WO1997038320A1 - Messvorrichtung zum messen elektrischer ströme in einem kraftbelasteten stromleiter - Google Patents

Messvorrichtung zum messen elektrischer ströme in einem kraftbelasteten stromleiter Download PDF

Info

Publication number
WO1997038320A1
WO1997038320A1 PCT/DE1997/000598 DE9700598W WO9738320A1 WO 1997038320 A1 WO1997038320 A1 WO 1997038320A1 DE 9700598 W DE9700598 W DE 9700598W WO 9738320 A1 WO9738320 A1 WO 9738320A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
measuring
separating part
current conductor
forces
Prior art date
Application number
PCT/DE1997/000598
Other languages
English (en)
French (fr)
Inventor
Walter Gross
Franz-Josef Unterlass
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to BR9708496A priority Critical patent/BR9708496A/pt
Priority to EP97920538A priority patent/EP0891557A1/de
Publication of WO1997038320A1 publication Critical patent/WO1997038320A1/de
Priority to NO984643A priority patent/NO984643L/no

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/146Measuring arrangements for current not covered by other subgroups of G01R15/14, e.g. using current dividers, shunts, or measuring a voltage drop
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4401Optical cables
    • G02B6/4415Cables for special applications
    • G02B6/4416Heterogeneous cables
    • G02B6/4417High voltage aspects, e.g. in cladding
    • G02B6/442Insulators

