WO1997049947A1 - Piping milling robotic device - Google Patents

Piping milling robotic device Download PDF

Info

Publication number
WO1997049947A1
WO1997049947A1 PCT/EP1997/003343 EP9703343W WO9749947A1 WO 1997049947 A1 WO1997049947 A1 WO 1997049947A1 EP 9703343 W EP9703343 W EP 9703343W WO 9749947 A1 WO9749947 A1 WO 9749947A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
milling
transport carriage
longitudinal axis
plane
Prior art date
Application number
PCT/EP1997/003343
Other languages
German (de)
French (fr)
Inventor
Reinhold Wiechern
Original Assignee
Dr. Ing. Reinhold Wiechern Messtechnik Und Automatisierung Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr. Ing. Reinhold Wiechern Messtechnik Und Automatisierung Gmbh filed Critical Dr. Ing. Reinhold Wiechern Messtechnik Und Automatisierung Gmbh
Publication of WO1997049947A1 publication Critical patent/WO1997049947A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E03WATER SUPPLY; SEWERAGE
    • E03FSEWERS; CESSPOOLS
    • E03F3/00Sewer pipe-line systems
    • E03F3/04Pipes or fittings specially adapted to sewers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/16Devices for covering leaks in pipes or hoses, e.g. hose-menders
    • F16L55/179Devices for covering leaks in pipes or hoses, e.g. hose-menders specially adapted for bends, branch units, branching pipes or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/26Pigs or moles, i.e. devices movable in a pipe or conduit with or without self-contained propulsion means
    • F16L55/28Constructional aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Definitions

  • the invention relates to a channel milling robot according to the preamble of patent claim 1 or 4.
  • a duct milling robot is already known from EP-A-0 326 412 (see FIG. 8), which has the features of the preamble of patent claims 1 and 4, respectively.
  • a tool holder is attached to the front end of a transport carriage, which can be rotated about the longitudinal axis of the transport carriage and in this way can bring a rod antenna and then a milling tool into the same position upon rotation by 180 °.
  • the rod antenna is used to find certain markers that were inserted into the branching house connections with the help of plugs made of polystyrene, for example, before the pipe to be repaired was lined. These position markers indicate exactly the middle of the house connections.
  • the tool holder When their position has been found by the rod antenna of the milling robot, the tool holder is rotated through 180 ° and the milling tool is brought into alignment with the position marker. In this position, the house connection can be milled, whereby the plug with the position marker is destroyed and lost.
  • a disadvantage of this known device is therefore that in a first step the house connections must first be provided with position marks, in a second step the lining is made with a so-called inliner and the house connections are only searched for in a third step and then can be milled freely.
  • DE-A-195 21 895 discloses a method for examining a covered area of a sewer pipe or the area surrounding a sewer pipe for defects using a transmitter / receiver system which is guided through the sewer pipe on a trolley.
  • the transmitter / receiver system is continuously rotated about an axis pointing in the direction of the extension of the sewer pipe and continuously sends electromagnetic energy in the direction of the wall of the sewer pipe.
  • the microwaves used have a frequency in the range between 5 and 60 GHz.
  • a locating device for branch line connections in pipes is known from DE-C-43 23 182, which has a chassis that can be moved through the pipe, a sensor head and a drive device, the sensor head using the drive device around an axis parallel to the pipe axis is rotatable.
  • the sensor head is cylindrical and has a plurality of inductive sensors on its circumference, which are arranged at a gap distance from the pipe wall.
  • a device for material examination of walls of a sewer in which a signal transmitter and a receiver are arranged on a self-propelled transport device.
  • the signal generator is a micro wave generator that generates a pulse through a control unit that is directed towards the wall of the sewer.
  • the reflection signal obtained in this way is collected and evaluated in the receiver. This makes it possible to obtain information about the internal condition of the wall. Cavities and backwashing can also be detected, but not measured exactly.
  • KA-TE cutter is also already known, from KA-TE System AG, Leimbachstrasse 38, CH-8041 Zurich manufactured and in Germany for example by Kanaltechnik Kunz GmbH, Hofmannstrasse 52, D-81379 Kunststoff.
  • the well-known KA-TE cutter is a channel milling robot that has an elongated, essentially cuboid transport carriage with four wheels. Hydraulic, pneumatic and / or electrical control lines are connected to the rear end of the transport carriage. At the front end, a milling head is mounted over a rotatable neck. In addition, a television camera is attached to the front end, which inspects the respective work area of the KA-TE cutter.
  • the transport carriage also has a pressure pad which is pressed out of the carriage body by means of stamps and fixes the transport carriage in the sewer in the area of the work site at which the milling head is to make an opening for a house connection.
  • This is particularly necessary if defective sewers were first lined with a new pipe wall using the inliner method, in which there are no openings for house connections at first, but only have to be set up subsequently.
  • the procedure is such that the transport carriage is first moved through the not yet lined sewer and the house connections are searched for with the help of the television camera, the images of which are transmitted to a monitor installed outside the sewer. As soon as a house connection is discovered, the coordinates are recorded in order to find this point again after pulling in the inner pipe. It is obvious that this method does not work particularly reliably and precisely, so that the milling work for opening a house connection often results in an opening which is more or less offset from the house connection.
  • the object of the invention is to improve the sewing milling robot of the type mentioned at the outset in such a way that on the one hand no special position markers have to be set for house connections and that on the other hand after the pulling in of an inner pipe (“inliner”) into a sewer the house connections se found reliably and the openings can be worked out from the inner tube in the correct orientation.
  • inliner inner pipe
  • the position of the house connection covered by the inner tube can be reliably determined, after which the combination sensor according to the invention is rotated through 180 ° in one plane , which is orthogonal to the central axis of the sewer, so that the milling head is moved into the same position in which the scanning combination sensor was previously.
  • the plane of rotation of the combination sensor is therefore a radial plane of the sewer.
  • the combination sensor according to the invention consists of an ultrasound sensor, with which the same distance from the inner wall of the sewer can always be maintained, and a capacitive sensor, either surrounding the ultrasound sensor or arranged on both sides thereof, with which the sensor is used to determine can be whether there is soil behind the wall of the sewer or an opening for a house connection.
  • the signals generated by the combination sensor are evaluated in a manner known per se by a computer which expediently also has a monitor for displaying the data and / or the spatial conditions in the sewer or the inliner pipe introduced.
  • FIG. 1 shows a first embodiment of a schematically illustrated duct milling robot in its working position
  • FIG. 2 shows a detail from the measuring head of the channel milling robot from FIG. 1
  • Figure 3 is a schematic representation of the operation of the channel milling robot according to Figure 1 or 2
  • FIG. 4 shows a second embodiment of a schematically illustrated duct milling robot in its working position
  • FIG. 5 shows a detail from the measuring head of the channel milling robot from FIG. 4; and FIG. 6 shows schematic representations of the mode of operation of the channel milling robot according to FIG. 4 or 5.
  • Figure 1 shows a section of a renovation pipe 1 of a sewer, from which a house connection 2 branches off in the form of a known pipe made of earthenware or plastic.
  • the area surrounding the rehabilitation pipe 1 is indicated by soil 3.
  • a transport unit 4 is introduced into the renovation pipe 1 and can be moved with the help of wheels 42 in the longitudinal direction of the renovation pipe 1 and thus in the direction of arrow A.
  • the movement of the transport unit 4 in the rehabilitation pipe 1 is controlled from the outside via lines, not shown. It is known to use a television camera to monitor the movement of the transport unit 4, which is not shown for reasons of clarity.
  • the transport unit 4 essentially comprises a transport slide 41 with an underside 43, an upper side 45, a rear side 46 and a front side 47.
  • the transport slide 41 has the shape of an elongated prism, on the rear side 46 of which connections for hydraulic and / or pneumatic lines and electrical control and signal lines are provided.
  • a pressure pad 44 is arranged on or on the upper side 45 of the transport carriage 41 and can be extended with the aid of telescopic cylinders 441 in order to be supported on the inside of the renovation pipe 1 and thus clamp the transport unit 4 in place in the renovation pipe 1 .
  • the telescopic cylinders 441 can be extended in a manner known per se, for example by means of hydraulic fluid or by compressed air.
  • an extension cylinder 48 is provided which protrudes from the front 47 of the transport carriage 41 and which can be moved back and forth in the longitudinal axis L of the transport unit 4 in the direction of the double arrow A and can also be rotated in the direction C about the longitudinal axis L.
  • the movement of the extension cylinder 48 is determined by a measuring system 12 attached to the rear 46 of the transport unit 4 and controlled via actuators 11 which can be seen in FIG.
  • a parallel linkage 49 is articulated on the front of the extension cylinder 48 and, controlled by the transport carriage 41, permits movement in a plane which is indicated by the double arrow B.
  • the parallel linkage 49 is coupled with its front hinge points to a tool holder 50, as a result of which the tool holder 50 can be raised or lowered in the direction of the arrow B.
  • the tool holder 50 is always moved in a plane which coincides with the drawing plane in FIG.
  • the tool holder 50 carries at its front end a drive holder 51 which carries a milling head 5 on one side and a combination sensor 6 on the other side.
  • the drive holder 51 is coupled to the tool holder 50 via a pin 52 which is held in the tool holder 50 in a manner known per se and can be rotated in a controlled manner about an axis M.
  • the tool holder 50 is first moved through the parallel linkage 49 in the direction B into the longitudinal axis L of the transport carriage 41; then the extension cylinder 48 is rotated by one of the actuators 11 about the longitudinal axis L in the direction of the arrow C. The tool holder 50 is then raised again in the direction of the arrow B and thus moved towards the wall 21 of the renovation pipe 1.
  • FIG. 2 shows details of the combination sensor 6 according to the invention in a schematic, enlarged illustration.
  • the combination sensor 6 is formed by a capacitive sensor 61 and an ultrasound sensor 62.
  • the capacitive sensor 61 consists of a linear arrangement of electrodes 611 which are applied to a film substrate as strips with a length of approximately 5 mm, a width of approximately 1 mm and a height of approximately 0.2-0.3 mm. The distance between the 1mm wide electrode strips is about 5mm, the total length of the array is about 150mm.
  • the size relationships for the electrodes 611 are not shown to scale. For example, the width measured in the direction of arrow A is substantially larger than the distance between the individual electrodes 611 is shown. Furthermore, the height of the electrodes 611 is lower than is shown in the drawing. The length of the electrodes 61, however, cannot be seen in FIG. 2, since it runs orthogonally to the plane of the drawing.
  • the linear array would consist of 25 elements or electrodes 611, each of which is controlled by a multiplexer 66 below it by a position signal 72.
  • the position signal 72 is generated by a computer 9.
  • the position signal 72 first activates, for example, the first and fourth electrodes 611 (counted from the left in FIG. 2), then the second and fifth, the third and sixth, etc.
  • a high-frequency voltage of the order of about 40kHz and about 40 volts are applied to the electrodes 611 that form the plates of a capacitor that is going to belongs to a resonant circuit not shown in the drawing.
  • an electric field is built up between the plates, the field lines of which are indicated in FIGS.
  • the capacitive sensor 61 Since the output voltage U (A, C) is influenced both by the dielectric of the irradiated material and by the distance of the capacitive sensor 61 from the inner wall of the renovation pipe 1, the capacitive sensor 61 must always be at a constant distance r from the renovation pipe 1 during the measurement are, which is achieved in that the ultrasonic sensor 62 measures the distance r and keeps it constant via an actuator 65.
  • the computer 9 now uses the position signal 72 to control the multiplexer 66 in such a way that two electrode elements 611 of the array become active and generate a measurement signal U (A, c «const). In succession, the scanning area is electronically scanned in linear direction A and the measured values are stored in the computer 9. The combination sensor 6 is then rotated further by an increment of angle in the C direction and the electronic scanning is repeated.
  • the combi sensor 6 can be rotated practically continuously in the C direction during the measuring phase. This results in an extremely fast scanning of the wall area to be examined and thus a quick finding of house connections 2.
  • FIG. 3 shows a schematic representation of an end view of the sewer milling robot, the measuring position being shown in the left part and the working position in the right part for working out an opening from the renovation pipe 1 in the area of a house connection 2.
  • the combination sensor 6 is initially directed towards the inner wall of the renovation pipe 1, for which purpose the extension cylinder 48 is rotated, controlled by the actuator 11, about the longitudinal axis L of the transport unit 4. Otherwise, the same parts are provided with the same reference numerals in all the figures. It can also be seen how the combination sensor 6 can be moved in the direction of the arrow B by raising or lowering the parallel linkage 49 and thus maintaining a constant distance from the inner wall of the renovation pipe 1.
  • the combination sensor 6 is pivoted along the inner wall of the sanitation pipe and the voltage signals recorded in the process are fed to the measuring amplifier 7.
  • the output signals U (A, C) of the measuring amplifier 7 are transmitted to the computer 9, which displays a penetration curve 91 of the concealed house connection opening.
  • the signal evaluation circuit 8 is connected to the computer 9 and used to control the actuator 11, which brings the milling head 5 into the position of the combination sensor 6 after the entire curve of the penetration curve 91 has been determined.
  • the milling head 5 can cleanly and reliably mill an opening out of the wall 21 of the renovation pipe 1 in the area of the house connection 2.
  • FIGS 4 to 6 show a second embodiment of the Kom ⁇ bisensor 6, wherein the same parts are provided with the same reference numerals.
  • the capacitive sensor 61 is formed from three electrodes 611, 612 and 613, which are arranged as ring electrodes concentrically around the ultrasound sensor 62.
  • the ultrasonic sensor 62 thus lies in the area of the center of the three concentric electrodes 611-613.
  • the outer electrode 613 of the capacitive sensor 61 is generally grounded, while the middle electrode 612 and the inner electrode 611 have two equal, high-frequency voltages from a few volts.
  • the inner electrode 611 and the middle electrode 612 are connected via lines 711 and 712 to a measuring amplifier 7 which measures a voltage difference on the lines 711 and 712 and outputs this as a signal U (A, C). If the dielectric does not change in the area of the field lines of the capacitive sensor 61, that is to say if the lines of force indicated in the drawing always run through soil 3, the measuring amplifier 7 outputs the same difference signal. However, if the capacitive sensor 61 comes into the area of a house connection 2, in which the soil 3 is replaced by air or water, the dielectric changes in this area and there will be a disturbance in the field lines which have a different difference signal leads to the lines 711, 712, which is recognized by the measuring amplifier 7 and processed in a computer 9. In this way it can be determined again contactlessly whether a house connection 2 or behind the wall 21 of the renovation pipe 1 Soil 3 lies. The measured values ultimately result in a curve 91 displayed by the monitor of the computer 9.
  • the capacitive sensor 61 Since the output voltage U (A, C) is influenced both by the dielectric of the irradiated material and by the distance from the capacitive sensor 61 to the inner wall of the renovation pipe 1, the capacitive sensor 61 must always be at a constant distance r from the renovation pipe 1 during the measurement are, which is achieved in that the ultrasonic sensor 62 measures the distance r and keeps it constant via an actuator 65.
  • FIG. 6 shows a schematic front view of the sewing milling robot, the measuring position being shown in the left part and the working position for working out an opening from the renovation pipe 1 in the area of a house connection 2 in the right part.
  • the combi sensor 6 is initially aimed at the inner wall of the renovation pipe 1, for which purpose the extension cylinder 48 is rotated in a controlled manner by the actuator 11 about the longitudinal axis L of the transport unit 4. Otherwise, the same parts are provided with the same reference numerals in all the figures.
  • the combination sensor 6 can be moved in the direction of the arrow B by raising or lowering the parallel linkage 49 and thus maintaining a constant distance from the inner wall of the renovation pipe 1.
  • the combination sensor 6 is pivoted along the inner wall of the renovation pipe and the voltage signals recorded in this process are fed to the measuring amplifier 7.
  • the output signals U (A, C) of the measuring amplifier 7 to the computer 9, which shows a penetration curve 91 of the concealed house connection opening.
  • the signal evaluation circuit 8 is also connected to the computer 9.
  • the penetration curve 91 is stored in the computer 9 and used to control the actuator 11, which brings the milling head 5 into the position of the combination sensor 6 after the entire course of the penetration curve 91 has been determined.
  • the milling head 5 can cleanly and reliably mill an opening out of the wall 21 of the renovation pipe 1 in the area of the house connection 2.

