WO1997040339A1 - Tactile sensor and method for determining a shear force and slip with such a tactile sensor - Google Patents
Tactile sensor and method for determining a shear force and slip with such a tactile sensor Download PDFInfo
- Publication number
- WO1997040339A1 WO1997040339A1 PCT/NL1997/000202 NL9700202W WO9740339A1 WO 1997040339 A1 WO1997040339 A1 WO 1997040339A1 NL 9700202 W NL9700202 W NL 9700202W WO 9740339 A1 WO9740339 A1 WO 9740339A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wires
- tactile sensor
- row
- base plate
- covering
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/20—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
- G01L1/205—Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using distributed sensing elements
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B7/00—Measuring arrangements characterised by the use of electric or magnetic techniques
- G01B7/004—Measuring arrangements characterised by the use of electric or magnetic techniques for measuring coordinates of points
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/22—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers
- G01L5/226—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping
- G01L5/228—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring the force applied to control members, e.g. control members of vehicles, triggers to manipulators, e.g. the force due to gripping using tactile array force sensors
Definitions
- the invention relates to a tactile sensor comprising a base plate provided at a first side with a plurality of electrically conducting wires forming a row, and provided at a second side opposite to the first side of the base plate with a plurality of electrically conducting wires forming a column, each of these wires forming cross points with the electrically conducting row wires, wherein each of the column wires forms an electrical contact with the row wires near each cross point, which electrical contacts are located at the first side of the base plate, and the first side of the base plate is provided with a covering having a pressure- dependent electrical resistance and which, together with the electrical contacts of the column wires and the row wires, is suitable to form one or more current paths.
- Such a tactile sensor is known from the journal “De Ingenieur”, volume 108, No. 5, 20 March 1996, pages 28-31.
- the base plate of the tactile sensor of the prior art is a so-called printed circuit board. Both sides of the print are provided with this printed circuit.
- the printed circuit consists of 16 equidistant strips of conductive material on a first side of the print and 16 equidistant strips of electrically conducting material on the other side of the print arranged orthogonally to the fist strips. At the cross points, a metal connection from the one side to the other side is provided for the strips on the first side only, but in such a manner that these electric interconnections form islands at the cross points within the strips of conductive material on the other side of the print.
- the latter side is also provided with a covering of an electrically conductive rubber which has a pressure-dependent electric resistance.
- the tactile sensor according to the invention is characterized, in that the covering is divided into segments, each segment covering at least two adjacent cross points. This makes it possible to measure a difference in load ensuing from shear forces at adjacent cross points because, in contrast with the prior art, the segmentation now admits varying normal forces at these adjacent cross points.
- the invention also embodies a method for the deter- mination of a shear force when a load is applied on a tac ⁇ tile sensor as discussed above.
- this method is characterized in that the resistance values of current paths formed between the connection points of each of the electrically conductive row wires and of each of the electrically conductive column wires is determined, that for each current path these resistance values are converted to numerical values which are a measure for the load at the cross points of the row and column wires, and that the difference between the numerical values of adjac- ent cross points is determined, as being a measure of the shear force exerted on the sensor.
- each segment covers four adjacent cross points forming the corners of a square, it is possible to measure the shear forces occurring in the plane of the covering in any arbitrary orientation by resolving the measured forces in combining orthogonal directions determined by these four adjacent cross points.
- a possible embodiment of the tactile sensor in accordance with the invention is one in which the covering is composed of separate segments which are not intercon ⁇ nected.
- a preferred embodiment of the tactile sensor according to the invention is provided with a covering comprising an undivided base surface resting on the first side of the base plate, while the base surface is provided with separate projections forming the segments .
- the manufacture of this tactile sensor is particularly simple.
- This covering can be particularly easily provided if it is formed from an electrically conducting rubber having a pressure-dependent electrical resistance, due to the fact that the rubber is incised crosswise, with the segments being located between the incisions .
- the tactile sensor according to the invention is particularly suitable for the measurement of shear forces.
- the invention provides a tactile sensor possessing an increased sensitivity for the determination of slip occurring while the tactile sensor is loaded.
- this sensor according to the invention is applied such that resistance values are determined of current paths formed between the connection points of each of the electrically conducting row wires and of each of the electrically conducting column wires, that these resistance values are converted for each current path to numerical values constituting a measure for the load at the cross points of the row and column wires, that these values are totalized to produce a principal value, and that from a series of these principal values a frequency spectrum is determined and the occurrence of predetermined frequency characteristics is detected as an indication of the slip.
