WO1997047959A1 - Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde - Google Patents

Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde Download PDF

Info

Publication number
WO1997047959A1
WO1997047959A1 PCT/CH1997/000222 CH9700222W WO9747959A1 WO 1997047959 A1 WO1997047959 A1 WO 1997047959A1 CH 9700222 W CH9700222 W CH 9700222W WO 9747959 A1 WO9747959 A1 WO 9747959A1
Authority
WO
WIPO (PCT)
Prior art keywords
game
image
parameters
values
determined
Prior art date
Application number
PCT/CH1997/000222
Other languages
English (en)
French (fr)
Inventor
Peter Feller
Original Assignee
Zellweger Luwa Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=4211284&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO1997047959(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Zellweger Luwa Ag filed Critical Zellweger Luwa Ag
Priority to DE59707165T priority Critical patent/DE59707165D1/de
Priority to US09/194,764 priority patent/US6510734B1/en
Priority to EP97922799A priority patent/EP0904532B2/de
Priority to JP50102198A priority patent/JP4113982B2/ja
Publication of WO1997047959A1 publication Critical patent/WO1997047959A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/898Irregularities in textured or patterned surfaces, e.g. textiles, wood
    • G01N21/8983Irregularities in textured or patterned surfaces, e.g. textiles, wood for testing textile webs, i.e. woven material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N21/8915Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined non-woven textile material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/367Fabric or woven textiles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/36Textiles
    • G01N33/365Filiform textiles, e.g. yarns