Abstract

The invention relates to a piping robotic device in the form of an elongate conveyor slide (41), wheels (42) being mounted on the lower surface (43) thereof, and the opposite upper surface (45) thereof being provided with an extendable pressure cushion (44) for clamping of the conveyor slide (41) in a sewage pipe (1). There are hydraulic and/or pneumatic and electrical control and supply lines attached to the rear side (46) of said conveyor slide (41), and a movable cylinder (48) rotatable perpendicular to the longitudinal axis (L) of the conveyor slide (41) and displaceable in a linear manner in the longitudinal axis (L) of said slide (41). A parallel rod assembly (49) is articulated to the front side of the movable cylinder and has a tool holder (50) into which a drive holder (51) with a milling head (5) is inserted which can be rotated in a plane about 180° by way of a pin (52) in the tool holder (50). Said plane is perpendicular to the longitudinal axis of the conveyor slide (41) and consequently also extends in the form of a radial plane perpendicular to the direction of movement of the conveyor slide (41) in the sewage pipe (1). For metrological detection of the space co-ordinates of the non-visible house connections (2), which co-ordinates are required for free milling, a combination sensor (6) is also staggered by 180° on the drive holder (51) in the plane of rotation of the milling head (5) and consequently arranged diametrically in relation to said milling head (5). The combination sensor (6) has a capactive sensor (61) and an ultra-sound sensor (62). To determine the position of the combination sensor (6), a combined path and angle measuring system (12) with a signal evaluation circuit (8) is coupled to the movable cylinder (48).

