WO1997027607A1 - Procede de production de pointes d'emission de champ - Google Patents
Procede de production de pointes d'emission de champ Download PDFInfo
- Publication number
- WO1997027607A1 WO1997027607A1 PCT/DE1996/002246 DE9602246W WO9727607A1 WO 1997027607 A1 WO1997027607 A1 WO 1997027607A1 DE 9602246 W DE9602246 W DE 9602246W WO 9727607 A1 WO9727607 A1 WO 9727607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- holes
- field emission
- insulating material
- plate
- metal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
Definitions
- the invention relates to a method for producing field emission peaks according to the type of the independent patent claim.
- Methods for producing field emission peaks are already known from the textbook: Micromechanics, published by Anton Heuberger, Springer-Verlag 1989, page 426 ff. These field emission peaks are formed by etching silicon or by vapor deposition of metal.
- Methods for the production of so-called nanomaterials are known from the magazine article "Nano Materials: A membrane based synthetic approach" by Charles Martin, Science volume 266, December 23, 1994, page 1961 ff Electrochemical or chemical deposition Metals deposited in the holes The membranes processed in this way have special optical properties.
- the method according to the invention with the characterizing features of the independent claim has the advantage that a large number of simple methods of field emission peaks can be produced in parallel. Since holes with a particularly small diameter can be produced in insulating materials, the field emission peaks formed in this way have a small diameter and therefore show a considerable field emission even with small electrical fields present. Furthermore, the mechanically and thermally particularly robust construction of the field emission peaks is ensured by the embedding in the insulating material.
- the measures specified in the dependent claims allow advantageous developments and improvements of the method according to the independent claim.
- the holes are filled particularly easily by electrochemical or chemical deposition.
- the holes can be made in the insulating material either by bombarding the material by means of a particle stream and subsequent etching, or by electrochemical oxidation of aluminum.
- the arrangement on a carrier plate
- Field emission peaks created that are easy to handle If the carrier plate has regions that are mutually insulating, individual field emission peaks or groups of field emission peaks can be controlled separately.
- a metal electrode on the surface of the insulating material creates a control electrode with which the field emission current flowing from the field emission peaks can be influenced.
- FIG. 1 shows a first Embodiment of the field emission peaks
- Figure 2 shows a second embodiment with a control electrode
- Figure 3 shows a third embodiment with individually controllable field emission peaks.
- FIG. 1 shows a plate 1 made of insulating material, in which a large number of holes 2 are made.
- the holes 2 are filled with a metal in such a way that long, high metal bodies 3 are formed.
- the plate 1 made of insulating material and the metal body 3 are arranged on a common carrier plate 4.
- the proportions are shown very distorted. It is essential to the invention that the diameter of the holes 2 and thus also the diameter of the elongated metallic body 3 is in the order of magnitude of a few nanometers to a few tens of nanometers.
- the metallic bodies 3 thus form very fine tips, so that 3 high field strengths occur when an electrical voltage is applied to the tip of the metallic bodies. If the field strengths become sufficiently large, electrons emerge from the metal through a tunnel effect.
- the geometric dimensions of the plate 1 made of insulating material or of the carrier 4 are of no importance for the field emission.
- the metallic bodies 3, which form the field emission peaks, are first produced in the insulating material of the plate 1, in which holes 2 with a correspondingly small diameter are produced.
- a polymer material can be irradiated with a particle stream.
- the particle stream creates damage in the plastic material (usually polycarbonate) along the trajectory of the particle in the insulating material.
- Fine, pore-like holes can then be made in the plastic material along the trajectories by etching processes.
- Another method is to convert aluminum into aluminum oxide (Al 2 0 3 ) by anodic oxidation. This conversion process forms an aluminum oxide layer with fine, slim pores, the diameter of which is determined by the anodizing conditions and the concentration of the
- Electrolysts can be affected. Pore-like holes with a diameter of a few nanometers can also be produced in this way. In order to fill these holes with a metal, an electrochemical or chemical deposition process is used.
- Gold, silver, platinum, nickel or other metals, for example, are suitable for chemical or electrochemical deposition.
- the holes 2 should be closed on one side by a material on which galvanic deposition can take place. This is ensured, for example, by applying a metal layer on one side of the plate 1 or by arranging the plate 1 on a conductive carrier 4. Starting from the other side of the plate 1, galvanic deposition can then take place in the holes 2. Chemical deposition (also called electroless plating) can a starting layer may also be used.
- a carrier plate 4 made of metal is shown in FIG.