Definitions

  • the invention relates to a method for assessing the effect of thread defects on textile fabrics, by simulating an image of the fabric based on a given yarn.
  • Such a method is known from EP-A-578975, in which, in a first step, a yarn is examined by a measuring element for parameters which are related to the volume and / or the surface of the yarn. In a second step, the parameters are converted into gray or color values and these values are assigned to pixels. Finally, the pixels are displayed on a screen and / or a printer. This creates an image that represents a simulation of a woven or knitted fabric made from the examined yarn.
  • a disadvantage of the known method is that this simulation does not exactly match the image of a real woven or knitted fabric, because simplifying assumptions have been made for the simulation, which have an effect in this sense.
  • One such assumption is to depict gait sections lying next to one another in parallel in the simulation and to weight or even neglect ties between warp threads and weft threads. This makes it difficult to assess a simulated woven or knitted fabric. A correct assessment therefore requires some practice.
  • the object that is to be achieved by the invention is to remedy the disadvantages mentioned and to create a method with which the assessment of simulated textile fabrics can be carried out with greater certainty.
  • the object is achieved in that an image of a woven or knitted fabric that has arisen from a known simulation, taking into account parameters of a really existing and measured chamois, is compared with the image of a reference woven fabric or reference knitted fabric for the parameter a reference game standardized according to quality or classified according to statistical conditions is used.
  • the reference game is characterized by parameters which correspond, for example, to average values as can be taken from published statistics.
  • the parameters of the reference game can be measured by measuring a really existing reference game or can be obtained by calculation from given statistical values
  • an image of a reference fabric is to be created, which is more similar to the image of the fabric from a given yarn and with which the image of the known simulated fabric can be compared.
  • the image of the reference fabric can be achieved by depicting a so-called yarn display panel, which is provided with a Reference gam is established.
  • the image of the reference game can be generated by simulating a fabric starting from a reference game.
  • the simulation of the reference game can be done by calculating parameters of the game or by measuring the parameters of a real existing reference game. The best result is achieved if two textile flat structures are simulated in the same way, the only difference being the values for the parameters, the one values coming from a given thread and the other values from a reference thread
  • the advantages achieved by the invention can be seen in particular in that the reference fabric or knitted fabric is displayed in exactly the same way as the simulated woven fabric or knitted fabric on a screen or on paper, so that deviations between the images directly indicate deviations between indicate real knitted fabrics and fabrics and are viewed as a sequence of different values for the selected parameters.
  • the viewer who has to assess them can now also use their own subjective criteria with which he wants to assess them he does not have to worry about falsifying his criteria, as they would have to be taken into account if the images are not directly comparable.
  • FIG. 1 shows an image of a game board and a simulated game board
  • FIG. 2 shows a so-called stack diagram
  • FIG. 3 several spectrogram curves for different stack lengths
  • FIG. 4 shows a spectrogram curve for Gam from randomly distributed fibers of different lengths
  • FIG. 5 shows a spectrogram curve which takes process-related long-wave fluctuations into account
  • FIGS. 6 and 7 each show variation curves
  • FIG. 8 shows a schematic illustration of an inverse Fourier transformation
  • FIG. 9 shows a graphic in connection with rare events in the game
  • Figure 10 is a mass variation curve for a gam
  • Figure 11 shows a game tester.
  • the method according to the invention consists on the one hand of the known simulation of an image of a textile fabric which is to be built up from a predetermined thread, whose parameters are measured and, on the other hand, from the simulation of an image of a textile fabric which is built up from a reference game.
  • a reference game which cannot be described in more detail because such a measurement does not differ from the measurement of another game, or of calculating parameters of a reference game. This second possibility will be described in more detail below with reference to the figures.
  • the individual process steps are also to be explained with the individual figures.
  • FIG. 1 shows an image 52 of a flat structure which, according to the present invention, is constructed by simulation from a reference game.
  • the reference game can be given by measured parameters or by calculated parameters.
  • This image is intended to serve as a reference for images of fabrics which are constructed from other yarns by simulation, the games being simulated on the basis of measured values on a real gam.
  • Such a picture 51 is also shown for comparison.
  • a comparison of the two images as can be carried out, for example, by the human eye, allows deviations in images 51, 52 to be recognized and further evaluated.
  • a moire effect can be seen in Figure 51, the possible causes of which are known per se and can be attributed, for example, to periodic errors in the gam.
  • FIG. 2 shows a so-called stack diagram 1, in which a curve 2 for a frequency distribution and a curve 3 as a sum curve of the frequency distribution can be seen.
  • the stack diagram is the starting point for the calculation of the gas parameters.
  • Curves 2 and 3 are plotted over a horizontal axis 4, along which markings or values for the lengths of textile fibers are entered. Markings or values for the percentage of fibers with a certain length are present along a vertical axis 5. It can thus easily be seen from curve 2 that the largest proportion of the fibers of a stack from which the values originate have a length corresponding to a value at position 6. It can be seen from curve 3 that 100% of the fibers are at least infinitely short, but that there are no infinitely long fibers.
  • stack diagrams are either which can be found in the specialist literature or can be measured using commercially available devices for raw materials. Such devices are marketed by the Zellweger Uster company under the name AFIS or AL100.
  • the stack diagram is one of the foundations of the calculation of the gas parameters. It supplies values which are characteristic of a raw material, here in particular a reference raw material from which one starts, ie there are to what extent an ideal distribution of the fiber lengths can be assumed for the reference thread.
  • the gam which is made from this raw material, has more or less pronounced quasi-periodic irregularities, which can be represented in spectrograms.
  • FIG. 3 shows, in a horizontally and vertically shifted representation, four spectrogram curves 7, 8, 9, 10 for each game which consists of fibers of constant length, the length of the fibers for this game increasing from the spectrogram curve 7 to the spectrogram curve 10.
  • Lengths of fibers for this game can be read in FIG. 2 on axis 4, for example at positions 6, 11, 12 and 13. Values for wavelengths are to be plotted along axes 14 and values for amplitudes or the power density (as measured by uniformity testers) are plotted along an axis 15.
  • n the number of fibers in the cross section of the yarn
  • L the length of the fibers f is the measuring frequency
  • v is the measuring speed of the yarn.
  • the performance is measured with band filters which have a constant relative bandwidth. For example, 5 band filters are arranged per octave, the band boundaries of which touch. Instead of the continuous curve shown here, this results in a step-shaped spectrogram curve.
  • c is a proportionality constant
  • Known yarn testers provide representations of spectrograms in which instead of the power density the root of the power or instead of the frequency the wavelength is given on a logarithmic scale. This is taken into account in the representation of the formula (B) shown.
  • a spectrogram curve for a game consisting of fibers with different lengths is to be derived from the spectrogram curves 7 to 10 for games which are made up of fibers of the same length, as is customary in real yarns.
  • FIG. 4 therefore shows a spectrogram curve 16, which was created by superimposing several spectrogram curves such as, for example, the spectrogram curves 7, 8, 9, 10. From the stack diagram (FIG. 1), values for the frequency can be taken from the curves 2 or 3 for fiber length values, which are specified, for example, at constant intervals along the axis 14. With these values, the spectrograms can be weighted for the fiber lengths concerned.
  • Spectrogram curve 16 is calculated according to formula (C) below for the weighted spectrogram curve:
  • k means the logarithm of the length ratio of neighboring classes L / L H1 and h the frequency of the number of fibers as a function of the fiber length, as can be seen from FIG. 2.
  • spectrogram curve 17 which is derived from the spectrogram curve 16.
  • errors are taken into account that a gam has as a result of production conditions that are not ideal.
  • Such errors for example caused by production machines or not corrected, are usually long-wave, which is why the spectrogram curve 17 deviates from the spectrogram curve 16, in particular in an area 18.
  • the deviation in the area 18 can be determined by values from known length variation curves CV (L) and mass variation curves CVm, as will be explained below.
