Be done.
The amount of polyethylene is 1 to 15% by mass, preferably 2 to 10% by mass.

なお、上記の超高分子量ポリエチレンならびにポリエチレンの粘度平均分子量は、溶剤としてデカリンを使用し、測定温度135℃にて極限粘度[η]を測定し、下記の数式により粘度平均分子量(Mv)を算出する。 For the above-mentioned ultra-high molecular weight polyethylene and the viscosity average molecular weight of polyethylene, the maximum viscosity [η] is measured at a measurement temperature of 135 ° C. using decalin as a solvent, and the viscosity average molecular weight (Mv) is calculated by the following formula. To do.

[数1]
Mv=53700*[η]1.37
[Number 1]
Mv = 53700 * [η] 1.37

[3] 4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体
本発明で使用されるのはポリ(4−メチル−1−ペンテン)のホモポリマーでなく、メチル4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体である。該α−オレフィンは、例えば、炭素数3乃至30のα−オレフィン、特にプロピレン、1−ブテン、1−ヘキセン、1−オクテン、1−デセン、1−ドデセン、1−テトラデセン、1−ヘキサデセン、1−オクタデセンである。超高分子量ポリエチレンとの溶融時の混和性の観点から、粉末形状の当該共重合体が好ましく、また混和性に加えて、ポリオレフィン系微多孔膜の耐熱性の観点から、共重合体は4−メチル‐1−ぺンテン由来の単位を80モル%〜99モル%を含むことが好ましい。4 − メチル−1−ペンテン とα−オレフィンとの組成比は、DSC(示差走査型熱量計)試験に基づいて測定される融点(Tm)が200〜250℃、好ましくは220 〜240℃の範囲になる様に調整される。さらに、共重合体は、ASTM D1238に準じた荷重5kg、温度260℃の条件により測定されるメルトフローレート(MFR)が0.05〜250g/10分、好ましくは1〜100g/10分であることが好ましい。メルトフローレートが上記下限未満のものは溶融粘度が高く成形性に劣り、メルトフローレートが上記上限を超えるものは溶融粘度が低く成膜性に劣り、また機械的強度も低い。
4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体の量は、30〜65質量%、好ましくは35〜60質量%である。上記下限未満では、ポリオレフィン系微多孔膜としての耐熱性を向上する度合いが不十分であり、190℃、1時間の循環熱風乾燥機内での熱暴露後に高温低熱収縮性を示さず好ましくない。また上記上限を超えても、更なる低熱収縮性の顕著な向上が期待できず、コストが高くなり好ましくない。
[3] Copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms It is not a poly (4-methyl-1-pentene) homopolymer but methyl 4 used in the present invention. It is a copolymer of -methyl-1-pentene and an α-olefin having 3 or more carbon atoms. The α-olefin may be, for example, an α-olefin having 3 to 30 carbon atoms, particularly propylene, 1-butene, 1-hexene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1 -Octadecene. From the viewpoint of miscibility at the time of melting with ultra-high molecular weight polyethylene, the copolymer in powder form is preferable, and from the viewpoint of heat resistance of the polyolefin-based microporous film in addition to miscibility, the copolymer is 4- It is preferable to contain 80 mol% to 99 mol% of units derived from methyl-1-pentene. The composition ratio of 4-methyl-1-pentene to α-olefin has a melting point (Tm) of 200 to 250 ° C, preferably 220 to 240 ° C, measured based on a DSC (Differential Scanning Calorimeter) test. It is adjusted to be. Further, the copolymer has a melt flow rate (MFR) of 0.05 to 250 g / 10 minutes, preferably 1 to 100 g / 10 minutes, measured under the conditions of a load of 5 kg and a temperature of 260 ° C. according to ASTM D1238. Is preferable. If the melt flow rate is less than the above lower limit, the melt viscosity is high and the moldability is poor, and if the melt flow rate exceeds the above upper limit, the melt viscosity is low and the film forming property is poor, and the mechanical strength is also low.
The amount of the copolymer of 4-methyl-1-pentene and the α-olefin having 3 or more carbon atoms is 30 to 65% by mass, preferably 35 to 60% by mass. If it is less than the above lower limit, the degree of improving the heat resistance of the polyolefin-based microporous membrane is insufficient, and it is not preferable because it does not show high temperature and low heat shrinkage after heat exposure in a circulating hot air dryer at 190 ° C. for 1 hour. Further, even if the above upper limit is exceeded, further remarkable improvement in low heat shrinkage cannot be expected, and the cost becomes high, which is not preferable.

[4] ポリブタジエン、ポリイソプレンおよびブタジエン―イソプレンコポリマーから選ばれた1以上のポリマーの水素添加物
ポリエチレンブロックを少なくとも片端に有するポリブタジエン、ポリイソプレン、ブタジエン―イソプレンコポリマーにおいて、ジエン結合の80%以上、好ましくは90%以上が水素添加しているものが好ましい。ポリブタジエン水添物であるエチレン−エチレン・ブチレン−エチレンブロック共重合体が好ましい。これは、リビング触媒で得られたブロック共重合体のブタジエン部分の二重結合を水素添加して飽和化したエラストマーである。例えば、JSR社製ダイナロンCEBC(例示としてダイナロン6200P、6100P,6201B))が挙げられる。
該水素添加物の量は、0.1〜2質量%、好ましくは0.1〜1質量%である。
該水素添加物は、本発明の樹脂組成物において、他の異なる高分子物質の界面に存在して、該異なる高分子物質の間の相溶性を高める働きをしていると考えられ、この意味で一種の界面改質剤とも言える。
[4] Hydrogenated one or more polymers selected from polybutadiene, polyisoprene and butadiene-isoprene copolymers Polybutadiene, polyisoprene, butadiene-isoprene copolymers having at least one end a polyethylene block, preferably 80% or more of the diene bond. Is preferably 90% or more hydrogenated. An ethylene-ethylene / butylene-ethylene block copolymer, which is a polybutadiene hydrogenated product, is preferable. This is an elastomer saturated by hydrogenating the double bond of the butadiene portion of the block copolymer obtained by the living catalyst. For example, JSR's Dynaron CEBC (for example, Dynaron 6200P, 6100P, 6201B) can be mentioned.
The amount of the hydrogenated product is 0.1 to 2% by mass, preferably 0.1 to 1% by mass.
It is considered that the hydrogenated additive is present at the interface of other different polymer substances in the resin composition of the present invention and has a function of enhancing the compatibility between the different polymer substances. It can be said that it is a kind of interface modifier.

[5]プロピレン系エラストマー樹脂
プロピレン系エラストマー樹脂は、プロピレン由来の構成単位と炭素数2〜30のα−オレフィン(プロピレンを除く)由来の構成単位を含む。これは、好ましくは、10nm〜50nmのナノオーダーレベルのらせん状の結晶部である「島」が互いに連結して網状の構造をとり非晶部全体を覆うミクロ構造を有するものである。例えば、三井化学(株)製の、DSC(示差走査型熱量計)試験に基づいて測定される融点(Tm)が、155℃のシンジオタクチック構造の「ノティオSN0285」、融点(Tm)が、160℃の「ノティオPN3560(現タフマーPN3560)」、「ノティオPN2060(現タフマーPN2060)」、「ノティオPN2070(現タフマーPN2070)」)が挙げられる。該プロピレン系エラストマー樹脂は、4−メチル−1−ペンテンをα−オレフィンとの共重合体樹脂と前記の[4]水素添加物に組み合わせることにより、一種の界面改質剤として働くと考えられる[4]水素添加物の添加量を少なくすることを可能にする。また、樹脂の結晶化度を高めて耐熱性を上げると柔軟性は下がるのが一般的であるが、当該プロピレン系エラストマー樹脂を組成物に含めることにより、耐熱性を保持したままで柔軟性は下がらない。これは、結晶部の内部に[5]水素添加物からなる非晶部をナノレベルで組み込み、それが周りを取り囲む非晶部と連結する構造をとるためであると考えられる。
該プロピレン系エラストマー樹脂の量は、0.5〜5質量%、好ましくは0.6〜4質量%である。
[5] Propylene-based elastomer resin The propylene-based elastomer resin contains a structural unit derived from propylene and a structural unit derived from an α-olefin (excluding propylene) having 2 to 30 carbon atoms. This preferably has a microstructure in which "islands", which are nano-order level spiral crystal portions of 10 nm to 50 nm, are connected to each other to form a network structure and cover the entire amorphous portion. For example, "Notio SN0285" having a syndiotactic structure having a melting point (Tm) of 155 ° C. and a melting point (Tm) measured based on a DSC (Differential Scanning Calorimeter) test manufactured by Mitsui Chemicals Co., Ltd. Examples thereof include "Notio PN3560 (currently Toughmer PN3560)", "Notio PN2060 (currently Toughmer PN2060)", and "Notio PN2070 (currently Toughmer PN2070)" at 160 ° C. The propylene-based elastomer resin is considered to act as a kind of surface modifier by combining 4-methyl-1-pentene with a copolymer resin of α-olefin and the above-mentioned [4] hydrogenated agent [4]. 4] It is possible to reduce the amount of hydrogenated material added. In addition, the flexibility generally decreases when the crystallinity of the resin is increased to increase the heat resistance, but by including the propylene-based elastomer resin in the composition, the flexibility is maintained while maintaining the heat resistance. It does not fall. It is considered that this is because the amorphous part composed of [5] hydrogenated product is incorporated in the crystal part at the nano level, and the structure is connected to the surrounding amorphous part.
The amount of the propylene-based elastomer resin is 0.5 to 5% by mass, preferably 0.6 to 4% by mass.

[6] 可塑剤
本発明における可塑剤は、好ましくはポリオレフィン用の可塑剤として公知のもである。可塑剤は、常温で液状でも固体状であってもよい。液状可塑剤としてはノナン、デカン、デカリン、パラキシレン、ウンデカン、ドデカン、流動パラフィン等の脂肪族又は環式の炭化水素、及び沸点がこれらに対応する鉱油留分が挙げられる。ゲル状成形物を得る工程でブリードアウトしやすい可塑剤は不適であり、ゲル状成形物を安定に得るためには、流動パラフィン、ミネラルオイルのような不揮発性の液体可塑剤を用いるのが好ましい。液体可塑剤の粘度は25℃において30〜 500 c Stの範囲内であるのが好ましく、50〜 200c S tの範囲内であるのがより好ましい。液体可塑剤の25℃における粘度が上記下限未満ではポリオレフィン混合物の溶融物のダイリップからの吐出が不均一であり、かつ混練が困難である。一方、上記上限を超えると、後の工程における溶剤による可塑剤の溶解、除去が困難である。
[6] Plasticizer The plasticizer in the present invention is preferably known as a plasticizer for polyolefins. The plasticizer may be liquid or solid at room temperature. Examples of the liquid plasticizer include aliphatic or cyclic hydrocarbons such as nonane, decane, decalin, paraxylene, undecane, dodecane, and liquid paraffin, and mineral oil fractions having corresponding boiling points. A plasticizer that easily bleeds out in the process of obtaining a gel-like molded product is unsuitable, and in order to stably obtain a gel-like molded product, it is preferable to use a non-volatile liquid plasticizer such as liquid paraffin or mineral oil. .. The viscosity of the liquid plasticizer is preferably in the range of 30 to 500 c St at 25 ° C, more preferably in the range of 50 to 200 c St. If the viscosity of the liquid plasticizer at 25 ° C. is less than the above lower limit, the discharge of the melt of the polyolefin mixture from the die lip is non-uniform, and kneading is difficult. On the other hand, if the above upper limit is exceeded, it is difficult to dissolve or remove the plasticizer with a solvent in a subsequent step.

固体可塑剤は融点が80℃ 以下のものが好ましく、このような固体可塑剤としてパラフィンワックス、マイクロクリスタリンワックス等のワックス類、セリルアルコール、ステアリルアルコール等の高級アルコール類、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシエチレンアルキルエーテル類、ポリオキシプロピレンステアリルエーテル、ポリオキシプロピルイソステアリルエーテル等のポリオキシプロピレンアルキルエーテル、ポリオキシエチレンステアリルエステル等のポリオキシエチレンアルキルエステル類、ポリオキシプロピレンステアリルエステル等のポリオキシプロピレンアルキルエステル類が挙げられる。液体溶剤と固体溶剤を適宜混合した上で使用してもよい。特に、ポリオキシエチレン ステリルエーテル、ポリオキシエチレンイソステアリルエーテル等のポリオキシエチレンアルキルエーテルを流動パラフィンと混合することにより室温で混合物が固化するので有利である。本発明の樹脂組成物における樹脂成分と可塑剤を、これらの融点以上の温度において均一に溶融混練した後、当該混練物を当該混合樹脂の固化温度以下まで冷却すると、延伸可能な軟質のゲル状物を得られる。 The solid plasticizer preferably has a melting point of 80 ° C. or lower, and as such a solid plasticizer, waxes such as paraffin wax and microcrystallin wax, higher alcohols such as ceryl alcohol and stearyl alcohol, polyoxyethylene stearyl ether, and poly Polyoxyethylene alkyl ethers such as oxyethylene isostearyl ethers, polyoxypropylene alkyl ethers such as polyoxypropylene stearyl ethers and polyoxypropyl isostearyl ethers, polyoxyethylene alkyl esters such as polyoxyethylene stearyl esters, and polyoxy Examples thereof include polyoxypropylene alkyl esters such as propylene stearyl esters. A liquid solvent and a solid solvent may be appropriately mixed before use. In particular, mixing a polyoxyethylene alkyl ether such as polyoxyethylene stearyl ether or polyoxyethylene isostearyl ether with liquid paraffin is advantageous because the mixture solidifies at room temperature. When the resin component and the plasticizer in the resin composition of the present invention are uniformly melt-kneaded at temperatures above their melting points and then cooled to below the solidification temperature of the mixed resin, a stretchable soft gel is formed. You can get things.

可塑剤量は、相分離構造が樹脂と可塑剤の相溶性、および樹脂と可塑剤の合計重量に対する樹脂の重量比( ポリマー質量分率) によって変化されることができる。 例えば上記ポリオレフィン系組成物と可塑剤との配合割合は、両者の合計を100質量部として、当該ポリオレフィン系樹脂組成物が10〜49質量部、当該可塑剤90〜51質量部であり、好ましくは当該ポリオレフィン系樹脂組成物が25〜35質量部、当該可塑剤75〜65質量部である。ポリオレフィン系樹脂組成物の割合が上記下限未満であると、ポリオレフィン系樹脂組成物と可塑剤との溶融物を押し出す際にダイス出口でスウェルやネックインが大きくなり、ゲル状成形物の成形性及び自己支持性が低下する。一方、ポリオレフィン系樹脂組成物の割合が上記上限を超えると、ゲル状シート成形物への成膜性が低下し、また気孔が小さく、透気性に劣る膜が出来る。 The amount of the plasticizer can be changed depending on the phase separation structure of the compatibility between the resin and the plasticizer and the weight ratio of the resin to the total weight of the resin and the plasticizer (polymer mass fraction). For example, the blending ratio of the polyolefin-based composition and the plasticizer is such that the total of both is 100 parts by mass, the polyolefin-based resin composition is 10 to 49 parts by mass, and the plasticizer is 90 to 51 parts by mass, preferably. The polyolefin-based resin composition is 25 to 35 parts by mass, and the plasticizer is 75 to 65 parts by mass. If the proportion of the polyolefin-based resin composition is less than the above lower limit, the swell and neck-in become large at the die outlet when extruding the melt of the polyolefin-based resin composition and the plasticizer, and the formability of the gel-like molded product and Self-support is reduced. On the other hand, when the ratio of the polyolefin-based resin composition exceeds the above upper limit, the film-forming property on the gel-like sheet molded product is lowered, and a film having small pores and inferior air permeability is formed.

[7] 溶剤
可塑剤を除くための溶剤は、樹脂組成物を成す樹脂に対して貧溶媒であること、かつ可塑剤に対して良溶媒であること、さらにはその沸点が膜の融点よりも低いことが好ましい。例えば、n− ヘキサンやシクロヘキサン等の炭化水素類、塩化メチレンや1,1−トリクロロエタン等のハロゲン化炭化水素類、エタノールやイソプロパノール等のアルコール類、ジエチルエーテルやテトラヒドロフラン等のエーテル類、アセトンや2−ブタノン等のケトン類、C14,C16等の鎖状フルオロカーボン、COCH、COC等のハイドロフルオロエーテル、COCF、COCのパーフルオロエーテル等である。溶剤による可塑剤の除去時に膜の収縮を避けるために、膜を少なくとも1方向に拘束しながら、溶剤に浸漬し、可塑剤除去後に膜の融点以下で加熱乾燥法、風乾法等により溶剤を乾燥除去することが好ましい。
[7] Solvent The solvent for removing the plasticizer is a poor solvent for the resin forming the resin composition, a good solvent for the plasticizer, and its boiling point is higher than the melting point of the film. It is preferably low. For example, hydrocarbons such as n-hexane and cyclohexane, halogenated hydrocarbons such as methylene chloride and 1,1-trichloroethane, alcohols such as ethanol and isopropanol, ethers such as diethyl ether and tetrahydrofuran, acetone and 2- Ketones such as butanone, chain fluorocarbons such as C 6 F 14 , C 7 F 16 , and hydrocarbon ethers such as C 4 F 9 OCH 3 , C 4 F 9 OC 2 H 5 , C 4 F 9 OCF 3 , C 4 F 9 OC 2 F 5 perfluoro ether or the like. In order to avoid shrinkage of the membrane when the plasticizer is removed by the solvent, the membrane is immersed in the solvent while being restrained in at least one direction, and after the plasticizer is removed, the solvent is dried by a heat drying method, an air drying method, etc. below the melting point of the membrane. It is preferable to remove it.