Description

Kanal-Fräsroboter Canal milling robot
Die Erfindung betrifft einen Kanal-Fräsroboter gemäß Oberbegriff des Patentanspruchs 1 oder 4.The invention relates to a channel milling robot according to the preamble of patent claim 1 or 4.
Aus der EP-A-0 326 412 (siehe Figur 8) ist bereits ein Kanal- Fräsroboter bekannt, der die Merkmale des Oberbegriffs des Pa¬ tentanspruchs 1 bzw. 4 aufweist. Am Vorderende eines Transport¬ schlittens ist ein Werkzeughalter angebracht, der um die Längs¬ achse des Transportschlittens gedreht werden und auf diese Weise bei einer Drehung um 180° eine Stabantenne und danach ein Fräs- Werkzeug in die gleiche Position bringen kann. Die Stabantenne dient dazu, bestimmte Marker aufzufinden, die vor dem Auskleiden des zu reparierenden Rohres in die abzweigenden Hausanschlüsse mit Hilfe von Stopfen aus beispielsweise Polystyrol eingesetzt wurden. Diese Positionsmarker bezeichnen genau die Mitte der Hausanschlüsse. Wenn ihre Lage von der Stabantenne des Fräsrobo¬ ters aufgefunden wurde, wird der Werkzeughalter um 180° gedreht und das Fräswerkzeug in Ausrichtung mit dem Positionsmarker ge¬ bracht. In dieser Stellung kann der Hausanschluß freigefräst werden, wobei der Stopfen mit dem Positionsmarker zerstört wird und verloren geht. Ein Nachteil dieses bekannten Geräts besteht daher darin, daß in einem ersten Arbeitsschritt zunächst die Hausanschlüsse mit Positionsmarken versehen werden müssen, in einem zweiten Arbeitsschritt die Auskleidung mit einem sogenann¬ ten Inliner vorgenommen wird und erst in einem dritten Arbeits- schritt die Hausanschlüsse aufgesucht und anschließend freige¬ fräst werden können.A duct milling robot is already known from EP-A-0 326 412 (see FIG. 8), which has the features of the preamble of patent claims 1 and 4, respectively. A tool holder is attached to the front end of a transport carriage, which can be rotated about the longitudinal axis of the transport carriage and in this way can bring a rod antenna and then a milling tool into the same position upon rotation by 180 °. The rod antenna is used to find certain markers that were inserted into the branching house connections with the help of plugs made of polystyrene, for example, before the pipe to be repaired was lined. These position markers indicate exactly the middle of the house connections. When their position has been found by the rod antenna of the milling robot, the tool holder is rotated through 180 ° and the milling tool is brought into alignment with the position marker. In this position, the house connection can be milled, whereby the plug with the position marker is destroyed and lost. A disadvantage of this known device is therefore that in a first step the house connections must first be provided with position marks, in a second step the lining is made with a so-called inliner and the house connections are only searched for in a third step and then can be milled freely.
Aus der DE-A-40 24 926 ist eine ähnliche Vorrichtung bekannt, mit der ein ähnliches Verfahren wie bei der EP-A-0 326 412 durchgeführt wird, d.h. die Hausanschlüsse werden in einem er¬ sten Arbeitsschritt mit Verschlußkappen versehen, in die ein als ein Permanent-Stabmagnet ausgebildeter Signalgeber integriert ist. Die Längsachse des Permanent-Stabmagneten fällt dabei mit der Achse des Hausanschlusses zusammen.From DE-A-40 24 926 a similar device is known, with which a similar procedure to that of EP-A-0 326 412 is carried out, ie the house connections are provided in a first step with sealing caps into which a Integrated as a permanent bar magnet signal generator is. The longitudinal axis of the permanent bar magnet coincides with the axis of the house connection.
Aus der DE-A-195 21 895 ist ein Verfahren zum Untersuchen eines verdeckten Bereichs eines Kanalrohrs oder des ein Kanalrohr umgebenden Bereichs auf Fehlerstellen unter Verwendung eines Sender/Empfänger-Systems bekannt, das auf einem Wagen durch das Kanalrohr geführt wird. Das Sender/Empfänger-System wird dabei kontinuierlich um eine in die Richtung der Erstreckung des Ka¬ nalrohres weisende Achse gedreht und sendet kontinuierlich elek- tomagnetische Energie in Richtung auf die Wandung des Kanalrohrs aus. Die dabei verwendeten Mikrowellen haben eine Frequenz im Bereich zwischen 5 und 60 GHz.DE-A-195 21 895 discloses a method for examining a covered area of a sewer pipe or the area surrounding a sewer pipe for defects using a transmitter / receiver system which is guided through the sewer pipe on a trolley. The transmitter / receiver system is continuously rotated about an axis pointing in the direction of the extension of the sewer pipe and continuously sends electromagnetic energy in the direction of the wall of the sewer pipe. The microwaves used have a frequency in the range between 5 and 60 GHz.
Aus der DE-C-43 23 182 ist ein Ortungsgerät für Abzweigleitungs- anschlüsse in Rohren bekannt, das ein durch das Rohr bewegbares Fahrwerk, einen Sensorkopf und eine Antriebsvorrichtung auf¬ weist, wobei der Sensorkopf mit Hilfe der Antriebsvorrichtung um eine zur Rohrachse parallele Achse drehbar ist. Der Sensorkopf ist zylindrisch ausgebildet und weist auf seinem Umfang eine Mehrzahl von induktiven Meßaufnehmern auf, die mit Spaltabstand zur Rohrwand angeordnet sind.A locating device for branch line connections in pipes is known from DE-C-43 23 182, which has a chassis that can be moved through the pipe, a sensor head and a drive device, the sensor head using the drive device around an axis parallel to the pipe axis is rotatable. The sensor head is cylindrical and has a plurality of inductive sensors on its circumference, which are arranged at a gap distance from the pipe wall.
Aus der DE 42 08 863 AI ist eine Vorrichtung zur Materialunter- suchung von Wandungen eines Abwasserkanals bekannt, bei der an einer selbstfahrenden Transporteinrichtung ein Signalgeber und ein Empfänger angeordnet sind. Der Signalgeber ist ein Mikrσwel- lengenerator, der durch eine Steuereinheit Impulse erzeugt, die auf die Wandung des Abwasserkanals gerichtet werden. Das dabei erhaltene Reflexionssignal wird im Empfänger aufgefangen und ausgewertet. Dadurch ist es möglich, Aussagen über den inneren Zustand der Wandung zu erlangen. Es lassen sich auch Hohlräume sowie Hinterspülungen detektieren, aber nicht exakt messen.From DE 42 08 863 AI a device for material examination of walls of a sewer is known, in which a signal transmitter and a receiver are arranged on a self-propelled transport device. The signal generator is a micro wave generator that generates a pulse through a control unit that is directed towards the wall of the sewer. The reflection signal obtained in this way is collected and evaluated in the receiver. This makes it possible to obtain information about the internal condition of the wall. Cavities and backwashing can also be detected, but not measured exactly.
Es ist ferner bereits ein sogenannter »KA-TE Cutter« bekannt, der von der Firma KA-TE System AG, Leimbachstrasse 38, CH-8041 Zürich hergestellt und in Deutschland beispielsweise von der Kanaltechnik Kunz GmbH, Hofmannstrasse 52, D-81379 München ver¬ trieben wird. Der bekannte KA-TE Cutter ist ein Kanal-Fräsrobo- ter, der einen länglichen, im wesentlichen quaderförmigen Trans- portschlitten mit vier Rädern aufweist. An das hintere Ende des Transportschlittens sind hydraulische, pneumatische und/oder elektrische Steuerleitungen angeschlossen. Am Vorderende ist ein Fräskopf über einen drehbaren Hals montiert. Außerdem ist eine Fernsehkamera am Vorderende angebracht, die den jeweiligen Ar- beitsbereich des KA-TE Cutters inspiziert. Der Transportschlit¬ ten weist ferner ein Andruckkissen auf, das über Stempel aus dem Schlittenkörper herausgedrückt wird und den Transportschlitten im Abwasserkanal im Bereich der Arbeitsstelle festsetzt, an der der Fräskopf eine Öffnung für einen Hausanschluß herstellen soll. Dies ist insbesondere dann erforderlich, wenn schadhafte Abwasserkanäle zunächst im Inliner-Verfahren mit einer neuen Rohrwandung ausgekleidet wurden, bei der zunächst keine Öffnun¬ gen für Hausanschlüsse vorhanden sind, sondern erst nachträglich eingerichtet werden müssen. Man geht dabei so vor, daß zuerst der Transportschlitten durch den noch nicht ausgekleideten Ab¬ wasserkanal bewegt wird und mit Hilfe der Fernsehkamera, deren Bilder an einen außerhalb des Abwasserkanals aufgestellten Moni¬ tor übertragen werden, die Hausanschlüsse gesucht werden. Sobald ein Hausanschluß entdeckt ist, werden die Koordinaten festgehal- ten, um diese Stelle nach dem Einziehen des Innenrohres wieder zu finden. Es liegt auf der Hand, daß dieses Verfahren nicht besonders zuverlässig und genau arbeitet, so daß die Fräsarbei¬ ten zum Öffnen eines Hausanschlusses nicht selten eine Öffnung ergeben, die gegenüber dem Hausanschluß mehr oder weniger stark versetzt ist.A so-called “KA-TE cutter” is also already known, from KA-TE System AG, Leimbachstrasse 38, CH-8041 Zurich manufactured and in Germany for example by Kanaltechnik Kunz GmbH, Hofmannstrasse 52, D-81379 Munich. The well-known KA-TE cutter is a channel milling robot that has an elongated, essentially cuboid transport carriage with four wheels. Hydraulic, pneumatic and / or electrical control lines are connected to the rear end of the transport carriage. At the front end, a milling head is mounted over a rotatable neck. In addition, a television camera is attached to the front end, which inspects the respective work area of the KA-TE cutter. The transport carriage also has a pressure pad which is pressed out of the carriage body by means of stamps and fixes the transport carriage in the sewer in the area of the work site at which the milling head is to make an opening for a house connection. This is particularly necessary if defective sewers were first lined with a new pipe wall using the inliner method, in which there are no openings for house connections at first, but only have to be set up subsequently. The procedure is such that the transport carriage is first moved through the not yet lined sewer and the house connections are searched for with the help of the television camera, the images of which are transmitted to a monitor installed outside the sewer. As soon as a house connection is discovered, the coordinates are recorded in order to find this point again after pulling in the inner pipe. It is obvious that this method does not work particularly reliably and precisely, so that the milling work for opening a house connection often results in an opening which is more or less offset from the house connection.
Aufgabe der Erfindung ist es , den Kanal-Fräsroboter der eingangs genannten Art dahingehend zu verbessern, daß einerseits keine besonderen Positionsmarker für Hausanschlüsse gesetzt werden müssen und daß anderseits trotzdem nach dem Einziehen eines Innenrohres ("Inliner") in einen Abwasserkanal die Hausanschlüs- se zuverlässig gefunden und in richtiger Ausrichtung dazu die Öffnungen aus dem Innenrohr herausgearbeitet werden können.The object of the invention is to improve the sewing milling robot of the type mentioned at the outset in such a way that on the one hand no special position markers have to be set for house connections and that on the other hand after the pulling in of an inner pipe (“inliner”) into a sewer the house connections se found reliably and the openings can be worked out from the inner tube in the correct orientation.