Definitions

  • Measuring device for measuring electrical currents in a power conductor under load
  • the invention relates to a device for measuring electrical currents in at least one current conductor loaded with mechanical forces.
  • a current measuring system is known with a high-potential sensor head which is tensioned in the power lines and thus absorbs the forces in the lines and one Air core coil with a burden for measuring the current and an analog-digital converter and a transmitter unit with LED for the digital optical transmission of the measurement signals via an optical waveguide to ground potential.
  • the sensor head is optically over the same light wave conductor supplied with energy.
  • the optical waveguide is guided in a flexible insulator.
  • the invention is based on the object of specifying a measuring device for measuring electrical currents in at least one current conductor loaded with mechanical forces.
  • the device for measuring electrical currents in at least one current conductor loaded with mechanical forces comprises at least one current sensor device and a separating part which is connected to the current conductor in an electrically insulating manner , that is to say electrically interrupts the current conductor, and which also absorbs the forces in the current conductor.
  • the current sensor device is connected in a current branch (line branch) which is electrically connected in parallel with the separating part. Since the separating part absorbs the forces in the at least one current conductor, the current sensor device no longer has to bear these forces and can therefore be made mechanically simpler.
  • the separating part is fastened via a flexible insulator to an anchorage which is at ground potential.
  • the at least one current conductor is attached to an anchoring to earth potential via a flexible insulator.
  • At least one light guide is preferably guided in the flexible isolator for the optical transmission of a measurement signal the current sensor device and for the optical transmission of supply power (supply energy) for the current sensor device.
  • the weight of the current sensor device is generally absorbed by the current conductor.
  • the separating part can also electrically interrupt several current conductors loaded with forces at the same time and absorb the forces acting in these current conductors.
  • 1 shows a device for measuring electrical currents in power lines with a measuring resistor
  • FIG. 2 shows a measuring device for measuring electrical currents in a tubular current conductor with a measuring resistor
  • FIG. 3 shows a measuring device for measuring electrical currents in power lines with an inductive current transformer are each shown schematically. Corresponding to each other
  • Parts ⁇ have the same reference numerals.
  • the power lines 2 generally hang between two power poles, not shown, to which they are attached. Due to the dead weight of the power lines 2 and due to thermal expansion in the power lines 2, mechanical forces act in the power lines 2, particularly tensile forces in their longitudinal direction. The power lines 2 are now electrically separated with the aid of the separating part 3.
  • the separating part 3 is in terms of its dimensions and its material s designed so that it effectively interrupts the power lines 2, that is, there is no current flow through the separating part 3, and at the same time absorbs the mechanical forces in the power lines 2.
  • the separating part 3 comprises two elongated parts 30 and 31 which run essentially parallel to the longitudinal direction of the power lines 2 and which are connected to one another via a dielectric glass cap 32.
  • a supply line 7 is mechanically fastened to the first part 30 and is electrically connected to the associated power line 2.
  • a supply line 8 is also fastened for each power line 2 and is electrically connected to the associated power line 2.
  • the measuring resistor 4 and the waveguide 5 are electrically connected in series between the leads 7 and the leads 8.
  • the leads 7 are electrically connected to the waveguide 5 and the leads 8 to the measuring resistor 4.
  • An electrically tapped voltage at the measuring resistor 4 as a measure of an electrical current flowing through the measuring resistor 4 is not shown as a measuring signal via put electrical measuring cable into the waveguide 5, in which a measuring electronics, not shown, is arranged for the measuring signal.
  • the series circuit comprising the measuring resistor 4 and the waveguide 5 is electrically connected in parallel with the separating part 3 and the currents flowing in the power lines 2 flow through it. Because of the arrangement in the waveguide 5, the measuring electronics are practically not influenced by the magnetic field of the electric current or the electric currents in the power lines 2.
  • the measuring electronics process the electrical measuring signal of the measuring resistor 4 further.
