WO1997033088A1 - Vorrichtung zur ölversorgung der laufradnabe einer strömungsmaschine - Google Patents

Vorrichtung zur ölversorgung der laufradnabe einer strömungsmaschine

Info

Publication number
WO1997033088A1
WO1997033088A1 PCT/EP1997/000955 EP9700955W WO9733088A1 WO 1997033088 A1 WO1997033088 A1 WO 1997033088A1 EP 9700955 W EP9700955 W EP 9700955W WO 9733088 A1 WO9733088 A1 WO 9733088A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pipes
hub
turbine shaft
tubes
Prior art date
Application number
PCT/EP1997/000955
Other languages
English (en)
French (fr)
Inventor
Franz Schaberger
Original Assignee
J. M. Voith Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J. M. Voith Ag filed Critical J. M. Voith Ag
Priority to EP97905109A priority Critical patent/EP0885356A1/de
Publication of WO1997033088A1 publication Critical patent/WO1997033088A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B11/00Parts or details not provided for in, or of interest apart from, the preceding groups, e.g. wear-protection couplings, between turbine and generator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/04Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines
    • F03B3/06Machines or engines of reaction type; Parts or details peculiar thereto with substantially axial flow throughout rotors, e.g. propeller turbines with adjustable blades, e.g. Kaplan turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B3/00Machines or engines of reaction type; Parts or details peculiar thereto
    • F03B3/12Blades; Blade-carrying rotors
    • F03B3/14Rotors having adjustable blades
    • F03B3/145Mechanisms for adjusting the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/406Transmission of power through hydraulic systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/70Adjusting of angle of incidence or attack of rotating blades
    • F05B2260/76Adjusting of angle of incidence or attack of rotating blades the adjusting mechanism using auxiliary power sources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Definitions