  • FIG. 6 shows three boundaries 19, 20 and 21, which delimit fields in which length variation curves CV (L) for games of different quality can lie. These are plotted on a horizontal axis 22 with values for cutting lengths of the game and next to a vertical axis 23 with values for percentage deviations from an average. Limit 19 concerns game of the worst, Limit 21 game the best quality. From this you can see that with good quality yarns, the deviations from the mean decrease with increasing cutting length more than for poor quality games. In addition, a length variation curve 50 of an ideal game is shown. Since it is known according to FIGS. 3 and 4 that long-wave errors in the yarn have a smaller amplitude than short-wave errors, FIG.
  • the amplitude values from the spectrogram curve 16 must be corrected or multiplied by a factor that takes into account the long-wave errors actually present in the non-ideal gam. This correction should take place in the sloping branch of the spectral curve 16, in particular for cutting lengths over approximately 0.5 m in the areas 18.
  • the factor is formed for different cutting lengths and results from the distance a between the length variation curve 50 and the selected limit 21, 20, 19. Since the values are plotted logarithmically along the two axes 22, 23, this distance a can be directly derived from the logarithm be converted into a factor.
  • a yarn signal is now to be produced by calculation, as a yarn tester could also output it.
  • an inverse Fourier transformation is used, which is to lead from signals in the spectral range to an output signal which represents cross-sectional or mass deviations along the yarn.
  • the spectrogram curve 17 is logarithmically divided into classes, which are represented here by rectangles 29 to 35. On a logarithmic scale, these classes have the same length among themselves. Each class 29 to 35 thus also represents a wavelength range that can also be further divided into several channels, for example 5 to 10 channels per octave.
  • Each class 29 to 35 is assigned a sine generator 36 to 42, the frequency of which is inversely proportional to the wavelength of the class and the amplitude of which is proportional to the height of the class or the frequency (corresponding to the height of the rectangle) of the deviations represented by the class.
  • Each generator 36 to 42 thus outputs a sinusoidal signal which is mixed together by superimposition, so that a single output signal is produced which represents mass deviations from an average over time, as is shown, for example, in FIG. 10.
  • a coefficient of variation can be determined for this output signal in a manner known per se.
  • FIG. 7 shows three limits 24, 25 and 26 within which values of the mass variation for games of different quality can lie. These are plotted on a horizontal axis 27 with values for the so-called yarn number or fineness (which is proportional to the thickness in verse) and next to an axis 28 with values for variation coefficients CV as a percentage of an average. Limit 24 concerns game of the worst, Limit 26 game the best quality. From this it can be seen that in the case of yarns of good quality, the deviations from the mean increase less with increasing yarn number than for games of poor quality. Now you have an idea about the quality of the yarn you want to simulate.
  • the variation coefficient for one thread number from a limit 24, 25, 26 can be taken for the particular thread from FIG. 7. If one compares this with the coefficient of variation for the output signal according to FIG. 8, one will probably notice a difference. From this, a factor is determined by which the entire output signal is multiplied, by which each deflection of the signal is increased or decreased at a time. This creates a simulated signal that is largely adapted to real circumstances.
  • the frequency of each sine generator (FIG. 8) can also be frequency-modulated with a random signal before mixing, so that a more orbital signal is produced.
  • the bandwidth of the random signal preferably corresponds to the channel distances.
  • games usually still have so-called rare events such as nits, thick spots, thin spots or foreign bodies that were not taken into account until then.
  • rare events such as nits, thick spots, thin spots or foreign bodies that were not taken into account until then.
  • Such events can be simulated with a random generator and added to the signal.
  • the frequency and size of such events can be found, for example, in the publication "USTER STATISTICS" for the relevant events. Frequency values can be entered into the random generator, as can be seen, for example, from FIG. 9.
  • FIG. 9 shows an example of a graphic as can be found in the above-mentioned USTER STATISTICS in addition to graphics according to FIGS. 6 and 7. This shows three limits 43, 44 and 45 for values that indicate a number of rare events per game length. These values and limits are plotted on a horizontal axis 46 with values for the thread number and next to an axis 47 with values for the number of events per 1000 meters of thread. From this it can be seen that with good quality yarns the number of events increases more slowly with increasing yarn number than with poor quality yarns.
  • the admixture with the random generator can take place with a randomly generated amplitude and length, which quantifies the deviation of the event from the mean value.
  • the random generator then outputs pulses which are superimposed on the output signal according to FIG. 8 and which correspond to an empirical value of typical imperfections.
  • FIG. 9 shows only one bed game of many statistics which also separately indicate the frequency of special imperfections such as thick spots, thin spots, nits, shell parts, foreign matter, etc.
  • FIGS. 2 to 8 show, for example, a variation curve 48, known per se for Gam, for mass variations which are shown to differ from an average value M.
  • the method illustrated with FIGS. 2 to 8 now provides such a variation curve 48, which is plotted over an axis 49, on which values for the Gami length are plotted.
  • the variation curve 48 differs in its type from a variation curve which was determined by measuring a chamois in a yarn tester. In this way, the individual variations or signal points or the values they represent can be converted directly into image points and strung together, so that a simulation of a game is created.
  • the deviations of the signal points indicate a measure for the intensity of a color or a gray value. If several rows of such pixels are now strung together, image 51 (FIG. 1), for example, from which clearly individual rows 60, 61, 62 can be recognized, which are composed of pixels that are here only in two intensities or gradations, ie appear black or white.
  • image 52 is also created in the same way, only with the difference that the parameters or the measurement signal are in pixels converted, come from a game that serves as a reference and was determined by measuring the game in a game tester or by simulation. Correspondingly, simulations for fabrics with different weaves are also possible, for example for knitted fabrics.
  • the picture elements of a game are arranged in the picture according to the course of the game in the respective flat structure. Just as the warp and weft threads cross and thus cover each other in fabrics, so the threads or game form stitches in the knitted fabric. In both cases, the overlap in the simulation can be taken into account or not by increasing the intensity at this point.
  • FIG. 11 shows a game test device 53 known per se, which consists of the actual test device 54, an evaluation and operating unit 55 and a printer 56.
  • the test device 54 is provided with one or more measuring modules 57, which have measuring elements for the parameters to be examined.
  • a Gam 57 whose parameters, e.g. the mass, hairiness or structure to be measured continuously is transported in a known manner through the measuring elements.
  • the method according to the invention can thus be summarized in a number of steps as follows: a) generating pixels of a reference game by measuring at least one relevant parameter on a reference game and then converting the values of the parameter into values for the intensity of pixels that are lined up result in a simulation for the reference game, or by generating the pixels by calculating the relevant parameter or parameters from statistical material such as average values for the game. Each pixel also includes information about its position along the reference chamois.
  • Each pixel also includes information about its position along the given chamois.
  • a simulation of a gam signal could be replaced by a rectangular pulse with the length of the fiber and a random signal could be generated by distributing these rectangular pulses.
  • a simulation of so-called game boards can also be carried out. An image of a game board with a reference game and a game board with a given game can thus be generated.
  • both the reference game and the given game can be simulated using measured parameters or calculated parameters.
  • the method according to the invention can be carried out in a device as shown in FIG. 11 if the evaluation and operating unit 55 has a corresponding program. If, for example, the parameters for one or more reference yarns are stored therein, an image of a reference woven or knitted fabric can be generated on the screen at any time. In addition, parameters for a real gam 58 can be checked in the measuring module 57 and likewise lead to an image for a simulated woven or knitted fabric in the evaluation and operating unit 55. With the aid of known programs for image processing and image display, the two images can be output on the screen or by the printer 56 in such a way that a comparison is easily possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Wood Science & Technology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur Beurteilung der Auswirkung von Garnfehlern auf textile Flächengebilde, die aus einem vorgegebenen Garn hergestellt werden sollten, durch Simulation eines Bildes des Flächengebildes. Damit die Beurteilung simulierter textiler Flächengebilde mit grösserer Sicherheit und leichter geschehen kann, soll ein erstes Bild (51) des Flächengebildes durch eine Simulation ausgehend von Parametern oder Messignalen des vorgegebenen Garnes erzeugt werden. Ein zweites Bild (52) des Flächengebildes soll durch eine Simulation ausgehend von Parametern eines Referenzgarnes erzeugt werden, und schliesslich soll ein Vergleich des ersten Bildes mit dem zweiten Bild durchgeführt werden.