Zur Lösung dieser Aufgabe dienen die Merkmale des Patentan- Spruchs 1 oder 4.The features of patent claim 1 or 4 serve to solve this problem.
Dadurch wird erreicht, daß nach einer Grobpositionierung des Transportschlittens aufgrund der vor dem Einziehen des Innenroh¬ res erfolgten Messungen die Lage des durch das Innenrohr ver- deckten Hausanschlusses zuverlässig ermittelt werden kann, wo¬ nach der erfindungsgemäße Kombisensor um 180° in einer Ebene gedreht wird, die orthogonal zur Mittelachse des Abwasserkanals steht, so daß der Fräskopf in die gleiche Position bewegt wird, in der sich zuvor der abtastende Kombisensor befand. Die Dreh- ebene des Kombisensors ist also eine Radialebene des Abwasser¬ kanals . Der erfindungsgemäße Kombisensor besteht aus einem Ul¬ traschall-Sensor, mit dem stets ein gleicher Abstand zur Innen¬ wand des Abwasserkanals eingehalten werden kann, und aus einem den Ultraschall-Sensor entweder umgebenden oder zu beiden Seiten davon angeordneten kapazitiven Sensor, mit dem ermittelt werden kann, ob hinter der Wand des Abwasserkanals Erdreich oder eine Öffnung für einen Hausanschluß liegt. Die Auswertung der vom Kombisensor erzeugten Signale erfolgt auf an sich bekannte Weise durch einen Rechner, der zweckmäßigerweise auch einen Monitor zum Anzeigen der Daten und/oder der räumlichen Verhältnisse im Abwasserkanal bzw. dem eingebrachten Inliner-Rohr aufweist.It is thereby achieved that after a rough positioning of the transport carriage based on the measurements made before the inner tube is drawn in, the position of the house connection covered by the inner tube can be reliably determined, after which the combination sensor according to the invention is rotated through 180 ° in one plane , which is orthogonal to the central axis of the sewer, so that the milling head is moved into the same position in which the scanning combination sensor was previously. The plane of rotation of the combination sensor is therefore a radial plane of the sewer. The combination sensor according to the invention consists of an ultrasound sensor, with which the same distance from the inner wall of the sewer can always be maintained, and a capacitive sensor, either surrounding the ultrasound sensor or arranged on both sides thereof, with which the sensor is used to determine can be whether there is soil behind the wall of the sewer or an opening for a house connection. The signals generated by the combination sensor are evaluated in a manner known per se by a computer which expediently also has a monitor for displaying the data and / or the spatial conditions in the sewer or the inliner pipe introduced.
Die Erfindung wird nun anhand eines Ausführungsbeispiels näher erläutert; es zeigen:The invention will now be explained in more detail using an exemplary embodiment; show it:
Figur 1 eine erste Ausführungsform eines schematisch darge¬ stellten Kanal-Fräsroboter in dessen Arbeitsstellung; Figur 2 einen Ausschnitt aus dem Meßkopf des Kanal-Fräsroboters aus Figur 1; Figur 3 schematische Darstellungen der Arbeitsweise des Kanal- Fräsroboters nach Figur 1 oder 2; Figur 4 eine zweite Ausführungsform eines schematisch darge¬ stellten Kanal-Fräsroboter in dessen Arbeitsstellung;Figure 1 shows a first embodiment of a schematically illustrated duct milling robot in its working position; FIG. 2 shows a detail from the measuring head of the channel milling robot from FIG. 1; Figure 3 is a schematic representation of the operation of the channel milling robot according to Figure 1 or 2; FIG. 4 shows a second embodiment of a schematically illustrated duct milling robot in its working position;
Figur 5 einen Ausschnitt aus dem Meßkopf des Kanal-Fräsroboters aus Figur 4; und Figur 6 schematische Darstellungen der Arbeitsweise des Kanal- Fräsroboters nach Figur 4 oder 5.FIG. 5 shows a detail from the measuring head of the channel milling robot from FIG. 4; and FIG. 6 shows schematic representations of the mode of operation of the channel milling robot according to FIG. 4 or 5.
Figur 1 zeigt einen Ausschnitt aus einem Sanierungsrohr 1 eines Abwasserkanals, von dem ein Hausanschluß 2 in Form einer an sich bekannten Rohrleitung aus Steingut oder Kunststoff abzweigt. Die Umgebung des Sanierungsrohrs 1 ist durch Erdreich 3 angedeutet.Figure 1 shows a section of a renovation pipe 1 of a sewer, from which a house connection 2 branches off in the form of a known pipe made of earthenware or plastic. The area surrounding the rehabilitation pipe 1 is indicated by soil 3.
In das Sanierungsrohr 1 ist eine Transporteinheit 4 eingebracht, die mit Hilfe von Rädern 42 in Längsrichtung des Sanierungsrohrs 1 und damit in Richtung des Pfeils A verfahrbar ist. Die Bewe¬ gung der Transporteinheit 4 im Sanierungsrohr 1 wird von außen über nicht dargestellte Leitungen gesteuert. Es ist bekannt, zur Überwachung der Bewegung der Transporteinheit 4 eine Fernsehka¬ mera einzusetzen, die aus Gründen der Übersichtlichkeit nicht gezeigt ist.A transport unit 4 is introduced into the renovation pipe 1 and can be moved with the help of wheels 42 in the longitudinal direction of the renovation pipe 1 and thus in the direction of arrow A. The movement of the transport unit 4 in the rehabilitation pipe 1 is controlled from the outside via lines, not shown. It is known to use a television camera to monitor the movement of the transport unit 4, which is not shown for reasons of clarity.
Die Transporteinheit 4 umfaßt im wesentlichen einen Transport¬ schlitten 41 mit einer Unterseite 43, einer Oberseite 45, einer Rückseite 46 sowie einer Vorderseite 47. In der Regel hat der Transportschlitten 41 die Form eines länglichen Prismas, an dessen Rückseite 46 Anschlüsse für hydraulische und/oder pneuma¬ tische Leitungen sowie elektrische Steuer- und Signalleitungen vorgesehen sind. An oder auf der Oberseite 45 des Transport¬ schlittens 41 ist ein Andruckkissen 44 angeordnet, das mit Hilfe von Teleskopzylindern 441 ausfahrbar ist, um sich an der Innen¬ seite des Sanierungsrohres 1 abzustützen und damit die Trans¬ porteinheit 4 vor Ort im Sanierungsrohr 1 festzuklemmen. Die Teleskopzylinder 441 können auf an sich bekannte Weise ausgefah¬ ren werden, beispielsweise durch Hydraulikfluid oder durch Druckluft. Im Transportschlitten 41 ist ein Ausfahrzylinder 48 vorgesehen, der aus der Vorderseite 47 des Transportschlittens 41 herausragt und der in der Längsachse L der Transporteinheit 4 in Richtung des Doppelpfeils A hin und her bewegbar und außerdem um die Längsachse L in Richtung C drehbar ist. Die Bewegung des Aus¬ fahrzylinders 48 wird von einem an der Rückseite 46 der Trans¬ porteinheit 4 angebrachten Meßsystem 12 festgestellt und über Stellantriebe 11 gesteuert, die in Figur 3 erkennbar sind.The transport unit 4 essentially comprises a transport slide 41 with an underside 43, an upper side 45, a rear side 46 and a front side 47. As a rule, the transport slide 41 has the shape of an elongated prism, on the rear side 46 of which connections for hydraulic and / or pneumatic lines and electrical control and signal lines are provided. A pressure pad 44 is arranged on or on the upper side 45 of the transport carriage 41 and can be extended with the aid of telescopic cylinders 441 in order to be supported on the inside of the renovation pipe 1 and thus clamp the transport unit 4 in place in the renovation pipe 1 . The telescopic cylinders 441 can be extended in a manner known per se, for example by means of hydraulic fluid or by compressed air. In the transport carriage 41, an extension cylinder 48 is provided which protrudes from the front 47 of the transport carriage 41 and which can be moved back and forth in the longitudinal axis L of the transport unit 4 in the direction of the double arrow A and can also be rotated in the direction C about the longitudinal axis L. The movement of the extension cylinder 48 is determined by a measuring system 12 attached to the rear 46 of the transport unit 4 and controlled via actuators 11 which can be seen in FIG.
An der Vorderseite des Ausfahrzylinders 48 ist ein Parallelge¬ stänge 49 angelenkt, das gesteuert vom Transportschlitten 41 eine Bewegung in einer Ebene gestattet, die durch den Doppel¬ pfeil B angedeutet ist. Das Parallelgestänge 49 ist mit seinen vorderen Gelenkpunkten mit einem Werkzeughalter 50 gekoppelt, wodurch der Werkzeughalter 50 in Richtung des Pfeils B angehoben bzw. abgesenkt werden kann. Durch die Verwendung eines Parallel¬ gestänges 49 erfolgt die Bewegung des Werkzeughalters 50 stets in einer Ebene, die in Figur 1 mit der Zeichenebene zusammen¬ fällt.A parallel linkage 49 is articulated on the front of the extension cylinder 48 and, controlled by the transport carriage 41, permits movement in a plane which is indicated by the double arrow B. The parallel linkage 49 is coupled with its front hinge points to a tool holder 50, as a result of which the tool holder 50 can be raised or lowered in the direction of the arrow B. By using a parallel linkage 49, the tool holder 50 is always moved in a plane which coincides with the drawing plane in FIG.
Der Werkzeughalter 50 trägt an seinem vorderen Ende einen An¬ triebshalter 51, der an einer Seite einen Fräskopf 5 und an der anderen Seite einen Kombisensor 6 trägt. Der Antriebshalter 51 ist mit dem Werkzeughalter 50 über einen Zapfen 52 gekoppelt, der auf an sich bekannte Weise in dem Werkzeughalter 50 gehalten wird und um eine Achse M gesteuert drehbar ist.The tool holder 50 carries at its front end a drive holder 51 which carries a milling head 5 on one side and a combination sensor 6 on the other side. The drive holder 51 is coupled to the tool holder 50 via a pin 52 which is held in the tool holder 50 in a manner known per se and can be rotated in a controlled manner about an axis M.