  • the invention relates to a device for supplying control and lubricating oil to a hub containing an impeller servomotor of an impeller of a turbomachine flanged to a turbine shaft with adjustable impeller blades, the hub having an oil supply and delivery pipe through the hollow turbine shaft and at least two oil-carrying pipes mounted therein Purging socket is hydraulically connected.
  • a turbomachine in which such a device is used is, for example, a Kaplan tubular turbine.
  • the turbine shaft is usually approximately horizontal or slopes slightly downwards.
  • the inflow and outflow occur almost axially to the impeller.
  • the impeller is equipped with adjustable impeller blades.
  • the impeller blades are adjusted via an oil-hydraulic servo motor, which is housed in the impeller hub itself.
  • Servomotors of this type including their oil supply, are known, cf. Joachim Raabe, "Hydraulic machines und Anlagen “, 2nd edition 1989, VTJI-Verlag GmbH, page 388-390 and Willi Bohl," Flow machines I “, 6th edition 1994, Vogel-Buchverlag, page 128, picture 7.21.
  • the servomotors shown each have one Piston rigidly attached to the hub, which is surrounded by an axially movable cylinder, and the individual mechanisms for adjusting the impeller blades are articulated on the outside of the cylinder.
  • hydraulic oil is supplied to the respective cylinder space.
  • Two different oil channels are used for this.
  • One channel leads inside the cylinder space to the piston crown side, another leads to the piston rod side.
  • the hub oil is pumped into the interior of the hub or pumped out.
  • the three channels are formed in the bore of the turbine shaft via two pipes arranged concentrically to one another.
  • the hydraulic oil used to open the impeller is guided in the space between the turbine shaft bore and the outer tube. It reaches the piston rod side in the cylinder.
  • the hydraulic oil used to close the impeller flows in the space between the outer tube and an inner tube.
  • the inner tube which has the channel with the smallest cross section, communicates with the inside of the hub.
  • This tube is mechanically coupled to the cylinder of the servo motor. It has among other things the function of mechanically transmitting the impeller position from the front shaft end to the rear shaft end for display and / or electrical detection of the wing position by a longitudinal displacement.
  • Tube is also moved back and forth the amount of oil displaced by the piston rod.
  • the oil supply via the turbine shaft bore and the concentrically arranged pipes require a lot of production and testing.
  • the pipes must be prepared by welding test covers onto a pressure test. After the pressure test, the test covers have to be cut off and the pipe ends or the sleeves have to be turned to their finished contours. All of these operations are very costly and time-consuming because the pipe parts can only be processed on special machines due to their length, some of which are several meters long.
  • guide and support strips are welded to the individual pipes, which are to be turned to their final dimensions.
  • the pipes must be given several different surface treatments or coatings to protect them from corrosion inside and out.
  • the invention is based on the problem of creating a device for the control and lubricating oil supply to the hub, which on the one hand consists of commercially available semi-finished products and on the other hand consists of smaller turned and milled parts. All parts should be able to be assembled without welding and machining. Furthermore, the testing and surface treatment effort should be minimized.
  • Impeller servomotors are arranged parallel to one another.
  • at least one oil-carrying pipe lies outside the center line of the turbine shaft bore.
  • at least one pipe is used for each control oil flow.
  • the cavity between the oil-carrying pipes and the turbine shaft bore can also be used for the oil guidance.
  • tubes To fix the tubes to one another in the turbine shaft bore, they are connected to one another by a clamping disk partially filling the cross section of the main bore, the clamping effect being produced by adjustable clamping cones which are located in conical, slotted bores and are aligned parallel to the tubes.
  • adjustable clamping cones which are located in conical, slotted bores and are aligned parallel to the tubes.
  • Each oil-carrying pipe generally consists of at least two sections. These sections arranged one behind the other are connected to one another by means of push-in sockets.
  • the push-in sleeves are, for example, short connecting pipes, the inside diameter of which is slightly larger than the outside diameter of the oil-carrying pipes.
  • the connecting pipes sit above the junction of two sections.
  • Each gap between an oil-carrying pipe and the corresponding connecting pipe or plug-in sleeve is sealed by at least one O-ring (88).
  • the push-in sleeves have a section in their central region whose inner diameter is smaller than the outer diameter of the oil-carrying one
  • a position sensor rod is arranged in the middle between the oil-carrying pipes, which is articulated on the displaceable assembly of the impeller servo motor. It serves among other things the display of the impeller blade position.
  • FIG. 1 longitudinal section of the turbine shaft with hub and oil feed bush
  • FIG. 1 oil feed bushing in longitudinal section
  • FIG. 1 impeller hub in longitudinal section
  • Figure 4 connecting sleeve, view and longitudinal section
  • Figure 5 locking mechanism, view and longitudinal section.
  • a longitudinally cut turbine shaft (10) is shown, at the front, here right end, an impeller hub (60) with an integrated adjusting mechanism for the impeller blades is attached.
  • an extension shaft (20) is flanged, on which an oil feed bushing (40) is mounted.
  • the oil feed pipes (14-17) are supported at the rear end of the turbine, cf. Fig. 2.
  • the front area it is designed as a tube.
  • the area on which the oil feed bushing (40) sits it is a cylindrical block in which bores (22-27, 55-57) and channels (51-53) are individual
  • oil feed pipes (14-17) are so-called precision steel pipes, which are available as narrowly tolerated semi-finished products in the steel trade. They (14-17) run in the main bore (11) approximately parallel to their central never (12), cf. also FIGS. 4 and 5. All oil feed pipes (14-17), viewed in cross-section, lie on a circle around the center line (12) and are offset from one another by 90 °. Two opposite oil supply tubes (14, 15) and (16, 17) each transport the same oil flow.
  • the oil feed pipes (14-17) end in parallel longitudinal bores (22-25) in the extension shaft (20).
  • These longitudinal bores (22-25) are drilled out so far in their front area that the oil feed pipes (14-17) can be inserted. In this area, two recesses are worked into each of the individual longitudinal bores (22-25), in which O-rings (28) are seated.
  • the oil feed bushing (40) sits on the rotating extension shaft (20) with axial and radial sliding bearings.
  • the non-rotating oil feed bushing (40) is supported on stationary bearings by means of components, not shown.
  • the oil feed bushing (40) is seated on a bearing bushing (30) fixedly connected to the extension shaft (20) via a sliding lining (41).
  • Each hydraulic connection opens into its own ring channel (51- 53).
  • each ring channel (51-53) is hydraulically connected to the respective longitudinal bore (22-25) via a transverse bore (55-57).
  • the oil used to open the impeller flows from the right hydraulic connection (42) etc. into the oil feed pipe (14). Above the left hydraulic connection (43) the oil is used to close the
  • the hub oil is conveyed into the blind bores (26, 27) via the central hydraulic connection (44).
  • the blind bores (26, 27) open directly into the main bore (21) of the Extension shaft (20).
  • Three hydraulic connections (45-47) arranged next to one another on the underside of the oil feed bushing (40) serve to empty the three hydraulic lines. Each of them is connected to a ring channel (51-53).
  • the turbine shaft bore (11) merges into a hub bore (61) at the joint between the turbine shaft (10) and the impeller hub (60), cf. Figure 3.
  • the oil feed pipes (14-17) are mounted in a distributor plug (65).
  • the oil supply pipes (14-17) are stored and sealed in the same way as for the extension shaft (20).
  • the distributor plug (65) closes the hub bore (61) in a pressure-tight manner.
  • the piston (70) of the servo motor is rigidly attached to the impeller hub (60).
  • the piston (70) is surrounded by a cylinder (71) which adjusts the impeller blades via a lever mechanism.
  • the piston chamber-side cylinder chamber (75) is used, among other things. supplied with oil via the oil supply tube (17) underneath and a longitudinal bore (66) in the distributor plug (65).
  • a return rod (35) is attached to the right cylinder base (72).
  • the return rod (35) extends between the oil feed pipes (14-17) lying from the cylinder base (72) to beyond the free end of the oil feed bushing (40). Outside the oil feed bushing (40), it serves for the mechanical display of the impeller position and the removal thereof by means of electrical displacement or rotation angle measuring devices. obligations.
  • the return rod (35) consists of a plurality of cylindrical elements screwed together, the driving stubs being secured with adhesive.
  • the hub ⁇ l flowing through the turbine shaft (11) and hub bore (61) arrives in the impeller hub (60) via transverse bores (64) into the inner hub area (62).
  • the oil feed pipes (14-17) can be very long, sometimes longer than 10 meters. That is why For better handling, the individual oil feed pipes (14-17) are composed of at least two identical sections. For the pressure-tight connection of the sections to each other
  • Socket washers (80) used.
  • the plug-in sleeve disks (80) are cylinders, the respective outer contours of which sit with little play in the turbine shaft bore (11).
  • Each push-fit socket disc (80) contains several parallel longitudinal bores (81, 84-87, 89).
  • a through hole (81) is arranged in the center of each push-fit socket disk (80) and is drilled out on both sides to accommodate bearing bushes (82).
  • the return rod (35) is guided in the bearing bushes (82).
  • Around the through bore (81) are four large stepped bores (84-87) for connecting the sections of the oil feed pipes (14-17).
  • Each stepped bore (84-87) has a diameter in the central area which corresponds approximately to the inside diameter of the oil supply pipes (14-17).
  • the front and the rear bore area each have a diameter which is slightly larger than the outer diameter of the oil supply pipes (14-17).
  • Two recesses are incorporated in each of these bore areas, in which O-rings (88) are inserted.
  • the ends of the oil feed pipes (14-17) are like also chamfered the outer edge of the step holes (84-87).
  • a recess (89) is arranged, which is, for example, a cylindrical through hole.
  • the hub delta flows through these recesses (89).
  • clamping disks (90) In order to support the oil supply pipes (14-17) and the return rod (35) in the turbine shaft bore (11), several plastic clamping disks (90) are used.
  • the basic contour of a clamping disc (90) is a straight cylinder. Parallel to its center line (12), arranged several different through holes (91, 92) and (94-97).
  • the central bore (91) guides the return rod (35).
  • Four large through holes (94-97) are used to hold the oil feed pipes (14-17).
  • the cylindrical outer contour of the clamping disc (90) is radially slotted parallel to its center line (12) in the area of the large through bores (94-97). Each slot has an average width of approximately 2/3 of an oil feed pipe diameter.
  • two taper pins (100) with threaded attachments can be seen in section AA.
  • the tapered pins (100) are seated in corresponding recesses (92) which are radially slotted towards the cylindrical outer contour of the clamping disk (90).
  • Each taper pin (100) will by tightening a nut (102) into the respective slotted recess with its spread.
  • the clamping disc areas lying on both sides of the tapered pins (100) are pressed apart, resulting in a force that tensions the oil supply pipes (14-17).
  • the tapered pins (100) have a driving tab, a square (101) or the like on their back.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Hydraulic Turbines (AREA)