Description

VERFAHREN ZUR BEURTEILUNG DER AUSWIRKUNGEN VON GARNFEHLERN AUF TEX¬ TILE FLÄCHENGEBILDE
Die Erfindung betrifft ein Verfahren zur Beurteilung der Auswirkung von Gamfehlem auf textile Flächengebilde, durch Simulation eines Bildes des Flächengebildes ausgehend von einem vorgegebenen Garn.
Aus der EP-A-578975 ist ein solches Verfahren bekannt, bei dem in einem ersten Schritt ein Garn durch ein Messorgan auf Parameter untersucht wird, die mit dem Volumen und/oder mit der Oberfläche des Garns zusammenhängen. In einem zweiten Schritt werden die Parameter in Grau- oder Farbwerte umgerechnet und diese Werte werden Bildpunkten zugeordnet. Schliesslich werden die Bildpunkte auf einem Bildschirm und/oder einem Drucker wiederge¬ geben. Dadurch wird ein Bild erzeugt, welches eine Simulation eines aus dem untersuchten Garn hergestellten Gewebes oder Gewirkes darstellt.
Ein Nachteil des bekannten Verfahrens besteht nun darin, dass diese Simulation mit dem Bild eines wirklichen Gewebes oder Gewirkes nicht genau übereinstimmt, denn für die Simulation sind vereinfachende Annahmen getroffen worden, die sich in diesem Sinne auswirken. Eine solche Annahme besteht darin, in der Simulation parallel nebeneinanderliegende Gamab- schnitte darzustellen und Bindungen zwischen Kettfäden und Schussfäden zu gewichten oder auch ganz zu vernachlässigen. Damit wird die Beurteilung eines simulierten Gewebes oder Gewirkes erschwert. Eine richtige Beurteilung setzt deshalb einige Übung voraus.
Die Aufgabe, die durch die Erfindung gelöst werden soll, besteht nun darin, die genannten Nachteile zu beheben und ein Verfahren zu schaffen, mit dem die Beurteilung simulierter textiler Flächengebilde mit grosserer Sicherheit erfolgen kann. Die Aufgabe wird dadurch gelost, dass ein Bild eines Gewebes oder Gewirkes, das durch eine bekannte Simulation entstanden ist, wobei Parameter eines wirklich existierenden und ge¬ messenen Gams berücksichtigt wurden, mit dem Bild eines Referenzgewebes oder Referenz¬ gewirkes verglichen wird, für das Parameter eines nach der Qualität standardisierten oder nach statistischen Gegebenheiten klassierten Referenzgames verwendet werden Das Refe- renzgam wird durch Parameter charakteπsiert, die beispielsweise Durchschnittwerten ent¬ sprechen, wie sie aus publizierten Statistiken entnommen werden können Dabei können die Parameter des Referenzgames durch Messung eines wirklich existierenden Referenzgames oder durch Berechnung aus gegebenen statistischen Werten gewonnen werden
Mit anderen Worten soll ein Bild eines Referenzgewebes geschaffen werden, das dem Bild des Gewebes aus vorgegebenem Gam ähnlicher ist und mit dem das Bild des bekannten simulierten Gewebes verglichen werden kann Das Bild des Referenzgewebes kann dabei durch Abbildung einer sogenannten Garnschautafel erreicht werden, die mit einem Referenz- gam aufgebaut ist. Oder, das Bild des Referenzgames kann durch Simulation eines Gewebes ausgehend von einem Referenzgam erzeugt werden Dabei kann die Simulation des Refe¬ renzgames durch Berechnung von Parametern des Games oder durch Messung der Para¬ meter eines real existierenden Referenzgames geschehen. Das beste Resultat erreicht man, wenn man zwei textile Flachengebilde auf gleiche Weise simuliert, wobei der einzige Unter¬ schied in den Werten für die Parameter bestehen, wobei die einen Werte von einem vorgege¬ benen Gam und die anderen Werte von einem Referenzgam stammen
Die durch die Erfindung erreichten Vorteile sind insbesondere dann zu sehen, dass das Referenz-Gewebe oder Gewirke in genau gleicher Art und Weise wie das simulierte Gewebe oder Gewirke auf einem Bildschirm oder auf Papier dargestellt wird, so dass Abweichungen zwischen den Bildern direkt auf Abweichungen zwischen realen Gewirken und Geweben hindeuten und als Folge unterschiedlicher Werte für die gewählten Parameter angesehen werden Fύr diese direkt vergleichbaren Bilder kann der Betrachter, der diese zu beurteilen hat nun auch eigene subjektive Kπtenen anwenden mit denen er diese beurteilen will Dabei muss er keine Verfälschung seiner Kriterien befürchten, wie sie dann zu berücksichtigen wären, wenn die Bilder nicht direkt vergleichbar sind.
Im folgenden wird die Erfindung anhand eines Beispiels und mit Bezug auf die beiliegenden Figuren näher erläutert. Es zeigen:
Figur 1 ein Bild einer Gamschautafel und einer simulierten Gamschautafel,
Figur 2 ein sogenanntes Stapeldiagramm,
Figur 3 mehrere Spektrogrammkurven für unterschiedliche Stapellängen,
Figur 4 eine Spektrogrammkurve für Gam aus zufällig verteilten Fasern verschiedener Länge,
Figur 5 eine Spektrogrammkurve die prozessbedingte langwellige Schwankungen berücksich¬ tigt,
Figur 6 und 7 je eine Darstellung von Variationskurven,
Figur 8 eine schematische Darstellung einer inversen Fourier-Transformation,
Figur 9 eine Grafik im Zusammenhang mit seltenen Ereignissen im Gam,
Figur 10 eine Massen- Variationskurve für ein Gam und
Figur 11 ein Gamprüfgerät.
Das erfindungsgemässe Verfahren besteht einerseits aus der bekannten Simulation eines Bildes eines textilen Flächengebildes, das aus einem vorgegebenen Gam aufgebaut sein soll, dessen Parameter gemessen werden und andererseits aus der Simulation eines Bildes eines textilen Flächengebildes, das aus einem Referenzgam aufgebaut ist. Hier gibt es die Möglich¬ keiten Parameter eines solchen Referenzgames zu messen, was nicht näher darzustellen ist, weil eine solche Messung sich nicht von der Messung eines anderen Games unterscheidet, oder Parameter eines Referenzgames zu berechnen. Diese zweite Möglichkeit soll nachfol¬ gend mit bezug auf die Figuren genauer beschrieben werden. Mit den einzelnen Figuren s- ollen auch die notwendigen Verfahrensschritte erläutert werden.
Fig. 1 zeigt ein Bild 52 eines Flächengebildes, das gemäss der vorliegenden Erfindung durch Simulation aus einem Referenzgam aufgebaut ist. Dabei kann das Referenzgam durch ge¬ messene Parameter oder durch berechnete Parameter gegeben sein. Dieses Bild soll als Referenz für Bilder von Flächengebilden dienen, die aus anderen Garnen durch Simulation aufgebaut sind, wobei die Game ausgehend von Messwerten an einem realen Gam simuliert sind. Ein solches Bild 51 ist zum Vergleich ebenfalls gezeigt. Ein Vergleich der beiden Bilder, wie er beispielsweise durch das menschliche Auge durchgeführt werden kann, erlaubt es Abweichungen in den Bildern 51, 52 zu erkennen und weiter auszuwerten. Beispielsweise ist im Bild 51 ein Moire-Effekt erkennbar, dessen mögliche Ursachen an sich bekannt sind und beispielsweise auf periodische Fehler im Gam zurückzuführen ist.
Fig. 2 zeigt ein sogenanntes Stapeldiagramm 1, in dem eine Kurve 2 für eine Häufigkeitsver¬ teilung und eine Kurve 3 als Summenkurve der Häufigkeitsverteilung erkennbar ist. Das Sta¬ peldiagramm ist Ausgangspunkt der Berechnung der Gamparameter. Die Kurven 2 und 3 sind über einer horizontalen Achse 4 aufgetragen, längs der Markierungen oder Werte für die Längen von textilen Fasem eingetragen sind. Längs einer vertikalen Achse 5 sind Markierun¬ gen oder Werte für den prozentualen Anteil von Fasem mit bestimmter Länge vorhanden. Aus der Kurve 2 ist somit leicht zu entnehmen, dass der grösste Anteil der Fasem eines Stapels aus dem die Werte stammen, die Länge entsprechend einem Wert an der Stelle 6 aufweisen. Aus der Kurve 3 kann man entnehmen, dass 100% der Fasem mindestens unendlich kurz sind, dass es aber keine unendlich langen Fasem gibt. Solche Stapeldiagramme sind entwe- der der Fachliteratur zu entnehmen oder können mit handelsüblichen Geräten für Rohstoffe gemessen werden. Solche Geräte werden durch die Firma Zellweger Uster unter der Bezeich¬ nung AFIS oder AL100 vertπeben. Das Stapeldiagramm ist eine der Grundlagen der Berech¬ nung der Gamparameter. Es liefert Werte die für einen Rohstoff, hier insbesondere ein Refe¬ renzrohstoff von dem man ausgeht, charakteristisch sind, d.h. es gibt an inwiefern für das Referenzgam von einer idealen Verteilung der Faseriängen auszugehen ist. In Abhängigkeit seiner Zusammensetzung weist dann das Gam, das aus diesem Rohstoff hergestellt ist, mehr oder weniger ausgeprägte quasi- periodische Ungleichmässigkeiten auf, die in Spektrogram- men darstellbar sind.