本発明の耐熱性ポリオレフィン系微多孔膜の特性を著しく損ねない程度に他のポリオレフィン類を添加しても良い。ポリプロピレンとエチレン−プロピレン共重合体とのブロックポリマーは、プロピレンとエチレンを原料とし、まずプロピレンを原料として、メタロセン触媒、チタン系触媒等を用いて、パイプ等のリアクター中に流しながら数秒〜数分間でポリプロピレン10−40モル%を合成し、エチレンとプロピレンの混合物90−60モル%を導入し同程度の時間で連続的にエチレンープロピレンコポリマーを合成する。この際、エチレンとプロピレンの比率を変えることもできるし、それぞれの重合時間を変化させることにより、ブロック鎖長を変化させる。また、この工程を繰り返し行うことあるいは繰り返す際の重合時間を変化させることで、マルチブロック体を含む材料や本ブロックコポリマーを任意のエチレン含有量にできる。当該ブロックコポリマーは、4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体樹脂とポリエチレンとに相溶性を持たせることができる。例えば、(株)プライムポリマー社製のプライムTPOとしてR110E、R110MP、T310E、M142E等が挙げられる。またサンアロマー(株)社製のプロピレンブロックポリマー、クオリア、日本ポリプロ(株)社製のポリプロピレンインパクトコポリマー、ニューコン、住友化学(株)社製のタフセレン、エクセレン等がある。触媒の活性点がエチレンとプロピレンの両方を重合できて、重合時間中、活性点が十分に安定であるリビング触媒によりできるポリプロピレンとエチレン、プロピレン共重合体とのブロックポリマーであり、エチレン含有比率が高いものが好ましい。
また、添加しても良いポリプロピレン樹脂を分子量は特に限定されるものではないが、粘度平均分子量10万以上粘度平均分子量40万程度のポリプロピレンを用いることができる。
Other polyolefins may be added to the extent that the characteristics of the heat-resistant polyolefin-based microporous membrane of the present invention are not significantly impaired. The block polymer of polypropylene and ethylene-propylene copolymer uses propylene and ethylene as raw materials, and first uses propylene as a raw material, and uses a metallocene catalyst, a titanium-based catalyst, etc., while flowing it into a reactor such as a pipe for several seconds to several minutes. In, 10-40 mol% of polypropylene is synthesized, 90-60 mol% of a mixture of ethylene and propylene is introduced, and an ethylene-propylene copolymer is continuously synthesized in the same time. At this time, the ratio of ethylene and propylene can be changed, and the block chain length is changed by changing the polymerization time of each. Further, by repeating this step or changing the polymerization time when repeating this step, the material containing the multi-block body and the present block copolymer can have an arbitrary ethylene content. The block copolymer can have compatibility with polyethylene and a copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. For example, examples of Prime TPO manufactured by Prime Polymer Co., Ltd. include R110E, R110MP, T310E, and M142E. In addition, there are propylene block polymer manufactured by SunAllomer Ltd., qualia, polypropylene impact copolymer manufactured by Japan Polypropylene Corporation, Newcon, tough selenium manufactured by Sumitomo Chemical Co., Ltd., excelene and the like. It is a block polymer of polypropylene and ethylene / propylene copolymer formed by a living catalyst whose active point of the catalyst can polymerize both ethylene and propylene and whose active point is sufficiently stable during the polymerization time, and has an ethylene content ratio. Higher ones are preferable.
The molecular weight of the polypropylene resin that may be added is not particularly limited, but polypropylene having a viscosity average molecular weight of 100,000 or more and a viscosity average molecular weight of about 400,000 can be used.

[8]任意成分
本発明のポリオレフィン系樹脂組成物に、あるいは酸化防止剤を可塑剤とを溶融混錬する際に、本発明の目的を阻害しない限りで任意成分を添加することが出来る。任意成分として、酸化防止剤及び無機フィラーが挙げられるが、これらに限定されるものではない。
酸化防止剤は、ポリオレフィン系樹脂組成物と可塑剤の溶融混合する際に樹脂が焦げて、製品膜に黒斑点(ブラックスペック)として現れることを防止するために入れられる。酸化防止剤試合は公知であり、例えばテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタンである。
無機フィラ−としては、例えば、アルミナ、水酸化アルミニウムのアスペクト比を有するナノサイズのベーマイト・アルミナ、シリカ(珪素酸化物)、ナトリウムアルミノシリケート、ナトリウムカルシウムアルミノシリケートチタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系、シリコンカーバイト、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系、炭酸カルシウム、硫酸アルミニウム、水酸化アルミニウム、チタン酸カリウム、タルク、カオリンクレー、カオリナイト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維などが挙げられる。これらの1種を単独で、あるいは2種以上を併用することができる。好ましいのは、電気化学的に安定な、シリカ、アルミナ、チタニウムであり、特にシリカ、アルミノシリケートが好ましい。前記無機フィラ−粉末粒子の平均粒径としては、好ましくは1nm以上、より好ましくは10nm以上であり、上限として好ましくは100nm以下である。平均粒径を100nm以下とすることは、延伸等を施した場合でもポリオレフィン樹脂と無機フィラ‐間での剥離が生じにくい傾向となり、マクロボイドの発生を抑制する観点から好ましい。一方、平均粒径を1nm以上とすることは、溶融時の無機フィラ−粒子の分散性を確保する上で好ましい。無機フィラ-粒子の添加により、微多孔膜の引張強度を高め、熱収縮率を一層低くすることができる。
[8] Optional components An optional component can be added to the polyolefin-based resin composition of the present invention or when an antioxidant is melt-kneaded with a plasticizer as long as the object of the present invention is not impaired. Optional components include, but are not limited to, antioxidants and inorganic fillers.
The antioxidant is added to prevent the resin from burning when the polyolefin resin composition and the plasticizer are melt-mixed and appearing as black spots (black specs) on the product film. Antioxidant matches are known, for example tetrakis [methylene-3- (3,5-ditershally butyl-4-hydroxyphenyl) -propionate] methane.
Examples of the inorganic filler include alumina, nano-sized boehmite alumina having an aspect ratio of aluminum hydroxide, silica (silicon oxide), sodium aluminosilicate, sodium calcium aluminosilicate titania, zirconia, magnesia, ceria, and itria. Oxide-based materials such as zinc oxide and iron oxide, nitride-based materials such as silicon carbide, silicon nitride, titanium nitride, and boron nitride, calcium carbonate, aluminum sulfate, aluminum hydroxide, potassium titanate, talc, kaolin clay, and kaolinite. , Halloysite, pyrophyllite, montmorillonite, sericite, mica, amesite, bentonite, zeolite, calcium silicate, magnesium silicate, kaolin, ceramics such as silica sand, glass fiber and the like. One of these can be used alone, or two or more can be used in combination. Preferred are electrochemically stable silica, alumina and titanium, with silica and aluminosilicate being particularly preferred. The average particle size of the inorganic filler powder particles is preferably 1 nm or more, more preferably 10 nm or more, and the upper limit is preferably 100 nm or less. It is preferable that the average particle size is 100 nm or less from the viewpoint of suppressing the generation of macrovoids because the peeling between the polyolefin resin and the inorganic filler tends to be difficult to occur even when stretching or the like is performed. On the other hand, it is preferable that the average particle size is 1 nm or more in order to ensure the dispersibility of the inorganic filler particles at the time of melting. By adding the inorganic filler particles, the tensile strength of the microporous membrane can be increased and the heat shrinkage rate can be further reduced.

例えば融点の異なるポリオレフィン樹脂をn(ここではnは3以上の整数を表す)種類以上使用する場合を例にとる。融点T1℃の超高分子ポリエチレン、融点夫々T2℃、T3℃・・・T℃のn種類のポリオレフィン樹脂からなる樹脂混合物の平均融点Tを下記の式のように定義する。 For example, take the case where n or more types of polyolefin resins having different melting points (where n represents an integer of 3 or more) are used. The average melting point T of a resin mixture consisting of ultra-high molecular weight polyethylene having a melting point of T 1 ° C and n types of polyolefin resins having a melting point of T 2 ° C, T 3 ° C ... T n ° C is defined by the following formula.

[数2]
T=T1χ1 +T2χ+T3χ3・・・ +Tχ
式中、χ1 ・・・χ =1 χ1;超高分子ポリエチレンの質量分率、χ〜χ;融点T2℃、T3℃、・・・T℃のポリオレフィン樹脂のそれぞれの質量分率である。ここで融点とはJ I S K 7 1 2 1に基づいて示差走査熱量測定( D S C) により求められた融点を言う。
[Number 2]
T = T 1 χ 1 + T 2 χ 2 + T 3 χ 3 ・ ・ ・+ T n χ n
In the formula, χ 1 + χ 2 + χ 3 ... χ n = 1 χ 1 ; mass fraction of ultra-high molecular weight polyethylene, χ 2 to χ n ; melting point T 2 ° C, T 3 ° C, ... T n It is the mass fraction of each of the polyolefin resins at ° C. Here, the melting point means the melting point obtained by differential scanning calorimetry (DSC) based on JIS K 7 1 2 1.

本発明の耐熱性ポリオレフィン系微多孔膜の両面ないし片面に施与、例えば塗布するために、セラミックスを含まないポリマー溶液、あるいはポリマー水溶液、好ましくは、架橋性ポリマーの水溶液を使用できる。たとえばフルオロエチレン・ビニルエーテル交互共重合体を主鎖に持つフッ素系ポリマーの水溶液、アクリル樹脂・ポリアミド・イミド樹脂水溶液、アクリル樹脂・ポリイミド水溶液、架橋性アクリル樹脂、変性シリコーン樹脂水溶液、ポリフッ化ビニリデン−ヘキサフロロプロピレンと架橋性ポリメタクリル酸樹脂との水溶液、ポリフッ化ビニリデンと架橋性アクリル樹脂の水溶液からなる水溶液のいずれか1種または2種以上の混合物である。溶媒として有機溶剤を使用しないので、環境にも優しく好ましい。水溶液を塗布あるいは浸漬してから乾燥・架橋して、0.1−5ミクロン、好ましくは0.1−3ミクロンの表層膜を形成させる。あるいは、有機溶剤に溶解されたポリイミド樹脂、ポリアミド・イミド樹脂、ポリアミド樹脂も使用できる。本発明のポリオレフィン系微多孔膜は、従来のポリエチレンセパレータより高温で乾燥できるので、架橋・硬化時間が短縮できる。電池の中で本発明のポリオレフィン系微多孔膜からなるセパレータに電解液が注入されて含侵した後のインピーダンスを低下させることにより、電池放電容量を向上させる効果が出る。また当該セパレータの破断強度をより高めて、電池組み立て時にセパレータ置換において、剛直な感じのあるセラミック塗布ポリエチレンセパレータとは違い、本発明のセパレータは従来使い慣れたポリエチレンセパレータの可撓性と同じであり、作業違和感が生じないようにできる。上記は、セパレータへのセラミックス塗布とは異なり、セラミックスを含まない、いわゆるポリマー塗布の適用である。また従来のポリエチレンセパレータ、ポリプロピレンセパレータへのポリマー塗布に比べて、本発明の耐熱性ポリオレフィン系微多孔膜は耐熱性のある故に、当該耐熱性ポリオレフィンのキュアリングを、より高い温度で出来て、従って処理時間を短くすることができる。 A polymer solution containing no ceramics, an aqueous polymer solution, preferably an aqueous solution of a crosslinkable polymer can be used for applying, for example, applying to both sides or one side of the heat-resistant polyolefin-based microporous film of the present invention. For example, an aqueous solution of a fluoropolymer having a fluoroethylene / vinyl ether alternating copolymer as a main chain, an acrylic resin / polyamide / imide resin aqueous solution, an acrylic resin / polyimide aqueous solution, a crosslinkable acrylic resin, a modified silicone resin aqueous solution, and polyvinylidene fluoride-hexa. It is any one or a mixture of two or more of an aqueous solution of fluoropropylene and a crosslinkable polymethacrylic acid resin, and an aqueous solution of polyvinylidene fluoride and a crosslinkable acrylic resin. Since no organic solvent is used as the solvent, it is environmentally friendly and preferable. An aqueous solution is applied or immersed, and then dried and crosslinked to form a surface film of 0.1-5 microns, preferably 0.1-3 microns. Alternatively, a polyimide resin, a polyamide / imide resin, or a polyamide resin dissolved in an organic solvent can also be used. Since the polyolefin-based microporous membrane of the present invention can be dried at a higher temperature than the conventional polyethylene separator, the cross-linking / curing time can be shortened. The effect of improving the battery discharge capacity is obtained by lowering the impedance after the electrolytic solution is injected into the separator made of the polyolefin-based microporous membrane of the present invention in the battery and impregnated. Further, the breaking strength of the separator is further increased, and unlike the ceramic-coated polyethylene separator which has a rigid feeling when replacing the separator when assembling the battery, the separator of the present invention has the same flexibility as the polyethylene separator which has been used in the past. It is possible to prevent work discomfort. The above is a so-called polymer coating that does not contain ceramics, unlike the ceramic coating on the separator. Further, since the heat-resistant polyolefin-based microporous film of the present invention has heat resistance as compared with the conventional polymer coating on polyethylene separators and polypropylene separators, the heat-resistant polyolefin can be cured at a higher temperature. The processing time can be shortened.

大量生産の場合には、通常のコーター(塗布機)を使用することが出来る。実験室での少量塗布においては、 バーコーター#3を使用するのがよい。アルミ箔で概ねドライ1μになるように水溶液あるいは有機溶媒溶液の濃度を調整する。マイクロゲージと塗布重量から1μであることを確認して、PETフィルム(例えば、東レルミラーS10)の上に溶液を塗布する。当該耐熱性ポリオレフィン系微多孔膜をステンレススチール丸棒で転がしながら、溶液を塗布されたPETフィルムに押しつけて溶液を転写した後、PETフィルムを剥がす。PETフィルム上に塗膜残渣がないことを確認する。塗膜を施与された耐熱性ポリオレフィン系微多孔膜の乾燥は、80℃から130℃の温度範囲で適宜行う。出来た表層膜において、水あるいは有機溶媒が占めていたミクロ領域から水あるいは有機溶媒が蒸発して出来た通路は、連通の気孔となる。また、表層膜には、液体電解液に濡れやすい特性が要求される。表層膜には、液体電解液に対する膨潤度が小さく、溶解しないことが好ましい。また、当該耐熱性ポリオレフィン系微多孔膜の表面のナノオーダーの凸凹に塗布された樹脂が食い込んで、アンカー効果を発揮するのがよい。塗布は、出来るだけ気孔を閉鎖しないように行う。 In the case of mass production, a normal coater (coating machine) can be used. For small application in the laboratory, it is better to use Bar Coater # 3. Adjust the concentration of the aqueous solution or organic solvent solution so that it is approximately 1μ dry with aluminum foil. After confirming that it is 1 μm from the micro gauge and the coating weight, the solution is coated on the PET film (for example, Torel Miller S10). While rolling the heat-resistant polyolefin-based microporous film with a stainless steel round bar, the solution is pressed against the coated PET film to transfer the solution, and then the PET film is peeled off. Confirm that there is no coating film residue on the PET film. The heat-resistant polyolefin-based microporous film coated with the coating film is appropriately dried in a temperature range of 80 ° C. to 130 ° C. In the formed surface layer film, the passage formed by the evaporation of water or the organic solvent from the micro region occupied by the water or the organic solvent becomes the pores for communication. Further, the surface layer film is required to have a property of being easily wetted with a liquid electrolytic solution. It is preferable that the surface layer film has a small degree of swelling with respect to the liquid electrolytic solution and does not dissolve. Further, it is preferable that the resin applied to the nano-order unevenness on the surface of the heat-resistant polyolefin-based microporous film bites into the surface to exert an anchor effect. The application should be done so as not to close the pores as much as possible.

本発明の耐熱性ポリオレフィン系微多孔膜。 The heat-resistant polyolefin-based microporous membrane of the present invention.

本発明の好ましい実施態様における耐熱性ポリオレフィン系微多孔膜は、次の物性を有する。 The heat-resistant polyolefin-based microporous membrane in a preferred embodiment of the present invention has the following physical properties.

(1)透気度(ガーレー値)は、20〜400秒/100 mlである。透気度がこの範囲であると微多孔膜を電池セパレータとして用いた場合に電池容量が大きく、電池のサイクル特性も良好である。透気度が20秒/100ml未満では電池内部の温度上昇時にシャットダウンが十分に行われない。透気度は、JISP8117に準拠のガーレー式透気度計を使用して測定する。 (1) The air permeability (Garley value) is 20 to 400 seconds / 100 ml. When the air permeability is in this range, the battery capacity is large and the cycle characteristics of the battery are good when the microporous membrane is used as the battery separator. If the air permeability is less than 20 seconds / 100 ml, the shutdown will not be sufficient when the temperature inside the battery rises. The air permeability is measured using a Garley air permeability meter compliant with JIS P8117.