Abstract

Die Erfindung betrifft eine Vorrichtung zur Steuer- und Schmierölversorgung einer einen Laufradservomotor beinhaltenden Nabe (60) eines an einer Turbinenwelle angeflanschten Laufrades einer Strömungsmaschine mit verstellbaren Laufradflügeln, wobei die Nabe über die hohle Turbinenwelle und mindestens zwei darin gelagerten ölführenden Rohren mit einer ölzu- und abführenden Buchse (40) hydraulisch verbunden ist. In der Turbinenwellenbohrung (11) sind die ölführenden Rohre (14-17) für die Versorgung des Laufradservomotors parallel nebeneinander angeordnet, zusammengesetzt mit Steckmuffenscheiben (80) und abgestützt mit Klemmscheiben (90). Mit der Erfindung wird eine Vorrichtung geschaffen, die eine Steuer- und Schmierölversorgung bereitstellt, die großteils nur aus handelsüblichen Halbzeugen besteht.

Description

Vorrichtung zur Ölversorgung der Laufradnabe einer Strömungsmaschine
Beschreibung:
Die Erfindung betrifft eine Vorrichtung zur Steuer- und SchmierölVersorgung einer einen Laufradservomotor beinhal¬ tenden Nabe eines an einer Turbinenwelle angeflanschten Laufrades einer Strömungsmaschine mit verstellbaren Lauf¬ radflügeln, wobei die Nabe über die hohle Turbinenwelle und mindestens zwei darin gelagerten ölführenden Rohren mit einer ölzu- und abführenden Buchse hydraulisch verbun¬ den ist.
Eine Strömungsmaschine, in der eine derartige Vorrichtung verwendet wird, ist beispielsweise eine Kaplan-Rohrtur¬ bine. Bei dieser Turbinenart liegt die Turbinenwelle in der Regel annähernd horizontal oder neigt sich geringfügig schräg nach unten. Die Zu- und Abstrδmung erfolgt nahezu axial zum Laufrad. Das Laufrad ist mit verstellbaren Lauf- radflügein versehen. Die Verstellung der Laufradflügel er¬ folgt über einen όlhydraulischen Servomotor, der in der Laufradnabe selbst untergebracht ist.
Derartige Servomotoren, einschließlich ihrer Ölversorgung sind bekannt, vgl. Joachim Raabe, "Hydraulische Maschinen und Anlagen", 2. Auflage 1989, VTJI-Verlag GmbH, Sei¬ ten 388-390 und Willi Bohl, "Strömungsmaschinen I", 6. Auflage 1994, Vogel-Buchverlag, Seite 128, Bild 7.21. Die gezeigten Servomotoren haben jeweils einen an der Nabe drehstarr befestigten Kolben, der von einem axial bewegli¬ chen Zylinder umgeben ist. Außen am Zylinder sind die ein¬ zelnen Mechanismen zum Verstellen der Laufradflügel ange¬ lenkt.
Um den Zylinder zu verschieben, wird dem jeweiligen Zylin¬ derraum Hydrauliköl zugeführt. Dazu werden zwei verschie¬ dene ölkanäle verwendet. Ein Kanal führt innerhalb des Zy¬ linderraums zur Kolbenbodenseite, ein weiterer führt zur Kolbenstangenseite. In einem dritten Kanal wird das Na- benöl in den Nabeninnenraum gefördert oder abgepumpt. Die drei Kanäle werden in der Bohrung der Turbinenwelle über zwei konzentrisch zueinander angeordnete Rohre gebildet. Hierbei wird das zum öffnen des Laufrades benutzte Hydrau¬ liköl im Raum zwischen der Turbinenwellenbohrung und dem äußeren Rohr geführt. Es gelangt im Zylinder auf die Kol¬ benstangenseite. Das zum Schließen des Laufrades benutzte Hydrauliköl strömt im Zwischenraum zwischen dem äußeren Rohr und einem inneren Rohr. Das innere Rohr, das den Ka¬ nal mit dem kleinsten Querschnitt hat, kommuniziert mit dem Nabeninneren. Dieses Rohr ist mit dem Zylinder des Servomotors mechanisch gekuppelt. Es hat u.a. die Funk¬ tion, die Laufradstellung mechanisch vom vorderen Wel¬ lenende an das hintere Wellenende zur dortigen Anzeige und/oder elektrischen Erfassung der Flügelstellung durch eine Längsverschiebung zu übermitteln. Ober das innere
Rohr wird ferner die von der Kolbenstange verdrängte öl- menge hin- und herbewegt. Die Ölversorgung über die Turbinenwellenbohrung und die konzentrisch angeordneten Rohre erfordern einen hohen Fer- tigungs- und Prüfaufwand. So müssen an die Rohre speziell gedrehte und gefräste Muffenrohlinge, die teilweise Ver- schraubungsgewinde aufweisen, angeschweißt werden. Die
Schweißnähte müssen einer Rδntgenprüfung unterzogen wer¬ den. Ferner sind die Rohre durch Aufschweißen von Prüf- deckeln auf eine Druckprobe vorzubereiten. Nach der Druck¬ probe müssen die Prüfdeckel spanabhebend abgetrennt und die Rohrenden bzw. die Muffen auf ihre Fertigkontur ge¬ dreht werden. Alle diese Arbeitsgänge sind sehr kosten- und zeitaufwendig, da die Rohrteile aufgrund ihrer Länge, zum Teil sind sie mehrere Meter lang, nur auf Spezial- maschinen bearbeitet werden können. Außerdem sind an den einzelnen Rohren Führungs- und Stützleisten angeschweißt, die auf Endmaß zu drehen sind. Ferner müssen die Rohre zum Schutz vor Korrosion innen und außen mehrere verschiedene Oberflächenbehandlungen bzw. Beschichtungen erhalten.