  • the measuring electronics convert the electrical measuring signal into an optical measuring signal, which is transmitted via the light guide 9.
  • the light guide 9 is guided through an opening in the waveguide 5.
  • the measuring resistor 4 and the waveguide 5 with the measuring device arranged therein Electronics form a current sensor device 14, which delivers an (optical) measurement signal for the current in the power lines 2.
  • the measuring electronics in the waveguide 5 are preferably also supplied with energy via the light guide 9 or also a further light guide, not shown.
  • an optical energy supply system not shown, which is known per se, is provided with a light source, for example a laser, and a photoelectric converter.
  • the two parts 30 and 31 of the separating part 3 can at least partially consist of dielectric material or also of a conductive material, for example of a metal.
  • Separating part 3 is generally taken over by the one glass cap 32 or several such glass caps.
  • the flexible insulator 6 is now fastened to the separating part 3 via the fastening device 11.
  • the fastening device 11 can be, for example, a tensioning device with a rope and optionally a tension spring.
  • the optical waveguide 9 runs inside the flexible insulator 6 up to the anchoring 10, which is at ground potential.
  • the flexible insulator 6 is attached to the anchor 10.
  • the fastening device 11 can also be provided at the base of the insulator 6 on the anchoring 10.
  • the isolator 6 can also be clamped at the top and bottom.
  • the optical measurement signal can be led from the anchoring 10 via optical fiber earth cables to a control room. The optical transmission ensures isolated transmission of the measurement signal.
  • the flexible insulator 6 minimizes leakage currents between the current conductor 2 which is at high voltage potential and the anchor 10 which is at ground potential.
  • the dead weight of the measuring resistor 4 and the waveguide 5 with the measuring electronics arranged therein is absorbed by the separating part 3 and thus by the power lines 2 via the feed lines 7 and 8.
  • the flexible insulator 6 therefore does not have to bear any further mechanical forces apart from any tensioning forces by the fastening device 11, in particular also not the weight of the measuring resistor 4 provided as the current sensor and of the waveguide 5 or the mechanical forces in the power lines 2 - construction guarantees a high level of earthquake security.
  • the flexible insulator 6 and the likewise flexible power lines 2 and the freely running light guide 9 simply follow the movements of the anchor 10, and destruction of the measuring device is thus prevented .
  • the separating part 3 is preferably simply provided with a dielectric disk or a dielectric ring with a thickness sufficient for electrical insulation and sufficient strength to absorb the forces in the current conductor 2 '.
  • a current sensor device 14 with a measuring resistor 4 and an associated waveguide 5, which contains the measuring electronics, is again provided, which is suspended via leads 7 and 8 from the current conductor 2 'and with the partial area of the current conductor 2', which by da ⁇ Part 3 is electrically interrupted, is electrically connected in parallel.
  • the flexible insulator 6 is fastened to the current conductor 2 'via the fastening device 11 and is preferably tensioned again.
  • the flexible insulator 6 must electrically isolate the entire potential difference between the current conductor 2 'and the earth potential at the anchor 10.
  • hanging power lines 2 are again provided, which are again electrically interrupted by a separating part 3 as in FIG.
  • an inductive current transformer 4 ' is provided instead of a measuring resistor 4.
  • the current sensor device with the current transformer 4 'and the waveguide 5 is designated 14'.
  • the measurement signal of the inductive current transformer 4 ' is fed via a measurement cable 12 into the associated waveguide 5, in which the associated measurement electronics are arranged.
  • An optical measurement signal is again conducted to earth potential via a light guide 9 and the movable isolator 6.
  • any suitable current sensor device can be used as the current sensor device connected in parallel to the separating part 3, in particular an electrical current sensor device that delivers an electrical measurement signal, but also a magneto-optical Faraday current converter that directly delivers an optical measurement signal.
  • the waveguide 5 is generally no longer necessary.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Die kraftbelasteten Hochspannungsleitungen (2) sind durch ein Trennteil (3) elektrisch unterbrochen, das die Kräfte in den Leitungen aufnimmt. Eine Stromsensoreinrichtung (4) ist elektrisch parallel zum Trennteil (3) geschaltet. Die Meßsignale werden optisch über einen Lichtleiter (9) übertragen, der in einem flexiblen Isolator (6) auf Erdpotential geführt ist. Vorteile: hohe Erdbebensicherheit, Potentialtrennung.