(2)気孔率は10〜40%であり、好ましくは15%〜30% である。気孔率が10%以上であれば十分なリチウムイオン電導性を示し、40%以下であれば電池組み立て時に必要な機械的強度を有する。この範囲の気孔率であれば、電池セパレータとして用いた場合電極が短絡する危険性が小さい。気孔率は重量法により測定する。試料を5.0cm角の正方形に切り出して体積(cm)、重量(g)を測定する。使用した樹脂密度(g/cm)をASTM D1505に準拠して測定する。次式により計算して気孔率を求める。 (2) The porosity is 10 to 40%, preferably 15% to 30%. If the porosity is 10% or more, sufficient lithium ion conductivity is exhibited, and if it is 40% or less, it has the mechanical strength required for battery assembly. If the porosity is within this range, there is little risk of short-circuiting the electrodes when used as a battery separator. Porosity is measured by the gravimetric method. The sample is cut into a 5.0 cm square and the volume (cm 3 ) and weight (g) are measured. The resin density (g / cm 3 ) used is measured according to ASTM D1505. The porosity is calculated by the following formula.

[数3]
気孔率(%)={1−(微多孔膜の質量/微多孔膜の体積)/樹脂組成物の密度}x100
[Number 3]
Porosity (%) = {1- (mass of microporous membrane / volume of microporous membrane) / density of resin composition} x100

(3)微多孔膜の最大孔径は、好ましくは100〜 5000nm 、より好ましくは300nm〜3000nm 、さらに好ましくは300 〜2000 μm である。最大孔径が、100nm以上であればセパレータとして必要なLiイオンの透過性を有し、5000nm以下であれば電極脱離成分による短絡を避けることが可能である。当該耐熱性ポリオレフィン系微多孔膜の表面を走査型電子顕微鏡(SEM)で観察し、フィブリル繊維径を測定する。フィブリル繊維が200nm〜1000nm未満の径を持つフィブリル繊維と1000〜3000nmの範囲の径をもつフィブリル繊維を包含し、200nm〜1000nm未満の径を持つフィブリル繊維の数と1000〜3000nmの範囲の径をもつフィブリル繊維の数の比が97:3〜55:45、特に90:10〜55:45であることが好ましい。 (3) The maximum pore size of the microporous membrane is preferably 100 to 5000 nm, more preferably 300 nm to 3000 nm, and further preferably 300 to 2000 μm. If the maximum pore size is 100 nm or more, it has the permeability of Li ions required as a separator, and if it is 5000 nm or less, it is possible to avoid a short circuit due to an electrode desorption component. The surface of the heat-resistant polyolefin-based microporous membrane is observed with a scanning electron microscope (SEM), and the fibril fiber diameter is measured. Fibril fibers include fibril fibers having a diameter of less than 200 nm to 1000 nm and fibril fibers having a diameter in the range of 1000 to 3000 nm, and the number of fibril fibers having a diameter of less than 200 nm to 1000 nm and a diameter in the range of 1000 to 3000 nm. The ratio of the number of fibril fibers to have is preferably 97: 3 to 55:45 , particularly 90: 10 to 55:45 .

(4)突刺し強度は、以下のようにして測定される。開口部の直径11.3mmの試料ホルダーに微多孔宅膜を挟み、針先端の曲率半径0.5mmの直径1.0mm、突き刺し速度2mm/secで突刺し試験を行い、最大突刺荷重gを求め、突刺し強度をNで表示する。突刺し強度は、0.5N以上であることが望ましい。突刺し強度が0.5N未満では、微多孔膜を電池用セパレータとして組み込んだ電池において、電極の短絡が発生する恐れがある。突刺強度は、好ましくは1.0N以上、さらに好ましくは2.0以上である。本発明の微多孔膜からなるセパレーターを用いれば、電極からの脱離成分によるショートが発生せず、電池セパレ−タとして十分な強度を有する。 (4) The piercing strength is measured as follows. A microporous membrane is sandwiched between a sample holder with an opening diameter of 11.3 mm, and a piercing test is performed with a needle tip radius of curvature of 0.5 mm, a diameter of 1.0 mm, and a piercing speed of 2 mm / sec to determine the maximum piercing load g. , The piercing strength is indicated by N. The piercing strength is preferably 0.5N or more. If the piercing strength is less than 0.5 N, a short circuit of electrodes may occur in a battery incorporating a microporous membrane as a battery separator. The puncture strength is preferably 1.0 N or more, more preferably 2.0 or more. When the separator made of the microporous membrane of the present invention is used, a short circuit does not occur due to the desorbed component from the electrode, and the separator has sufficient strength as a battery separator.

(5)破断強度は、幅10mmの短冊状試験片を用いてJISK7127に準拠して測定する。破断強度は、MD方向及びTD方向のいずれにおいても10MPa以上、好ましくは20Mpa以上あることが電池組み立て時に破膜しない上で好ましい。 (5) The breaking strength is measured according to JIS K7127 using a strip-shaped test piece having a width of 10 mm. The breaking strength is preferably 10 MPa or more, preferably 20 MPa or more in both the MD direction and the TD direction so as not to break the film during battery assembly.

(6)破断伸度は、幅10 mmの短冊状試験片を用いてJISK7127に準拠して測定する。破断伸度は、MD方向及びTD方向のいずれにおいても5%以上であることが、破膜の心配がなく好ましい。 (6) The elongation at break is measured according to JIS K7127 using a strip-shaped test piece having a width of 10 mm. It is preferable that the elongation at break is 5% or more in both the MD direction and the TD direction without worrying about film rupture.

190℃の温度で循環熱風乾燥機内にて1時間暴露後の膜の熱収縮率は、以下のようにして測定される。50mmx50mmに切り出した試料にMD方向及びTD方向を印する。試料の上面に451gの210mmx297mm寸法の硝子板で、下方をステンレススチール304の板を配して資料を挟んで、190℃の温度の循環熱風乾燥機内に入れる。1時間後に取出し、室温に冷却してから、縦方向、横方向の寸法変化を測定する。熱収縮率は、暴露前の試料片の面積に対する暴露後の試料の面積との差を、暴露前の試料片の面積で割って百分率として求める。 The heat shrinkage of the membrane after being exposed for 1 hour in a circulating hot air dryer at a temperature of 190 ° C. is measured as follows. The MD direction and the TD direction are marked on the sample cut out to 50 mm x 50 mm. A 451 g glass plate having a size of 210 mm x 297 mm is placed on the upper surface of the sample, and a stainless steel 304 plate is arranged below the sample, sandwiching the material, and putting the sample in a circulating hot air dryer at a temperature of 190 ° C. After 1 hour, it is taken out, cooled to room temperature, and then the dimensional changes in the vertical and horizontal directions are measured. The heat shrinkage rate is calculated as a percentage by dividing the difference between the area of the sample piece before exposure and the area of the sample after exposure by the area of the sample piece before exposure.

[数4]
熱収縮率(%)=(1-(190℃x1時間熱暴露後の面積/(測定前の試料の面積))x100
なお、縦(MD)方向とは、微多孔膜の製造時における押出方向であり、横(TD)方向とは、微多孔膜の製造時における押出方向に直交する方向である。
熱収縮後の膜が、不定形になっている場合には、膜にトレース紙を重ねて、変形した膜周辺をなぞり、トレース紙を切り取り、切り取られたトレース紙片の重量Wを測定して、50mmx50mmのトレース紙の重量(Wo)との差から加熱収縮率を求める。
[Number 4]
Heat shrinkage rate (%) = (1- (190 ° C x 1 hour area after heat exposure / (area of sample before measurement)) x 100
The vertical (MD) direction is the extrusion direction during the production of the microporous membrane, and the horizontal (TD) direction is the direction orthogonal to the extrusion direction during the production of the microporous membrane.
Film after heat shrinkage, if it has been irregular, the superimposed traces paper film, tracing film around the deformed cut traces paper, by measuring the weight W r of cut trace paper , The heat shrinkage rate is obtained from the difference from the weight (Wo) of the 50 mm × 50 mm trace paper.

[数5]
熱収縮率(%)=(1−(190℃x1時間熱暴露後のトレース紙の重量、W)/(50mmx50mmのトレース紙の重量、W)x100
熱熱収縮率は20%以下であることが良い。好ましくは10%、更に好ましくは5%以下である。熱収縮率が20%を超えると、当該微多孔膜をリチウムイオン二次電池用セパレ−タとして用いた場合、異常発熱時にセパレータ端部が収縮し、電極の短絡が発生する可能性が高くなる。
[Number 5]
Heat shrinkage (%) = (1 - (weight of trace paper 190 ° C. x1 h heat after exposure, W r) / (weight of trace paper 50mmx50mm, W o) x100
The thermal shrinkage rate is preferably 20% or less. It is preferably 10%, more preferably 5% or less. When the heat shrinkage rate exceeds 20%, when the microporous membrane is used as a separator for a lithium ion secondary battery, the separator end shrinks during abnormal heat generation, and there is a high possibility that an electrode short circuit will occur. ..

(8)高平滑かつ平面性を有する一対のステンレス板(3mm厚みの#700研磨板)の間に膜を挟み、これにプレス機により2.2 MPa(22 kgf/cm2)の圧力をかけながら、90℃で5分間加熱圧縮した後の膜厚変化率は、圧縮前の膜厚を100%として20%以下であることが望ましい。膜厚変化率が20%以下であると、当該微多孔膜をリチウムイオン二次電池セパレータとして用いた場合に、電池容量が大きく、電池のサイクル特性も良好である。膜厚は、接触厚さ計(株式会社ミツトヨ製)により測定する。上記条件で加熱圧縮した後の到達透気度(ガーレー値)は、500秒/100 ml以下である。到達透気度が500 秒/100 ml以下であると、加圧された場合でも透気度変化及び膜厚変化が小さいので、リチウムイオン二次電池セパレータとして用いた場合に、電池容量が大きく、透過性、機械的特性及び耐熱収縮性にも優れている。 (8) A film is sandwiched between a pair of highly smooth and flat stainless steel plates (# 700 polishing plate with a thickness of 3 mm), and a pressure of 2.2 MPa (22 kgf / cm 2 ) is applied to this by a press machine. However, the rate of change in film thickness after heating and compressing at 90 ° C. for 5 minutes is preferably 20% or less, with the film thickness before compression as 100%. When the film thickness change rate is 20% or less, the battery capacity is large and the battery cycle characteristics are good when the microporous film is used as a lithium ion secondary battery separator. The film thickness is measured with a contact thickness meter (manufactured by Mitutoyo Co., Ltd.). The reached air permeability (Garley value) after heat compression under the above conditions is 500 seconds / 100 ml or less. When the reached air permeability is 500 seconds / 100 ml or less, the change in air permeability and the change in film thickness are small even when pressurized, so that the battery capacity is large when used as a lithium ion secondary battery separator. It also has excellent permeability, mechanical properties, and heat shrinkage.

(9) 表面粗さは原子間力顕微鏡(AFM)により測定する。最大高低差の好ま
しい範囲は、50nm以上600nmである。すると、電池用セパレータとして用いた場合の電解液との接触面積が大きく、電解液注入性に優れている。更に好ましくは100nmから300nmの範囲である。50nm未満では、電解液の濡れが著しくなり、セパレータ巻き取りロールからセパレータが離脱しにくくなる。600nmを超えるとセパレータの機械的強度が低下して、好ましくない。
(9) Surface roughness is measured by an atomic force microscope (AFM). The preferable range of the maximum height difference is 50 nm or more and 600 nm. Then, when used as a battery separator, the contact area with the electrolytic solution is large, and the electrolytic solution injectability is excellent. More preferably, it is in the range of 100 nm to 300 nm. If it is less than 50 nm, the electrolytic solution becomes significantly wet and the separator is difficult to be separated from the separator winding roll. If it exceeds 600 nm, the mechanical strength of the separator decreases, which is not preferable.

(10)ノンメルトダウン特性の評価は、以下のようにして行う。30mmφの寸法に切り出したセパレータ試料に電解液(1M Li BF /ポリプロピレンカーボネート(PC):ガンマーブチロラクトン(γ-BL)(1/1容積比))を含浸させ、東陽テクニカ(株)製の小型加熱炉MT−Z300のサンプルホルダーに封入する。ホルダーを6mmφの電極で挟み、5℃/分の昇温速度で加熱する。この間、東陽テクニカ(株)製インピーダンスアナライザー6430Bにてサンプルの温度とインピーダンス値を測定する。交流法にて振幅10mV、周波数1kHzの交流を10mAの範囲内で印加し、温度に対しインピーダンス値をプロットし、インピーダンス値が上昇していく過程で1000ohm以上になる温度をシャットダウン温度とする。更に電池容器を5℃/分の昇温速度で加熱を続けて、ホルダーの温度とインピーダンス値を測定し、インピーダンス値が再度300ohm未満になる時の温度をメルトダウン温度とする。ノンメルトダウン特性の評価は、195℃に到達しても破膜が起きずに高インピーダンス値を保持している場合を「195℃<」と表示し、これは優れたノンメルトダウン特性を意味する。 (10) The non-meltdown characteristic is evaluated as follows. A separator sample cut to a size of 30 mmφ is impregnated with an electrolytic solution (1 M Li BF 4 / polypropylene carbonate (PC): gamma-butyrolactone (γ-BL) (1/1 volume ratio)) to make a small size manufactured by Toyo Corporation. It is sealed in the sample holder of the heating furnace MT-Z300. The holder is sandwiched between 6 mmφ electrodes and heated at a heating rate of 5 ° C./min. During this period, the temperature and impedance value of the sample are measured with an impedance analyzer 6430B manufactured by Toyo Corporation. By the AC method, an AC with an amplitude of 10 mV and a frequency of 1 kHz is applied within a range of 10 mA, the impedance value is plotted against the temperature, and the temperature at which the impedance value becomes 1000 ohm or more in the process of increasing is defined as the shutdown temperature. Further, the battery container is continuously heated at a heating rate of 5 ° C./min, the temperature of the holder and the impedance value are measured, and the temperature at which the impedance value becomes less than 300 ohm again is defined as the meltdown temperature. In the evaluation of non-meltdown characteristics, the case where the film does not break even when the temperature reaches 195 ° C and the high impedance value is maintained is displayed as "195 ° C <", which means excellent non-meltdown characteristics. To do.

(11)セパレータのインピダンス値測定は、電解液を含浸した透気度280sec/100mLの9ミクロンの膜厚のポリエチレン微多孔膜にポリイミドを1.0ミクロン片面塗布した微多孔膜を5mm角に切り出し、電解液(1M LiBF/ポリエチレンカーボネート(EC)/ポリプロピレンカーボネート(PC):ガンマーブチロラクトン(γ-BL)(2:1:1容積比))を含浸し、0.2mmの厚みのアルミ板の7mm角に挟む。1Hzのインピーダンス値を基準の10として他のポリマー塗布耐熱性ポリオレフィン系微多孔膜に当該電解液を含浸し、0.2mmの厚みのアルミ板の7mm角に挟み、1Hzの相対インピーダンス値として示す。相対的に小さい数値が、よりインピーダンス値を示すことになり、電池容量、充放電サイクル寿命が良くなる。 (11) For measuring the impedance value of the separator, a microporous film impregnated with an electrolytic solution and having a permeability of 280 sec / 100 mL and a film thickness of 9 microns was coated with 1.0 micron of polyimide on one side and cut into 5 mm squares. , Electrolyte (1M LiBF 4 / polyethylene carbonate (EC) / polypropylene carbonate (PC): gamma-butyrolactone (γ-BL) (2: 1: 1 volume ratio)) impregnated with 0.2 mm thick aluminum plate It is sandwiched between 7 mm squares. With an impedance value of 1 Hz as a reference 10, another polymer-coated heat-resistant polyolefin microporous film is impregnated with the electrolytic solution, sandwiched between 7 mm squares of a 0.2 mm thick aluminum plate, and shown as a relative impedance value of 1 Hz. A relatively small value indicates a more impedance value, and the battery capacity and charge / discharge cycle life are improved.

(12)可塑剤の部分的除去後の残存可塑剤の量(%)は、重量法により求める。抽出除去前の膜の重量を測定し、Woとする。該膜を溶剤(例えば塩化メチレン、MC)中に数秒間から数分間浸漬して可塑剤の一部を溶解・除去し、膜を乾燥した後の膜の重量を測定し、Wgとする。押出機にフィードした可塑剤の%(可塑剤の重量と樹脂組成物の重量の合計に対する可塑剤の重量の%)を抽出前の可塑剤%(fo )とする。残存可塑剤% (fg)は、次式で求める。 (12) The amount (%) of the residual plasticizer after the partial removal of the plasticizer is determined by the gravimetric method. The weight of the membrane before extraction and removal is measured and used as Wo. The membrane is immersed in a solvent (for example, methylene chloride, MC) for several seconds to several minutes to dissolve and remove a part of the plasticizer, and the weight of the membrane after drying is measured to obtain Wg. The percentage of the plasticizer fed to the extruder (% of the weight of the plasticizer relative to the total weight of the plasticizer and the weight of the resin composition) is defined as the% plasticizer (fo) before extraction. The residual plasticizer% (fg) is calculated by the following formula.

[数6]
fg/100=1−(Wo/Wg)*(1−fo/100)
可塑剤の部分的除去後の残存可塑剤%は、3%〜30%以下であることが良い。好ましくは、3〜20%、更に好ましくは3%〜25%である。
[Number 6]
fg / 100 = 1- (Wo / Wg) * (1-fo / 100)
The% residual plasticizer after partial removal of the plasticizer is preferably 3% to 30% or less. It is preferably 3 to 20%, more preferably 3% to 25%.