Um diese Nachteile zu vermeiden, liegt der Erfindung das Problem zugrunde, eine Vorrichtung für die Steuer- und Schmierölversorgung der Nabe zu schaffen, die zum einem aus handelsüblichen Halbzeugen und zum anderen aus kleine¬ ren Dreh- und Frästeilen besteht. Dabei sollen alle Teile ohne Schweißen und spanabhebende Nacharbeit zusammengebaut werden können. Ferner soll der Prüf- und der Oberflächen¬ behandlungsaufwand minimiert werden.
Das Problem wird dadurch gelöst, daß in der Turbinenwel¬ lenbohrung die ölführenden Rohre für die Versorgung des Laufradservomotors parallel nebeneinander angeordnet wer¬ den. Dazu liegt mindestens ein ölführendes Rohr außerhalb der Mittellinie der Turbinenwellenbohrung. In der Regel wird für jeden Steuerδlstrom mindestens ein Rohr verwen¬ det. Der Hohlraum zwischen den ölführenden Rohren und der Turbinenwellenbohrung kann auch zur ölführung verwendet werden.
Bei der Verwendung von beispielsweise vier ölführenden Rohren, wobei jeweils zwei einander gegenüberliegende Rohre hydraulisch miteinander verbunden sind, werden diese derart angeordnet, daß die Mittellinien der Rohre zur Mit¬ tellinie der Turbinenwelle einen gleichen Abstand aufwei- sen und der lichte Abstand zwischen jeweils zwei direkt benachbarten Rohren ebenfalls gleich ist. Diese Anordnung verhindert Wellenschwingungen, die durch Unwucht angeregt werden.
Zur Fixierung der Rohre untereinander in der Turbinen¬ wellenbohrung werden diese durch eine den Querschnitt der Hauptbohrung teilweise ausfüllende Klemmscheibe mitein¬ ander verbunden, wobei die Klemmwirkung durch in koni- sehen, geschlitzten Bohrungen sitzende, parallel zu den Rohren ausgerichtete, verstellbare Klemmkegel erzeugt wird. Mit Hilfe dieser Vorrichtung können glatte Rohre, beispielsweise handelsübliche Präzisionsstahlrohre, über Kraftschluß in der Turbinenwellenbohrung gehalten werden.
Jedes ölführende Rohr besteht im allgemeinen aus minde¬ stens zwei Teilstücken. Diese hintereinander angeordneten Teilstücke werden über Steckmuffen miteinander verbunden. Die Steckmuffen sind beispielsweise kurze Verbindungs¬ rohre, deren Innendurchmesser geringfügig größer ist als der Außendurchmesser der ölführenden Rohre. Die Verbin¬ dungsrohre sitzen über der Verbindungsstelle von zwei Teilstücken. Dabei ist jeder Spalt zwischen einem ölfüh¬ renden Rohr und dem entsprechenden Verbindungsrohr bzw. der Steckmuffe durch mindestens einen O-Ring (88) abge¬ dichtet. Die Steckmuffen haben beispielsweise in ihrem mittleren Bereich einen Abschnitt, dessen Innendurchmesser kleiner ist als der Außendurchmesser der ölführenden
Rohre. Dadurch ist die Steckmuffe formschlüssig an der Verbindungsstelle axial fixiert.
Bei der Verwendung von mehreren ölführenden Rohren werden alle in einer Ebene nebeneinander liegenden Steckmuffen in einer Steckmuffenscheibe zusammengefaßt. Die Steckmuffen¬ scheibe paßt dabei bezüglich ihrer Außenkontur in die Tur¬ binenwellenbohrung. Sie und die Klemmscheiben weisen zu¬ sätzlich Längsbohrungen auf, die parallel zur Turbinenmit- tellinie orientiert sind. Durch die Längsbohrungen strömt das Nabenöl.
Des weiteren ist mittig zwischen den ölführenden Rohren eine Positionsgeberstange angeordnet, die an der ver- schiebbaren Baugruppe des Laufradservomotors angelenkt ist. Sie dient u.a. der Anzeige der Laufradflügelstellung.
Weitere Einzelheiten der Erfindung ergeben sich aus dem nachfolgend beschriebenen und schematisch dargestellten Ausführungsbeispiel. Figur 1: Längsschnitt der Turbinenwelle mit Nabe und öl¬ zuführbuchse;
Figur 2: ölzuführbuchse im Längsschnitt;
Figur 3: Laufradnabe im Längsschnitt;
Figur 4: Verbindungsmuffe, Ansicht und Längsschnitt;
Figur 5: Arretiermechanismus, Ansicht und Längsschnitt.
In Figur 1 ist eine längsgeschnittene Turbinenwelle (10) dargestellt, an deren vorderen, hier rechten Ende eine Laufradnabe (60) mit integriertem Verstellmechanismus für die Laufradflügel befestigt ist. An ihrem hinteren Ende ist eine Verlängerungswelle (20) angeflanscht, auf der eine ölzuführbuchse (40) gelagert ist.
Mit Hilfe der Verlängerungswelle (20) werden die ölzuführ- rohre (14-17) am hinteren Turbinenende gelagert, vgl. Fi¬ gur 2. Im vorderen Bereich ist sie als Rohr ausgebildet. Im hinteren Bereich, dem Bereich, auf dem die ölzuführ¬ buchse (40) sitzt, ist sie ein zylindrischer Block, in dem Bohrungen (22-27, 55-57) und Kanäle (51-53) einzelne