- Fig la shows a top view of the tactile sensor according to the invention
- Fig. lb shows a side view of the tactile sensor according to the invention
- Fig. 2a shows a cross-section of the tactile sensor according to the invention
- Fig. 2b shows a partial top view of the tactile sensor according to the invention
- Fig. 3 shows a resistance characteristic of the covering constituting part of the tactile sensor according to the invention
- Fig. 4a shows a measurement characteristic at normal load of the tactile sensor according to the invention.
- Fig. 4b shows a measurement characteristic when the tactile sensor according to the invention is loaded with a shear force.
- Identical parts in the Figures carry identical ref ⁇ erence numbers.
- Fig. la shows the top view of the tactile sensor 1, wherein this top side of the material of the covering is incised.
- the covering is preferably formed from an electrically conducting rubber with a pressure-dependent electrical resistance of which a possible characteristic is shown in Fig. 3.
- the incisions are applied crosswise, with the segments 3 located between the incisions. This is also clearly visible in Fig. lb, showing also that the covering, which is generally indicated by reference number 4, is applied on a base plate 5.
- the base plate 5 is at both sides provided with a printed circuit, namely on the first side a printed circuit 6 and on the second side opposite the first side of the base plate 5, a printed circuit 7.
- the circuit 7 has metallized borings 8 and 9 through the material of the base plate 5 to allow electric contacts 10 and 11 to be formed at the first side of the base plate.
- a partial top view in which the covering 4 is not represented, is shown in Fig. 2b, representing a schematic top view of a part of the sensor, omitting the covering 4.
- electrically conducting wires 7 are shown as well as the contacts 10 and 11 provided at the top side of the base plate 5, electrically connected with the wires 7.
- These contacts 10 and 11 are arranged like islands in the electrically conducting wires 6 provided at the top side of the base plate 5, and are oriented transversely in relation to the conducting wires 7 at the under side of the base plate 5.
- the electric contact between the contacts 10 and 11 which are connected with the conducting wires 7 and the conducting wires 6, is furnished by the covering 4.
- this covering 4 When this covering 4 is loaded, the electrical contact between the conducting wires 6 and the conducting wires 7 is enhanced and this is measured in order to determine the type and the load exerted on the tactile sensor 1.
- the resistance value R of the covering 4 decreases with increasing load.
- the covering 4 is divided in segments 3, each segment covering at least two adjacent cross points. These cross points are the points where the electrical wires 7 and 6 cross. In the case shown in the present embodiment, these cross points coincide with the electrical contacts 10 and 11.
- each segment 3 covers four adjacent cross points forming a square, so that the shear forces can be determined in two orthogonal directions.
- Figs. 4a and 4b show an example of a tactile sensor according to the invention in which a row of 16 equidistant electrically conducting wires are provided at the under side of the base plate 5 and placed transversely to it, a column of 16 equidistant electrically conducting wires on the top side of the base plate 5, in which arrangement there are 256 cross points arrayed in a matrix.
- Fig. 4a shows the measuring results from normal loading of the tactile sensor according to the invention as measured along the 16 current paths of which one component is conducting wire 7. On the abscissa the cross points, numbered 1 to 16, are indicated, each of which is a component of such a current path.
- FIG. 4a shows that when applying an evenly distributed normal force F n to the tactile sensor, an identical resistance value as plotted on the ordinate, is measured for each current path. If, as shown in Fig. 4b, apart from a normal force F n also a shear force F t is applied a measuring result as also shown in this Figure, will ensue. It has been shown that each twosome of adjacent cross points located under a segment 3 provides a different resistance value. These resistance values are for each current path converted to numerical values, providing a measure of the load at these cross points. The difference between the adjacent cross points under one segment 3 as described above, is then determined as measure for the shear force F t exerted on the sensor 1.
- the tactile sensor according to the invention is also suitable for the deter ⁇ mination of slip occurring while the sensor is loaded.