(13)当該耐熱性ポリオレフィン系微多孔膜からなるセパレータを用いる電池の種類に特に制限はないが、特にリチウムイオン二次電池用途に好適である。本発明の微多孔膜からなるセパレータを用いたリチウムイオン二次電池には、公知の電極及び電解液を使用すればよい。また本発明の微多孔膜からなるセパレータを使用するリチウムイオン二次電池の、他の構造も公知のものでよい。
例えば、正極活物質としてコバルト酸リチウム(LiCoO;10ミクロン)粉末92重量部とアセチレンブラック(電気化学工業社製)粉末2重量部、微粉黒鉛(日本黒鉛社製)2重量部、ポリフッ化ビニリデン(クレハ化学工業株式会社製)の乾燥重量が4質量部となるように6質量%のポリフッ化ビニリデンのN−メチルピロリドン溶液を用い、正極剤ペーストを作製する。得られたペーストを厚さ15μmのアルミ箔上へ塗工し、乾燥後プレスして正極を作製する。負極活物質の黒鉛化カーボン(日立化成製)粉末97とCMC(カルボキシメチルセルロース)(第一工業製薬社製)1部とカルボキシ変性ブタジエン系ラテックス(日本ゼオン社製)の固形分2部とからなる水溶液を用い、負極剤ペーストを作製する。得られたペーストを厚さ12μmの銅箔上へ塗工し、乾燥後プレスして負極を作製する。
(13) There is no particular limitation on the type of battery using the separator made of the heat-resistant polyolefin-based microporous membrane, but it is particularly suitable for lithium ion secondary battery applications. A known electrode and electrolytic solution may be used for the lithium ion secondary battery using the separator made of the microporous membrane of the present invention. Further, other structures of the lithium ion secondary battery using the separator made of the microporous membrane of the present invention may be known.
For example, as positive electrode active materials, 92 parts by mass of lithium cobalt oxide (LiCoO 2 ; 10 micron) powder, 2 parts by mass of acetylene black (manufactured by Denki Kagaku Kogyo), 2 parts by weight of finely powdered graphite (manufactured by Nippon Graphite Co., Ltd.), polyvinylidene fluoride A positive electrode agent paste is prepared using an N-methylpyrrolidone solution of 6% by mass polyvinylidene fluoride so that the dry weight of (Kureha Chemical Industry Co., Ltd.) is 4 parts by mass. The obtained paste is applied onto an aluminum foil having a thickness of 15 μm, dried, and pressed to prepare a positive electrode. It consists of 97 parts of graphitized carbon (manufactured by Hitachi Chemical) powder of the negative electrode active material, 1 part of CMC (carboxymethyl cellulose) (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and 2 parts of solid content of carboxy-modified butadiene-based latex (manufactured by Nippon Zeon). A negative electrode agent paste is prepared using an aqueous solution. The obtained paste is applied onto a copper foil having a thickness of 12 μm, dried, and pressed to prepare a negative electrode.

(14) 上記正極を20mm×50mmのサイズに切り出しタブを付けた。また上記負極は22mm×52mmのサイズに切り出しタブを付けた。セパレータは26mm×56mmのサイズに切り出した。これら正極/セパレータ/負極を互いに接合し、電解液を注入してアルミラミネートフィルム内に封入することでアルミラミネート外装セルを作製した。ここで電解液として、1MでLiPFをエチレンカーボネート/エチルメチルカーボネート(3/7重量比)に溶解したものを用いる。当該セルにおいて0.2Cと2Cにおける放電電気量を測定し、(2Cにおける放電電気量)/(0.2Cにおける放電電気量)×100を電池性能とした。95%以上を良好な電池性能とする。ここで、充電条件は0.2C 4.2V CC/CV 8時間とし、放電条件は2.75VカットオフのCC放電とする。 (14) The positive electrode was cut out to a size of 20 mm × 50 mm and a tab was attached. Further, the negative electrode was cut out to a size of 22 mm × 52 mm and provided with a tab. The separator was cut into a size of 26 mm × 56 mm. An aluminum laminated exterior cell was produced by joining these positive electrodes / separators / negative electrodes to each other, injecting an electrolytic solution, and encapsulating the aluminum laminate film. Here, as the electrolytic solution, one in which LiPF 6 is dissolved in ethylene carbonate / ethyl methyl carbonate (3/7 weight ratio) at 1 M is used. The amount of electricity discharged at 0.2C and 2C was measured in the cell, and (the amount of electricity discharged at 2C) / (the amount of electricity discharged at 0.2C) × 100 was defined as the battery performance. Good battery performance is 95% or more. Here, the charging condition is 0.2C 4.2V CC / CV 8 hours, and the discharging condition is a CC discharge with a 2.75V cutoff.

本発明の耐熱性ポリオレフィン系微多孔膜に上記ポリマー水溶液を塗布し形成したセパレ−タを使用したアルミラミネート外装セルの場合に、電解液を注入し3時間後に、セルをプレスして封口し、電池内部抵抗測定をする。該測定のために、インピーダンスアナライザー内蔵ポテンショ/ガルバノスタットを用いた。OCV(開回路電圧)をOVとして振幅10mVを重畳させた交流電圧を300KHzから0.1Hzまで印加し、応答電流からインピーダンスを求めた。PVDF塗布セパレータの1Hzの放電終了時のインピーダンス値を1として、インピーダンスの相対値として表示する。上記条件の充放電サイクルを繰り返して第50回目の放電容量の保持率を、第2回目の放電容量を基準として求めた。 In the case of an aluminum-laminated exterior cell using a separator formed by applying the above polymer aqueous solution to the heat-resistant polyolefin-based microporous membrane of the present invention, the cell is pressed and sealed 3 hours after the electrolytic solution is injected. Measure the internal resistance of the battery. A potentiometer / galvanostat with a built-in impedance analyzer was used for the measurement. An AC voltage with an amplitude of 10 mV superimposed on the OCV (open circuit voltage) was applied from 300 KHz to 0.1 Hz, and the impedance was obtained from the response current. The impedance value of the PVDF coated separator at the end of 1 Hz discharge is set to 1, and is displayed as a relative value of impedance. The charge / discharge cycle under the above conditions was repeated, and the retention rate of the 50th discharge capacity was determined based on the 2nd discharge capacity.

このように、本発明の耐熱性ポリオレフィン系微多孔膜は、電池用セパレータ、コンデンサー用セパレータ、フィルター等として好適に使用できる。特にEV用の大型リチウムイオン二次電池用セパレータとして最適である。本発明の耐熱性ポリオレフィン系微多孔膜の優れたノンメルトダウン特性を生かしてシャットダウン温度が125−142℃の範囲の温度を有するポリエチレン系微多孔膜あるいはシャットダウン温度がこの範囲にはないが放電特性に優れるポリプロピレンセパレータと貼り合せて、電池用多層セパレータとして使用することもできる。電池組み立て時に、従来のポリエチレンセパレータあるいはポリプロピレンセパレータと重ねて併用することも可能である。 As described above, the heat-resistant polyolefin-based microporous membrane of the present invention can be suitably used as a battery separator, a capacitor separator, a filter and the like. In particular, it is most suitable as a separator for large lithium-ion secondary batteries for EVs. Taking advantage of the excellent non-meltdown characteristics of the heat-resistant polyolefin microporous membrane of the present invention, the polyethylene microporous membrane having a shutdown temperature in the range of 125-142 ° C or the shutdown temperature is not in this range, but the discharge characteristics. It can also be used as a multi-layer separator for batteries by bonding with a polypropylene separator having excellent temperature. When assembling the battery, it can be used in combination with a conventional polyethylene separator or polypropylene separator.

本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。 The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

粘度平均分子量が115万の超高分子量ポリエチレン4.9質量%、粘度平均分子量が200万の超高分子量ポリエチレン16.9質量%、粘度平均分子量が395万の超高分子量ポリエチレン12.7質量%、粘度平均分子量が581万の超高分子量ポリエチレン8.5質量%、粘度平均分子量が631万の超高分子量ポリエチレン4.2%、平均分子量が33.4万の高密度ポリエチレン3.6質量%、融点ピーク232℃を持つ4−メチル−1−ペンテン−1−デセン−1共重合体(MFR260℃ 5kg荷重 9g/10分)46.5質量%、およびエチレン−エチレン・ブチレン−エチレンブロック共重合体(JSR社製ダイナロンCEBC)の[グレード名6200P]0.20質量%、[グレード名6100P]0.20質量%および[グレード名6201B]0.20質量%、ならびにポリプロピレン系エラストマー樹脂として三井化学(株)社製のノティオ[グレード名SN0285]2.1質量%とからなるポリオレフィ樹脂の混合物100.0質量部に対して酸化防止剤としてテトラキス[メチレン−3−(3,5−ジターシャリーブチル−4−ヒドロキシフェニル)−プロピオネート]メタン0.5質量部と3,9−ビス(2,6-ジターシャリーブチル−4−メチルフェノキシ)−2,4,8,10-テトラオキサ-3,9-ジホスファピ[5,5]ウンデカンロニルヒドロキシフェニル)-プロピオネート]メタン0.05質量部とをドライブレンドして、計算による混合樹脂部分の平均融点180℃のポリオレフィン樹脂混合物を調製した。当該樹脂混合物35質量部を二軸押出機(シリンダ径:52mm、スクリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから65質量部の可塑剤(流動パラフィン[68cst(40℃)])を供給し、温度220−190℃及びスクリュー回転数260 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、2軸方向同時延伸テンターを用いて、二軸延伸をMD6倍、TD5倍で行った。次いで塩化メチレン(MC)を溶剤とする連続式可塑剤抽出装置に通して可塑剤の一部を除去して、流動パラフィン18質量部と当該樹脂混合物82質量の割合を有する部分可塑剤除去膜を得た。該膜を#700研磨ステンレス板2枚の間に挟み135℃にて2MPaの圧下で10分間、次に35MPaで15分間、加熱加圧した。これをラボ同時二軸延伸機により4倍x4倍で延伸した。次に135℃にて2MPaの圧下で10分間、次に35MPaで15分間、加熱加圧し、次に連続式可塑剤抽出装置に通してMCによる可塑剤の完全除去を行った。次に、該膜を#700研磨ステンレス板2枚の間に挟み、140℃で2Mpa、5分間、35MPa3分間プレスして、熱固定処理を行った。得られた膜は耐熱性ポリオレフィン微多孔膜であり、その特性を表1に示す。また、ノンメルトダウン特性の評価のための試験を行った結果、135℃付近で急激なインピーダンス値の上昇を示して135℃で1000オームとなり(つまりシャットダウン温度は135℃)、更に温度の上昇に連れて5000オーム以上になり、 195℃を超えるまで高インピーダンス値を保持していた。当該耐熱性ポリオレフィン微多孔膜の表面を走査型電子顕微鏡(SEM)で観察して、フィブリル繊維径を測定し、フィブリル繊維径分布を求めた。200nm〜1000nm未満の範囲のフィブリル繊維と1000nm〜3000nmの範囲のフィブリル繊維が存在し、200nm〜1000nm未満の径を持つフィブリル繊維の数と1000〜3000nmの範囲の径をもつフィブリル繊維の数の比が77:23であった。 Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.15 million 4.9% by mass, ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2 million 16.9% by mass, ultrahigh molecular weight polyethylene with a viscosity average molecular weight of 3.95 million 12.7% by mass , 8.5% by mass of ultra-high molecular weight polyethylene with an average molecular weight of 5.81 million, 4.2% of ultra-high molecular weight polyethylene with an average molecular weight of 6.31 million, and 3.6% by mass of high-density polyethylene with an average molecular weight of 334,000. , 4-Methyl-1-pentene-1-decene-1 copolymer having a melting point peak of 232 ° C. (MFR 260 ° C., 5 kg load 9 g / 10 min) 46.5% by weight, and ethylene-ethylene / butylene-ethylene block co-weight [Grade name 6200P] 0.20% by weight, [Grade name 6100P] 0.20% by weight and [Grade name 6201B] 0.20% by weight, and Mitsui Chemicals as a polypropylene-based elastomer resin of the coalesced product (Dinaron CEBC manufactured by JSR). Notio [grade name SN0285] manufactured by Co., Ltd. Tetrakiss [Methylene-3- (3,5-ditershally butyl) as an antioxidant with respect to 100.0 parts by mass of a mixture of polyolefin resin consisting of 2.1% by mass. -4-Hydroxyphenyl) -propionate] 0.5 parts by weight of methane and 3,9-bis (2,6-ditersary butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9- Diphosphapi [5,5] undecanelonyl hydroxyphenyl) -propionate] 0.05 parts by weight of methane was dry-blended to prepare a polyolefin resin mixture having an average melting point of 180 ° C. of the mixed resin portion by calculation. 35 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, screw length (L) to diameter (D) ratio L / D: 48, strong kneading type screw used). 65 parts by mass of plasticizer (liquid paraffin [68cst (40 ° C)]) is supplied from the side feeder of the shaft extruder, and the polyolefin / plasticizer mixed melt is prepared under the conditions of a temperature of 220-190 ° C and a screw rotation speed of 260 rpm. Prepared. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. Biaxial stretching was performed on the obtained gel-like sheet molded product at MD 6 times and TD 5 times using a biaxial simultaneous stretching tenter. Next, a part of the plasticizer is removed by passing it through a continuous plasticizer extractor using methylene chloride (MC) as a solvent to form a partial plasticizer removing film having a ratio of 18 parts by mass of liquid paraffin and 82 parts by mass of the resin mixture. Obtained. The film was sandwiched between two # 700 polished stainless steel plates and heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes and then at 35 MPa for 15 minutes. This was stretched 4 times x 4 times by a laboratory simultaneous biaxial stretching machine. Next, the plasticizer was heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes and then at 35 MPa for 15 minutes, and then the plasticizer was completely removed by MC through a continuous plasticizer extractor. Next, the film was sandwiched between two # 700 polished stainless steel plates and pressed at 140 ° C. for 2Mpa for 5 minutes and 35MPa for 3 minutes to perform a heat fixing treatment. The obtained membrane is a heat-resistant polyolefin microporous membrane, and its characteristics are shown in Table 1. In addition, as a result of a test for evaluation of non-meltdown characteristics, the impedance value showed a rapid increase around 135 ° C and reached 1000 ohms at 135 ° C (that is, the shutdown temperature was 135 ° C), and the temperature further increased. As a result, it became over 5000 ohms and maintained a high impedance value until it exceeded 195 ° C. The surface of the heat-resistant polyolefin microporous membrane was observed with a scanning electron microscope (SEM), the fibril fiber diameter was measured, and the fibril fiber diameter distribution was determined. There are fibril fibers in the range of 200 nm to less than 1000 nm and fibril fibers in the range of 1000 nm to 3000 nm, and the ratio of the number of fibril fibers having a diameter of 200 nm to less than 1000 nm to the number of fibril fibers having a diameter in the range of 1000 to 3000 nm. Was 77:23.