Hydraulikanschlüsse (42-47) mit den ölzuführrohren (14-17) verbinden.
In -der■Hauptbohrung (11) der Turbinenwelle (10) wird u.a. ein Rohrbündel aus vier gleichartigen ölzuführrohren (14- 17) geführt. Die ölzuführrohre (14-17) sind sogenannte Präzisionsstahlrohre, die als eng tolerierte Halbzeuge im Stahlhandel erhältlich sind. Sie (14-17) verlaufen in der Hauptbσhrung (11) annähernd parallel zu deren Mittelli- nie (12), vgl. auch Figur 4 und 5. Alle ölzuführrohre (14- 17) liegen im Querschnitt betrachtet auf einem Kreis um die Mittellinie (12) und sind zueinander um jeweils 90° versetzt. Je zwei einander gegenüberliegende ölzuführ- röhre (14, 15) und (16, 17) transportieren denselben öl- strom. In der Verlängerungswelle (20) enden die ölzuführ¬ rohre (14-17) in parallelen Längsbohrungen (22-25) . Diese Längsbohrungen (22-25) sind in ihrem vorderen Bereich so weit aufgebohrt, daß die ölzuführrohre (14-17) hineinge- steckt werden können. In.diesem Bereich sind in den ein¬ zelnen Längsbohrungen (22-25) jeweils zwei Einstiche ein¬ gearbeitet, in denen O-Ringe (28) sitzen.
Auf der rotierenden Verlängerungswelle (20) sitzt axial und radial gleitgelagert die ölzuführbuchse (40) . Die nicht mitrotierende ölzuführbuchse (40) stützt sich über nicht dargestellte Bauelemente an ortsfesten Lagern ab. Die ölzuführbuchse (40) sitzt über einen Gleitbelag (41) auf einer fest mit der Verlängerungswelle (20) verbundenen Lagerbüchse (30) .
An der Oberseite der ölzuführbuchse (40) sind nebeneinan¬ der drei Hydraulikanschlüsse (42-45) angeordnet. Jeder Hydraulikanschluß mündet in einen eigenen Ringkanal (51- 53) . Jeder Ringkanal (51-53) ist im Ausführungsbeispiel über eine Querbohrung (55-57) mit der jeweiligen Längsboh¬ rung (22-25) hydraulisch verbunden. Von dem rechten Hydraulikanschluß (42) strömt das zum öffnen des Laufrades verwendete öl u.a. in das ölzuführrohr (14) . Ober den lin- ken Hydraulikanschluß (43) wird das öl zum Schließen des
Laufrades in das ölzuführrohr (17) gepumpt. Ober den mitt¬ leren Hydraulikanschluß (44) wird das Nabenöl in die Sack¬ lochbohrungen (26, 27) gefördert. Die Sacklochboh¬ rungen (26, 27) münden direkt in die Hauptbohrung (21) der Verlängerungswelle (20). Zum Entleeren der drei Hydraulik¬ stränge dienen drei an der Unterseite der ölzuführ¬ buchse (40) nebeneinander angeordnete Hydraulikan¬ schlüsse (45-47) . Jeder von ihnen ist mit je einem Ringka- nal (51-53) verbunden.
Die Turbinenwellenbohrung (11) geht an der Trennfuge zwi¬ schen der Turbinenwelle (10) und der Laufradnabe (60) in eine Nabenbohrung (61) über, vgl. Figur 3. Am vorderen Ende der Nabenbohrung (61) sind die ölzuführrohre (14-17) in einem Verteilerstopfen (65) gelagert. Die Lagerung und Abdichtung der ölzuführrohre (14-17) erfolgt in der glei¬ chen Weise wie bei der Verlängerungswelle (20) . Der Ver¬ teilerstopfen (65) verschließt die Nabenbohrung (61) durckmitteldicht. Im Bereich des Verteilerstopfens (65) ist der Kolben (70) des Servomotors an der Laufrad¬ nabe (60) starr befestigt. Der Kolben (70) ist von einem Zylinder (71) umgeben, der über einen Hebelmechanismus die Laufradflügel verstellt. Das in Figur 3 obenliegende ölzu- führrohr (14) ist u.a. mit einem kolbenstangenseitigen Zy¬ linderraum (74) des Zylinders (71) hydraulisch mittels Querbohrungen (63) verbunden. Die Kolbenstange ist hierbei die Laufradnabe (60) . Der kolbenbodenseitige Zylinder¬ raum (75) wird u.a. über das untenliegende ölzuführ- röhr (17) und eine Längsbohrung (66) im Verteilerstop¬ fen (65) mit öl versorgt.
Am rechten Zylinderboden (72) ist eine Rückführstange (35) befestigt. Die Rückführstange (35) erstreckt sich zwischen den ölzuführrohren (14-17) liegend vom Zylinderboden (72) bis über das freie Ende der ölzuführbuchse (40) hinaus. Außerhalb der ölzuführbuchse (40) dient sie der mechani¬ schen Anzeige der Laufradstellung und der Abnahme dersel¬ ben durch elektrische Weg- bzw. Drehwinkelmeßeinrich- tungen. Die Rückführstange (35) besteht aus mehreren mit¬ einander verschraubten, zylindrischen Elementen, wobei die Versehraubungen mit Klebstoff gesichert sind.
Das durch die Turbinenwellen- (11) und Nabenbohrung (61) fließende Nabenδl gelangt in der Laufradnabe (60) über Querbohrungen (64) in den Nabeninnenbereich (62) .