Description

Beschreibung
Meßvorrichtung zum Messen elektrischer Ströme in einem kraft¬ belasteten Stromleiter
Die Erfindung betrifft eine Vorrichtung zum Messen elektri¬ scher Ströme in wenigstens einem mit mechanischen Kräften be¬ lasteten Stromleiter.
In der elektrischen Energieübertragungs- und Energievertei- lungstechnik müssen elektrische Ströme und elektrische Span¬ nungen in einem auf Hochspannungspotential liegenden Strom¬ leiter gemessen werden und die Meßsignale auf Erdpotential übertragen werden. Zur Potentialtrennung (elektrische Isola- tion) werden zur Strommessung vorgesehene Stromwandler oder zur Spannungsmessung vorgesehene Spannungswandler im allge¬ meinen in einem Porzellanisolator untergebracht, der fest mit der Erde verbunden ist . Bei Erdbeben in erdbebengefährdeten Gebieten in den letzten Jahren hat sich gezeigt, daß die Por- zellanisolatoren selbst bei Erdbeben geringer Stärke bereits zerstört werden. Ein weiteres Problem sind die in Hochspan¬ nungsleitungen üblicherweise herrschenden beachtlichen mecha¬ nischen Kräfte, insbesondere Zugkräfte, infolge des Gewichts der Leitungen und ihrer thermischen Ausdehnung. Diese mecha- nischen Kräfte müssen bei den genannten Systemen von den Por¬ zellanisolatoren aufgenommen werden.
Aus der Firmenschrift ABB Technik 3/1994, Seiten 12 bis 18, insbesondere Fig. 2, ist ein Strommeßsystem bekannt mit einem auf hohem Potential liegenden Sensorkopf, der in die Strom¬ leitungen gespannt ist und somit die Kräfte in den Leitungen aufnimmt und der eine Luftkernspule mit einer Bürde zum Mes¬ sen des Stroms und einen Analog-Digital-Wandler sowie eine Sendeeinheit mit LED zum digitalen optischen Übertragen der Meßsignale über einen Lichtwellenleiter auf Erdpotential ent¬ hält. Der Sensorkopf wird optisch über denselben Lichtwellen- leiter mit Energie versorgt. Der Lichtwellenleiter ist in ei¬ nem flexiblen Isolator geführt.
Der Erfindung liegt nun die Aufgabe zugrunde, eine Meßvor- richtung zum Messen elektrischer Ströme in wenigstens einem mit mechanischen Kräften belasteten Stromleiter anzugeben.
Diese Aufgabe wird gemäß der Erfindung gelöst mit den Merkma¬ len des Anspruchs 1. Die Vorrichtung zum Messen elektrischer Ströme in wenigstens einem mit mechanischen Kräften belaste¬ ten Stromleiter umfaßt wenigstens eine Stromsensoreinrichtung und ein Trennteil, das elektrisch isolierend in den Stromlei¬ ter geschaltet ist, also den Stromleiter elektrisch unter¬ bricht, und das ferner die Kräfte in dem Stromleiter auf- nimmt. Die Stromsensoreinrichtung ist in einen zum Trennteil elektrisch parallelgeschalteten Stromzweig (Leitungszweig) geschaltet. Da das Trennteil die Kräfte in dem wenigstens ei¬ nen Stromleiter aufnimmt, muß die Stromsensoreinrichtung die¬ se Kräfte nicht mehr tragen und kann daher mechanisch einfa- eher ausgeführt werden.
Vorteilhafte Ausgestaltungen und Weiterbildungen der Vorrich¬ tung ergeben sich aus den vom Anspruch 1 abhängigen Ansprü¬ chen.
Demnach ist in einer ersten Ausführungsform das Trennteil über einen flexiblen Isolator an einer auf Erdpotential be¬ findlichen Verankerung befestigt. In einer zweiten Ausfüh¬ rungsform ist der wenigstens eine Stromleiter über einen fle- xiblen Isolator an einer Verankerung auf Erdpotential befe¬ stigt. Diese Ausführungsformen zeichnen sich durch eine e - höhte Erdbebensicherheit aus, da Bewegungen der Verankerui vom flexiblen Isolator praktisch nicht auf das Trennteil und den Stromleiter übertragen werden.
In dem flexiblen Isolator ist vorzugsweise wenigstens ein Lichtleiter geführt zum optischen Übertragen eines Meßsignals der Stromsensoreinrichtung und zum optischen Übertragen von Versorgungsleistung (Versorgungsenergie) für die Stromsen¬ soreinrichtung.
Die Gewichtskraft der Stromsensoreinrichtung wird im allge¬ meinen von dem Stromleiter aufgenommen.
Das Trennteil kann ferner mehrere mit Kräften belastete Stromleiter zugleich elektrisch unterbrechen und die in die- sen Stromleitern wirkenden Kräfte aufnehmen.
Zur weiteren Erläuterung der Erfindung wird auf die Zeichnung
Bezug genommen, in deren