- the carrier plate 4 can also consist of insulating material, on the surface of which conductive layers are applied.
- FIG. 1 A further exemplary embodiment of the invention is shown in FIG.
- a plate 1 made of insulating material is applied to a metallic carrier plate 4.
- the plate 1 made of insulating material is applied to a metallic carrier plate 4.
- the plate 1 made of insulating material is applied to a metallic carrier plate 4.
- the metallic bodies 3 are designed such that, starting from the metallic carrier plate 4, they only extend to significantly below the top of the plate 1.
- a further metal layer 5, which forms a control electrode, is applied to the top of the metallic plate 1.
- a counter electrode 6 is shown for clarification, which is arranged opposite the field emission tips 3.
- the filling of the holes 2 is interrupted after a predetermined time, so that the holes 2 are not completely filled.
- the metal layer 5 is then deposited on the top of the plate 1 by vapor deposition or sputtering.
- a voltage is applied between the metallic carrier plate 4, through which the field emission tips 3 are contacted, and the counter electrode 6.
- a field emission current from the field emission tips 3 becomes Flow counter electrode 6.
- the field emission current can be influenced by applying an electrical voltage to the metal layer 5.
- the metal layer 5 thus acts like the control grid of a triode.
- FIG. 3 shows a further exemplary embodiment of the invention, the plate 1 with the holes 2 and the field emission peaks 3 generated therein corresponding to the exemplary embodiment according to FIG. 1.
- an insulating plate 7 is provided as the carrier, which has superficial, conductive layers 8.
- FIG. 3 shows two conductive layers 8 which are insulated from one another. Due to the conductive layers 8, individual field emission peaks 3 or groups of field emission peaks 3 can be subjected to different voltages. It is thus possible to control individual groups of field emission peaks independently of one another. Such a control of individual field emission peaks, like the arrangement according to FIG. 2, is particularly suitable for the production of thin flat screens.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
Procédé de production de pointes d'émission de champ, dans lequel on produit, dans un matériau isolant (1), une multiplicité de trous (2) qui sont ensuite remplis de métal. On forme ainsi des corps métalliques (3) qui, en raison des faibles diamètres des trous (2), constituent les pointes d'émission de champ. Les trous (2) présentent des diamètres types allant de quelques nanomètres à quelques dizaines de nanomètres.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19602595.8 | 1996-01-25 | ||
DE1996102595 DE19602595A1 (de) | 1996-01-25 | 1996-01-25 | Verfahren zur Herstellung von Feldemissionsspitzen |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997027607A1 true WO1997027607A1 (fr) | 1997-07-31 |
Family
ID=7783629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1996/002246 WO1997027607A1 (fr) | 1996-01-25 | 1996-11-22 | Procede de production de pointes d'emission de champ |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19602595A1 (fr) |
WO (1) | WO1997027607A1 (fr) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649824B1 (en) | 1999-09-22 | 2003-11-18 | Canon Kabushiki Kaisha | Photoelectric conversion device and method of production thereof |
FR2857954A1 (fr) * | 2003-07-25 | 2005-01-28 | Thales Sa | Procede de croissance localisee de nanofils ou nanotubes |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6525461B1 (en) | 1997-10-30 | 2003-02-25 | Canon Kabushiki Kaisha | Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device |
JPH11246300A (ja) * | 1997-10-30 | 1999-09-14 | Canon Inc | チタンナノ細線、チタンナノ細線の製造方法、構造体及び電子放出素子 |
EP1061554A1 (fr) * | 1999-06-15 | 2000-12-20 | Iljin Nanotech Co., Ltd. | Source de lumière blanche à nanotubes de carbone et procédé de fabrication |
JP2001052652A (ja) * | 1999-06-18 | 2001-02-23 | Cheol Jin Lee | 白色光源及びその製造方法 |
DE19931328A1 (de) * | 1999-07-01 | 2001-01-11 | Codixx Ag | Flächige Elektronen-Feldemissionsquelle und Verfahren zu deren Herstellung |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3745402A (en) * | 1971-12-17 | 1973-07-10 | J Shelton | Field effect electron emitter |