Fig. 3 zeigt in horizontal und vertikal verschobener Darstellung vier Spektrogrammkurven 7, 8, 9, 10 für je ein Gam, das aus Fasem konstanter Länge besteht, wobei die Länge der Fasem für diese Game von der Spektrogrammkurve 7 zur Spektrogrammkurve 10 ansteigt. Längen von Fasem für diese Game sind in Fig. 2 auf der Achse 4 beispielsweise an Stellen 6, 11 , 12, und 13 abzulesen. Längs Achsen 14 sind Werte für Wellenlängen und längs einer Achse 15 sind Werte für Amplituden oder die Leistungsdichte (wie sie durch Gleichmässigkeitsprüfer erfasst wird) aufzutragen. Aus diesen Spektrogrammkurven 7 bis 10 erkennt man beispiels¬ weise, dass die Amplituden der Unregelmässigkeiten im Gam mit langen Fasem relativ klein sind, wie dies die Spektrogrammkurve 10 zeigt, für kurze Fasem aber grösser sind, wie dies die Spektrogrammkurven 8 und 9 zeigen.
Für die Spektrogrammkurven wie sie durch bekannte Gleichmässtgkeitsprüfer für Gam ausge¬ geben werden, gilt die Formel
1 π f L
(A) P (f) =~ sin2 ( ) wobei n v
p die Leistungsdichte, wie sie in einem bekannten Gleichmässigkeitsprüfer für Gam gemes¬ sen wird, n die Anzahl der Fasem im Querschnitt des Garns, L die Länge der Fasem f die Messfrequenz und v die Messgeschwindigkeit des Garns bedeuten.
Bei einigen Gleichmässigkeitsprüfem wird die Leistung mit Bandfiltem gemessen, die kon¬ stante relative Bandbreite aufweisen. Beispielsweise sind pro Oktave 5 Bandfilter angeordnet, deren Bandgrenzen sich berühren. So ergibt sich statt der hier gezeigten kontinuierlichen Kurve eine treppenförmige Spektrogrammkurve.
Für ein Spektrogramm in kontinuierlicher Form gilt Formel
π L sin ( ) λ (B) a (log λ) = c wobei
Vλ / L
c eine Proportionalitätskonstante ist.
Da letztlich für den Vergleich der simulierten Flächengebilde einerseits an bekannten Gam- prüfem gemessene Parameter verwendet werden, ist es zweckmässig auch für die Simulation des Referenzgames und des Referenzbildes andererseits möglichst mit Werten zu arbeiten wie sie in den Gamprüfem ermittelt werden.
So liefern bekannte Garnprüfer Darstellungen von Spektrogrammen bei denen statt der Leistungsdichte die Wurzel der Leistung oder statt der Frequenz die Wellenlänge in logarith¬ mischem Massstab angegeben ist. Dies ist bei der gezeigten Darstellung der Formel (B) be¬ rücksichtigt.
Aus den Spektrogrammkurven 7 bis 10 für Game, die aus Fasem gleicher Länge aufgebaut sind, soll eine Spektrogrammkurve für ein Gam abgeleitet werden, das aus Fasem mit unter¬ schiedlichen Längen besteht wie dies ja bei realen Garnen üblich ist.
Fig. 4 zeigt deshalb eine Spektrogrammkurve 16, die durch Überlagerung mehrerer Spek¬ trogrammkurven wie z.B. die Spektrogrammkurven 7, 8, 9, 10 entstanden ist. Aus dem Sta¬ peldiagramm (Fig. 1) können für Faserlängenwerte, die beispielsweise in konstanten Abstän¬ den längs der Achse 14 vorgegeben werden, Werte für die Häufigkeit aus den Kurven 2 oder 3 entnommen werden. Mit diesen Werten können die Spektrogramme für die betreffenden Faserlängen gewichtet werden. Die Spektrogrammkurve 16 wird gemäss der nachstehenden Formel (C) für die gewichtete Spektrogrammkurve berechnet:
Figure imgf000009_0001
k der Logarithmus des Längenverhältnisses benachbarter Klassen L/LH1 und h die Häufigkeit der Faserzahl in Abhängigkeit von der Faserlänge, wie sie aus der Fig. 2 zu entnehmen ist, bedeutet.
Fig. 5 zeigt eine Spektrogrammkurve 17, die aus der Spektrogrammkurve 16 abgeleitet ist. In der Spektrogrammkurve 17 sind Fehler berücksichtigt, die ein Gam als Folge von Produk¬ tionsbedingungen aufweist, die nicht ideal sind. Solche, beispielsweise durch Produktions¬ maschinen bewirkte oder nicht behobene Fehler sind meistens langwellig, weshalb die Spektrogrammkurve 17 insbesondere in einem Bereich 18 von der Spektrogrammkurve 16 abweicht. Die Abweichung im Bereich 18 kann durch Werte aus bekannten Längenvariations¬ kurven CV(L) und Massenvariationskurven CVm ermittelt werden, wie nachfolgend noch dar¬ gelegt wird.
Fig. 6 zeigt drei Grenzen 19, 20 und 21, die Felder begrenzen, in denen Längenvariations¬ kurven CV(L) für Game unterschiedlicher Qualität liegen können. Diese sind über einer hori¬ zontalen Achse 22 mit Werten für Schnittlängen der Game und neben einer vertikalen Achse 23, mit Werten für prozentuale Abweichungen von einem Mittelwert, aufgetragen. Die Grenze 19 betrifft Game der schlechtesten, Grenze 21 Game der besten Qualität. Daraus erkennt man, dass bei Garnen guter Qualität die Abweichungen vom Mittelwert mit zunehmender Schnittlänge stärker abnehmen, als für Game schlechter Qualität. Zusätzlich ist eine Längen¬ variationskurve 50 eines idealen Games eingezeichnet. Da gemäss den Figuren 3 und 4 bekannt ist, dass langwellige Fehler im Gam kleinere Amplitude haben als kurzwellige Fehler, gibt die Fig. 6 einen Hinweis darauf, dass bei Garnen schlechter Qualität wegen schlechter Produktionsmaschinen auch langweilige Fehler noch Amplituden haben, die nicht vernachläs¬ sigt werden können. Deshalb müssen die Amplitudenwerte aus der Spektrogrammkurve 16 mit einem Faktor korrigiert bzw. multipliziert werden, der die real vorhandenen langwelligen Fehler im nicht idealen Gam berücksichtigt. Diese Korrektur soll im abfallenden Ast der Spek¬ trogrammkurve 16 insbesondere für Schnittlängen über ca. 0.5 m im Bereiche 18 erfolgen. Der Faktor wird für verschiedene Schnittlängen gebildet und ergibt sich aus dem Abstand a zwischen der Längenvariationskurve 50 und der gewählten Grenze 21, 20, 19. Da längs bei¬ den Achsen 22, 23 die Werte logarithmisch aufgetragen sind, kann dieser Abstand a durch Entlogarithmisierung direkt in einen Faktor umgewandelt werden. Durch diese Korrektur ent¬ steht aus der Spektrogrammkurve 16 die Spektrogrammkurve 17. Aus dem vorliegenden Spektrogramm 17 soll nun durch Berechnung ein Gamsignal herge¬ stellt werden, wie es auch ein Garnprüfer ausgeben könnte. Dies wird in Fig. 8 dargestellt. Dazu wird eine inverse Fourier-Transformation eingesetzt, die aus Signalen im Spektralbe¬ reich zu einem Ausgangssignai fuhren soll, das Querschnitts- oder Massenabweichungen längs des Garns darstellt. Dazu wird die Spektrogrammkurve 17 logarithmisch in Klassen aufgeteilt, die hier durch Rechtecke 29 bis 35 dargestellt sind. In logarithmischem Massstab weisen diese Klassen unter sich gleiche Längen auf. Jede Klasse 29 bis 35 stellt somit auch einen Wellenlängenbereich dar, der auch weiter in mehrere Kanäle unterteilt werden kann, so z.B. in 5 bis 10 Kanäle pro Oktave. Jeder Klasse 29 bis 35 ist ein Sinusgenerator 36 bis 42 zugeordnet, dessen Frequenz umgekehrt proportional zur Wellenlänge der Klasse und dessen Amplitude proportional zur Höhe der Klasse, bzw. zur Häufigkeit (entsprechend der Höhe des Rechteckes) der durch die Klasse dargestellten Abweichungen ist. Jeder Generator 36 bis 42 gibt somit ein sinusförmiges Signal aus, die durch Überlagerung zusammengemischt werden, so dass ein einziges Ausgangssignal entsteht, das Massenabweichungen von einem Mittel¬ wert über die Zeit darstellt, wie es beispielsweise in der Fig. 10 gezeigt ist. Für dieses Aus¬ gangssignal kann ein Variationskoeffizient in an sich bekannter Weise ermittelt werden.
Solche Variationskoeffizienten sind auch in der Fig. 7 für bekannte Game aufgezeichnet. Fig. 7 zeigt drei Grenzen 24, 25 und 26 innerhalb denen Werte der Massenvariation für Game unterschiedlicher Qualität liegen können. Diese sind über einer horizontalen Achse 27 mit Werten für die sogenannte Garnnummer oder Feinheit (welche zur Dicke in vers proportional ist) und neben einer Achse 28, mit Werten für Variationskoeffizienten CV in Prozenten von einem Mittelwert, aufgetragen. Die Grenze 24 betrifft Game der schlechtesten, Grenze 26 Game der besten Qualität. Daraus erkennt man, dass bei Garnen guter Qualität die Abwei¬ chungen vom Mittelwert mit zunehmender Garnnummer schwächer zunehmen, als für Game schlechter Qualität. Nun hat man ja eine Vorstellung über die Qualität des Garns das man simulieren möchte. Aus dieser Vorstellung kann für das betreffende Gam aus der Fig. 7 für eine bestimmte Garnnummer der Variationskoeffizient aus einer der Grenzen 24, 25, 26 ent¬ nommen werden. Vergleicht man diesen mit dem Variationskoeffizienten für das Ausgangs¬ signal gemäss Fig. 8, so stellt man wahrscheinlich einen Unterschied fest. Daraus ermittelt man einen Faktor, mit dem das gesamte Ausgangssignal multipliziert wird, mit dem also jede Auslenkung des Signales zu einer Zeit vergrössert oder verkleinert wird. So entsteht ein simu¬ liertes Signal, das weitgehend an reale Umstände angepasst ist.