FIG 1 eine Vorrichtung zum Messen elektrischer Ströme in Stromleitungen mit einem Meßwiderstand,
FIG 2 eine Meßvorrichtung zum Messen elektrischer Ströme in einem rohrförmigen Stromleiter mit einem Meßwiderstand und
FIG 3 eine Meßvorrichtung zum Messen elektrischer Ströme in Stromleitungen mit einem induktiven Stromwandler jeweils schematisch dargestellt sind. Einander entsprechende
Teile εind mit denselben Bezugszeichen versehen.
In FIG 1 sind mehrere Stromleitungen mit 2, ein Trennteil (Zwischenstück) mit 3, ein Meßwiderstand mit 4, ein Hohllei¬ ter mit 5, ein flexibler (beweglicher) Isolator mit 6, elek¬ trische Zuleitungen mit 7 und 8, ein Lichtleiter mit 9, eine Verankerung mit 10 und eine Befestigungsvorrichtung mit 11 bezeichnet. Die Stromleitungen 2 hängen im allgemeinen zwi- sehen zwei nicht dargestellten Strommasten, an denen sie be¬ festigt sind. Durch das Eigengewicht der Stromleitungen 2 und durch thermische Ausdehnung in den Stromleitungen 2 wirken in den Stromleitungen 2 mechanische Kräfte, insbesondere Zug¬ kräfte in ihrer Längsrichtung. Die Stromleitungen 2 sind nun mit Hilfe des Trennteils 3 elektrisch aufgetrennt. Das Trenn¬ teil 3 ist bezüglich seiner Abmessungen und seinen Materiali- en so ausgebildet, daß es die Stromleitungen 2 wirksam elek¬ trisch unterbricht, also kein Stromfluß durch das Trennteil 3 stattfindet, und zugleich die mechanischen Kräfte in den Stromleitungen 2 aufnimmt. In der dargestellten Ausführungs- form umfaßt das Trennteil 3 zwei im wesentlichen parallel zur Längsrichtung der Stromleitungen 2 verlaufende längliche Tei¬ le 30 und 31, die über eine dielektrische Glaskappe 32 mit¬ einander verbunden sind. An dem ersten Teil 30 sind für jede Stromleitung 2 jeweils eine Zuleitung 7 mechanisch befestigt, die mit der dazugehörigen Stromleitung 2 elektrisch verbunden ist. Auf der anderen Seite am anderen Teil 31 des Trennteils 3 sind ebenfalls für jede Stromleitung 2 eine Zuleitung 8 be¬ festigt, die mit der zugehörigen Stromleitung 2 elektrisch verbunden ist.
Zwischen die Zuleitungen 7 und die Zuleitungen 8 sind der Meßwiderstand 4 und der Hohlleiter 5 elektrisch in Reihe ge¬ schaltet. Die Zuleitungen 7 sind dabei mit dem Hohlleiter 5 elektrisch verbunden und die Zuleitungen 8 mit dem Meßwider- stand 4. Eine elektrisch an dem Meßwiderstand 4 abgegriffene Spannung als Maß für einen durch den Meßwiderstand 4 fließen¬ den elektrischen Strom wird als Meßsignal über nicht darge¬ stellte elektrische Meßkabel in den Hohlleiter 5 geführt, in dem eine nicht dargestellte Meßelektronik für das Meßsignal angeordnet ist. Schaltungstechnisch ist die Reihenschaltung aus Meßwiderstand 4 und Hohlleiter 5 elektrisch parallel ge¬ schaltet zu dem Trennteil 3 und wird von den in den Stromlei¬ tungen 2 fließenden Strömen durchflössen. Wegen der Anordnung in dem Hohlleiter 5 wird die Meßelektronik durch das Magnet- feld des elektrischen Stromes bzw. der elektrischen Ströme in den Stromleitungen 2 praktisch nicht beeinflußt. Die Meßelek¬ tronik verarbeitet das elektrische Meßsignal des Meßwider¬ stands 4 weiter. Insbesondere wandelt die Meßelektronik das elektrische Meßsignal in ein optisches Meßsignal um, das über den Lichtleiter 9 übertragen wird. Der Lichtleiter 9 ist durch eine Öffnung in dem Hohlleiter 5 geführt. Der Meßwider¬ stand 4 und der Hohlleiter 5 mit der darin angeordneten Meß- elektronik bilden eine Stromsensoreinrichtung 14, die ein (optisches) Meßsignal für den Strom in den Stromleitungen 2 liefert .
Über den Lichtleiter 9 oder auch einen weiteren, nicht darge¬ stellten Lichtleiter wird die Meßelektronik im Hohlleiter 5 vorzugsweise auch mit Energie versorgt. Dazu ist ein nicht dargestelltes, an sich bekanntes optisches Energieversor¬ gungssystem mit einer Lichtquelle, beispielsweise einem La- ser, und einem photoelektrischen Wandler vorgesehen.
Die beiden Teile 30 und 31 des Trennteils 3 können wenigstens teilweise aus dielektrischem Material bestehen oder auch aus einem leitenden Materiral, beispielsweise aus einem Metall. Die elektrische Isolation der Stromleitungen 2 durch das
Trennteil 3 wird im allgemeinen von der einen Glaskappe 32 oder auch mehreren solcher Glaskappen übernommen.