Je nach Turbinenbauart oder -große können die ölzuführ¬ rohre (14-17) sehr lang sein, zum Teil länger als 10 Meter. Deshalb sind u.a. zur besseren Handhabung die einzelnen ölzuführrohre (14-17) aus mindestens zwei gleichartigen Teilstücken zusammengesetzt. Zur druckδl- dichten Verbindung der Teilstücke untereinander werden
Steckmuffenscheiben (80) verwendet. Die Steckmuffenschei¬ ben (80) sind Zylinder, deren jeweilige Außenkonturen mit geringem Spiel in der Turbinenwellenbohrung (11) sitzen. Jede Steckmuffenscheibe (80) enthält mehrere zueinander parallele Längsbohrungen (81, 84-87, 89). Im Zentrum jeder Steckmuffenscheibe (80) ist eine Durchgangsbohrung (81) angeordnet, die beidseitig zur Aufnahme von Lagerbuch¬ sen (82) aufgebohrt ist. In den Lagerbuchsen (82) wird die Rückführstange (35) geführt. Um die Durchgangsbohrung (81) herum sind vier große Stufenbohrungen (84-87) zur Verbin¬ dung der Teilstücke der ölzuführrohre (14-17) angeordnet. Jede Stufenbohrung (84-87) hat im mittleren Bereich einen Durchmesser, der annähernd dem Innendurchmesser der ölzu¬ führrohre (14-17) entspricht. Der vordere und der hintere Bohrungsbereich haben jeweils einen Durchmesser, der ge¬ ringfügig größer ist als der Außendurchmesser der ölzu¬ führrohre (14-17) . In diesen Bohrungsbereichen sind je zwei Einstiche eingearbeitet, in denen O-Ringe (88) einge¬ lassen sind. Die Enden der ölzuführrohre (14-17) sind wie auch der äußere Bohrungsrand der Stufenbohrungen (84-87) angefast.
Zwischen der zylindrischen Außenkontur der Steckmuffen- scheibe (80) und je zwei Stufenbohrungen (84/86, 86/85,
85/87, 87/84) ist jeweils eine Ausnehmung (89) angeordnet, die beispielsweise eine zylindrische Durchgangsbohrung ist. Durch diese Ausnehmungen (89) fließt das Nabenδl.
Um die ölzuführrohre (14-17) und die Rückführstange (35) in der Turbinenwellenbohrung (11) abzustützen, werden meh¬ rere Klemmscheiben (90) aus Kunststoff verwendet. Die Grundkontur einer Klemmscheibe (90) ist ein gerader Zylin- der. Parallel zu seiner Mittellinie (12) sind u.a. mehrere verschiedene Durchgangsbohrungen (91, 92) und (94-97) an¬ geordnet. Die zentrale Bohrung (91) führt die Rückführ¬ stange (35). Vier große Durchgangsbohrungen (94-97) dienen der Aufnahme der ölzuführrohre (14-17) . Zwei zylindrische Durchgangsbohrungen (99) , von denen jeweils eine zwischen der zylindrischen Außenkontur der Klemmscheibe (90) und zwei benachbarten Durchgangsbohrungen (94/97, 96/95) liegt, lassen Nabenδl durchfließen und dienen der Inspek¬ tion und/oder der Montage.
Die zylindrische Außenkontur der Klemmscheibe (90) ist parallel zu ihrer Mittellinie (12) im Bereich der großen Durchgangsbohrungen (94-97) radial geschlitzt. Jeder Schlitz hat eine mittlere Breite von ca. 2/3 eines ölzu- führrohrdurchmessers. In Figur 5 sind im Schnitt A-A zwei Kegelstifte (100) mit Gewindeansätzen zu sehen. Die Kegel¬ stifte (100) sitzen in entsprechenden Ausnehmungen (92) , die zur zylindrischen Außenkontur der Klemmscheibe (90) hin radial geschlitzt sind. Jeder Kegelstift (100) wird durch das Anziehen einer Mutter (102) in die jeweilige ge¬ schlitzte Ausnehmung unter deren Spreizung hineingezogen. Dabei werden u.a. die beidseits der Kegelstifte (100) lie¬ genden Klemmscheibenbereiche auseinandergedrückt, wodurch eine die ölzuführrohre (14-17) verspannende Kraft ent¬ steht.
Die Kegelstifte (100) haben auf ihrer Rückseite einen Mit¬ nehmerlappen, einen Vierkant (101) oder dergleichen.
Bezugszeichenliste:
10 Turbinenwelle
11 Turbinenwellenbohrung, Hauptbohrung 12 Mittellinie
14, 15 ölzuführrohre zum öffnen
16, 17 ölzuführrohre zum Schließen
20 Verlängerungswelle 21 Hauptbohrung in (20)
22, 23, 24, 25 Längsbohrungen in Verlängerungswelle
26, 27 Sacklochbohrungen in (20)
28 O-Ringe
30 Lagerbüchse 35 Positionsgeberstange, Rückführstange
40 ölzuführbuchse
41 Gleitbelag
42, 43, 44 Hydraulikanschlüsse 45, 46, 47 Hydraulikanschlüsse für Entleerung
51, 52, 53 Ringkanäle
55, 56, 57 Querbohrungen
60 Laufradnabe, Nabe 61 Nabenbohrung
62 Nabeninnenbereich
63, 64 Querbohrungen
65 Verteilerstopfen
66 Längsbohrung 70 Kolben
71 Zylinder
72 Zylinderboden, rechts
74 Zylinderraum, kolbenstangenseitig
75 Zylinderraum, kolbenbodenseitig
80 Steckmuffenscheibe
81 Durchgangsbohrung, Zentrum für (35)
82 Lagerbuchsen in (81) 84, 85, 86, 87 Stufenbohrungen, groß 88 O-Ringe
89 Ausnehmung für Nabenδl
90 Klemmscheibe
91 Durchgangsbohrung für (35) 92 Bohrungen, konisch, geschlitzt
94, 95, 96, 97 Durchgangsbohrungen, groß
99 Durchgangsbohrungen, klein
100 Kegelstifte
101 Mitnehmerlappen, Vierkant 102 Mutter