Da der Kσmbisensor 6 diametral gegenüber zum Fräskopf 5 am An¬ triebshalter 51 montiert ist, bringt eine Drehung des Ausfahr- Zylinders 48 um 180° den Fräskopf 5 exakt in die Position, in der sich zuvor der Kombisensor 6 befunden hat. Das gleiche gilt auch umgekehrt. Auf diese Weise ist es möglich, zunächst mit dem Kombisensor 6 die Lage des Hausanschlusses 2 festzustellen und anschließend nach Ermittlung der genauen Position des Hausan- Schlusses 2 den Fräskopf 5 in die Meßstellung zu schwenken, die dann zu einer Arbeitsstellung für den Fräskopf 5 der Transport- einheit 4 wird. Hierzu wird zunächst der Werkzeughalter 50 durch das Parallelgestänge 49 in Richtung B in die Längsachse L des Transportschlittens 41 bewegt; danach wird der Ausfahrzylinder 48 von einem der Stellantriebe 11 um die Längsachse L in Rich- tung des Pfeils C gedreht. Anschließend wird der Werkzeughalter 50 wieder in Richtung des Pfeils B angehoben und damit auf die Wand 21 des Sanierungsrohrs 1 zu bewegt.Since the comb sensor 6 is mounted diametrically opposite to the milling head 5 on the drive holder 51, a rotation of the extension cylinder 48 by 180 ° brings the milling head 5 exactly into the position in which the combination sensor 6 was previously. The same applies vice versa. In this way, it is possible to first determine the position of the house connection 2 with the combination sensor 6 and then, after determining the exact position of the house connection 2, to pivot the milling head 5 into the measuring position, which then transports it to a working position for the milling head 5 - unit 4 will. For this purpose, the tool holder 50 is first moved through the parallel linkage 49 in the direction B into the longitudinal axis L of the transport carriage 41; then the extension cylinder 48 is rotated by one of the actuators 11 about the longitudinal axis L in the direction of the arrow C. The tool holder 50 is then raised again in the direction of the arrow B and thus moved towards the wall 21 of the renovation pipe 1.
Figur 2 zeigt Einzelheiten des erfindungsgemäßen Kombisensors 6 in schematischer, vergrößerter Darstellung. Der Kombisensor 6 wird von einem kapazitiven Sensor 61 und einem Ultraschall-Sen¬ sor 62 gebildet.FIG. 2 shows details of the combination sensor 6 according to the invention in a schematic, enlarged illustration. The combination sensor 6 is formed by a capacitive sensor 61 and an ultrasound sensor 62.
Der kapazitive Sensor 61 besteht aus einer linearen Anordnung von Elektroden 611, die als Streifen mit einer Länge von etwa 5mm, einer Breite von etwa 1mm und einer Höhe von etwa 0,2-0,3mm auf ein Foliensubstrat aufgebracht sind. Der Abstand der 1mm breiten Elektrodenstreifen beträgt etwa 5mm, die Gesamtlänge des Arrays etwa 150mm. In Figur 2 sind die Größenverhältnisse für die Elektroden 611 nicht maßstäblich wiedergegeben. Beispiels¬ weise ist die Breite in Richtung des Pfeils A gemessen wesent¬ lich größer als der Abstand der einzelnen Elektroden 611 darge¬ stellt ist. Ferner ist die Höhe der Elektroden 611 geringer, als dies zeichnerisch dargestellt ist. Die Länge der Elektroden 61 ist in Figur 2 hingegen nicht erkennbar, da sie orthogonal zur Zeichenebene verläuft. Bei den zuvor genannten Abmessungen würde das Linear-Array aus 25 Elementen oder Elektroden 611 bestehen, die jeweils von einem darunter liegenden Multiplexer 66 durch ein Positionssignal 72 angesteuert werden. Das Positionssignal 72 wird von einem Rechner 9 erzeugt. Das Positionssignal 72 aktiviert zunächst beispielsweise die erste und vierte Elektrode 611 (in Figur 2 von links gezählt), danach die zweite und fünf¬ te, die dritte und sechste usw.. Bei jeder Aktivierung eines Elektrodenpaars 611 wird eine hochfrequente Spannung in der Größenordnung von etwa 40kHz und etwa 40 Volt an die Elektroden 611 gelegt, die die Platten eines Kondensators bilden, der zu einer in der Zeichnung nicht dargestellten Schwingkreis-Schal¬ tung gehört. Dadurch wird zwischen den Platten ein elektrisches Feld aufgebaut, dessen Feldlinien in den Figuren 1 und 2 ange¬ deutet sind und die durch das umgebende Material beeinflußt werden, und zwar in der Weise, daß sich die Dielektizitätskon- stante des von den jeweils aktivierten Elektroden 611 gebildeten Kondensators ändert. Wenn sich das Dielektrikum im Bereich der Feldlinien des kapazitiven Sensors 61 nicht ändert, also wenn die in der Zeichnung angedeuteten Kraftlinien stets durch Erd- reich 3 laufen, so gibt ein den Elektroden 611 nachgeschalteter Meßverstärker 7 das gleiche Differenzsignal aus . Kommt der kapa¬ zitive Sensor 61 jedoch in den Bereich eines Hausanschlusses 2, bei dem das Erdreich 3 durch Luft oder Wasser ersetzt ist, so ändert sich in diesem Bereich das Dielektrikum und es wird zu einer Störung der Feldlinien kommen, die ein anderes Differenz¬ signal 71 zur Folge hat, das vom Meßverstärker 7 erkannt und in dem Rechner 9 verarbeitet wird. Auf diese Weise kann berührungs¬ los festgestellt werden, ob hinter der Wand 21 des Sanierungs¬ rohrs 1 ein Hausanschluß 2 oder Erdreich 3 liegt. Die Meßwerte ergeben letztlich eine vom Monitor des Rechners 9 angezeigte Kurve 91.The capacitive sensor 61 consists of a linear arrangement of electrodes 611 which are applied to a film substrate as strips with a length of approximately 5 mm, a width of approximately 1 mm and a height of approximately 0.2-0.3 mm. The distance between the 1mm wide electrode strips is about 5mm, the total length of the array is about 150mm. In Figure 2, the size relationships for the electrodes 611 are not shown to scale. For example, the width measured in the direction of arrow A is substantially larger than the distance between the individual electrodes 611 is shown. Furthermore, the height of the electrodes 611 is lower than is shown in the drawing. The length of the electrodes 61, however, cannot be seen in FIG. 2, since it runs orthogonally to the plane of the drawing. Given the dimensions mentioned above, the linear array would consist of 25 elements or electrodes 611, each of which is controlled by a multiplexer 66 below it by a position signal 72. The position signal 72 is generated by a computer 9. The position signal 72 first activates, for example, the first and fourth electrodes 611 (counted from the left in FIG. 2), then the second and fifth, the third and sixth, etc. Each time a pair of electrodes 611 is activated, a high-frequency voltage of the order of about 40kHz and about 40 volts are applied to the electrodes 611 that form the plates of a capacitor that is going to belongs to a resonant circuit not shown in the drawing. As a result, an electric field is built up between the plates, the field lines of which are indicated in FIGS. 1 and 2 and which are influenced by the surrounding material, in such a way that the dielectric constant of the electrodes 611 activated by the respectively activated ones formed capacitor changes. If the dielectric does not change in the area of the field lines of the capacitive sensor 61, ie if the lines of force indicated in the drawing always run through soil 3, a measuring amplifier 7 connected downstream of the electrodes 611 outputs the same difference signal. However, if the capacitive sensor 61 comes into the area of a house connection 2, in which the soil 3 is replaced by air or water, the dielectric changes in this area and there will be a disturbance in the field lines, which is another difference has signal 71, which is recognized by the measuring amplifier 7 and processed in the computer 9. In this way it can be determined contactlessly whether there is a house connection 2 or soil 3 behind the wall 21 of the renovation pipe 1. The measured values ultimately result in a curve 91 displayed by the monitor of the computer 9.
Da die AusgangsSpannung U(A,C) sowohl vom Dielektrikum des durch¬ strahlten Materials als auch vom Abstand des kapazitiven Sensors 61 zur Innenwand des Sanierungsrohrs 1 beeinflußt wird, muß sich der kapazitive Sensor 61 während der Messung stets in konstantem Abstand r zum Sanierungsrohr 1 befinden, was dadurch erreicht wird, daß der Ultraschall-Sensor 62 den Abstand r mißt und ihn über einen Stellmotor 65 konstant hält. Hierzu ist der Ultra- schall-Sensor 62 mit einem Meßverstärker 63 gekoppelt, dessen Ausgangssignal an eine Vergleicherschaltung 69 gelegt wird, die das Abstandssignal Rist mit dem vorgegebenen Wert rsoii vergleicht und über eine Treiberstufe 64 den Stellmotor 65 ansteuert, der den Abstand auf r = const nachregelt, indem das Parallelgestänge 49 in Figur 1 in Richtung des Pfeils B angehoben oder abgesenkt wird. Der Rechner 9 steuert nun über das Positionssignal 72 den Mul- tiplexer 66 so an, daß jeweils zwei Elektroden-Elemente 611 des Arrays aktiv werden und ein Meßsignal U(A,c«const) erzeugen. Nachein¬ ander wird so der Abtastbereich in linearer Richtung A elektro- nisch abgetastet und die Meßwerte im Rechner 9 gespeichert. Anschließend wird der Kombisensor 6 um ein Winkelinkrement in C- Richtung weiter gedreht und die elektronische Abtastung wird wiederholt.Since the output voltage U (A, C) is influenced both by the dielectric of the irradiated material and by the distance of the capacitive sensor 61 from the inner wall of the renovation pipe 1, the capacitive sensor 61 must always be at a constant distance r from the renovation pipe 1 during the measurement are, which is achieved in that the ultrasonic sensor 62 measures the distance r and keeps it constant via an actuator 65. For this purpose, the ultrasonic sensor 62 is coupled to a measuring amplifier 63, the output signal of which is applied to a comparator circuit 69, which compares the distance signal Rist with the predetermined value rsoii and controls the servomotor 65 via a driver stage 64, which drives the distance to r = const adjusts by raising or lowering the parallel linkage 49 in the direction of arrow B in FIG. The computer 9 now uses the position signal 72 to control the multiplexer 66 in such a way that two electrode elements 611 of the array become active and generate a measurement signal U (A, c «const). In succession, the scanning area is electronically scanned in linear direction A and the measured values are stored in the computer 9. The combination sensor 6 is then rotated further by an increment of angle in the C direction and the electronic scanning is repeated.
Da die Zeit für die elektronische Abtastung gegenüber der mecha¬ nischen Bewegung vernachlässigbar klein ist, kann der Kombisen¬ sor 6 während der Meßphase praktisch kontinuierlich in C-Rich- tung gedreht werden. Dies ergibt eine äußerst schnelle Abtastung des zu untersuchenden Wandbereichs und damit ein schnelles Auf- finden von Hausanschlüssen 2.Since the time for the electronic scanning is negligibly small compared to the mechanical movement, the combi sensor 6 can be rotated practically continuously in the C direction during the measuring phase. This results in an extremely fast scanning of the wall area to be examined and thus a quick finding of house connections 2.