An dem Trennteil 3 ist nun der flexible Isolator 6 über die Befestigungsvorrichtung 11 befestigt. Die Befestigungsvor¬ richtung 11 kann beispielsweise eine Spannvorrichtung mit ei¬ nem Seil und gegebenenfalls einer Zugfeder sein. Innerhalb des flexiblen Isolators 6 verläuft der Lichtwellenleiter 9 bis zur Verankerung 10, die auf Erdpotential liegt. Der fle- xible Isolator 6 ist an der Verankerung 10 befestigt. Die Be¬ festigungsvorrichtung 11 kann auch am Fuß des Isolators 6 an der Verankerung 10 vorgesehen sein. Außerdem kann der Isola¬ tor 6 auch oben und unten festgespannt sein. Von der Veranke¬ rung 10 kann das optische Meßsignal über Lichtwellenlei- tererdkabel bis zu einer Meßwarte geführt werden. Durch die optische Übertragung ist eine potentialgetrennte Übertragung des Meßsignals gewährleistet. Der flexible Isolator 6 mini¬ miert Kriechströme zwischen dem auf Hochspannungspotential liegenden Stromleiter 2 und der auf Erdpotential liegenden Verankerung 10. Das Eigengewicht des Meßwiderstands 4 und des Hohlleiters 5 mit der darin angeordneten Meßelektronik wird über die Zulei¬ tungen 7 und 8 von dem Trennteil 3 und damit von den Strom¬ leitungen 2 aufgenommen. Der flexible Isolator 6 hat somit außer gegebenenfalls Spannkräften durch die Befestigungsvor¬ richtung 11 keine weiteren mechanischen Kräfte zu tragen, insbesondere auch nicht die Gewichtskraft des als Stromsen¬ sors vorgesehenen Meßwiderstands 4 und des Hohlleiters 5 oder die mechanischen Kräfte in den Stromleitungen 2. Dieser Auf- bau gewährleistet eine hohe Erdbebensicherheit. Im Falle ei¬ nes Erdbebens und einer dadurch bewirkten Erschütterung und Bewegung der Verankerung 10 folgen der flexible Isolator 6 und die ebenfalls flexiblen Stromleitungen 2 sowie der frei verlaufende Lichtleiter 9 einfach den Bewegungen der Veranke- rung 10, und eine Zerstörung der Meßvorrichtung wird somit verhindert.
FIG 2 zeigt eine Ausführungsform einer Meßvorrichtung zum Messen eines elektrischen Stromes in einem rohrförmigen Stromleiter 2'. Das Trennteil 3 ist vorzugsweise einfach mit einer dielektrischen Scheibe oder einem dielektrischen Ring mit einer zur elektrischen Isolation ausreichenden Dicke und zur Aufnahme der Kräfte in dem Stromleiter 2' ausreichenden Festigkeit vorgesehen. Zum Messen des Stromes ist wieder eine Stromsensoreinrichtung 14 mit einem Meßwiderstand 4 und einem zugehörigen Hohlleiter 5, der die Meßelektronik beinhaltet, vorgesehen, die über Zuleitungen 7 und 8 vom Stromleiter 2' abgehängt ist und mit dem Teilbereich des Stromleiters 2', der durch daε Trennteil 3 elektrisch unterbrochen ist, elek- trisch parallel geschaltet ist. Der flexible Isolator 6 ist über die Befestigungsvorrichtung 11 an dem Stromleiter 2' be¬ festigt und vorzugsweise wieder gespannt. In dieser Ausfüh¬ rungsform muß der flexible Isolator 6 die gesamte Potential- differenz zwischen Stromleiter 2' und dem Erdpotential an der Verankerung 10 elektrisch isolieren. Im Ausfuhrungsbeispiel der FIG 3 sind wieder hängende Strom¬ leitungen 2 vorgesehen, die wieder über ein Trennteil 3 wie in FIG 1 elektrisch unterbrochen sind. Im Unterschied zur Ausführungsform der FIG 1 ist anstelle eines Meßwiderstands 4 ein induktiver Stromwandler 4' vorgesehen. Die Stromsen¬ soreinrichtung mit dem Stromwandler 4' und dem Hohlleiter 5 ist mit 14' bezeichnet. Das Meßsignal des induktiven Strom¬ wandlers 4' wird über ein Meßkabel 12 in den zugeordneten Hohlleiter 5 geführt, in dem die zugehörige Meßelektronik an- geordnet ist. Es wird wieder ein optisches Meßsignal über ei¬ nen Lichtleiter 9 und den beweglichen Isolator 6 auf Erdpo¬ tential geführt.
Als parallel zum Trennteil 3 geschaltete Stromsensoreinrich- tung kann prinzipiell jede geeignete Stromsensoreinrichtung verwendet werden, insbesondere eine elektrische Stromsen¬ soreinrichtung, die ein elektrisches Meßsignal liefert, aber auch ein magnetooptischer Faraday-Stromwandler, der direkt ein optisches Meßsignal liefert. Bei einem magnetooptischen Stromwandler ist der Hohlleiter 5 in der Regel nicht mehr notwendig.