粘度平均分子量が115万の超高分子量ポリエチレン4.9質量%、粘度平均分子量が200万の超高分子量ポリエチレン16.9質量%、粘度平均分子量が395万の超高分子量ポリエチレン12.7質量%、粘度平均分子量が581万の超高分子量ポリエチレン8.5質量%、粘度平均分子量が631万の超高分子量ポリエチレン4.2%、平均分子量が33.4万の高密度ポリエチレン3.6質量%、融点ピーク232℃を持つ4−メチル−1−ペンテン−1−デセン-1共重合体(MFR260℃ 5kg荷重 9g/10分)46.5質量%、およびエチレン−エチレン・ブチレン−エチレンブロック共重合体(JSR社製ダイナロンCEBC)[グレード名6200P]0.20質量%、[グレード名6100P]0.20質量%および[グレード名6201B]0.20質量%、ならびにポリプロピレン系エラストマー樹脂として三井化学(株)社製のノティオ[グレード名SN0285]2.1質量%とからなるポリオレフィ樹脂の混合物100.0質量部に対して酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.5質量部と3,9−ビス(2,6-ジターシャリーブチル-4-メチルフェノキシ)−2,4,8,10-テトラオキサ-3,9-ジホスファピ[5,5]ウンデカンロニルヒドロキシフェニル)-プロピオネート]メタン0.05質量部とをドライブレンドして、計算による混合樹脂部分の平均融点180℃のポリオレフィン樹脂混合物を調製した。当該樹脂混合物35質量部を二軸押出機(シリンダ径:52mm、スクリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから65質量部の可塑剤(流動パラフィン[68cst(40℃)])を供給し、温度240−190℃及びスクリュー回転数300 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、2軸方向同時延伸テンターを用いて、二軸延伸をMD4倍、TD4倍で行った。次いで塩化メチレン(MC)を溶剤とする連続式可塑剤抽出装置に通して可塑剤の一部を除去して、流動パラフィン12質量部と当該樹脂混合物88質量の割合を有する部分可塑剤除去膜Aを得た。同様にして、可塑剤6質量部と当該樹脂混合物94質量の割合を有する部分可塑剤除去膜Bを得た。該部分可塑剤除去膜AとBとを重ねて#700研磨ステンレス板2枚の間に挟み、135℃で、2MPaで10分間、35MPaで5分間、加熱加圧して該部分可塑剤除去膜AとBとを貼り合わせて1枚の膜とした。これをラボ同時二軸延伸機により4倍x4倍で延伸した。135℃にて2MPaの圧下で10分間、次に引き続き35MPaで15分間、加熱加圧し、次に連続式可塑剤抽出装置に通してMCによる可塑剤の完全除去を行った。次に、該膜を#700研磨ステンレス板2枚の間に挟み、150℃で、2Mpa5分間、35MPa3分間プレスして、熱固定処理を行った。得られた膜は耐熱性ポリオレフィン微多孔膜であり、その特性を表1に示す。また、ノンメルトダウン特性の評価のための試験を行った結果、135℃付近で急激なインピーダンス値の上昇を示して135℃で1000オームとなり(つまりシャットダウン温度は135℃)、更に温度の上昇に連れて5000オーム以上になり195℃を超えるまで高インピーダンス値を保持していた。 Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.15 million 4.9% by mass, ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2 million 16.9% by mass, ultrahigh molecular weight polyethylene with a viscosity average molecular weight of 3.95 million 12.7% by mass , 8.5% by mass of ultra-high molecular weight polyethylene with an average molecular weight of 5.81 million, 4.2% of ultra-high molecular weight polyethylene with an average molecular weight of 6.31 million, and 3.6% by mass of high-density polyethylene with an average molecular weight of 334,000. , 4-Methyl-1-pentene-1-decene-1 copolymer having a melting point peak of 232 ° C. (MFR 260 ° C., 5 kg load 9 g / 10 min) 46.5% by weight, and ethylene-ethylene / butylene-ethylene block co-weight Combined (JSR Dynalon CEBC) 0.20% by weight [grade name 6200P] 0.20% by weight [grade name 6100P] 0.20% by weight and [grade 6201B] 0.20% by weight, and Mitsui Chemicals (grade name 6201B] 0.20% by weight Notio [grade name SN0285] manufactured by Co., Ltd. Tetrakiss [Methylene-3- (3,5-Ditershally Butyl-) as an antioxidant with respect to 100.0 parts by mass of a mixture of polyolefin resin consisting of 2.1% by mass. 4-Hydroxyphenyl) -propionate] 0.5% by weight of methane and 3,9-bis (2,6-ditersary butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphapi [5,5] Undecanronyl hydroxyphenyl) -propionate] A polyolefin resin mixture having an average melting point of 180 ° C. of the mixed resin portion by calculation was prepared by dry blending with 0.05 parts by mass of methane. 35 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, screw length (L) to diameter (D) ratio L / D: 48, strong kneading type screw used). 65 parts by mass of plasticizer (liquid paraffin [68cst (40 ° C)]) is supplied from the side feeder of the shaft extruder, and the polyolefin / plasticizer mixed melt is prepared under the conditions of a temperature of 240-190 ° C and a screw rotation speed of 300 rpm. Prepared. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. The obtained gel-like sheet molded product was subjected to biaxial stretching at MD4 times and TD4 times using a biaxial simultaneous stretching tenter. Next, a part of the plasticizer is removed by passing through a continuous plasticizer extractor using methylene chloride (MC) as a solvent, and the partial plasticizer removing film A having a ratio of 12 parts by mass of liquid paraffin and 88 parts by mass of the resin mixture is obtained. Got Similarly, a partial plasticizer removing film B having a ratio of 6 parts by mass of the plasticizer to 94 parts by mass of the resin mixture was obtained. The partial plasticizer removing film A and B are overlapped and sandwiched between two # 700 polished stainless steel plates, and heated and pressed at 135 ° C. at 2 MPa for 10 minutes and 35 MPa for 5 minutes to heat and pressurize the partial plasticizer removing film A. And B were pasted together to form a single film. This was stretched 4 times x 4 times by a laboratory simultaneous biaxial stretching machine. The plasticizer was heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes and then at 35 MPa for 15 minutes, and then the plasticizer was completely removed by MC through a continuous plasticizer extractor. Next, the film was sandwiched between two # 700 polished stainless steel plates and pressed at 150 ° C. for 2Mpa for 5 minutes and 35MPa for 3 minutes to perform a heat fixing treatment. The obtained membrane is a heat-resistant polyolefin microporous membrane, and its characteristics are shown in Table 1. In addition, as a result of a test for evaluation of non-meltdown characteristics, the impedance value showed a rapid increase around 135 ° C and reached 1000 ohms at 135 ° C (that is, the shutdown temperature was 135 ° C), and the temperature further increased. The high impedance value was maintained until the temperature exceeded 5000 ohms and exceeded 195 ° C.

実施例2と同じ組成のポリオレフィン樹脂混合物を調製した。当該樹脂混合物35質量部を二軸押出機(シリンダ径:52mm、スクリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから65質量部の可塑剤(流動パラフィン[68cst(40℃)])を供給し、温度240−190℃及びスクリュー回転数300 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、2軸方向同時延伸テンターを用いて、二軸延伸をMD7倍、TD6倍で行った。次いで塩化メチレン(MC)を溶剤とする連続式可塑剤抽出装置に通して可塑剤の一部を除去して、流動パラフィン10質量部と当該樹脂混合物90質量の割合を有する部分可塑剤除去膜Cを得た。これを#700研磨ステンレス板2枚の間に挟み135℃にて2MPaの圧下で10分間、次に35MPaで5分間、加熱加圧した。これをラボ同時二軸延伸機により135℃にて3.5倍x3.5倍で延伸した。次に135℃にて2MPaで2分間、35MPaで15分間、加熱加圧してからMCによる可塑剤完全除去を行った。MCによる可塑剤完全除去を行った。次に、該膜を#700研磨ステンレス板2枚の間に挟み、150℃で2Mpa5分間、35MPa3分間プレスして熱固定処理を行った。得られた膜は耐熱性ポリオレフィン微多孔膜であり、その特性を表1に示す。また、ノンメルトダウン特性の評価のための試験を行った結果、135℃付近で急激なインピーダンス値の上昇を示して135℃で1000オームとなり(つまりシャットダウン温度は135℃)、更に温度の上昇に連れて5000オーム以上になり195℃を超えるまで高インピーダンス値を保持していた。 A polyolefin resin mixture having the same composition as in Example 2 was prepared. 35 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, screw length (L) to diameter (D) ratio L / D: 48, strong kneading type screw used). 65 parts by mass of plasticizer (liquid paraffin [68cst (40 ° C)]) is supplied from the side feeder of the shaft extruder, and the polyolefin / plasticizer mixed melt is prepared under the conditions of a temperature of 240-190 ° C and a screw rotation speed of 300 rpm. Prepared. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. The obtained gel-like sheet molded product was subjected to biaxial stretching at MD 7 times and TD 6 times using a biaxial simultaneous stretching tenter. Next, a part of the plasticizer is removed by passing through a continuous plasticizer extractor using methylene chloride (MC) as a solvent, and the partial plasticizer removing film C having a ratio of 10 parts by mass of liquid paraffin and 90 parts by mass of the resin mixture is obtained. Got This was sandwiched between two # 700 polished stainless steel plates and heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes, and then at 35 MPa for 5 minutes. This was stretched 3.5 times x 3.5 times at 135 ° C. by a laboratory simultaneous biaxial stretching machine. Next, the plasticizer was completely removed by MC after heating and pressurizing at 135 ° C. at 2 MPa for 2 minutes and 35 MPa for 15 minutes. The plasticizer was completely removed by MC. Next, the film was sandwiched between two # 700 polished stainless steel plates and pressed at 150 ° C. for 2 MPa for 5 minutes and 35 MPa for 3 minutes to perform a heat fixing treatment. The obtained membrane is a heat-resistant polyolefin microporous membrane, and its characteristics are shown in Table 1. In addition, as a result of a test for evaluation of non-meltdown characteristics, the impedance value showed a rapid increase around 135 ° C and reached 1000 ohms at 135 ° C (that is, the shutdown temperature was 135 ° C), and the temperature further increased. The high impedance value was maintained until the temperature became 5000 ohms or more and exceeded 195 ° C.

実施例2の様にして得た部分可塑剤除去膜Aを両側にし、実施例3の様にして得た部分可塑剤除去膜Cを真ん中にして3枚を重ね、#700研磨ステンレス板2枚の間に挟み、135℃にて2MPaの圧下で10分間、35MPaで10分間、加熱加圧し、一体となった膜を同時二軸延伸機により135℃にて4倍x4倍で延伸をした。次に135℃にて2MPaで2分間、35MPaで15分間、加熱加圧してからMCによる可塑剤完全除去を行った。実施例3と同様に熱固定処理を施した。得られた膜は耐熱性ポリオレフィン微多孔膜であり、そのノンメルトダウン特性の評価のための試験を行った結果、136℃付近で急激なインピーダンス値の上昇を示して136℃で1000オームとなり(つまりシャットダウン温度は136℃)、更に温度の上昇に連れて5000オーム以上になり195℃を超えるまで高インピーダンス値を保持していた。 With the partial plasticizer removing film A obtained as in Example 2 on both sides and the partial plasticizer removing film C obtained as in Example 3 in the middle, three sheets were stacked, and two # 700 polished stainless steel plates. It was sandwiched between the two, heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes and at 35 MPa for 10 minutes, and the integrated film was stretched 4 times × 4 times at 135 ° C. by a simultaneous biaxial stretching machine. Next, the plasticizer was completely removed by MC after heating and pressurizing at 135 ° C. at 2 MPa for 2 minutes and 35 MPa for 15 minutes. The heat fixing treatment was performed in the same manner as in Example 3. The obtained film is a heat-resistant polyolefin microporous film, and as a result of a test for evaluating its non-meltdown characteristics, it showed a rapid increase in impedance value near 136 ° C and reached 1000 ohms at 136 ° C (). That is, the shutdown temperature was 136 ° C.), and as the temperature rose, it became 5000 ohms or more and maintained a high impedance value until it exceeded 195 ° C.

粘度平均分子量が115万の超高分子量ポリエチレン5.5質量%、粘度平均分子量が200万の超高分子量ポリエチレン13.3質量%、粘度平均分子量が395万の超高分子量ポリエチレン15.0質量%、粘度平均分子量が581万の超高分子量ポリエチレン9.0質量%、粘度平均分子量が631万の超高分子量ポリエチレン5.5%、平均分子量が33.4万の高密度ポリエチレン5.0質量%、融点ピーク232℃を持つ4−メチル−1−ペンテン−1−デセン−1共重合体(MFR260℃ 5kg荷重 9g/10分)44.0質量%、およびエチレン−エチレン・ブチレン−エチレンブロック共重合体(JSR社製ダイナロンCEBC)[グレード名6200P]0.20質量%、[グレード名6100P]0.20質量%および[グレード名6201B]0.20質量%、ならびにポリプロピレン系エラストマー樹脂として三井化学(株)社製のノティオ[グレード名SN0285]2.1質量%とからなるポリオレフィ樹脂の混合物100.0質量部に対して酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.5質量部と3,9−ビス(2,6-ジターシャリーブチル-4-メチルフェノキシ)−2,4,8,10-テトラオキサ-3,9-ジホスファピ[5,5]ウンデカンロニルヒドロキシフェニル)-プロピオネート]メタン0.05質量部とをドライブレンドして、計算による混合樹脂部分の平均融点180℃のポリオレフィン樹脂混合物を調製した。当該樹脂混合物35質量部を二軸押出機(シリンダ径:52mm、スクリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから65質量部の可塑剤(流動パラフィン[68cst(40℃)])を供給し、温度240−190℃及びスクリュー回転数270 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、逐次2軸延伸によりMD5倍、TD5倍で延伸した。次いで塩化メチレン(MC)を溶剤とする連続式可塑剤抽出装置に通して、流動パラフィン10質量部、当該樹脂混合物90質量の割合からなる部分可塑剤除去膜Dを得る。同様にして、しかし流動パラフィン6質量部、当該樹脂混合物94質量の割合の部分可塑剤除去膜Eを得る。当該膜をE/D/Eと3枚重ねて#700研磨ステンレス板2枚の間に挟み、135℃にて2MPaの圧下で10分間、35MPaで5分間、加熱加圧した。これを同時二軸延伸機により4倍x4倍で延伸した。次に135℃にて2MPaで2分間、35MPaで15分間、加熱加圧してからMCによる可塑剤完全除去を行った。上記の様に熱固定処理を施して得られた耐熱性ポリオレフィン微多孔膜の特性を表1に示す。ノンメルトダウン特性の評価のための試験を行った結果、135℃付近で急激なインピーダンス値の上昇を示して135℃で1000オームとなり(つまりシャットダウン温度は135℃)、更に温度の上昇に連れて5000オーム以上になり、195℃を超えるまで高インピーダンス値を保持していた。 Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.15 million 5.5% by mass, ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2 million 13.3% by mass, ultrahigh molecular weight polyethylene with a viscosity average molecular weight of 3.95 million 15.0% by mass , Ultra-high molecular weight polyethylene with viscosity average molecular weight of 5.81 million 9.0% by mass, ultra-high molecular weight polyethylene with viscosity average molecular weight of 6.31 million 5.5%, high density polyethylene with average molecular weight of 334,000 5.0% by mass , 4-Methyl-1-pentene-1-decene-1 copolymer having a melting point peak of 232 ° C. (MFR 260 ° C., 5 kg load 9 g / 10 min) 44.0% by weight, and ethylene-ethylene / butylene-ethylene block co-weight Combined (JSR Dynalon CEBC) 0.20% by weight [grade name 6200P] 0.20% by weight [grade name 6100P] 0.20% by weight and [grade 6201B] 0.20% by weight, and Mitsui Chemicals (grade name 6201B] 0.20% by weight Notio [grade name SN0285] manufactured by Co., Ltd. Tetrakiss [Methylene-3- (3,5-Ditershally Butyl-) as an antioxidant with respect to 100.0 parts by mass of a mixture of polyolefin resin consisting of 2.1% by mass. 4-Hydroxyphenyl) -propionate] 0.5% by weight of methane and 3,9-bis (2,6-ditersary butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphapi [5,5] Undecanronyl hydroxyphenyl) -propionate] A polyolefin resin mixture having an average melting point of 180 ° C. of the mixed resin portion by calculation was prepared by dry blending with 0.05 parts by mass of methane. 35 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, screw length (L) to diameter (D) ratio L / D: 48, using a strong kneading type screw). 65 parts by mass of plasticizer (liquid paraffin [68cst (40 ° C)]) is supplied from the side feeder of the shaft extruder, and the polyolefin / plasticizer mixed melt is prepared under the conditions of a temperature of 240-190 ° C and a screw rotation speed of 270 rpm. Prepared. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. The obtained gel-like sheet molded product was sequentially stretched by biaxial stretching at MD5 times and TD5 times. Next, it is passed through a continuous plasticizer extractor using methylene chloride (MC) as a solvent to obtain a partial plasticizer removing film D composed of 10 parts by mass of liquid paraffin and 90 parts by mass of the resin mixture. In the same manner, however, a partial plasticizer removing film E having a ratio of 6 parts by mass of liquid paraffin and 94 parts by mass of the resin mixture is obtained. The film was laminated with three E / D / E sheets, sandwiched between two # 700 polished stainless steel plates, and heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes and at 35 MPa for 5 minutes. This was stretched 4 times x 4 times by a simultaneous biaxial stretching machine. Next, the plasticizer was completely removed by MC after heating and pressurizing at 135 ° C. at 2 MPa for 2 minutes and 35 MPa for 15 minutes. Table 1 shows the characteristics of the heat-resistant polyolefin microporous film obtained by subjecting the heat-fixing treatment as described above. As a result of a test for evaluation of non-meltdown characteristics, the impedance value showed a rapid increase around 135 ° C and reached 1000 ohms at 135 ° C (that is, the shutdown temperature was 135 ° C), and as the temperature increased further. The high impedance value was maintained until the temperature became 5000 ohms or more and exceeded 195 ° C.