Claims

Patentansprüche:
1. Vorrichtung zur Steuer- und Schmierolversorgung einer einen Laufradservomotor beinhaltenden Nabe eines an einer Turbinenwelle angeflanschten Laufrades einer Strömungsmaschine mit verstellbaren Laufradflügein, wobei die Nabe über die hohle Turbinenwelle und mindestens zwei darin gelagerten ölführenden Rohren mit einer δlzu- und abführenden Buchse hydraulisch verbunden ist, dadurch gekennzeichnet, daß die ölführenden Rohre (14-17) parallel nebeneinander in der hohlen Turbinenwelle (10) geführt werden.
2. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß vier ölführende Rohre (14-17) die Nabe (60) und die Buchse (40) verbinden, wobei die Mittellinien der Rohre (14-17) zur Mittellinie (12) der
Turbinenwelle (10) den gleichen Abstand aufweisen und der lichte Abstand zwischen jeweils zwei direkt benachbarten Rohren ebenfalls gleich ist.
Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß jeweils zwei einander gegenüberliegende
Rohre (14/15, 16/17) hydraulisch miteinander verbunden sind.
4. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Rohre (14-17) untereinander in der Hauptboh¬ rung (11) der Turbinenwelle (10) durch eine den Quer- schnitt der Hauptbohrung (11) teilweise ausfüllende Klemmscheibe (90) fixiert werden, wobei die Klemmwirkung durch in konischen, geschlitzten Bohrungen (92) sitzende, parallel zu den Rohren ausgerichtete, verstellbare Klemmkegel (100) erzeugt wird.
5. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß die Rohre (14-17) handelsübliche Präzisionsstahlrohre sind.
6. Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, daß hintereinander angeordnete Teilstücke der
Rohre (14-17) über Steckmuffen verbunden sind, wobei jeder Spalt zwischen einem Rohr und der entsprechenden Muffe durch mindestens einen O-Ring (88) abgedichtet ist.
7. Vorrichtung gemäß Anspruch 2 und 6, dadurch gekenn¬ zeichnet, daß jeweils vier in einer Ebene nebeneinander liegende Steckmuffen in einer Steckmuffenscheibe (80) zusammengefaßt sind.
8. Vorrichtung gemäß Anspruch 4 und 7, dadurch gekenn¬ zeichnet, daß die Klemmscheiben (90) und die Steckmuffenscheibe (80) zusätzlic -\ Längsbohrungen (81, 89; 91, 99) aufweisen, die parallel zur Turbinenmittellinie (12) orientiert sind. 9. Vorrichtung gemäß Anspruch 2, dadurch gekennzeichnet, daß mittig zwischen den Rohren (14-17) eine Positions¬ geberstange (35) angeordnet ist, die an der verschiebbaren Baugruppe (70) des Laufradservomotors angelenkt ist.
PCT/EP1997/000955 1996-03-05 1997-02-27 Vorrichtung zur ölversorgung der laufradnabe einer strömungsmaschine WO1997033088A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97905109A EP0885356A1 (de) 1996-03-05 1997-02-27 Vorrichtung zur ölversorgung der laufradnabe einer strömungsmaschine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19608342.7 1996-03-05
DE19608342A DE19608342A1 (de) 1996-03-05 1996-03-05 Vorrichtung zur Ölversorgung der Laufradnabe einer Strömungsmaschine

Publications (1)

Publication Number Publication Date
WO1997033088A1 true WO1997033088A1 (de) 1997-09-12

Family

ID=7787192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/000955 WO1997033088A1 (de) 1996-03-05 1997-02-27 Vorrichtung zur ölversorgung der laufradnabe einer strömungsmaschine

Country Status (3)

Country Link
EP (1) EP0885356A1 (de)
DE (1) DE19608342A1 (de)
WO (1) WO1997033088A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105971966B (zh) * 2016-07-18 2019-01-11 天津优瑞纳斯液压机械有限公司 一种能往复移动的刚性导油装置
DE102022133500B3 (de) * 2022-12-15 2024-03-14 Voith Patent Gmbh Wasserkraftmaschine mit einem Laufrad mit verstellbaren Schaufeln sowie Verfahren zu deren Regelung und Schwingungsüberwachung