Claims

Patentansprüche
1. Vorrichtung zum Messen elektrischer Ströme in wenigstens einem mit mechanischen Kräften belasteten Stromleiter (2,2') mit a) wenigstens einer Stromsensoreinrichtung (14,14') und mit b) einem Trennteil (3), das den Stromleiter (2,2') elektrisch unterbricht und die Kräfte in dem Stromleiter (2,2') aufnimmt, wobei c) die Stromsensoreinrichtung (14,14') in einen zum Trennteil (3) elektrisch parallelgeschalteten Stromzweig geschaltet ist.
2. Vorrichtung nach Anspruch 1, bei der das Trennteil (3) über einen flexiblen Isolator (6) an einer auf Erdpotential befindlichen Verankerung (10) befestigt ist.
3. Vorrichtung nach Anspruch 1, bei der der wenigstens eine Stromleiter (2') über einen flexiblen Isolator (6) an einer auf Erdpotential befindlichen Verankerung (10) befestigt ist.
4. Vorrichtung nach Anspruch 2 oder Anspruch 3, bei der in dem flexiblen Isolator (6) wenigstens ein Lichtleiter (9) geführt ist zum optischen Übertragen von Meßsignalen der
Stromsensoreinrichtung (14,14') und optischen Übertragen von Versorgungsenergie für die Stromsensoreinrichtung (14,14').
5. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der daε Trennteil (3) mehrere mit Kräften belastete Strom¬ leiter (2) elektrisch unterbricht und die in diesen Strom¬ leitern (2) wirkenden Kräfte aufnimmt.
6. Vorrichtung nach einem der vorhergehenden Ansprüche, bei der der Stromleiter (2,2') die Gewichtskraft der Strom¬ sensoreinrichtung (14,14') aufnimmt.
PCT/DE1997/000598 1996-04-04 1997-03-24 Messvorrichtung zum messen elektrischer ströme in einem kraftbelasteten stromleiter WO1997038320A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR9708496A BR9708496A (pt) 1996-04-04 1997-03-24 Dispositivo de medição para a medição de correntes elétricas em um condutor de corrente carregado por força
EP97920538A EP0891557A1 (de) 1996-04-04 1997-03-24 Messvorrichtung zum messen elektrischer ströme in einem kraftbelasteten stromleiter
NO984643A NO984643L (no) 1996-04-04 1998-10-02 FremgangsmÕte for mÕling av elektrisk str°m i en kraftbelastet str°mleder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19613664A DE19613664A1 (de) 1996-04-04 1996-04-04 Meßvorrichtung zum Messen elektrischer Ströme in einem kraftbelasteten Stromleiter
DE19613664.4 1996-04-04

Publications (1)

Publication Number Publication Date
WO1997038320A1 true WO1997038320A1 (de) 1997-10-16

Family

ID=7790562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1997/000598 WO1997038320A1 (de) 1996-04-04 1997-03-24 Messvorrichtung zum messen elektrischer ströme in einem kraftbelasteten stromleiter

Country Status (7)

Country Link
EP (1) EP0891557A1 (de)
CN (1) CN1215473A (de)
BR (1) BR9708496A (de)
DE (1) DE19613664A1 (de)
NO (1) NO984643L (de)
WO (1) WO1997038320A1 (de)
ZA (1) ZA972791B (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19732489A1 (de) * 1997-07-23 1999-02-11 Siemens Ag Lichtwellenleiteranordnung
CN1206539C (zh) 1999-04-02 2005-06-15 林赛制造公司 测量电力线特性的测量系统
ITPD20070121A1 (it) * 2007-04-02 2008-10-03 Mario Berton Dispositivo di misura di grandezze elettriche per linee di trasporto di energia

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH195440A (de) * 1937-03-17 1938-01-31 Sprecher & Schuh Ag Einrichtung zum Einschalten von Messinstrumenten in Stromkreise ohne Betriebsunterbruch.
DE2034884A1 (de) * 1970-07-08 1971-12-02
JPS5763460A (en) * 1980-10-06 1982-04-16 Toshiba Corp Insulative mount
EP0139068A1 (de) * 1983-08-31 1985-05-02 Hydro-Quebec Apparat zur Erfassung und Messung eines Stromes auf einer Kraftübertragungsleitung
US4823022A (en) * 1987-05-15 1989-04-18 Lindsey Manufacturing Company Apparatus and method for sensing power line conditions