粘度平均分子量が115万の超高分子量ポリエチレン4.9質量%、粘度平均分子量が200万の超高分子量ポリエチレン16.9質量%、粘度平均分子量が395万の超高分子量ポリエチレン12.7質量%、粘度平均分子量が581万の超高分子量ポリエチレン8.5質量%、粘度平均分子量が631万の超高分子量ポリエチレン4.2%、平均分子量が33.4万の高密度ポリエチレン3.6質量%、融点ピーク232℃を持つ4−メチル−−1ペンテン−1−デセン−1共重合体(MFR260℃ 5kg荷重 9g/10分)46.5質量%、およびエチレン−エチレン・ブチレン−エチレンブロック共重合体(JSR社製ダイナロンCEBC)[グレード名6200P]0.20質量%、[グレード名6100P]0.20質量%および[グレード名6201B]0.20質量%ならびにポリプロピレン系エラストマー樹脂として三井化学(株)社製のノティオ[グレード名SN0285]2.1質量%とからなるポリオレフィ樹脂の混合物100.0質量部に対して酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.5質量部と3,9−ビス(2,6-ジターシャリーブチル-4-メチルフェノキシ)−2,4,8,10-テトラオキサ-3,9-ジホスファピ[5,5]ウンデカンロニルヒドロキシフェニル)-プロピオネート]メタン0.05質量部とをドライブレンドして、計算による混合樹脂部分の平均融点180℃のポリオレフィン樹脂混合物を調製した。当該樹脂混合物30質量部を二軸押出機(シリンダ径:52mm、スクリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから70質量部の可塑剤(流動パラフィン[68cst(40℃)])を供給し、温度240−190℃及びスクリュー回転数260 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、2軸方向同時延伸テンターを用いて、二軸延伸をMD6倍、TD5倍でした。次いで塩化メチレン(MC)を溶剤とする連続式可塑剤抽出装置を通し、流動パラフィン15質量部、当該樹脂混合物85質量の割合の部分可塑剤除去膜Fを得た。
粘度平均分子量が115万の超高分子量ポリエチレン11.4質量%、粘度平均分子量が200万の超高分子量ポリエチレン16.9質量%、粘度平均分子量が395万の超高分子量ポリエチレン12.7質量%、粘度平均分子量が581万の超高分子量ポリエチレン8.5質量%、粘度平均分子量が631万の超高分子量ポリエチレン4.2%、平均分子量が33.4万の高密度ポリエチレン3.6質量%、融点ピーク232℃を持つ4−メチル−1−ペンテン−1−デセン−1共重合体(MFR260℃ 5kg荷重 9g/10分)40.0質量%、およびエチレン−エチレン・ブチレン−エチレンブロック共重合体(JSR社製ダイナロンCEBC)[グレード名6200P]0.18質量%、[グレード名6100P]0.18質量%および[グレード名6201B]0.18質量%、ならびにポリプロピレン系エラストマー樹脂として三井化学(株)社製のノティオ[グレード名SN0285]2.6質量%とからなるポリオレフィ樹脂の混合物100.0質量部に対して酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.5質量部と3,9−ビス(2,6-ジターシャリーブチル-4-メチルフェノキシ)−2,4,8,10-テトラオキサ-3,9-ジホスファピ[5,5]ウンデカンロニルヒドロキシフェニル)-プロピオネート]メタン0.05質量部とをドライブレンドして、計算による混合樹脂部分の平均融点176℃のポリオレフィン樹脂混合物を調製した。当該樹脂混合物30質量部を二軸押出機(シリンダ径:52mm、スクリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから70質量部の可塑剤(流動パラフィン[68cst(40℃)])を供給し、温度240−190℃及びスクリュー回転数260 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、2軸方向同時延伸テンターを用いて、二軸延伸をMD6倍、TD5倍でした。次いで塩化メチレン(MC)を溶剤とする連続式可塑剤抽出装置を通し、流動パラフィン20質量部、当該樹脂混合物80質量の割合の部分可塑剤除去膜Gを得た。
これら2枚を重ねて#700研磨ステンレス板2枚の間に挟み、135℃にて2MPaの圧下で10分間、35MPaで5分間、加熱加圧した。これを同時二軸延伸機により4.0倍x4.0倍で延伸した。次に135℃にて2MPaで2分間、35MPaで15分間、加熱加圧してからMCによる可塑剤完全除去を行った。熱固定処理を施し、得られた耐熱性ポリオレフィン微多孔膜の特性を表1に示す。ノンメルトダウン特性の評価のための試験を行った結果、135℃付近で急激なインピーダンス値の上昇を示して135℃で1000オームとなり(つまりシャットダウン温度は135℃)、更に温度の上昇に連れて5000オーム以上になり、195℃を超えるまで高インピーダンス値を保持していた。
Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.15 million 4.9% by mass, ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2 million 16.9% by mass, ultrahigh molecular weight polyethylene with a viscosity average molecular weight of 3.95 million 12.7% by mass , 8.5% by mass of ultra-high molecular weight polyethylene with an average molecular weight of 5.81 million, 4.2% of ultra-high molecular weight polyethylene with an average molecular weight of 6.31 million, and 3.6% by mass of high-density polyethylene with an average molecular weight of 334,000. , 4-Methyl-1-pentene-1-decene-1 copolymer having a melting point peak of 232 ° C. (MFR 260 ° C., 5 kg load 9 g / 10 min) 46.5% by weight, and ethylene-ethylene / butylene-ethylene block co-weight Combined (JSR Dynalon CEBC) [grade name 6200P] 0.20% by weight, [grade name 6100P] 0.20% by weight and [grade name 6201B] 0.20% by weight, and Mitsui Chemicals, Inc. as a polypropylene-based elastomer resin ) Tetio [Methylene-3- (3,5-Ditershally Butyl-4) as an antioxidant with respect to 100.0 parts by weight of a mixture of polyolefin resin consisting of 2.1% by weight of Notio [grade name SN0285] -Hydroxyphenyl) -propionate] 0.5% by weight of methane and 3,9-bis (2,6-ditersary butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphapi [ 5,5] Undecanronyl hydroxyphenyl) -propionate] By dry blending with 0.05 parts by mass of methane, a polyolefin resin mixture having an average melting point of 180 ° C. of the mixed resin portion calculated was prepared. 30 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, screw length (L) to diameter (D) ratio L / D: 48, strong kneading type screw used). 70 parts by mass of plasticizer (liquid paraffin [68cst (40 ° C)]) is supplied from the side feeder of the shaft extruder, and the polyolefin / plasticizer mixed melt is prepared under the conditions of a temperature of 240-190 ° C and a screw rotation speed of 260 rpm. Prepared. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. Biaxial stretching was MD 6 times and TD 5 times for the obtained gel sheet molded product using a biaxial simultaneous stretching tenter. Next, a continuous plasticizer extractor using methylene chloride (MC) as a solvent was passed through to obtain a partial plasticizer removing film F having a ratio of 15 parts by mass of liquid paraffin and 85 parts by mass of the resin mixture.
Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.15 million 11.4% by mass, ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2 million 16.9% by mass, ultrahigh molecular weight polyethylene with a viscosity average molecular weight of 3.95 million 12.7% by mass , 8.5% by mass of ultra-high molecular weight polyethylene with an average molecular weight of 5.81 million, 4.2% of ultra-high molecular weight polyethylene with an average molecular weight of 6.31 million, and 3.6% by mass of high-density polyethylene with an average molecular weight of 334,000. , 4-Methyl-1-pentene-1-decene-1 copolymer having a melting point peak of 232 ° C. (MFR 260 ° C., 5 kg load 9 g / 10 min) 40.0% by weight, and ethylene-ethylene / butylene-ethylene block co-weight Combined (JSR Dynalon CEBC) [grade name 6200P] 0.18% by weight, [grade name 6100P] 0.18% by weight and [grade name 6201B] 0.18% by weight, and Mitsui Chemicals as a polypropylene-based elastomer resin ( Tetrakiss [Methylene-3- (3,5-Ditershally Butyl-) as an antioxidant with respect to 100.0 parts by weight of a mixture of polyolefin resin consisting of 2.6% by mass of Notio [grade name SN0285] manufactured by Co., Ltd. 4-Hydroxyphenyl) -propionate] 0.5% by weight of methane and 3,9-bis (2,6-ditersary butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphapi [5,5] Undecanronyl hydroxyphenyl) -propionate] A polyolefin resin mixture having an average melting point of 176 ° C. of the mixed resin portion by calculation was prepared by dry blending with 0.05 parts by mass of methane. 30 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, screw length (L) to diameter (D) ratio L / D: 48, strong kneading type screw used). 70 parts by mass of plasticizer (liquid paraffin [68cst (40 ° C)]) is supplied from the side feeder of the shaft extruder, and the polyolefin / plasticizer mixed melt is prepared under the conditions of a temperature of 240-190 ° C and a screw rotation speed of 260 rpm. Prepared. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. Biaxial stretching was MD 6 times and TD 5 times for the obtained gel sheet molded product using a biaxial simultaneous stretching tenter. Next, a continuous plasticizer extractor using methylene chloride (MC) as a solvent was passed through to obtain a partial plasticizer removing film G having a ratio of 20 parts by mass of liquid paraffin and 80 parts by mass of the resin mixture.
These two sheets were stacked and sandwiched between two # 700 polished stainless steel plates, and heated and pressurized at 135 ° C. under a pressure of 2 MPa for 10 minutes and at 35 MPa for 5 minutes. This was stretched 4.0 times x 4.0 times by a simultaneous biaxial stretching machine. Next, the plasticizer was completely removed by MC after heating and pressurizing at 135 ° C. at 2 MPa for 2 minutes and 35 MPa for 15 minutes. Table 1 shows the characteristics of the heat-resistant polyolefin microporous film obtained after heat-fixing treatment. As a result of a test for evaluation of non-meltdown characteristics, the impedance value showed a rapid increase around 135 ° C and reached 1000 ohms at 135 ° C (that is, the shutdown temperature was 135 ° C), and as the temperature increased further. The high impedance value was maintained until the temperature became 5000 ohms or more and exceeded 195 ° C.

実施例2で得られた耐熱性ポリオレフィン微多孔膜に、正極活物質としてのコバルト酸リチウム(LiCoO:10ミクロン)粉末92重量部とアセチレンブラック(電気化学工業社製)粉末2重量部、微粉黒鉛(日本黒鉛社製)2重量部、ポリフッ化ビニリデン(クレハ化学工業株式会社製)の乾燥重量4質量部と、厚さ15μmのアルミニウム箔とからなる正極シートを貼り合わせ、ロール圧下し、直ちに巻回機に供給した。同様に、負極活物質の黒鉛化カーボン(日立化成製)粉末97質量部とCMC(カルボキシメチルセルロース)(第一工業製薬社製)1質量部とカルボキシ変性ブタジエン系ラテックス(日本ゼオン社製)の固形分2質量部と、厚さ12μmの銅箔とからなる負極シートを当該耐熱性ポリオレフィン微多孔膜に貼り合わせ、ロール圧下してから、巻回機に供給した。表2に、18mm円筒缶に挿入する巻回コイルの生産性と電極容量比を示す。
なお、従来通りの方法で巻回を実施するに、巻く際に風圧で当該膜は浮きやすく、テンション制御とシャフト回転数を減じて巻く必要があった。積層型の枚葉の重ね合わせでも電池組み立て作業前に正極シートと負極シートに予め当該微多孔膜を貼り合わせておくことにより、従来のセパレータを組み込むより作業性が向上する。
To the heat-resistant polyolefin microporous film obtained in Example 2, 92 parts by weight of lithium cobalt oxide (LiCoO 2 : 10 micron) powder as a positive electrode active material, 2 parts by weight of acetylene black (manufactured by Denki Kagaku Kogyo Co., Ltd.) powder, and fine powder. A positive electrode sheet made of 2 parts by weight of graphite (manufactured by Nippon Graphite Co., Ltd.), 4 parts by mass of dry weight of polyvinylidene fluoride (manufactured by Kureha Chemical Industry Co., Ltd.) and an aluminum foil having a thickness of 15 μm is bonded, rolled down, and immediately. It was supplied to the winder. Similarly, 97 parts by mass of graphitized carbon (manufactured by Hitachi Chemical) powder of the negative electrode active material, 1 part by mass of CMC (carboxymethyl cellulose) (manufactured by Dai-ichi Kogyo Seiyaku Co., Ltd.) and solid of carboxy-modified butadiene-based latex (manufactured by Nippon Zeon). A negative electrode sheet composed of 2 parts by mass and a copper foil having a thickness of 12 μm was attached to the heat-resistant polyolefin microporous film, rolled down, and then supplied to the winding machine. Table 2 shows the productivity and electrode capacity ratio of the winding coil to be inserted into the 18 mm cylindrical can.
In order to carry out the winding by the conventional method, the film is easily lifted by the wind pressure at the time of winding, and it is necessary to reduce the tension control and the shaft rotation speed. Even in the case of stacking laminated single-wafers, workability is improved as compared with incorporating a conventional separator by laminating the microporous film on the positive electrode sheet and the negative electrode sheet in advance before the battery assembly work.

旭硝子(株)社製のFEVE(フルオロエチレン・ビニルエーテル交互共重合体)を主鎖に持つ1液性のルミフロン(登録商標)FE4300を100%に対して消泡剤(SNデフォ―マ1312)0.1%、表面調整剤(SNwet126)0.30%、増粘剤(SNシックナー612N20%)4% を加え、精製水で希釈し、アルミ箔に塗布して乾燥後の膜厚が0.9μmになるように該水溶液の濃度を調整した。マイクロゲージと塗布量から0.9μmであることを確認し、該水溶液を、実施例2で得られた耐熱性ポリオレフィン微多孔膜にバーコーターで塗布した。室温から120℃まで昇温しながら、減圧下に水分を蒸発させて乾燥・架橋した。得たものについて、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 One-component Lumiflon (registered trademark) FE4300 having FEVE (fluoroethylene / vinyl ether alternating copolymer) as the main chain manufactured by Asahi Glass Co., Ltd. is 100% antifoaming agent (SN defaulter 1312) 0 .1%, surface conditioner (SNwet126) 0.30%, thickener (SN thickener 612N 20%) 4% were added, diluted with purified water, applied to aluminum foil, and the film thickness after drying was 0.9 μm. The concentration of the aqueous solution was adjusted so as to be. It was confirmed from the micro gauge and the coating amount that it was 0.9 μm, and the aqueous solution was coated on the heat-resistant polyolefin microporous membrane obtained in Example 2 with a bar coater. While raising the temperature from room temperature to 120 ° C., water was evaporated under reduced pressure to dry and crosslink. The obtained product was subjected to impedance measurement at 4 Hz with Hioki IM3590. The results are shown in Table 3.

旭硝子(株)社製のFEVE(フルオロエチレン・ビニルエーテル交互共重合体)を主鎖に持つ2液性のルミフロン(登録商標)FE4400(固形分50%)と東ソーイソシアネートAQ−130を100:11.4(NCO/OH=1/1)で混合し、混合液100%に対して消泡剤(SNデフォ―マ1312)0.1%、表面調整剤(SNwet 126)0.30%、増粘剤(SNシックナー612N20%)4%を加え、精製水で希釈し、アルミ箔に塗布して乾燥後の膜厚が1.0μmになるように水溶液濃度を調整した。マイクロゲージと塗布量から0.9μmであることを確認し、該水溶液を、実施例2で得られた耐熱性ポリオレフィン微多孔膜にバーコーターで塗布した。室温から120℃まで昇温しながら減圧下に水分を蒸発させて乾燥・架橋した。得たものについて、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 Two-component Lumiflon (registered trademark) FE4400 (solid content 50%) having FEVE (fluoroethylene / vinyl ether alternating copolymer) manufactured by Asahi Glass Co., Ltd. as the main chain and Tosoh isocyanate AQ-130 are 100: 11. Mix with 4 (NCO / OH = 1/1), defoamer (SN copolymer 1312) 0.1%, surface conditioner (SNwet 126) 0.30%, thickening with respect to 100% of the mixed solution. 4% of the agent (SN thickener 612N 20%) was added, diluted with purified water, applied to aluminum foil, and the concentration of the aqueous solution was adjusted so that the film thickness after drying was 1.0 μm. It was confirmed from the micro gauge and the coating amount that it was 0.9 μm, and the aqueous solution was coated on the heat-resistant polyolefin microporous membrane obtained in Example 2 with a bar coater. Moisture was evaporated under reduced pressure while raising the temperature from room temperature to 120 ° C. to dry and crosslink. The obtained product was subjected to impedance measurement at 4 Hz with Hioki IM3590. The results are shown in Table 3.

実施例2で得られた耐熱性ポリオレフィン微多孔膜にテトラフルオロエチレンとプロピレン交互共重合体のフッ素ゴムの旭硝子(株)社製のアフラス(登録商標)150CSラテックスの固形分と、テトラフルオロエチレンープロピレンーフッ化ビニリデン共重合体の3元系フッ素ゴムの旭硝子(株)社製のアフラス200Sラテックスの固形分との、70:30の混合ラテックス100%に対して消泡剤(SNデフォ―マ1312)0.1%、表面調整剤(SNwet 126)0.30%、増粘剤(SNシックナー612N20%)4%を加え、精製水で希釈し、アルミ箔に塗布して乾燥後の膜厚が1.0μmになるように水溶液濃度を調整した。マイクロゲージと塗布量から0.9μmであることを確認し、該水溶液を、実施例2で得られた耐熱性ポリオレフィン微多孔膜にバーコーターで塗布した。室温から120℃まで昇温しながら、減圧下に水分を蒸発させて乾燥した。得たものについて、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 The solid content of Afras (registered trademark) 150CS latex manufactured by Asahi Glass Co., Ltd., which is a fluororubber of tetrafluoroethylene and propylene alternating copolymer, and tetrafluoroethylene on the heat-resistant polyolefin microporous film obtained in Example 2. Antifoaming agent (SN defaulter) for 100% mixed latex of 70:30 with the solid content of Afras 200S latex manufactured by Asahi Glass Co., Ltd., which is a ternary fluororubber of propylene-vinylidene fluoride copolymer. 1312) 0.1%, surface conditioner (SNwet 126) 0.30%, thickener (SN thickener 612N 20%) 4% are added, diluted with purified water, applied to aluminum foil, and the thickness after drying. The concentration of the aqueous solution was adjusted so that It was confirmed from the micro gauge and the coating amount that it was 0.9 μm, and the aqueous solution was coated on the heat-resistant polyolefin microporous membrane obtained in Example 2 with a bar coater. Moisture was evaporated and dried under reduced pressure while raising the temperature from room temperature to 120 ° C. The obtained product was subjected to impedance measurement at 4 Hz with Hioki IM3590. The results are shown in Table 3.

架橋性アクリル樹脂として紫外線(UV)硬化型アクリル樹脂液(共栄社化学製HX−RSC(固形分50%)をアルミ箔に塗布して乾燥後の膜厚が1.0μmであることを確認し。これを、実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。80℃x30分間の溶剤蒸発後に、UV照射し架橋した。得られたものについて、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 An ultraviolet (UV) curable acrylic resin solution (HX-RSC (solid content 50%) manufactured by Kyoeisha Chemical Co., Ltd.) was applied to the aluminum foil as a crosslinkable acrylic resin, and it was confirmed that the film thickness after drying was 1.0 μm. This was applied to the heat-resistant polyolefin microporous film obtained in Example 2. After evaporation of the solvent at 80 ° C. for 30 minutes, UV irradiation was performed for cross-linking. The obtained product was subjected to impedance at 4 Hz by Hioki Electric IM3590. The measurement was performed. The results are shown in Table 3.