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB379617A (en) * 1922-07-04 1932-09-01 Albert Huguenin Improved movable wheel for reversible rotary machines, more particularly for hydraulic turbines
US4119141A (en) * 1977-05-12 1978-10-10 Thut Bruno H Heat exchanger
US4149739A (en) * 1977-03-18 1979-04-17 Summa Corporation Dual passage pipe for cycling water to an undersea mineral aggregate gathering apparatus
DE3105406A1 (de) * 1981-02-14 1982-09-02 Hergen 3100 Celle Sandl Konische selbstdichtende kernrohrmuffenverbindung und zentriereinrichtung fuer doppelrohre (doppelrohrsysteme)
EP0103777A1 (de) * 1982-08-27 1984-03-28 Instytut Chemii Przemyslowej Halter für die Innendruckprüfung von Plastikrohren bei Temperaturen bis zu 200oC
US5078432A (en) * 1985-11-27 1992-01-07 The George Ingraham Corporation Multiple duct conduit and couplings
US5209632A (en) * 1990-09-25 1993-05-11 Hitachi, Ltd. Hydroelectric power generation equipment
US5236227A (en) * 1991-11-12 1993-08-17 Robert Adams Assembly for connecting multi-duct conduits having tapered alignment walls
US5492170A (en) * 1993-07-05 1996-02-20 Framatome Device for radially supporting the bundle envelope and spacer plates of a steam generator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1068639B (de) * 1955-03-15 1959-11-05
CH410822A (de) * 1963-04-29 1966-03-31 Karlstad Mekaniska Ab Verstelleinrichtung an Turbinen, Pumpen oder Propellern
DE6903252U (de) * 1969-01-29 1970-07-23 Pleuger Friedrich Wilhelm Hydraulischer verstellpropeller

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB379617A (en) * 1922-07-04 1932-09-01 Albert Huguenin Improved movable wheel for reversible rotary machines, more particularly for hydraulic turbines
US4149739A (en) * 1977-03-18 1979-04-17 Summa Corporation Dual passage pipe for cycling water to an undersea mineral aggregate gathering apparatus
US4119141A (en) * 1977-05-12 1978-10-10 Thut Bruno H Heat exchanger
DE3105406A1 (de) * 1981-02-14 1982-09-02 Hergen 3100 Celle Sandl Konische selbstdichtende kernrohrmuffenverbindung und zentriereinrichtung fuer doppelrohre (doppelrohrsysteme)
EP0103777A1 (de) * 1982-08-27 1984-03-28 Instytut Chemii Przemyslowej Halter für die Innendruckprüfung von Plastikrohren bei Temperaturen bis zu 200oC
US5078432A (en) * 1985-11-27 1992-01-07 The George Ingraham Corporation Multiple duct conduit and couplings
US5209632A (en) * 1990-09-25 1993-05-11 Hitachi, Ltd. Hydroelectric power generation equipment
US5236227A (en) * 1991-11-12 1993-08-17 Robert Adams Assembly for connecting multi-duct conduits having tapered alignment walls
US5236227B1 (en) * 1991-11-12 1996-12-03 Opti Com Manufacturing Network Assembly for connecting multi-duct conduits having tapered alignment walls
US5492170A (en) * 1993-07-05 1996-02-20 Framatome Device for radially supporting the bundle envelope and spacer plates of a steam generator

Also Published As

Publication number Publication date
DE19608342A1 (de) 1997-09-11
EP0885356A1 (de) 1998-12-23

Similar Documents

Publication Publication Date Title
EP3189237B1 (de) Exzenterschneckenpumpe
DE3149067C2 (de)
DE10339291B3 (de) Radialpresse zum Verpressen von rotationssymmetrischen Hohlkörpern
DE102007011990A1 (de) Vorrichtung zum hydraulischen Verstellen der Laufschaufeln eines Laufrades eines Axialventilators
DE10209484A1 (de) Turbolader für Fahrzeuge mit verbesserter Aufhängung für den Betätigungsmechanismus der variablen Düsen
DE19821411A1 (de) Axial betätigbare Doppelspüllanze
WO2019215133A1 (de) STELLANTRIEB ZUM VERSTELLEN EINES GROßWÄLZLAGERS
DE102017121294B4 (de) Spindeleinheit für Werkzeugmaschinen
DE3912659C1 (de)
EP3326727A2 (de) Vorrichtung zur inspektion und reinigung eines leitungs- oder rohrabschnitts
DE20115470U1 (de) Druckreduziervorrichtung
DE2328130A1 (de) Vorrichtung zum abdichten von fliessmedien
EP0885356A1 (de) Vorrichtung zur ölversorgung der laufradnabe einer strömungsmaschine
DE1966073C3 (de) Druckmittelübertrager an einer Werkzeugmaschine o.dgl
DE19944141C1 (de) Radialpresse für das Verpressen von Hochdruckschläuchen mit rotationssymmetrischen Hohlkörpern von Schlaucharmaturen
DE4123807C1 (de)
EP2116352B1 (de) Extrusions-Werkzeug für eine Vorrichtung zur Herstellung von Kunststoff-Verbundrohren mit Querrillen
DE7326590U (de) Maschine zum Anschweißen von Vorschweiß-Rohrverbindungsstücken an Rohre
EP1956183A1 (de) Spannkopf für ein Gestängeelement
DE102017204553A1 (de) Ventilvorrichtung, ventilgehäuse, zahnsegmenteinrichtung und verfahren zum herstellen der ventilvorrichtung
EP0885355A1 (de) Ölversorgung der laufradnabe einer strömungsmaschine über eine schwimmend gelagerte buchse
EP0411459B1 (de) Vorrichtung zum Zentrieren und Spannen von Rohrwerkstücken
DE29821499U1 (de) Vorrichtung zum Verschließen eines Rohrendes oder Formteils zum Zwecke des Formierens einer Schweißnaht bei der Herstellung einer Schweißverbindung mit diesem Rohrende oder Formteil und Anordnung unter Verwendung der Vorrichtung
DE3318165C2 (de) Leitschaufel-Verstellvorrichtung für die Vordrallregelung einer Strömungsarbeitsmaschine
WO2005058577A1 (de) Heisskanalsystem

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN TR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1997905109

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1997905109

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1997905109

Country of ref document: EP