Die Anpassung der Simulation des Games an reale Umstände kann aber noch weiter getrie¬ ben werden. Dazu kann zusätzlich die Frequenz jedes Sinusgenerators (Fig. 8) vor dem Mi¬ schen noch mit einem Zufallssignal in der Frequenz moduliert werden, so dass ein oreitbandi- geres Signal entsteht. Die Bandbreite des Zufallssignals entspricht vorzugsweise den Kanal- abständen. Allerdings weisen Game meist noch sogenannte seltene Ereignisse wie Nissen, Dickstellen, Dünnstellen oder Fremdkörper auf, die bis dahin nicht berücksichtigt wurden. Solche Ereignisse können mit einem Zufallsgenerator simuliert und dem Signal beigemischt werden. Die Häufigkeit und Grösse solcher Ereignisse ist beispielsweise der Publikation "USTER STATISTICS" für die betreffenden Ereignisse zu entnehmen. Dem Zufallsgenerator können Häufigkeitswerte eingegeben werden, wie sie beispielsweise aus der Fig. 9 entnom¬ men werden können.
Fig. 9 zeigt ein Beispiel einer Grafik wie sie in den oben erwähnten USTER STATISTICS neben Grafiken gemäss den Figuren 6 und 7 zu finden ist. Diese zeigt drei Grenzen 43, 44 und 45 für Werte, die eine Anzahl seltener Ereignisse pro Gamiänge angeben. Diese Werte und Grenzen sind über einer horizontalen Achse 46 mit Werten für die Garnnummer und neben einer Achse 47, mit Werten für die Anzahl Ereignisse pro 1000 Meter Gam aufgetra¬ gen. Die Grenze 43 betrifft Game der schlechtesten, Grenze 45 Game der besten Qualität. Daraus erkennt man, dass bei Garnen guter Qualität die Anzahl Ereignisse mit zunehmender Garnnummer schwächer zunimmt, als bei Gamen schlechter Qualität. Die Beimischung mit dem Zufallsgenerator kann mit einer zufällig erzeugten Amplitude und Länge, die die Abwei¬ chung des Ereignisses vom Mittelwert quantifiziert, erfolgen. Der Zufallsgenerator gibt dann Impulse aus, die dem Ausgangssignal gemäss Fig. 8 überlagert werden und die einem Erfah¬ rungswert typischer Imperfektionen entsprechen. Fig. 9 stell nur ein Betspiel von vielen Stati¬ stiken dar, die die Häufigkeit von spezieilen Imperfektionen wie Dickstellen, Dünnstellen, Nissen, Schalenteile, Fremdstoffe usw auch getrennt angeben.
Fig. 10 zeigt beispielsweise eine an sich für Gam bekannte Variationskurve 48 für Massen¬ variationen, die von einem Mittelwert M abweichend dargestellt sind. Das mit den Figuren 2 bis 8 dargestellte Verfahren liefert nun eine solche Variationskurve 48, die über einer Achse 49 aufgezeichnet ist, auf der Werte für die Gamiänge aufgetragen sind. Zu jeder einzelnen Variation, die durch eine vertikale Abweichung dargestellt ist, deren Höhe dem Ausmass der Abweichung vom Mittelwert M entspricht, ist auch die Lage im Gam oder längs des Gams bekannt. Die Variationskurve 48 unterscheidet sich in ihrer Art von einer Variationskurve, die durch Messung eines Gams in einem Garnprüfer ermittelt wurde nicht. So können die ein¬ zelnen Variationen oder Signalpunkte oder die Werte die sie darstellen, direkt in Bildpunkte gewandelt und aneinandergereiht werden, so dass eine Simulation eines Gams entsteht. Die Abweichungen der Signalpunkte geben dabei ein Mass für die Intensität einer Farbe oder eines Grauwertes an. Werden nun mehrere Reihen solcher Bildpunkte aneinandergereiht, so entsteht beispielsweise das Bild 51 (Fig. 1) aus dem klar einzelne Reihen 60, 61 , 62 erkenn¬ bar sind, die aus Bildpunkten zusammengesetzt sind, die hier nur in zwei Intensitäten oder Abstufungen, d.h. schwarz oder weiss erscheinen. Auch das Bild 52 entsteht in gleicher wei¬ se, lediglich mit dem Unterschied, dass die Parameter oder das Messsignal, die in Bildpunkte umgewandelt wurden, von einem Gam stammen das als Referenz dient und durch Messung des Gams in einem Gamprüfer oder durch Simulation ermittelt wurden. In entsprechender Weise sind auch Simulationen für Gewebe mit verschiedenen Bindungen möglich, beispiels¬ weise für Gewirke. Dann sind die Bildpunkte eines Games im Bild entsprechend dem Verlauf des Games im betreffenden Flächengebilde angeordnet. So wie in Geweben sich die Kett- und Schussfäden kreuzen und damit überdecken, so bilden die Fäden oder Game im Gewirke Maschen. In beiden Fällen kann man die Überdeckung in der Simulation, durch verstärkte Intensität an dieser Stelle, berücksichtigen oder nicht.
Fig. 11 zeigt ein an sich bekanntes Gamprüfgerät 53, das aus dem eigentlichen Prüfgerät 54, einer Auswerte-und Bedienungseinheit 55 und einem Drucker 56 besteht. Das Prüfgerät 54 ist mit einem oder mehreren Messmodulen 57 versehen, welche Messorgane für die zu untersu¬ chenden Parameter aufweisen. Ein Gam 57, dessen Parameter, wie z.B. die Masse, die Haarigkeit oder die Struktur fortlaufend gemessen werden sollen, wird in bekannter Weise durch die Messorgane transportiert.
Das erfindungsgemässe Verfahren kann somit in eine Anzahl Schritte zusammengefasst wie folgt dargestellt werden: a) Erzeugen von Bildpunkten eines Referenzgames durch Messung mindestens eines relevanten Parameters an einem Referenzgam und anschliessendes Umwandeln der Werte des Parameters in Werte für die Intensität von Bildpunkten, die aneinanderge¬ reiht eine Simulation fύr das Referenzgam ergeben, oder durch Erzeugen der Bild¬ punkte durch Berechnung des oder der relevanten Parameter aus statistischem Mate¬ rial wie Durchschnittswerten für Game. Dabei gehört zu jedem Bildpunkt auch eine Information über seine Lage längs des Referenzgams.
b) Erzeugen von Bildpunkten eines vorgegebenen Games durch Messung mindestens eines relevanten Parameters am vorgegebenen Gam und anschliessendes Umwan¬ deln der Werte des Parameters in Werte für die Intensität von Bildpunkten, die anein¬ andergereiht eine Simulation für das vorgegebene Gam ergeben. Dabei gehört zu jedem Bildpunkt auch eine Information über seine Lage längs des vorgegebenen Gams.
c) Erzeugen eines ersten Bildes eines textilen Flächengebildes durch Anordnen der Bild¬ punkte eines Games entsprechend dem Gamverlauf im Flächengebilde, z.B. durch Nebeneinanderlegen der Reihen der Bildpunkte eines vorgegebenen Gams, dessen Parameter gemessen sind. d) Erzeugen eines zweiten Bildes eines textilen Flächengebildes durch Anordnen der Bildpunkte eines Gams entsprechend dem Garnvertauf im Flächengebilde, z.B. durch Nebeneinanderlegen der Reihen der Bildpunkte des Referenzgames.
e) Vergleich des ersten und des zweiten Bildes indem diese nebeneinander oder überein¬ ander abgebildet werden. Hier besteht auch die Möglichkeit, den Inhalt des ersten Bildes durch den Inhalt des zweiten Bildes auszutauschen und umgekehrt, oder konti¬ nuierlich die Bilder zu überblenden.
Es besteht auch die Möglichkeit, statt von statistischen Werten auszugehen, wie sie in den Stapeldiagrammen und Spektrogrammen enthalten sind, von einer Simulation eines Gam- signales auszugehen. Dabei könnte jede Faser durch einen Rechteckimpuls mit der Länge der Faser ersetzt und durch zufällige Verteilung dieser Rechteckimpulse ein Gamsignal erzeugt werden. Zusätzlich zu der Simulation von Flächengebilden wie Geweben, Gewirken usw. kann so auch eine Simulation von sogenannten Gamschautafeln erfolgen. So kann je ein Bild einer Gamschautafel mit einem Referenzgam und einer Gamschautafel mit einem gegebenen Gam erzeugt werden. Auch hier kann sowohl das Referenzgam wie auch das gegebene Gam durch gemessene Parameter oder berechnete Parameter simuliert werden.
Man kann davon ausgehen, dass die gesamte Berechnung des Gamsignais für das Referenz¬ gam in einem Computer durchgeführt werden kann, der durch einen Fachmann zu diesem Zweck und zur Durchführung von Operationen wie sie anhand der Figuren 2 bis 10 dargestellt wurden programmiert werden kann.
Das erfindungsgemässe Verfahren kann in einer Vorrichtung, wie sie die Fig. 11 zeigt, durch¬ geführt werden, wenn die Auswertungs- und Bedienυngseinheit 55 ein entsprechendes Pro¬ gramm aufweist. Sind darin beispielsweise die Parameter für ein- oder mehrere Referenzgar¬ ne gespeichert, so kann jederzeit ein Bild eines Referenzgewebes- oder Gewirkes auf dem Bildschirm erzeugt werden. Daneben können Parameter für ein reales Gam 58 im Messmodul 57 geprüft werden und ebenfalls in der Auswertungs- und Bedienungseinheit 55 zu einem Bild für ein simuliertes Gewebe oder Gewirke führen. Mit hilfe von bekannten Programmen zur Bildverarbeitung und Bilddarstellung können die beiden Bilder auf dem Bildschirm oder durch den Drucker 56 so ausgegeben werden, dass ein Vergleich gut möglich ist.