アクリル樹脂(アクリルスチレンポリオール(DIC社アクリディックA−817:水酸基価30mg KOH/g、酸価3mg KOH/g)とイソシアネートHMDI(イソシアヌレート構造、旭化成社製デュラネートTPA−100:NCO含有量23wt%)とをNCO/OH=1.0で配合し、キシレンで希釈して、アルミ箔に塗布して架橋後の膜厚が1μmになるように調整した。マイクロゲージと塗布量から1.0μmであることを確認し、該希釈物を実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。室温から120℃まで昇温しながら、減圧下に水分を蒸発させて乾燥・架橋した。得たものについて、を日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 Acrylic resin (acrylic styrene polyol (DIC Acridic A-817: hydroxyl value 30 mg KOH / g, acid value 3 mg KOH / g) and isocyanate HMDI (isocyanurate structure, Asahi Kasei Duranate TPA-100: NCO content 23 wt%) ) And NCO / OH = 1.0, diluted with xylene, and applied to aluminum foil to adjust the film thickness after cross-linking to 1 μm. From the microgauge and the applied amount, 1.0 μm. After confirming that, the diluted product was applied to the heat-resistant polyolefin microporous film obtained in Example 2. While raising the temperature from room temperature to 120 ° C., water was evaporated under reduced pressure to dry and crosslink. The obtained product was subjected to impedance measurement at 4 Hz with Hioki Electric IM3590. The results are shown in Table 3.

ポリイミドワニス(宇部興産のユピアAT1001(固形分30%のNMP溶液)をNMPで100%希釈して、アルミ箔に塗布して乾燥後の膜厚が0.9μmになるように調整した。マイクロゲージと塗布重量から0.9μmであることを確認してから、該希釈物を実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。NMPを蒸発させながら120℃まで昇温し、乾燥することによりポリイミド化させた。得られたものについて、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 Polyimide varnish (Ube Industries' Yupia AT1001 (NMP solution with a solid content of 30%) was diluted 100% with NMP and applied to aluminum foil to adjust the film thickness after drying to 0.9 μm. After confirming that the coating weight was 0.9 μm, the diluted solution was applied to the heat-resistant polyimide microporous film obtained in Example 2. The temperature was raised to 120 ° C. while evaporating NMP, and the mixture was dried. The obtained product was made into polyimide by the above-mentioned process, and the impedance was measured at 4 Hz by Hioki Electric IM3590. The results are shown in Table 3.

PMMA(A)とPVDF−HFP(重量比92:8)コポリマー(B)とを重量比1:1でN−メチル―2−ピロリドン(NMP)に溶解し、アルミ箔に塗布して乾燥後の膜厚が1.0μmになるように調整する。マイクロゲージと塗布重量から1.0μmであることを確認してから、溶液を実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。NMPを蒸発させながら120℃まで昇温し、乾燥した。この単なる樹脂混合物を日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 PMMA (A) and PVDF-HFP (weight ratio 92: 8) copolymer (B) were dissolved in N-methyl-2-pyrrolidone (NMP) at a weight ratio of 1: 1 and applied to aluminum foil and dried. Adjust so that the film thickness is 1.0 μm. After confirming that the weight was 1.0 μm from the micro gauge and the coating weight, the solution was applied to the heat-resistant polyolefin microporous membrane obtained in Example 2. The temperature was raised to 120 ° C. while evaporating the NMP, and the mixture was dried. Impedance of this simple resin mixture was measured at 4 Hz with Hioki IM3590. The results are shown in Table 3.

PVDF−HFPをNMPに溶解して希釈して、アルミ箔に塗布して乾燥後の膜厚が1.0μmになるように調整した。希釈液を、実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。NMPを蒸発させながら115℃まで昇温して、乾燥させた。得られた未架橋物について、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 PVDF-HFP was dissolved in NMP, diluted, applied to an aluminum foil, and adjusted so that the film thickness after drying was 1.0 μm. The diluted solution was applied to the heat-resistant polyolefin microporous membrane obtained in Example 2. The temperature was raised to 115 ° C. while evaporating the NMP, and the mixture was dried. The obtained uncrosslinked product was subjected to impedance measurement at 4 Hz with Hioki IM3590. The results are shown in Table 3.

エルフ・アトフィーナ社PVDFのMKB272をNMPに溶解し、アルミ箔に塗布して乾燥後の膜厚が1.0μmになるように調整した。該溶液を、実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。NMPを蒸発させながら120℃まで昇温し、乾燥させた。得られた未架橋物について、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 MKB272 of PVDF manufactured by Elf Atofina was dissolved in NMP and applied to an aluminum foil to adjust the film thickness after drying to 1.0 μm. The solution was applied to the heat-resistant polyolefin microporous membrane obtained in Example 2. The temperature was raised to 120 ° C. while evaporating the NMP, and the mixture was dried. The obtained uncrosslinked product was subjected to impedance measurement at 4 Hz with Hioki IM3590. The results are shown in Table 3.

シリコーン(モメンティブ社製TSR116、ストレートシリコーン)100に対して架橋触媒CR15(錫+アミノシラン、モメンティブ社製)を2の質量比率で混合し、キシレンで希釈し、アルミ箔に塗布して乾燥後の膜厚が0.9μmになるように調整した。該希釈液を、実施例2で得られた耐熱性ポリオレフィン微多孔膜に塗布した。120℃まで昇温し乾燥・架橋した。得られたものについて、日置電機IM3590にて4Hzでのインピーダンス測定をした。その結果を表3に示す。 Crosslink catalyst CR15 (tin + aminosilane, manufactured by Momentive) is mixed with silicone (TSR116 manufactured by Momentive, straight silicone) 100 in a mass ratio of 2, diluted with xylene, applied to aluminum foil, and dried. The thickness was adjusted to 0.9 μm. The diluted solution was applied to the heat-resistant polyolefin microporous membrane obtained in Example 2. The temperature was raised to 120 ° C., dried and crosslinked. The obtained product was subjected to impedance measurement at 4 Hz with Hioki IM3590. The results are shown in Table 3.

[比較例1]
粘度平均分子量が115万の超高分子量ポリエチレン4.9質量%、粘度平均分子量が200万の超高分子量ポリエチレン16.9質量%、粘度平均分子量が395万の超高分子量ポリエチレン12.7質量%、粘度平均分子量が581万の超高分子量ポリエチレン8.5質量%、粘度平均分子量が631万の超高分子量ポリエチレン4.2%、平均分子量が33.4万の高密度ポリエチレン3.6質量%、融点ピーク232℃を持つ4−メチル−1−ペンテン−1−デセン−1共重合体(MFR260℃ 5kg荷重 9g/10分)46.5質量%、およびエチレン−エチレン・ブチレン−エチレンブロック共重合体(JSR社製ダイナロンCEBC)[グレード名6200P]0.20質量%、[グレード名6100P]0.20質量%および[グレード名6201B]0.20質量%、ならびにポリプロピレン系エラストマー樹脂として三井化学(株)社製のノティオ[グレード名SN0285]2.1質量%とからなるポリオレフィ樹脂の混合物100.0質量部に対して酸化防止剤としてテトラキス[メチレン-3-(3,5-ジターシャリーブチル-4-ヒドロキシフェニル)-プロピオネート]メタン0.5質量部と3,9−ビス(2,6-ジターシャリーブチル-4-メチルフェノキシ)−2,4,8,10-テトラオキサ-3,9-ジホスファピ[5,5]ウンデカンロニルヒドロキシフェニル)-プロピオネート]メタン0.05質量部とをドライブレンドし計算による混合樹脂部分の平均融点180℃の、実施例2と同じ組成のポリオレフィン樹脂混合物を調製した。当該樹脂混合物35質量部を二軸押出機(シリンダ径:52mm、スリュ−の長さ(L)と直径(D)の比L/D:48、強混練タイプスクリュ使用)に投入し、この二軸押出機のサイドフィーダーから65質量部の流動パラフィン[68cst(40℃)]を供給し、温度220−190℃及びスクリュー回転数270 rpmの条件でポリオレフィン・可塑剤混合溶融物を調製した。これを二軸押出機の先端に設置されたギアーポンプを介してTダイから押し出し、冷却ロールで引き取りながら、ゲル状シート成形物を形成した。得られたゲル状シート成形物に対して、2軸方向同時延伸テンターを用いて、二軸延伸をMD4倍、TD4倍でした。これをラボ同時二軸延伸機により4倍x4倍の延伸をした。MCによる可塑剤完全除去を行った。150℃で2Mpa5分間、35MPa3分間#700研磨ステンレス板に挟みプレスして、熱固定処理をした。得られた耐熱性ポリオレフィン微多孔膜の特性を表1に示す。ノンメルトダウン特性の評価試験のための試験を行った結果、135℃付近で急激なインピーダンス値の上昇を示して135℃で1000オームとなり(つまりシャットダウン温度は135℃)、更に温度の上昇に連れて5000オーム以上になり195℃を超えるまで高インピーダンス値を保持していた。その結果を表1に示す。
[Comparative Example 1]
Ultra-high molecular weight polyethylene with a viscosity average molecular weight of 1.15 million 4.9% by mass, ultra-high molecular weight polyethylene with a viscosity average molecular weight of 2 million 16.9% by mass, ultrahigh molecular weight polyethylene with a viscosity average molecular weight of 3.95 million 12.7% by mass , 8.5% by mass of ultra-high molecular weight polyethylene with an average molecular weight of 5.81 million, 4.2% of ultra-high molecular weight polyethylene with an average molecular weight of 6.31 million, and 3.6% by mass of high-density polyethylene with an average molecular weight of 334,000. 4-Methyl-1-pentene-1-decene-1 copolymer having a melting point peak of 232 ° C. (MFR 260 ° C., 5 kg load 9 g / 10 min) 46.5% by weight, and ethylene-ethylene / butylene-ethylene block co-weight Combined (JSR Dynalon CEBC) 0.20% by weight [grade name 6200P] 0.20% by weight [grade name 6100P] 0.20% by weight and [grade 6201B] 0.20% by weight, and Mitsui Chemicals (grade name 6201B] 0.20% by weight Notio [grade name SN0285] manufactured by Co., Ltd. Tetrakiss [Methylene-3- (3,5-Ditershally Butyl-) as an antioxidant with respect to 100.0 parts by mass of a mixture of polyolefin resin consisting of 2.1% by mass. 4-Hydroxyphenyl) -propionate] 0.5% by weight of methane and 3,9-bis (2,6-ditersary butyl-4-methylphenoxy) -2,4,8,10-tetraoxa-3,9-diphosphapi [5,5] Undecanronyl hydroxyphenyl) -propionate] A polyolefin resin mixture having the same composition as in Example 2 was prepared by dry blending with 0.05 parts by mass of methane and having an average melting point of 180 ° C. of the mixed resin portion calculated. .. 35 parts by mass of the resin mixture was put into a twin-screw extruder (cylinder diameter: 52 mm, slew length (L) to diameter (D) ratio L / D: 48, using a strongly kneaded type screw). 65 parts by mass of liquid paraffin [68cst (40 ° C.)] was supplied from the side feeder of the shaft extruder, and a polyolefin / plasticizer mixed melt was prepared under the conditions of a temperature of 220-190 ° C. and a screw rotation speed of 270 rpm. This was extruded from the T-die via a gear pump installed at the tip of the twin-screw extruder, and was taken up by a cooling roll to form a gel-like sheet molded product. The obtained gel-like sheet molded product was subjected to biaxial stretching by MD4 times and TD4 times by using a biaxial simultaneous stretching tenter. This was stretched 4 times x 4 times by a laboratory simultaneous biaxial stretching machine. The plasticizer was completely removed by MC. It was heat-fixed by sandwiching it between # 700 polished stainless steel plates at 150 ° C. for 5 minutes at 2 MPa and 3 minutes at 35 MPa. Table 1 shows the characteristics of the obtained heat-resistant polyolefin microporous membrane. As a result of a test for evaluation test of non-meltdown characteristics, the impedance value showed a rapid increase around 135 ° C and reached 1000 ohms at 135 ° C (that is, the shutdown temperature was 135 ° C), and as the temperature increased further. The high impedance value was maintained until the temperature became 5000 ohms or more and exceeded 195 ° C. The results are shown in Table 1.

[比較例2]
8ミクロン厚みのポリエチレンセパレータの片面に、アルミナ10%の懸濁物と水溶性ポリイミドバイダーとの混合物を塗布し、乾燥厚み1μmのセラミックス塗膜を有するポリエチレンセパレータを作った。 その性能試験の結果を表1に示す。
[Comparative Example 2]
A mixture of a suspension of 10% alumina and a water-soluble polyimide binder was applied to one side of a polyethylene separator having a thickness of 8 microns to prepare a polyethylene separator having a ceramic coating film having a dry thickness of 1 μm. The results of the performance test are shown in Table 1.

[比較例3]
市場から入手したアルミナ・水溶性ポリイミドの塗膜を両面に有する、セラミック両面塗布ポリエチレンセパレータについて、日置電機IM3590にて4Hzでのインピーダンスを測定した。 その結果を表3に示す。
[Comparative Example 3]
The impedance of a ceramic double-sided coated polyethylene separator having an alumina / water-soluble polyimide coating film obtained from the market on both sides was measured at 4 Hz by Hioki E.E. IM3590. The results are shown in Table 3.

Figure 0006791526
Figure 0006791526

Figure 0006791526
Figure 0006791526

Figure 0006791526
Figure 0006791526

高温時の低収縮性、機械的特性、透気度に優れ、膜厚が薄いポリオレフィン系微多孔膜を提供される。該ポリオレフィン系微多孔膜は、リチウムイオン二次電池の安全性と寿命を高めるセパレータとして有用な、140℃以下のシャットダウン温度を有し、190℃以上まで、液体電解液が熱分解して失活するまで非溶融(ノンメルトダウン)である両特性を同時に有していることが好ましい。また、かかる膜を製造する方法を提供される。 Provided is a polyolefin-based microporous membrane having excellent low shrinkage at high temperature, mechanical properties, air permeability, and a thin film thickness. The polyolefin-based microporous membrane has a shutdown temperature of 140 ° C. or lower, which is useful as a separator for enhancing the safety and life of a lithium ion secondary battery, and the liquid electrolyte is thermally decomposed and deactivated up to 190 ° C. or higher. It is preferable to have both characteristics of non-melting (non-meltdown) at the same time. Also provided are methods of producing such films.

Claims (17)