Figur 3 zeigt in schematischer Darstellung eine Stirnansicht des Kanal-Fräsroboters, wobei im linken Teil die Meßstellung und im rechten Teil die Arbeitsstellung zum Herausarbeiten einer Öff- nung aus dem Sanierungsrohr 1 im Bereich eines Hausanschlusses 2 dargestellt ist. Man erkennt, daß der Kombisensor 6 zunächst auf die Innenwand des Sanierungsrohres 1 gerichtet ist, wozu der Ausfahrzylinder 48 gesteuert von dem Stellantrieb 11 um die Längsachse L der Transporteinheit 4 gedreht wird. Im übrigen sind in allen Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Man sieht außerdem, wie der Kombisensor 6 durch Anhe¬ ben bzw. Absenken des Parallelgestänges 49 in Richtung des Pfeils B bewegt werden kann und damit ein konstanter Abstand zur Innenwand des Sanierungsrohres 1 eingehalten wird. Durch Drehen des AusfahrZylinders 48 um die Längsachse L in Richtung des Pfeils C wird der Kombisensor 6 entlang der Innenwand des Sanie¬ rungsrohres geschwenkt und die dabei aufgenommenen Spannungs¬ signale werden dem Meßverstärker 7 zugeleitet. Wie bereits er¬ wähnt, werden die AusgangsSignale U(A,C) des Meßverstärkers 7 an den Rechner 9 übertragen, der eine Durchdringungskurve 91 der verdeckten Hausanschlußöffnung anzeigt. An den Rechner 9 ist ferner die SignalauswertungsSchaltung 8 angeschlossen. Die Durchdringungskurve 91 wird im Rechner 9 gespeichert und zur Ansteuerung des Stellantriebs 11 herangezogen, der den Fräskopf 5 in die Position des Kombisensors 6 bringt, nachdem der gesamte Kurvenverlauf der Durchdringungskurve 91 ermittelt wurde. Durch Nachfahren der ermittelten Durchdringungskurve 91 kann der Fräs¬ kopf 5 sauber und zuverlässig eine Öffnung aus der Wand 21 des Sanierungsrohres 1 im Bereich des Hausanschlusses 2 herausfrä¬ sen.FIG. 3 shows a schematic representation of an end view of the sewer milling robot, the measuring position being shown in the left part and the working position in the right part for working out an opening from the renovation pipe 1 in the area of a house connection 2. It can be seen that the combination sensor 6 is initially directed towards the inner wall of the renovation pipe 1, for which purpose the extension cylinder 48 is rotated, controlled by the actuator 11, about the longitudinal axis L of the transport unit 4. Otherwise, the same parts are provided with the same reference numerals in all the figures. It can also be seen how the combination sensor 6 can be moved in the direction of the arrow B by raising or lowering the parallel linkage 49 and thus maintaining a constant distance from the inner wall of the renovation pipe 1. By rotating the extension cylinder 48 about the longitudinal axis L in the direction of the arrow C, the combination sensor 6 is pivoted along the inner wall of the sanitation pipe and the voltage signals recorded in the process are fed to the measuring amplifier 7. As already mentioned, the output signals U (A, C) of the measuring amplifier 7 are transmitted to the computer 9, which displays a penetration curve 91 of the concealed house connection opening. To the computer 9 is furthermore, the signal evaluation circuit 8 is connected. The penetration curve 91 is stored in the computer 9 and used to control the actuator 11, which brings the milling head 5 into the position of the combination sensor 6 after the entire curve of the penetration curve 91 has been determined. By following the determined penetration curve 91, the milling head 5 can cleanly and reliably mill an opening out of the wall 21 of the renovation pipe 1 in the area of the house connection 2.
Die Figuren 4 bis 6 zeigen eine zweite Ausführungsform des Kom¬ bisensors 6, wobei gleiche Teile mit gleichen Bezugszeichen versehen sind. Bei der zweiten Ausführungsform ist der kapazi¬ tive Sensor 61 aus drei Elektroden 611, 612 und 613 gebildet, die als Ringelektroden konzentrisch um den Ultraschall-Sensor 62 angeordnet sind. Damit liegt der Ultraschall-Sensor 62 im Be¬ reich des Mittelpunktes der drei konzentrischen Elektroden 611- 613. Die äußere Elektrode 613 des kapazitiven Sensors 61 ist in der Regel geerdet, während der mittleren Elektrode 612 und der inneren Elektrode 611 zwei gleiche, hochfrequente Spannungen von wenigen Volt zugeführt werden. Die innere Elektrode 611 und die mittlere Elektrode 612 sind über Leitungen 711 und 712 mit einem Meßverstärker 7 verbunden, der eine Spannungsdifferenz auf den Leitungen 711 und 712 mißt und diese als Signal U(A,C) ausgibt. Wenn sich das Dielektrikum im Bereich der Feldlinien des kapazi¬ tiven Sensors 61 nicht ändert, also wenn die in der Zeichnung angedeuteten Kraftlinien stets durch Erdreich 3 laufen, so gibt der Meßverstärker 7 das gleiche Differenzsignal aus . Kommt der kapazitive Sensor 61 jedoch in den Bereich eines Hausanschlusses 2, bei dem das Erdreich 3 durch Luft oder Wasser ersetzt ist, so ändert sich in diesem Bereich das Dielektrikum und es wird zu einer Störung der Feldlinien kommen, die ein anderes Differenz¬ signal auf den Leitungen 711, 712 zur Folge hat, das vom Meßver¬ stärker 7 erkannt und in einem Rechner 9 verarbeitet wird. Auf diese Weise kann wieder berührungslos festgestellt werden, ob hinter der Wand 21 des Sanierungsrohrs 1 ein Hausanschluß 2 oder Erdreich 3 liegt. Die Meßwerte ergeben letzlich eine vom Monitor des Rechners 9 angezeigte Kurve 91.Figures 4 to 6 show a second embodiment of the Kom¬ bisensor 6, wherein the same parts are provided with the same reference numerals. In the second embodiment, the capacitive sensor 61 is formed from three electrodes 611, 612 and 613, which are arranged as ring electrodes concentrically around the ultrasound sensor 62. The ultrasonic sensor 62 thus lies in the area of the center of the three concentric electrodes 611-613. The outer electrode 613 of the capacitive sensor 61 is generally grounded, while the middle electrode 612 and the inner electrode 611 have two equal, high-frequency voltages from a few volts. The inner electrode 611 and the middle electrode 612 are connected via lines 711 and 712 to a measuring amplifier 7 which measures a voltage difference on the lines 711 and 712 and outputs this as a signal U (A, C). If the dielectric does not change in the area of the field lines of the capacitive sensor 61, that is to say if the lines of force indicated in the drawing always run through soil 3, the measuring amplifier 7 outputs the same difference signal. However, if the capacitive sensor 61 comes into the area of a house connection 2, in which the soil 3 is replaced by air or water, the dielectric changes in this area and there will be a disturbance in the field lines which have a different difference signal leads to the lines 711, 712, which is recognized by the measuring amplifier 7 and processed in a computer 9. In this way it can be determined again contactlessly whether a house connection 2 or behind the wall 21 of the renovation pipe 1 Soil 3 lies. The measured values ultimately result in a curve 91 displayed by the monitor of the computer 9.
Da die AusgangsSpannung U(A,C) sowohl vom Dielektrikum des durch- strahlten Materials als auch vom Abstand des kapazitiven Sensors 61 zur Innenwand des Sanierungsrohrs 1 beeinflußt wird, muß sich der kapazitive Sensor 61 während der Messung stets in konstantem Abstand r zum Sanierungsrohr 1 befinden, was dadurch erreicht wird, daß der Ultraschall-Sensor 62 den Abstand r mißt und ihn über einen Stellmotor 65 konstant hält. Hierzu ist der Ultra¬ schall-Sensor 62 mit einem Meßverstärker 63 gekoppelt, dessen Ausgangssignal an eine Vergleicherschaltung 69 gelegt wird, die das Abstandssignal Rist mit dem vorgegebenen Wert rsoii vergleicht und über eine Treiberstufe 64 den Stellmotor 65 ansteuert, der den Abstand auf r = const nachregelt, indem das Parallelgestänge 49 in Figur 1 in Richtung des Pfeils B angehoben oder abgesenkt wird.Since the output voltage U (A, C) is influenced both by the dielectric of the irradiated material and by the distance from the capacitive sensor 61 to the inner wall of the renovation pipe 1, the capacitive sensor 61 must always be at a constant distance r from the renovation pipe 1 during the measurement are, which is achieved in that the ultrasonic sensor 62 measures the distance r and keeps it constant via an actuator 65. For this purpose, the ultrasonic sensor 62 is coupled to a measuring amplifier 63, the output signal of which is applied to a comparator circuit 69, which compares the distance signal Rist with the predetermined value rsoii and controls the servomotor 65 via a driver stage 64, which drives the distance to r = const adjusts by raising or lowering the parallel linkage 49 in the direction of arrow B in FIG.
Figur 6 zeigt in schematischer Darstellung wiederum eine Stirn- ansieht des Kanal-Fräsroboters, wobei im linken Teil die Me߬ stellung und im rechten Teil die Arbeitsstellung zum Herausar¬ beiten einer Öffnung aus dem Sanierungsrohr 1 im Bereich eines Hausanschlusses 2 dargestellt ist. Man erkennt, daß der Kombi¬ sensor 6 zunächst auf die Innenwand des Sanierungsrohres 1 ge- richtet ist, wozu der Ausfahrzylinder 48 gesteuert von dem Stellantrieb 11 um die Längsachse L der Transporteinheit 4 ge¬ dreht wird. Im übrigen sind in allen Figuren gleiche Teile mit gleichen Bezugszeichen versehen. Man sieht außerdem, wie der Kombisensor 6 durch Anheben bzw. Absenken des Parallelgestänges 49 in Richtung des Pfeils B bewegt werden kann und damit ein konstanter Abstand zur Innenwand des Sanierungsrohres 1 einge¬ halten wird. Durch Drehen des Ausfahrzylinders 48 um die Längs¬ achse L in Richtung des Pfeils C wird der Kombisensor 6 entlang der Innenwand des Sanierungsrohres geschwenkt und die dabei aufgenommenen Spannungssignale werden dem Meßverstärker 7 zu¬ geleitet. Wie bereits erwähnt, werden die Ausgangssignale U(A,C) des Meßverstärkers 7 an den Rechner 9 übertragen, der eine Durchdringungskurve 91 der verdeckten Hausanschlußöffnung an¬ zeigt. An den Rechner 9 ist ferner die SignalauswertungsSchal¬ tung 8 angeschlossen. Die Durchdringungskurve 91 wird im Rechner 9 gespeichert und zur Ansteuerung des Stellantriebs 11 herange¬ zogen, der den Fräskopf 5 in die Position des Kombisensors 6 bringt, nachdem der gesamte Kurvenverlauf der Durchdringungs- kurve 91 ermittelt wurde. Durch Nachfahren der ermittelten Durchdringungskurve 91 kann der Fräskopf 5 sauber und zuverläs- sig eine Öffnung aus der Wand 21 des Sanierungsrohres 1 im Be¬ reich des Hausanschlusses 2 herausfräsen. FIG. 6 shows a schematic front view of the sewing milling robot, the measuring position being shown in the left part and the working position for working out an opening from the renovation pipe 1 in the area of a house connection 2 in the right part. It can be seen that the combi sensor 6 is initially aimed at the inner wall of the renovation pipe 1, for which purpose the extension cylinder 48 is rotated in a controlled manner by the actuator 11 about the longitudinal axis L of the transport unit 4. Otherwise, the same parts are provided with the same reference numerals in all the figures. It can also be seen how the combination sensor 6 can be moved in the direction of the arrow B by raising or lowering the parallel linkage 49 and thus maintaining a constant distance from the inner wall of the renovation pipe 1. By rotating the extension cylinder 48 about the longitudinal axis L in the direction of arrow C, the combination sensor 6 is pivoted along the inner wall of the renovation pipe and the voltage signals recorded in this process are fed to the measuring amplifier 7. As already mentioned, the output signals U (A, C) of the measuring amplifier 7 to the computer 9, which shows a penetration curve 91 of the concealed house connection opening. The signal evaluation circuit 8 is also connected to the computer 9. The penetration curve 91 is stored in the computer 9 and used to control the actuator 11, which brings the milling head 5 into the position of the combination sensor 6 after the entire course of the penetration curve 91 has been determined. By following the determined penetration curve 91, the milling head 5 can cleanly and reliably mill an opening out of the wall 21 of the renovation pipe 1 in the area of the house connection 2.