- resistance values are determined of current paths formed between the connection points of each of the electrically conducting row wires 6, and of each of the electrically conducting column wires 7, these resistance values are converted for each current path to numerical values constituting a measure for the load at the cross points of the row and column wires, these numerical values are totalized to produce a principal value, and from a series of these principal values a frequency spectrum is determined and the occurrence of predetermined frequency characteristics is detected as an indication of the slip.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE69723067T DE69723067D1 (de) | 1996-04-19 | 1997-04-18 | Taktiler sensor und dessen verwendung zur messung von scherkraft und schlupf |
AU25781/97A AU2578197A (en) | 1996-04-19 | 1997-04-18 | Tactile sensor and method for determining a shear force and slip with such a tactile sensor |
US09/171,354 US6188331B1 (en) | 1996-04-19 | 1997-04-18 | Tactile sensor and method for determining a shear force and slip with such a tactile sensor |
EP97917481A EP0894238B1 (de) | 1996-04-19 | 1997-04-18 | Taktiler sensor und dessen verwendung zur messung von scherkraft und schlupf |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NL1002907A NL1002907C2 (nl) | 1996-04-19 | 1996-04-19 | Tastsensor en werkwijze voor het bepalen van een afschuifkracht en van slip met een dergelijke tastsensor. |
NL1002907 | 1996-04-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997040339A1 true WO1997040339A1 (en) | 1997-10-30 |
Family
ID=19762706
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/NL1997/000202 WO1997040339A1 (en) | 1996-04-19 | 1997-04-18 | Tactile sensor and method for determining a shear force and slip with such a tactile sensor |
Country Status (6)
Country | Link |
---|---|
US (1) | US6188331B1 (de) |
EP (1) | EP0894238B1 (de) |
AU (1) | AU2578197A (de) |
DE (1) | DE69723067D1 (de) |
NL (1) | NL1002907C2 (de) |
WO (1) | WO1997040339A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU90309B1 (fr) * | 1998-11-04 | 2000-05-05 | Iee Sarl | D-tecteur de passager |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20090126300A (ko) * | 2000-07-10 | 2009-12-08 | 앤드류 엘엘씨 | 셀룰러 안테나 |
GB0313794D0 (en) * | 2003-06-14 | 2003-07-23 | Univ Dundee | Tactile sensor assembly |
US20050076715A1 (en) * | 2003-10-13 | 2005-04-14 | Kuklis Matthew M. | Shear sensor apparatus |
US6964205B2 (en) * | 2003-12-30 | 2005-11-15 | Tekscan Incorporated | Sensor with plurality of sensor elements arranged with respect to a substrate |
US6993954B1 (en) * | 2004-07-27 | 2006-02-07 | Tekscan, Incorporated | Sensor equilibration and calibration system and method |
US8181540B2 (en) * | 2006-03-28 | 2012-05-22 | University Of Southern California | Measurement of sliding friction-induced vibrations for biomimetic tactile sensing |
WO2007126854A2 (en) * | 2006-03-28 | 2007-11-08 | Alfred E. Mann Institute For Biomedical Engineering At The University Of Southern California | Biomimetic tactile sensor |
US8272278B2 (en) * | 2007-03-28 | 2012-09-25 | University Of Southern California | Enhancements to improve the function of a biomimetic tactile sensor |
WO2009023334A2 (en) | 2007-05-18 | 2009-02-19 | University Of Southern California | Biomimetic tactile sensor for control of grip |
JP5003336B2 (ja) * | 2007-07-31 | 2012-08-15 | ソニー株式会社 | 検出装置、ロボット装置、および入力装置 |
JP5257896B2 (ja) * | 2009-05-22 | 2013-08-07 | 国立大学法人電気通信大学 | 滑り検出装置及び方法 |
US8515579B2 (en) * | 2009-12-09 | 2013-08-20 | GM Global Technology Operations LLC | Systems and methods associated with handling an object with a gripper |
CN101819075B (zh) * | 2010-04-26 | 2012-07-25 | 清华大学 | 一种单向支座剪力测量装置及测量方法 |
US9625333B2 (en) | 2013-03-15 | 2017-04-18 | President And Fellows Of Harvard College | Tactile sensor |
US11680860B2 (en) * | 2016-11-24 | 2023-06-20 | The University Of Queensland | Compact load cells |
WO2019244661A1 (ja) * | 2018-06-22 | 2019-12-26 | ソニー株式会社 | 制御装置、制御方法及びプログラム |
US20240115343A1 (en) * | 2019-10-04 | 2024-04-11 | National University Corporation Kagawa University | Grip tool, grip system, slip detection device, slip detection program, and slip detection method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208648A (en) * | 1977-08-18 | 1980-06-17 | Fichtel & Sachs Ag | Sensor panel for locating a load |
US4483076A (en) * | 1982-11-30 | 1984-11-20 | The United States Of America As Represented By The Secretary Of The Army | Ground contact area measurement device |
EP0595532A1 (de) * | 1992-10-30 | 1994-05-04 | AT&T Corp. | Scherfühler mit anisotropleitendem Material |
EP0658753A1 (de) * | 1993-12-17 | 1995-06-21 | Home Row, Inc. | Wandleranordnung |