Claims

Patentansprüche:
1. Verfahren zur Beurteilung der Auswirkung von Garnfehlem auf textile Flächengebilde, durch Simulation eines Bildes des Flächengebildes ausgehend von einem vorgegebe¬ nen Gam, dadurch gekennzeichnet, dass ein erstes Bild (51) des Flächengebildes durch eine Simulation ausgehend von Parametem des vorgegebenen Games erzeugt wird, dass ein zweites Bild (51) des Flächengebildes durch eine Simulation ausgehend von Parametem eines Referenzgames erzeugt wird und dass ein Vergleich des ersten Bildes mit dem zweiten Bild durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Parameter des vor¬ gegebenen Games (58) durch Messung des Games in einem Gamprüfgerät (53) er¬ mittelt werden, wobei für einen Parameter mehrere Werte ermittelt und zu jedem Wert eine Angabe über den Ort längs des Gams gemacht wird, auf den ein Wert zutrifft.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die Parameter des Refe¬ renzgames durch Berechnung aus statistisch ermittelten Werten ermittelt werden.
4. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Parameter des Refe¬ renzgames durch Messung ermittelt werden.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass durch Berechnung für einen Parameter eine Variationskurve (48) ermittelt wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass als Parameter die Masse gewählt wird und dass eine Massenvariationskurve (48) ermittelt wird.
7. Verfahren nach Anspruch 2 und 5, dadurch gekennzeichnet, dass Werten aus den Variationskurven Grau-/oder Farbwerte zugeordnet werden.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass Grau-/oder Farbwerte in Bildpunkte umgesetzt und in Reihen (60, 61 , 62) aneinandergereiht werden um ein Gam zu simulieren und dass die Reihen entsprechend dem Garnvertauf im Flächen¬ gebilde angeordnet werden um ein Flächengebilde zu simulieren.
9. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass aus Spektrogrammkurven (7, 8, 9, 10) und aus Stapeldiagrammen (1) Variationskurven (48) für ein simuliertes Gam gewonnen werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass seltene Ereignisse in den Variationskurven (48) berücksichtigt werden.
PCT/CH1997/000222 1996-06-12 1997-06-02 Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde WO1997047959A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE59707165T DE59707165D1 (de) 1996-06-12 1997-06-02 Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde
US09/194,764 US6510734B1 (en) 1996-06-12 1997-06-02 Method of assessing the effects of yarn defects on textile fabrics
EP97922799A EP0904532B2 (de) 1996-06-12 1997-06-02 Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde
JP50102198A JP4113982B2 (ja) 1996-06-12 1997-06-02 繊維の面組織における糸欠陥の作用を評価する方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH1472/96 1996-06-12
CH147296 1996-06-12

Publications (1)

Publication Number Publication Date
WO1997047959A1 true WO1997047959A1 (de) 1997-12-18

Family

ID=4211284

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH1997/000222 WO1997047959A1 (de) 1996-06-12 1997-06-02 Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde

Country Status (6)

Country Link
US (1) US6510734B1 (de)
EP (1) EP0904532B2 (de)
JP (1) JP4113982B2 (de)
CN (1) CN1105913C (de)
DE (1) DE59707165D1 (de)
WO (1) WO1997047959A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006225A2 (de) * 1998-12-02 2000-06-07 W. SCHLAFHORST AG & CO. Verfahren und Vorrichtung zur Auswertung der Wirkung von Garneigenschaften auf das Aussehen textiler Flächengebilde
WO2000073189A1 (de) * 1999-05-29 2000-12-07 Zellweger Luwa Ag Verfahren und vorrichtung zum reinigen von garn
WO2008092430A2 (de) * 2007-01-29 2008-08-07 Georg Fritzmeier Gmbh & Co. Kg Verfahren und einrichtung zum berührungslosen erfassen einer einbaulage eines bauteils