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1283363B (de) * 1965-04-10 1968-11-21 Merlin Gerin Strommessvorrichtung in Hochspannungsnetzen mit optischer UEbertragung
US4610033A (en) * 1984-12-14 1986-09-02 Harvey Hubbell Incorporated Insulator with fiber optic communication channel
DE3712190A1 (de) * 1987-04-10 1988-10-27 Bbc Brown Boveri & Cie Elektrischer wandler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH195440A (de) * 1937-03-17 1938-01-31 Sprecher & Schuh Ag Einrichtung zum Einschalten von Messinstrumenten in Stromkreise ohne Betriebsunterbruch.
DE2034884A1 (de) * 1970-07-08 1971-12-02
JPS5763460A (en) * 1980-10-06 1982-04-16 Toshiba Corp Insulative mount
EP0139068A1 (de) * 1983-08-31 1985-05-02 Hydro-Quebec Apparat zur Erfassung und Messung eines Stromes auf einer Kraftübertragungsleitung
US4823022A (en) * 1987-05-15 1989-04-18 Lindsey Manufacturing Company Apparatus and method for sensing power line conditions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 6, no. 141 (P - 131) 30 July 1982 (1982-07-30) *

Also Published As

Publication number Publication date
EP0891557A1 (de) 1999-01-20
CN1215473A (zh) 1999-04-28
DE19613664A1 (de) 1997-10-09
ZA972791B (en) 1997-10-06
NO984643D0 (no) 1998-10-02
BR9708496A (pt) 1999-08-03
NO984643L (no) 1998-12-03

Similar Documents

Publication Publication Date Title
DE3544142A1 (de) Isolator mit einem kanal fuer ein der kommunikation dienendes optisches faserkabel
DE102018130830B3 (de) Prüfvorrichtung zum Erfassen eines Isolationswiderstands einer Hochvoltleitung sowie zugehöriges Prüfverfahren
DE60131370T2 (de) Prüfverbindung für teilentladungsdetektionen, teilentladungsdetektor- und verfahren zur erfassung von teilentladungen an einem stromkabel
DE3837605A1 (de) Vorrichtung zur ueberwachung des trennverhaltens eines vakuumschalters
DE19905118B4 (de) Stromteiler für Meßwandler
DE60023641T2 (de) Stromwandler für eine gasisolierte Schaltanlage
DE69908138T2 (de) Schalterpol mit integriertem optischen stromsensor
EP0907084A2 (de) Faseroptischer Spannungssensor für Freiluft-Hochspannungsanlagen
DE3610742A1 (de) Stuetzisolator
DE19712900A1 (de) Sensoranordnung zur Strom- und Spannungsmessung
DE3712190A1 (de) Elektrischer wandler
DE10119530A1 (de) Hochspannungs-Leistungsschalter für eine druckgasisolierte Schaltanlage
EP0510427B1 (de) Spannungswandler für eine Mittel- oder Hochspannungsanlage
EP2555003B1 (de) Stromwandler sowie Lasttrenner mit einem solchen
WO2001059467A1 (de) Durchführung mit optischen sensor für eine hochspannungseinrichtung
EP0891557A1 (de) Messvorrichtung zum messen elektrischer ströme in einem kraftbelasteten stromleiter
EP0596566B1 (de) Hochspannungstransformator
EP0882320A2 (de) Hochspannungsfreiluftschalter
DE2131224C3 (de) Einrichtung zur Messung von Spannungen an Hochspannungsleitern
EP0861442B1 (de) Strommessung bei turbogeneratoren
AT406315B (de) Ankoppeleinrichtung
DE4331716A1 (de) Einrichtung zur Erkennung von Störlichtbögen, insbesondere an Sammelschienenanordnungen in Niederspannungs-Schaltanlagen
DE10258115A1 (de) Breitbandiges Messmodul zur Strommessung an Einrichtungen der Leistungselektronik
DE19515068A1 (de) Anordnung zur TE-Detektion in Hochspannungskabeln und in deren Verbindungselementen
DE19520825B4 (de) Hochspannungskabelanlage mit ausgekreuzten Kabelmänteln

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 97193693.5

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): BR CN MX NO RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997920538

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997920538

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997920538

Country of ref document: EP