超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン―イソプレンコポリマーから選ばれた1以上のポリマーの水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物を含む微多孔膜であって、該微多孔膜を構成するフィブリル繊維が、200nm〜1000nm未満の径を持つフィブリル繊維と1000〜3000nmの範囲の径をもつフィブリル繊維を包含し、200nm〜1000nm未満の径を持つフィブリル繊維の数と1000〜3000nmの範囲の径をもつフィブリル繊維の数の比が97:3〜55:45である、ポリオレフィン系微多孔膜。 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, 35 to 65% by mass of a copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms, and polybutadiene and polyisoprene. And in a microporous membrane containing a resin composition comprising 0.1 to 2% by weight of a hydrogenated product of one or more polymers selected from the butadiene-isoprene copolymer and 0.5 to 5% by weight of a propylene-based elastomer resin. The fibril fibers constituting the microporous film include fibril fibers having a diameter of 200 nm to less than 1000 nm and fibril fibers having a diameter in the range of 1000 to 3000 nm, and fibril fibers having a diameter of 200 nm to less than 1000 nm. A polyolefin-based microporous film in which the ratio of the number of fibril fibers to the number of fibril fibers having a diameter in the range of 1000 to 3000 nm is 97: 3 to 55:45 . 20MPa以上の引張破断強度、2〜10μmの膜厚、および10〜30%の気孔率を有する、請求項1記載のポリオレフィン系微多孔膜。 The polyolefin-based microporous membrane according to claim 1, which has a tensile breaking strength of 20 MPa or more, a film thickness of 2 to 10 μm, and a porosity of 10 to 30%. 該4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体樹脂が、4−メチル−1−ペンテン80〜99モル%と炭素数3乃至30のα−オレフィン20〜1モル%の共重合体であり、かつ走査型熱量計試験に基づいて測定される共重合体融点(Tm)が220〜240℃の範囲にある、請求項1または2に記載のポリオレフィン系微多孔膜。 The copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms is 80 to 99 mol% of 4-methyl-1-pentene and α-olefin 20 to 1 having 3 to 30 carbon atoms. The polyolefin-based microporous according to claim 1 or 2, which is a molar% copolymer and has a copolymer melting point (Tm) in the range of 220 to 240 ° C. measured based on a scanning calorimeter test. film. 該プロピレン系エラストマー樹脂が、プロピレンとα−オレフィンとの共重合体であり、プロピレン由来の構成単位と炭素数2〜30のα−オレフィン(プロピレンを除く)由来の構成単位とからなり、10nm〜50nmのナノオーダーのらせん状の結晶部である「島」が互いに連結して網状の構造をとり非晶部全体を覆うミクロ構造を有する、請求項1〜3のいずれか1項に記載のポリオレフィン系微多孔膜。 The propylene-based elastomer resin is a copolymer of propylene and α-olefin, and is composed of a propylene-derived structural unit and an α-olefin (excluding propylene) -derived structural unit having 2 to 30 carbon atoms, and has a thickness of 10 nm or more. The polyolefin according to any one of claims 1 to 3, wherein "islands", which are 50 nm nano-order spiral crystal portions, are connected to each other to form a network structure and have a microstructure covering the entire amorphous portion. System microporous film. 該ポリブタジエンの水素添加物がエチレン−エチレン・ブチレン−エチレンブロック共重合体である、請求項1〜4のいずれか1項に記載のポリオレフィン系微多孔膜。 The polyolefin-based microporous film according to any one of claims 1 to 4, wherein the hydrogenated additive of the polybutadiene is an ethylene-ethylene / butylene-ethylene block copolymer. 超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン―イソプレンコポリマーから選ばれた1以上のポリマーの水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物10質量部〜49質量部および可塑剤90質量部〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去して微多孔膜を得ること、該微多孔膜を加熱加圧すること、更に二軸延伸で該膜を追加延伸すること、該追加延伸の後で、該膜から可塑剤の残部を溶剤に溶解させて除去することを含む、ポリオレフィン系微多孔膜の製造方法。 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, 35 to 65% by mass of a copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms, and polybutadiene and polyisoprene. 10 parts by mass to 49% by mass of a resin composition containing 0.1 to 2% by mass of a hydrogenated product of one or more polymers selected from the butadiene-isoprene copolymer and 0.5 to 5% by mass of a propylene-based elastomer resin. 90 parts by mass to 51 parts by mass of the part and the plasticizer are supplied to a twin-screw extruder, melt-kneaded, extruded from a die, and cooled to obtain a gel-like sheet molded product. Axial stretching is performed to obtain a film, and a part of the plasticizer is dissolved in a solvent and removed to obtain a microporous film, the microporous film is heated and pressed , and further biaxial stretching is performed. A method for producing a polyolefin-based microporous film, which comprises additionally stretching the film, and after the additional stretching, dissolving the rest of the plasticizer in a solvent and removing the residue from the film. 該ポリオレフィン系微多孔膜を構成するフィブリル繊維が、200nm〜1000nm未満の径を持つフィブリル繊維と1000〜3000nmの範囲の径をもつフィブリル繊維を包含し、200nm〜1000nm未満の径を持つフィブリル繊維の数と1000〜3000nmの範囲の径をもつフィブリル繊維の数の比が97:3〜55:45である、請求項6記載のポリオレフィン系微多孔膜の製造方法。 The fibril fibers constituting the polyolefin-based microporous film include fibril fibers having a diameter of 200 nm to less than 1000 nm and fibril fibers having a diameter in the range of 1000 to 3000 nm, and the fibril fibers having a diameter of 200 nm to less than 1000 nm. The method for producing a polyolefin-based microporous film according to claim 6, wherein the ratio of the number to the number of fibril fibers having a diameter in the range of 1000 to 3000 nm is 97: 3 to 55:45 . 該プロピレン系エラストマー樹脂が、プロピレンとα−オレフィンとの共重合体であり、10nm〜50nmのナノオーダーレベルのらせん状の結晶部である「島」が互いに連結して網状の構造をとり非晶部全体を覆うミクロ構造を有するプロピレン系エラストマー樹脂である、請求項6または7に記載のポリオレフィン系微多孔膜の製造方法。 The propylene-based elastomer resin is a copolymer of propylene and α-olefin, and "islands", which are nano-order-level spiral crystal portions of 10 nm to 50 nm, are connected to each other to form a network structure and are amorphous. The method for producing a polyolefin-based microporous film according to claim 6 or 7, which is a propylene-based elastomer resin having a microstructure that covers the entire portion. 該ポリブタジエンの水素添加物がエチレン−エチレン・ブチレン−エチレンブロック共重合体である、請求項6〜8のいずれか1項に記載のポリオレフィン系微多孔膜の製造方法。 The method for producing a polyolefin-based microporous film according to any one of claims 6 to 8, wherein the hydrogenated polybutadiene is an ethylene-ethylene / butylene-ethylene block copolymer. 該4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体樹脂が、4−メチル−1−ペンテン80〜99モル%と炭素数3乃至30のα−オレフィン20〜1モル%の共重合体であり、かつ走査型熱量計試験に基づいて測定される共重合体融点(Tm)が220〜240℃の範囲にある、請求項6〜9のいずれか1項に記載のポリオレフィン系微多孔膜の製造方法。 The copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms is 80 to 99 mol% of 4-methyl-1-pentene and α-olefin 20 to 1 having 3 to 30 carbon atoms. The invention according to any one of claims 6 to 9, wherein the copolymer is a molar% copolymer and the copolymer melting point (Tm) measured based on a scanning calorimeter test is in the range of 220 to 240 ° C. Method for producing a polyolefin-based microporous film. 工程1において、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル‐1‐ペンテンおよび炭素数3以上のα−オレフィンの共重合体35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエンイソプレンコポリマーから選ばれた1以上の樹脂の水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物10質量部〜49質量部および可塑剤90質量部〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去して微多孔膜を得ること、該微多孔膜を加熱加圧すること、更に二軸延伸で追加延伸して膜Aを得ること、
工程2において、超高分子量ポリエチレン25〜50質量%と、ポリエチレン1〜15質量%と、4−メチル−1−ペンテンと炭素数3以上のα−オレフィンの共重合体樹脂35〜65質量%と、ポリブタジエン、ポリイソプレンおよびブタジエン−イソプレンコポリマーから選ばれた1以上の樹脂の水素添加物0.1〜2質量%と、プロピレン系エラストマー樹脂0.5〜5質量%と、を含む樹脂組成物であって、該水素添加物の量が上記工程1における水素添加物の量と異なるところの樹脂組成物10〜49質量部および可塑剤90〜51質量部を2軸押出機に供給し、溶融混練し、ダイより押出し、および冷却して、ゲル状シート成形物を得ること、該ゲル状シート成形物を二軸延伸して膜を得ること、そして、該膜から可塑剤の一部を溶剤に溶解させて除去して微多孔膜を得ること、該微多孔膜を加熱加圧すること、更に二軸延伸で追加延伸して膜Bを得ること、
工程3において、上記膜Aの1枚以上と上記膜Bの一枚以上とを交互に重ね、更に二軸延伸で追加延伸すること、
工程3における該追加延伸の後で、該膜から可塑剤の残部を溶剤に溶解させて除去すること、
を包含するポリオレフィン系微多孔膜の製造方法。
In step 1, 25 to 50% by mass of ultrahigh-molecular-weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms were used. 10 parts by mass of a resin composition containing 0.1 to 2% by mass of a hydrogenated product of one or more resins selected from polybutadiene, polyisoprene and a butadiene isoprene copolymer and 0.5 to 5% by mass of a propylene-based elastomer resin. ~ 49 parts by mass and 90 parts by mass to 51 parts by mass of the plasticizer are supplied to a twin-screw extruder, melt-kneaded, extruded from a die, and cooled to obtain a gel-like sheet molded product. A film is obtained by biaxially stretching an object, and a part of the plasticizer is dissolved in a solvent and removed to obtain a microporous film, and the microporous film is heated and pressed. Further stretching by axial stretching to obtain film A,
In step 2, 25 to 50% by mass of ultrahigh molecular weight polyethylene, 1 to 15% by mass of polyethylene, and 35 to 65% by mass of a copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms. , Polybutadiene, polyisoprene and butadiene-isoprene copolymers in a resin composition comprising 0.1 to 2% by mass of a hydrogenated additive of one or more resins and 0.5 to 5% by mass of a propylene-based elastomer resin. Therefore, 10 to 49 parts by mass of the resin composition and 90 to 51 parts by mass of the plasticizer in which the amount of the hydrogen additive is different from the amount of the hydrogen additive in the above step 1 are supplied to the twin-screw extruder and melt-kneaded. Then, it is extruded from a die and cooled to obtain a gel-like sheet molded product, the gel-like sheet molded product is biaxially stretched to obtain a film, and a part of a plasticizer is used as a solvent from the film. Dissolve and remove to obtain a microporous film, heat and pressurize the microporous film , and further stretch by biaxial stretching to obtain film B.
In step 3, one or more of the film A and one or more of the film B are alternately laminated, and further stretched by biaxial stretching.
After the additional stretching in step 3, the residue of the plasticizer is dissolved in a solvent and removed from the membrane.
A method for producing a polyolefin-based microporous membrane including.
該プロピレン系エラストマー樹脂が、プロピレンとα−オレフィンとの共重合体であり、10nm〜50nmのナノオーダーレベルのらせん状の結晶部である「島」が互いに連結して網状の構造をとり非晶部全体を覆うミクロ構造を有するプロピレン系エラストマー樹脂である、請求項11記載のポリオレフィン系微多孔膜の製造方法。 The propylene-based elastomer resin is a copolymer of propylene and α-olefin, and "islands", which are nano-order-level spiral crystal portions of 10 nm to 50 nm, are connected to each other to form a network structure and are amorphous. The method for producing a polyolefin-based microporous film according to claim 11, which is a propylene-based elastomer resin having a microstructure that covers the entire portion. 該ポリブタジエンの水素添加物がエチレン−エチレン・ブチレン−エチレンブロック共重合体である、請求項11または12に記載のポリオレフィン系微多孔膜の製造方法。 The method for producing a polyolefin-based microporous film according to claim 11 or 12, wherein the hydrogenated additive of the polybutadiene is an ethylene-ethylene / butylene-ethylene block copolymer. 該4−メチル−1−ペンテンと炭素数3以上のα−オレフィンとの共重合体樹脂が、4−メチル−1−ペンテン80〜99モル%と炭素数3乃至30のα−オレフィン20〜1モル%の共重合体であり、かつ走査型熱量計試験に基づいて測定される共重合体融点(Tm)が220〜240℃の範囲にある、請求項11〜13のいずれか1項に記載のポリオレフィン系微多孔膜の製造方法。The copolymer resin of 4-methyl-1-pentene and α-olefin having 3 or more carbon atoms is 80 to 99 mol% of 4-methyl-1-pentene and α-olefin 20 to 1 having 3 to 30 carbon atoms. The invention according to any one of claims 11 to 13, wherein the copolymer is a molar% copolymer and the copolymer melting point (Tm) measured based on a scanning calorimeter test is in the range of 220 to 240 ° C. Method for producing a polyolefin-based microporous film. 該ポリオレフィン系微多孔膜を構成するフィブリル繊維が、200nm〜1000nm未満の径を持つフィブリル繊維と1000〜3000nmの範囲の径をもつフィブリル繊維を包含し、200nm〜1000nm未満の径を持つフィブリル繊維の数と1000〜3000nmの範囲の径をもつフィブリル繊維の数の比が97:3〜55:45である、請求項11〜14のいずれか1項記載のポリオレフィン系微多孔膜の製造方法。 The fibril fibers constituting the polyolefin-based microporous film include fibril fibers having a diameter of 200 nm to less than 1000 nm and fibril fibers having a diameter in the range of 1000 to 3000 nm, and the fibril fibers having a diameter of 200 nm to less than 1000 nm. The method for producing a polyolefin-based microporous film according to any one of claims 11 to 14 , wherein the ratio of the number to the number of fibril fibers having a diameter in the range of 1000 to 3000 nm is 97: 3 to 55:45 . 請求項1〜5のいずれか1項に記載のポリオレフィン系微多孔膜の片面あるいは両面に、(1)フルオロエチレン・ビニルエーテル交互共重合体を主鎖に持つフッ素系ポリマー、(2)テトラフルオロエチレン・プロピレン交互共重合体、(3)ポリアミド、ポリパラフェニレンテレフタルアミド(PPTA)、ポリメタフェニレンイソフタルアミド(MPIA))、(4)架橋性アクリル樹脂、(5)ポリアミド・イミド樹脂、(6)ポリイミド、(7)シリコーン樹脂、(8)ポリフッ化ビニリデン−ヘキサフロロプロピレン、(9)ポリメタクリル酸メチル樹脂とポリフッ化ビニリデン−ヘキサフロロプロピレンとの混合物、(10)ポリフッ化ビニリデンから選ばれた1種以上からなる0.5−3ミクロン厚みの層を有する、ポリオレフィン系微多孔膜。 A fluoropolymer having (1) a fluoroethylene / vinyl ether alternating copolymer as a main chain on one side or both sides of the polyimide-based microporous film according to any one of claims 1 to 5 , and (2) tetrafluoroethylene. -Propropylene alternating copolymer, (3) polyamide, polyvinylidene terephthalamide (PPTA), polyvinylidene isophthalamide (MPIA)), (4) crosslinkable acrylic resin, (5) polyamide-imide resin, (6) 1 selected from polyimide, (7) silicone resin, (8) polyvinylidene fluoride-hexafluoropropylene, (9) a mixture of polymethyl methacrylate resin and polyvinylidene fluoride-hexafluoropropylene, and (10) polyvinylidene fluoride. A polyolefin-based microporous film having a 0.5-3 micron thick layer composed of seeds or more. 請求項1〜5および15のいずれか1項に記載のポリオレフィン系微多孔膜を有する、リチウムイオン二次電池用セパレータ。 A separator for a lithium ion secondary battery having the polyolefin-based microporous membrane according to any one of claims 1 to 5 and 15.
JP2020076913A 2019-04-26 2020-04-23 Heat-resistant polyolefin-based microporous membrane and its manufacturing method Active JP6791526B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/017846 WO2020218583A1 (en) 2019-04-26 2020-04-24 Heat-resistant polyolefin-based microporous film and method for producing same
EP20794148.5A EP3960813A4 (en) 2019-04-26 2020-04-24 Heat-resistant polyolefin-based microporous film and method for producing same
US17/606,426 US20220213306A1 (en) 2019-04-26 2020-04-24 Heat-resistant polyolefin-based microporous membrane and a method for preparing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019095546 2019-04-26
JP2019095546 2019-04-26

Publications (2)

Publication Number Publication Date
JP2020183522A JP2020183522A (en) 2020-11-12
JP6791526B2 true JP6791526B2 (en) 2020-11-25

Family

ID=73044971

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020076913A Active JP6791526B2 (en) 2019-04-26 2020-04-23 Heat-resistant polyolefin-based microporous membrane and its manufacturing method

Country Status (1)

Country Link
JP (1) JP6791526B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020218583A1 (en) * 2019-04-26 2020-10-29 有限会社 ケー・イー・イー Heat-resistant polyolefin-based microporous film and method for producing same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1930156B1 (en) * 2005-09-28 2013-03-27 Toray Battery Separator Film Co., Ltd. Process for producing microporous polyethylene film and separator for cell
RU2431521C2 (en) * 2005-10-24 2011-10-20 Торей Тонен Спешиалти Сепарейтор Годо Кайса Multilayer microporous polyolefin membrane, method of its production and storage battery separator
JP2009301921A (en) * 2008-06-16 2009-12-24 Autonetworks Technologies Ltd Insulated cable and wire harness
KR101762087B1 (en) * 2014-08-29 2017-07-26 스미또모 가가꾸 가부시키가이샤 Nonaqueous secondary battery separator, laminated body, method for producing laminated body, and nonaqueous secondary battery
JP2017088836A (en) * 2015-11-11 2017-05-25 有限会社ケー・イー・イー Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP2018076476A (en) * 2016-11-10 2018-05-17 有限会社ケー・イー・イー High temperature low heat shrinkable polyolefin multilayer microporous film and method for producing the same

Also Published As

Publication number Publication date
JP2020183522A (en) 2020-11-12

Similar Documents

Publication Publication Date Title
JP5172683B2 (en) Polyolefin microporous membrane and non-aqueous electrolyte battery separator
JP5791087B2 (en) Laminated separator and method for producing the same
KR101227325B1 (en) Multilayer porous membrane and method for producing the same
CN101616968B (en) Polyolefin microporous membrane
KR20090130885A (en) Multilayer porous film
JPWO2019093184A1 (en) Polyolefin composite porous membrane and its manufacturing method, battery separator and battery
JP2010538097A (en) Polyolefin microporous membrane, method for producing the same, battery separator and battery
JPWO2014192862A1 (en) Polyolefin microporous membrane and method for producing the same
WO2006025323A1 (en) Microporous polyolefin film and separator for storage cell
WO2015194504A1 (en) Polyolefin microporous membrane, separator for cell, and cell
JP2013057045A (en) Heat-resistance improved polyolefin microporous membrane and production method therefor
JP2011184671A (en) Heat resistant polyolefin microporous film and manufacturing method thereof
JPWO2018216819A1 (en) Polyolefin microporous membrane, power storage device separator, and power storage device
WO2020218583A1 (en) Heat-resistant polyolefin-based microporous film and method for producing same
JP2017088836A (en) Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP6886839B2 (en) Polyolefin microporous membrane
JP5213768B2 (en) Polyolefin microporous membrane
JPWO2014192861A1 (en) Polyolefin multilayer microporous membrane and method for producing the same
JP2018076475A (en) High temperature low heat shrinkable polyolefin monolayer microporous film and method for producing the same
JP2017088837A (en) Low heat shrinkable polyolefin microporous film and manufacturing method therefor
JP2018076476A (en) High temperature low heat shrinkable polyolefin multilayer microporous film and method for producing the same
JP2019196470A (en) Low heat shrinking polyolefin microporous film and its production method
JP2016023307A (en) Heat resistant polyolefin microporous film and manufacturing method therefor
JP2018076474A (en) High temperature low heat shrinkable polyolefin monolayer microporous film and method for producing the same
JP2021174656A (en) Polyolefin-based microporous film and manufacturing method thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200626

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200626

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20200626

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20200707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201028

R150 Certificate of patent or registration of utility model

Ref document number: 6791526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250