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2388453C (en) * 2002-05-31 2009-02-03 Precarn Incorporated Method and apparatus to evaluate dielectrically-anisotropic materials using analysis of multiple microwave signals in different planes of polarization
EP2646615A2 (de) * 2010-12-01 2013-10-09 The Procter and Gamble Company Verfahren zur bewertung von leistungseigenschaften
US20130346007A1 (en) * 2011-03-06 2013-12-26 Uster Technologies, Ag Characterizing an Elongated Textile Test Material
CZ2011788A3 (cs) * 2011-12-05 2013-01-16 VÚTS, a.s. Zpusob zjistování vzhledových vlastností príze v plose a zarízení k jeho provádení
FR2994481B1 (fr) * 2012-08-07 2014-08-29 Snecma Procede de caracterisation d'un objet en materiau composite
WO2017041192A1 (de) 2015-09-10 2017-03-16 Uster Technologies Ag Vorhersage des aussehens einer textilen fläche
WO2017041191A1 (de) 2015-09-10 2017-03-16 Uster Technologies Ag Vorhersage des aussehens einer textilen fläche
MX2021014207A (es) * 2019-05-21 2022-01-18 Shaw Ind Group Inc Métodos y sistemas para medir la textura de una alfombra.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2744241A1 (de) * 1977-10-01 1979-04-05 Jank Wilhelm Ueberwachungseinrichtung zur erkennung optisch erfassbarer linienfoermiger fertigungsfehler bei bahnfoermigem material
JPS60167968A (ja) * 1984-02-06 1985-08-31 帝人株式会社 ワ−パ−機用未解撚検出方法
US4984181A (en) * 1985-04-18 1991-01-08 E. I. Du Pont De Nemours And Company Method of simulating by computer the appearance properties of a fabric
DE4131664A1 (de) * 1991-09-23 1993-03-25 Rieter Ingolstadt Spinnerei Verfahren und vorrichtung zum erfassen von garnfehlern
EP0578975A1 (de) * 1992-06-18 1994-01-19 Zellweger Luwa Ag Verfahren und Vorrichtung zur Vorausberechnung der Auswirkung von Garnfehlern auf dem Aussehen von Gewirken oder Geweben
US5319578A (en) * 1992-09-24 1994-06-07 Lawson-Hemphill, Inc. Yarn profile analyzer and method
DE4341685A1 (de) * 1993-12-07 1995-06-08 Rieter Ingolstadt Spinnerei Optisches Garnstruktur-Prüfgerät und Verfahren zum Feststellen der Struktur eines mit Meßfasern versetzten Garnes
JPH0843318A (ja) * 1994-08-01 1996-02-16 Kanebo Ltd 布目欠点の検出方法及び装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8601696A (pt) * 1985-04-18 1986-12-16 Du Pont Metodo de simulacao,por computador,das propriedades de aparencia de um tecido de malha de urdidura
US5146550B1 (en) * 1986-05-21 1996-01-23 Zellweger Uster Ag Process for displaying measuring results in graphic form in test apparatus for testing textile goods and apparatus for carrying out the process
US5671061A (en) 1992-06-18 1997-09-23 Zellweger Luwa Ag Method and apparatus for assessing the effect of yarn faults on woven or knitted fabrics
AU7550894A (en) * 1993-11-10 1995-05-29 Lawson-Hemphill, Incorporated System and method for electronically displaying yarn qualities
US5570188A (en) * 1993-11-10 1996-10-29 Lawson-Hemphill, Inc. System and method for electronically displaying yarn qualities
US6130746A (en) * 1994-03-10 2000-10-10 Lawson-Hemphill, Inc. System and method for electronically evaluating predicted fabric qualities
JPH08254504A (ja) * 1994-11-29 1996-10-01 Zellweger Luwa Ag 伸長された物体の特性を記録するための方法と装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2744241A1 (de) * 1977-10-01 1979-04-05 Jank Wilhelm Ueberwachungseinrichtung zur erkennung optisch erfassbarer linienfoermiger fertigungsfehler bei bahnfoermigem material
JPS60167968A (ja) * 1984-02-06 1985-08-31 帝人株式会社 ワ−パ−機用未解撚検出方法
US4984181A (en) * 1985-04-18 1991-01-08 E. I. Du Pont De Nemours And Company Method of simulating by computer the appearance properties of a fabric
DE4131664A1 (de) * 1991-09-23 1993-03-25 Rieter Ingolstadt Spinnerei Verfahren und vorrichtung zum erfassen von garnfehlern
EP0578975A1 (de) * 1992-06-18 1994-01-19 Zellweger Luwa Ag Verfahren und Vorrichtung zur Vorausberechnung der Auswirkung von Garnfehlern auf dem Aussehen von Gewirken oder Geweben
US5319578A (en) * 1992-09-24 1994-06-07 Lawson-Hemphill, Inc. Yarn profile analyzer and method
DE4341685A1 (de) * 1993-12-07 1995-06-08 Rieter Ingolstadt Spinnerei Optisches Garnstruktur-Prüfgerät und Verfahren zum Feststellen der Struktur eines mit Meßfasern versetzten Garnes
JPH0843318A (ja) * 1994-08-01 1996-02-16 Kanebo Ltd 布目欠点の検出方法及び装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 8541, Derwent World Patents Index; Class F02, AN 85-253290, XP002024582 *
PATENT ABSTRACTS OF JAPAN vol. 96, no. 002 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1006225A2 (de) * 1998-12-02 2000-06-07 W. SCHLAFHORST AG & CO. Verfahren und Vorrichtung zur Auswertung der Wirkung von Garneigenschaften auf das Aussehen textiler Flächengebilde
EP1006225A3 (de) * 1998-12-02 2000-10-18 W. SCHLAFHORST AG & CO. Verfahren und Vorrichtung zur Auswertung der Wirkung von Garneigenschaften auf das Aussehen textiler Flächengebilde
WO2000073189A1 (de) * 1999-05-29 2000-12-07 Zellweger Luwa Ag Verfahren und vorrichtung zum reinigen von garn
US6922604B2 (en) 1999-05-29 2005-07-26 Uster Technologies Ag Process and device for adjusting clearing limits
WO2008092430A2 (de) * 2007-01-29 2008-08-07 Georg Fritzmeier Gmbh & Co. Kg Verfahren und einrichtung zum berührungslosen erfassen einer einbaulage eines bauteils
WO2008092430A3 (de) * 2007-01-29 2008-11-13 Fritzmeier Georg Gmbh & Co Kg Verfahren und einrichtung zum berührungslosen erfassen einer einbaulage eines bauteils

Also Published As

Publication number Publication date
US6510734B1 (en) 2003-01-28
CN1105913C (zh) 2003-04-16
EP0904532A1 (de) 1999-03-31
CN1222232A (zh) 1999-07-07
JP4113982B2 (ja) 2008-07-09
EP0904532B2 (de) 2007-11-21
EP0904532B1 (de) 2002-05-02
DE59707165D1 (de) 2002-06-06
JP2000512753A (ja) 2000-09-26

Similar Documents

Publication Publication Date Title
EP0578975B2 (de) Verfahren und Vorrichtung zur Beurteilung der Auswirkung von Garnfehlern auf Gewebe oder Gewirke
EP2278328B1 (de) Verfahren zur Charakterisierung von Effektgarn
EP0904532B1 (de) Verfahren zur beurteilung der auswirkungen von garnfehlern auf textile flächengebilde
DE3603235A1 (de) Vorrichtung und verfahren zum analysieren von parametern eines faserigen substrats
EP0893520A1 (de) Verfahren zur Darstellung von Eigenschaften von langgestreckten textilen Prüfkörpern
EP1100989B1 (de) Verfahren und vorrichtung zur beurteilung von fehlern in textilen flächengebilden
DE2723329A1 (de) Vorrichtung zum pruefen von oberflaechen
EP1187786B1 (de) Verfahren und vorrichtung zum reinigen von garn
CH671105A5 (de)
CH679428A5 (de)
EP0249741B1 (de) Verfahren zur Ausgabe von Messergebnissen in graphischer Form bei Prüfgeräten für textiles Prüfgut und Vorrichtung zur Durchführung des Verfahrens
EP0927887A1 (de) Verfahren zur Erkennung periodischer Fehler in einem längsbewegten Prüfgut
EP3320134B1 (de) Vorhersage des aussehens einer textilen fläche
DE2631202B2 (de) Verfahren und Schaltungsanordnung zum selektiven Messen des Summenpegels eines zu messenden Signals
DE3045317C2 (de)
DE1115475B (de) Verfahren und Einrichtung zur Bestimmung und Klassierung von sporadisch auftretenden Fehlern in Textilprodukten
WO2005035862A1 (de) Verfahren zum verarbeiten von signalen, die durch abtastung von textilen flächengebilden gewonnen werden
DE3111351C2 (de)
CH355628A (de) Verfahren und Vorrichtung für die kapazitive Messung des Gewichtes pro Längeneinheit an Textilgütern
EP0932711A1 (de) Verfahren und vorrichtung zur beurteilung der garnqualität
DD281874A5 (de) Verfahren und messeinrichtung zur qualitaetsbestimmung waehrend des mischprozesses
DE29724825U1 (de) Garn- und Gewebesimulationssystem

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97195501.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09194764

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1997922799

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997922799

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1997922799

Country of ref document: EP