Claims

Patentansprüche claims
Kanal-Fräsroboter in Form eines länglichen Transportschlit¬ tens (41), an dessen Unterseite (43) Räder (42) montiert sind und dessen gegenüberliegende Oberseite (45) mit einem ausfahrbaren Andruckkissen (44) zum Festklemmen des Trans¬ portschlittens (41) in einem Sanierungsrohr (1) versehen ist, mit an die Rückseite (46) des Transportschlittens (41) anschließenden hydraulischen und/oder pneumatischen sowie elektrischen Steuer- und Versorgungsleitungen, und mit einem in der Längsachse (L) des Transportschlittens (41) linear verstellbaren und senkrecht zur Längsachse (L) des Trans¬ portschlittens (41) drehbaren Ausfahrzylinder (48), an des¬ sen Vorderseite ein Parallelgestänge (49) angelenkt ist, das einen Werkzeughalter (50) trägt, in den ein Antriebshalter (51) mit einem Fräskopf (5) eingesetzt ist, der über einen Zapfen (52) in dem Werkzeughalter (50) in einer Ebene um 180° drehbar ist, die senkrecht zur Längsachse des Trans¬ portschlittens (41) und damit auch senkrecht zur Bewegungs¬ richtung des Transportschlittens (41) im Sanierungsrohr (1) als Radialebene verläuft, wobei zur meßtechnischen Erfassung der für das Freifräsen notwendigen Raumkoordinaten der nicht-sichtbaren Hausanschlüsse (2) an dem Antriebshalter (51) zusätzlich ein Sensor um 180° versetzt in der Drehebene des Fräskopfs (5) und damit diametral gegenüber von dem Fräskopf (5) angeordnet ist; und wobei zur Positionsbestim¬ mung des Sensors ein kombiniertes Weg-/Winkelmeßsystem (12) mit Signalauswertungsschaltung (8) an den Ausfahrzylinder (48) gekoppelt ist; dadurch gekennzeichnet, daß der Sensor ein Kombisensor (6) ist, der einen kapazitiven Sensor (61) und einen stabförmi- gen Ultraschall-Sensor (62) einschließt; und daß der kapazi¬ tive Sensor (61) eine lineare Anordnung von Elektroden (611) aufweist, die zu beiden Seiten des stabförmigen Ultraschall- Sensor (62) angeordnet sind. Channel milling robot in the form of an elongated transport slide (41), on the underside (43) of which wheels (42) are mounted and on the opposite top side (45) thereof with an extendable pressure pad (44) for clamping the transport slide (41) in a renovation pipe (1) is provided, with hydraulic and / or pneumatic and electrical control and supply lines connecting to the rear (46) of the transport carriage (41), and with a linearly adjustable and in the longitudinal axis (L) of the transport carriage (41) Extending cylinder (48) rotatable perpendicular to the longitudinal axis (L) of the transport carriage (41), on the front of which a parallel linkage (49) is articulated which carries a tool holder (50) into which a drive holder (51) with a milling head (5) is used, which can be rotated through a pin (52) in the tool holder (50) in a plane through 180 ° which is perpendicular to the longitudinal axis of the transport carriage (41) and thus also perpendicular Really runs to the direction of movement of the transport carriage (41) in the renovation pipe (1) as a radial plane, an additional sensor being displaced by 180 ° on the drive holder (51) for measuring the spatial coordinates of the invisible house connections (2) necessary for the free milling is arranged in the plane of rotation of the milling head (5) and thus diametrically opposite the milling head (5); and a combined displacement / angle measuring system (12) with signal evaluation circuit (8) is coupled to the extension cylinder (48) for determining the position of the sensor; characterized in that the sensor is a combination sensor (6) which includes a capacitive sensor (61) and a rod-shaped ultrasound sensor (62); and that the capacitive sensor (61) has a linear arrangement of electrodes (611) which are arranged on both sides of the rod-shaped ultrasonic sensor (62).
2. Kanal-Fräsroboter nach Anspruch 1, dadurch gekennzeichnet, daß die Elektroden (611) des kapazitiven Sensors (61) mit einem Multiplexer (66) gekoppelt sind, der im Betrieb nach¬ einander jeweils zwei Elektroden auswählt.2. Channel milling robot according to claim 1, characterized in that the electrodes (611) of the capacitive sensor (61) are coupled to a multiplexer (66) which selects two electrodes in succession during operation.
3. Kanal-Fräsroboter nach Anspruch 1 oder 2, dadurch gekenn¬ zeichnet, daß der Multiplexer (66) von einem Rechner (9) mit einem Positionssignal (72) angesteuert wird.3. Channel milling robot according to claim 1 or 2, characterized gekenn¬ characterized in that the multiplexer (66) is controlled by a computer (9) with a position signal (72).
4. Kanal-Fräsroboter in Form eines länglichen Transportschlit¬ tens (41), an dessen Unterseite (43) Räder (42) montiert sind und dessen gegenüberliegende Oberseite (45) mit einem ausfahrbaren Andruckkissen (44) zum Festklemmen des Trans¬ portschlittens (41) in einem Sanierungsrohr (1) versehen ist, mit an die Rückseite (46) des Transportschlittens (41) anschließenden hydraulischen und/oder pneumatischen sowie elektrischen Steuer- und Versorgungsleitungen, und mit einem in der Längsachse (L) des Transportschlittens (41) linear verstellbaren und senkrecht zur Längsachse (L) des Trans¬ portschlittens (41) drehbaren Ausfahrzylinder (48), an des¬ sen Vorderseite ein Parallelgestänge (49) angelenkt ist, das einen Werkzeughalter (50) trägt, in den ein Antriebshalter (51) mit einem Fräskopf (5) eingesetzt ist, der über einen Zapfen (52) in dem Werkzeughalter (50) in einer Ebene um 180° drehbar ist, die senkrecht zur Längsachse des Trans¬ portschlittens (41) und damit auch senkrecht zur Bewegungs¬ richtung des Transportschlittens (41) im Sanierungsrohr (1) als Radialebene verläuft, wobei zur meßtechnischen Erfassung der für das Freifräsen notwendigen Raumkoordinaten der nichtsichtbaren Hausanschlüsse (2) an dem Antriebshalter (51) zusätzlich ein Sensor um 180° versetzt in der Drehebene des Fräskopfs (5) und damit diametral gegenüber von dem Fräskopf (5) angeordnet ist; und wobei zur Positionsbestim¬ mung des Sensors ein kombiniertes Weg-/Winkelmeßsystem (12) mit Signalauswertungsschaltung (8) an den Ausfahrzylinder (48) gekoppelt ist; dadurch gekennzeichnet, daß der Sensor ein Kombisensor (6) ist, der einen kapazitiven Sensor (61) und einen stabförmi¬ gen Ultraschall-Sensor (62) aufweist; und daß der kapazitive Sensor (61) ringförmige Elektroden (611, 612, 613) aufweist, die den stabförmigen Ultraschall-Sensor (62) konzentrisch umgeben.4. Channel milling robot in the form of an elongated transport slide (41), on the underside (43) of which wheels (42) are mounted and on the opposite upper side (45) thereof with an extendable pressure pad (44) for clamping the transport slide (41 ) is provided in a rehabilitation pipe (1), with hydraulic and / or pneumatic and electrical control and supply lines connecting to the rear (46) of the transport carriage (41), and linearly with one in the longitudinal axis (L) of the transport carriage (41) adjustable and perpendicular to the longitudinal axis (L) of the transport carriage (41) rotatable extension cylinder (48), on whose front a parallel linkage (49) is articulated, which carries a tool holder (50) into which a drive holder (51) a milling head (5) is used, which can be rotated through a pin (52) in the tool holder (50) in a plane through 180 ° which is perpendicular to the longitudinal axis of the transport carriage (41) and thus also se A radial plane runs perpendicular to the direction of movement of the transport carriage (41) in the renovation pipe (1), with a sensor additionally offset by 180 ° in the measuring holder for measuring the spatial coordinates of the invisible house connections (2) on the drive holder (51) necessary for free milling Plane of rotation of the milling head (5) and thus diametrically opposite the milling head (5); and a combined displacement / angle measuring system (12) with signal evaluation circuit (8) is coupled to the extension cylinder (48) for determining the position of the sensor; characterized in that the sensor is a combination sensor (6) which has a capacitive sensor (61) and a rod-shaped ultrasound sensor (62); and that the capacitive sensor (61) has annular electrodes (611, 612, 613) which surround the rod-shaped ultrasonic sensor (62) concentrically.
Kanal-Fräsroboter nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß an den Ultraschall-Sensor (62) ein Me߬ verstärker (63) angeschlossen ist, dessen Ausgang über eine Vergleicherschaltung (69) einer Treiberschaltung (64) zu¬ geführt wird, die einen Stellmotor (65) ansteuert, der zur Einhaltung eines über die Vergleicherschaltung (69) eingeb¬ baren konstanten Abstandes (r) vom Kombisensor (6) zu der Wand (21) des Sanierungsrohrs (1) dient.Channel milling robot according to one of claims 1 to 4, characterized in that a measuring amplifier (63) is connected to the ultrasonic sensor (62), the output of which is fed to a driver circuit (64) via a comparator circuit (69) which controls a servomotor (65) which serves to maintain a constant distance (r) from the combination sensor (6) to the wall (21) of the rehabilitation pipe (1) which can be input via the comparator circuit (69).
Kanal-Fräsroboter nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß dem AusgangsSignal des Meßverstärkers (7) und aus den Positionskoordinaten des AusfahrZylinders (48) im Rechner (9) die räumliche Position der Durchdrin¬ gungslinie (91) zwischen Hausanschluß (2) und Sanierungsrohr (1) bestimmbar ist, und daß aus diesen meßtechnisch und rechnerisch ermittelten Raumkoordinaten Stellsignale er¬ mittelbar sind, die über eine Steuerleitung (92) an den Stellantrieb (11) für den Ausfahrzylinder (48) übertragen werden.Channel milling robot according to one of claims 1 to 5, characterized in that the spatial signal of the penetration line (91) between the house connection (2) from the output signal of the measuring amplifier (7) and from the position coordinates of the extension cylinder (48) in the computer (9) ) and renovation pipe (1) can be determined, and that control signals can be determined from these measuring coordinates and arithmetically determined spatial coordinates, which are transmitted via a control line (92) to the actuator (11) for the extension cylinder (48).
Kanal-Fräsroboter nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Ausfahrzylinder (48) durch Stell¬ antriebe (11) sowohl in Längsrichtung (A) des Transport¬ schlittens (41) bewegbar, als auch um 360° (C) um die Längs¬ richtung (A) drehbar ist. Channel milling robot according to one of claims 1 to 6, characterized in that the extension cylinder (48) can be moved by actuating drives (11) both in the longitudinal direction (A) of the transport carriage (41) and by 360 ° (C) is rotatable about the longitudinal direction (A).
PCT/EP1997/003343 1996-06-25 1997-06-24 Piping milling robotic device WO1997049947A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19627312.9 1996-06-25
DE1996127312 DE19627312C1 (en) 1996-06-25 1996-06-25 Channel cutting robot for sanitation or waste pipes