WO1996013704A1 (en) * | 1994-10-26 | 1996-05-09 | Bonneville Scientific Incorporated | Triaxial normal and shear force sensor |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5553500A (en) * | 1994-10-26 | 1996-09-10 | Bonneville Scientific Incorporated | Triaxial normal and shear force sensor |
-
1996
- 1996-04-19 NL NL1002907A patent/NL1002907C2/nl not_active IP Right Cessation
-
1997
- 1997-04-18 AU AU25781/97A patent/AU2578197A/en not_active Abandoned
- 1997-04-18 US US09/171,354 patent/US6188331B1/en not_active Expired - Fee Related
- 1997-04-18 DE DE69723067T patent/DE69723067D1/de not_active Expired - Lifetime
- 1997-04-18 EP EP97917481A patent/EP0894238B1/de not_active Expired - Lifetime
- 1997-04-18 WO PCT/NL1997/000202 patent/WO1997040339A1/en active IP Right Grant
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4208648A (en) * | 1977-08-18 | 1980-06-17 | Fichtel & Sachs Ag | Sensor panel for locating a load |
US4483076A (en) * | 1982-11-30 | 1984-11-20 | The United States Of America As Represented By The Secretary Of The Army | Ground contact area measurement device |
EP0595532A1 (de) * | 1992-10-30 | 1994-05-04 | AT&T Corp. | Scherfühler mit anisotropleitendem Material |
EP0658753A1 (de) * | 1993-12-17 | 1995-06-21 | Home Row, Inc. | Wandleranordnung |
WO1996013704A1 (en) * | 1994-10-26 | 1996-05-09 | Bonneville Scientific Incorporated | Triaxial normal and shear force sensor |
Non-Patent Citations (2)
Title |
---|
MCMATH W S ET AL: "HIGH SAMPLING RESOLUTION TACTILE SENSOR FOR OBJECT RECOGNITION", PROCEEDINGS OF THE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, ORVINE, CA., MAY 18 - 20, 1993, no. -, 18 May 1993 (1993-05-18), INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, pages 579 - 583, XP000400239 * |
W.JONGKIND: "Robothand krijgt mens", DE INGENIEUR, vol. 108, no. 5, 20 March 1996 (1996-03-20), NETHERLANDS, pages 28 - 31, XP000614607 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU90309B1 (fr) * | 1998-11-04 | 2000-05-05 | Iee Sarl | D-tecteur de passager |
WO2000026626A1 (fr) * | 1998-11-04 | 2000-05-11 | I.E.E. International Electronics & Engineering S.A.R.L. | Detecteur de passager |
US6737953B2 (en) | 1998-11-04 | 2004-05-18 | I.E.E. International Electronics & Engineering S.A.R.L. | Passenger detector |
Also Published As
Publication number | Publication date |
---|---|
US6188331B1 (en) | 2001-02-13 |
AU2578197A (en) | 1997-11-12 |
EP0894238A1 (de) | 1999-02-03 |
NL1002907C2 (nl) | 1997-10-21 |
EP0894238B1 (de) | 2003-06-25 |
DE69723067D1 (de) | 2003-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0894238B1 (de) | Taktiler sensor und dessen verwendung zur messung von scherkraft und schlupf | |
EP0457900B1 (de) | Flexibler taktischer sensor zum messen der druckverteilungen vom fuss und von dichtungen | |
US5079949A (en) | Surface pressure distribution detecting element | |
US4555954A (en) | Method and apparatus for sensing tactile forces | |
US5014224A (en) | Tactile sensor | |
CA1223459A (en) | Resistive wear sensors | |
EP0171056A2 (de) | Auf die Kraftwirkung ansprechender Messfühler | |
US6373373B1 (en) | Electronic pressure-sensitive device for detecting the magnitude of load as electrical resistance | |
US4763534A (en) | Pressure sensing device | |
EP0107898B1 (de) | Berührungsmatrixsensor | |
US8184106B2 (en) | Position detection device | |
US4725817A (en) | Pressure responsive panel | |
WO2005068961A1 (en) | A sensor | |
US20020021136A1 (en) | Sensor configuration | |
US7065861B2 (en) | Method of producing a strain-sensitive resistor arrangement | |
JPH0652206B2 (ja) | 静電容量型圧力分布測定装置 | |
EP0358566B1 (de) | Folienschalter | |
US5369875A (en) | Method of manufacturing strain sensors | |
US6874376B2 (en) | Device for measuring the axle load of a motor vehicle | |
KR0145092B1 (ko) | 후막 저항체 스트레인 센서를 사용하는 포인팅 장치 트랜스듀서 | |
JP2583615B2 (ja) | 接触覚センサ | |
DE3526378A1 (de) | Vorrichtung mit einem sensor zur erkennung von muenzen | |
US6874378B2 (en) | Pressure transducer | |
EP0150600A2 (de) | Membranschalteranordnung | |
JP2001088079A (ja) | マニピュレータの接触検知装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): GH KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1997917481 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 1997917481 Country of ref document: EP |
|
REG | Reference to national code |
Ref country code: DE Ref legal event code: 8642 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09171354 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97537948 Format of ref document f/p: F |
|
NENP | Non-entry into the national phase |
Ref country code: CA |
|
WWG | Wipo information: grant in national office |
Ref document number: 1997917481 Country of ref document: EP |