Publications (1)

Publication Number Publication Date
WO1997049947A1 true WO1997049947A1 (en) 1997-12-31

Family

ID=7799139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003343 WO1997049947A1 (en) 1996-06-25 1997-06-24 Piping milling robotic device

Country Status (2)

Country Link
DE (1) DE19627312C1 (en)
WO (1) WO1997049947A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408340A (en) * 2003-11-18 2005-05-25 Radiodetection Ltd A vehicle for inspecting a pipe
GB2467203A (en) * 2009-11-26 2010-07-28 Andrew Woodgate Railway track drilling
GB2475482B (en) * 2009-11-18 2014-09-10 Waterflow Group Plc Method and apparatus for creating apertures in a pipeline
CN107405781A (en) * 2015-04-07 2017-11-28 株式会社湘南合成树脂制作所 Punching machine and method for punching
CN107490623A (en) * 2017-09-19 2017-12-19 中国航空综合技术研究所 Ultrasonic scanner and its detection method
CN112064775A (en) * 2020-09-15 2020-12-11 孙国花 Municipal administration is with workman's sewer pipe line operation device of being convenient for

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9906308D0 (en) * 1999-03-18 1999-05-12 Thames Water Utilities Mains
DE10220994C1 (en) * 2002-05-11 2003-10-02 Hans Oberdorfer Drainage pipe milling device, e.g. for cleaning, has probe provided with rotary milling head and camera for viewing milling operation
DE102005023715A1 (en) * 2005-05-19 2006-11-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process and assembly to cut a duct within an existing wall by holographic laser beam or focused ultrasonic emitter
ES1065721Y (en) * 2007-06-15 2008-01-16 Monja Jesus Garcia-Minguillan ANTIPARASITARY COLLECTOR FOR RESIDUAL WATER EVACUATION FACILITIES
DE102009043972A1 (en) 2009-09-10 2011-03-17 Bucyrus Europe Gmbh Sensor device and method for geoelectrical exploration of mineral resource deposits
DE102011013597B4 (en) * 2011-03-10 2021-07-15 Pkt Pader Kanal Technik-Rohr Frei Gmbh & Co. Kg Device and method for placing a hat collar in a sewer branch
DE102013211795B4 (en) 2013-06-21 2020-07-16 Ibak Helmut Hunger Gmbh & Co. Kg Sewer pipe robot with a detector device for recognizing hidden structures in or behind sewer pipe walls
DE102014104504A1 (en) * 2014-03-31 2015-10-01 Ims Robotics Gmbh Pipe processing apparatus and apparatus and method for measuring a distance from a predetermined position to a pipe processing apparatus and method for processing at least one inner wall of a pipe
DE102014105379A1 (en) * 2014-04-15 2015-10-15 Ibak Helmut Hunger Gmbh & Co. Kg Process for the rehabilitation of a main channel pipe having a side inlet
DE102016105640A1 (en) * 2016-03-24 2017-09-28 Pipetronics Gmbh & Co. Kg Freilegevorrichtung with a camera system to expose a branch
CN105927817B (en) * 2016-06-28 2018-02-09 天津绿清管道科技股份有限公司 The control device and method that a kind of intelligent plugging device stops in precalculated position
DE102018003579A1 (en) * 2018-05-04 2019-11-07 Prokasro Mechatronik Gmbh Sewer rehabilitation robots
CN108980511A (en) * 2018-08-27 2018-12-11 大唐环境产业集团股份有限公司 A kind of new pipeline robot
DE102021004677A1 (en) 2021-09-15 2023-03-16 Rausch Rehab GmbH SEWER WORK DEVICE
DE102022107321A1 (en) 2022-03-29 2023-10-05 Valeo Schalter Und Sensoren Gmbh Ultrasonic sensor with capacitive detection of a blind area

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029343A2 (en) * 1979-11-20 1981-05-27 Edmund Nuttall Limited Lining cutter and cutting method
WO1983003457A1 (en) * 1982-03-29 1983-10-13 Ian Roland Yarnell Robot
EP0654631A1 (en) * 1993-11-18 1995-05-24 Conseil General Du Val De Marne Device for inspecting the physical state of pipelines which are accessible by humans

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989007223A1 (en) * 1988-01-27 1989-08-10 Sekisui Kagaku Kogyo Kabushiki Kaisha Method of drilling a branch line aperture after internal lining of a pipeline and a water plug used in the method
DE4024926A1 (en) * 1990-08-06 1992-02-13 Otto Schlemmer Gmbh Lining process for pipelines repair - sealing side ducts with position indicating caps for location by liner cutting equipment after lining main pipe
DE4208863C2 (en) * 1992-03-19 1998-06-04 Andreas Enneking Material inspection device
DE4323182C1 (en) * 1993-07-10 1994-07-21 Linck Hans Peter Remote controlled pipeline inspection vehicle for locating pipeline branches
DE19521895A1 (en) * 1995-06-16 1996-12-19 Hunger Ibak H Gmbh & Co Kg Sewer pipe and surrounding region examination method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0029343A2 (en) * 1979-11-20 1981-05-27 Edmund Nuttall Limited Lining cutter and cutting method
WO1983003457A1 (en) * 1982-03-29 1983-10-13 Ian Roland Yarnell Robot
EP0654631A1 (en) * 1993-11-18 1995-05-24 Conseil General Du Val De Marne Device for inspecting the physical state of pipelines which are accessible by humans

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408340A (en) * 2003-11-18 2005-05-25 Radiodetection Ltd A vehicle for inspecting a pipe
GB2475482B (en) * 2009-11-18 2014-09-10 Waterflow Group Plc Method and apparatus for creating apertures in a pipeline
GB2467203A (en) * 2009-11-26 2010-07-28 Andrew Woodgate Railway track drilling
GB2467203B (en) * 2009-11-26 2013-05-29 Andrew Woodgate Railway track drilling
CN107405781A (en) * 2015-04-07 2017-11-28 株式会社湘南合成树脂制作所 Punching machine and method for punching
CN107490623A (en) * 2017-09-19 2017-12-19 中国航空综合技术研究所 Ultrasonic scanner and its detection method
CN112064775A (en) * 2020-09-15 2020-12-11 孙国花 Municipal administration is with workman's sewer pipe line operation device of being convenient for

Also Published As

Publication number Publication date
DE19627312C1 (en) 1997-11-13

Similar Documents

Publication Publication Date Title
WO1997049947A1 (en) Piping milling robotic device
AT409885B (en) METHOD FOR COATING TUNNEL INTERNAL WALLS WITH SPRAY CONCRETE AND DEVICE FOR CARRYING OUT THE METHOD
EP2665498B1 (en) Drainage pump unit
EP0894240A1 (en) Electro-optical measuring device for determining the relative position of two bodies, or of two surface areas of bodies, in relation to each other
DE3334430A1 (en) METHOD AND DEVICE FOR CONTROLLING THE THICKNESS OF A LAYER OF A COEXTRUDED LAMINATE
DE102006041821A1 (en) Method for the relative positioning of a measuring object and a motor vehicle to a measuring device and measuring device and chassis measuring device
DE102013211795B4 (en) Sewer pipe robot with a detector device for recognizing hidden structures in or behind sewer pipe walls
EP0809324B1 (en) Parabolic antenna for filling level measurement in a container
EP0734305B1 (en) Method for adjusting reamers and similar equipment
CH699376B1 (en) Method and apparatus for locating damage to a plastic pipe.
EP0093865B1 (en) Feeler for detecting web seams
EP4345212A2 (en) Self-propelled construction machine and method for processing a floor covering
EP0463008B1 (en) Process and device for ultrasonic testing of elongated, prismatic profiles with at least one plane outer surface extending in the longitudinal direction of the profile
DE4307453A1 (en) Method and device for locating a line
EP1527234B1 (en) Method and device for soil analysis
WO2005111535A1 (en) Method and device for non-contact recording of workpieces
EP1698893B1 (en) Positioning vehicle for the positioning of a measurement sonde
DE4123598C2 (en)
DE10121137C2 (en) Device and method for measuring physical parameters in soil and / or sediment profiles
DE10064847C1 (en) Method and device for measuring and possibly calibrating a perforation of a workpiece
DE4038183C2 (en) Method and device for aligning an electron beam relative to a reference object
WO2013120631A1 (en) Measuring apparatus and method for measuring a distance in a hollow body and hollow body comprising said measuring apparatus
EP3150864A1 (en) Device and method for determining the position of a cylinder piston
DE4335681A1 (en) Arrangement for a transmitting and/or receiving antenna
DE4330988A1 (en) Method and device for setting broaches and the like

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 98502358

Format of ref document f/p: F

122 Ep: pct application non-entry in european phase