US4163918A (en) * | 1977-12-27 | 1979-08-07 | Joe Shelton | Electron beam forming device |
EP0351110A1 (fr) * | 1988-07-13 | 1990-01-17 | THORN EMI plc | Procédé pour fabriquer une cathode froide, un dispositif d'émission de champ et dispositif d'émission de champ construit d'après cette méthode |
US5145435A (en) * | 1990-11-01 | 1992-09-08 | The United States Of America As Represented By The Secretary Of The Navy | Method of making composite field-emitting arrays |
US5164632A (en) * | 1990-05-31 | 1992-11-17 | Ricoh Company, Ltd. | Electron emission element for use in a display device |
DE4209301C1 (en) * | 1992-03-21 | 1993-08-19 | Gesellschaft Fuer Schwerionenforschung Mbh, 6100 Darmstadt, De | Manufacture of controlled field emitter for flat display screen, TV etc. - using successive etching and deposition stages to form cone shaped emitter peak set in insulating matrix together with electrodes |
US5315206A (en) * | 1991-02-20 | 1994-05-24 | Ricoh Company, Ltd. | Electron emission elements integrated substrate |
WO1994028569A1 (fr) * | 1993-05-27 | 1994-12-08 | Commissariat A L'energie Atomique | Dispositf d'affichage a micropointes et procede de fabrication d'un tel dispositif, utilisant la lithographie par ions lourds |
WO1995007543A1 (fr) * | 1993-09-08 | 1995-03-16 | Silicon Video Corporation | Fabrication et structure de dispositifs emetteurs d'electrons possedant une densite d'integration elevee |
WO1996006443A1 (fr) * | 1994-08-18 | 1996-02-29 | Isis Innovation Limited | Structures emettrices de champ |
-
1996
- 1996-01-25 DE DE1996102595 patent/DE19602595A1/de not_active Withdrawn
- 1996-11-22 WO PCT/DE1996/002246 patent/WO1997027607A1/fr active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3745402A (en) * | 1971-12-17 | 1973-07-10 | J Shelton | Field effect electron emitter |
US4163918A (en) * | 1977-12-27 | 1979-08-07 | Joe Shelton | Electron beam forming device |
EP0351110A1 (fr) * | 1988-07-13 | 1990-01-17 | THORN EMI plc | Procédé pour fabriquer une cathode froide, un dispositif d'émission de champ et dispositif d'émission de champ construit d'après cette méthode |
US5164632A (en) * | 1990-05-31 | 1992-11-17 | Ricoh Company, Ltd. | Electron emission element for use in a display device |
US5145435A (en) * | 1990-11-01 | 1992-09-08 | The United States Of America As Represented By The Secretary Of The Navy | Method of making composite field-emitting arrays |
US5315206A (en) * | 1991-02-20 | 1994-05-24 | Ricoh Company, Ltd. | Electron emission elements integrated substrate |
DE4209301C1 (en) * | 1992-03-21 | 1993-08-19 | Gesellschaft Fuer Schwerionenforschung Mbh, 6100 Darmstadt, De | Manufacture of controlled field emitter for flat display screen, TV etc. - using successive etching and deposition stages to form cone shaped emitter peak set in insulating matrix together with electrodes |
WO1994028569A1 (fr) * | 1993-05-27 | 1994-12-08 | Commissariat A L'energie Atomique | Dispositf d'affichage a micropointes et procede de fabrication d'un tel dispositif, utilisant la lithographie par ions lourds |
WO1995007543A1 (fr) * | 1993-09-08 | 1995-03-16 | Silicon Video Corporation | Fabrication et structure de dispositifs emetteurs d'electrons possedant une densite d'integration elevee |
WO1996006443A1 (fr) * | 1994-08-18 | 1996-02-29 | Isis Innovation Limited | Structures emettrices de champ |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649824B1 (en) | 1999-09-22 | 2003-11-18 | Canon Kabushiki Kaisha | Photoelectric conversion device and method of production thereof |
FR2857954A1 (fr) * | 2003-07-25 | 2005-01-28 | Thales Sa | Procede de croissance localisee de nanofils ou nanotubes |
WO2005015596A2 (fr) * | 2003-07-25 | 2005-02-17 | Thales | Procede de croissance localisee de nanofils ou nanotubes |
WO2005015596A3 (fr) * | 2003-07-25 | 2006-04-06 | Thales Sa | Procede de croissance localisee de nanofils ou nanotubes |
Also Published As
Publication number | Publication date |
---|---|
DE19602595A1 (de) | 1997-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2951287C2 (de) | Verfahren zur Herstellung von mit einer Vielzahl von feinsten Spitzen versehenen Oberflächen | |
EP1595266B1 (fr) | Point quantique constitue de carbone electro-conducteur, son procede de production et son utilisation | |
WO2000079589A1 (fr) | Composant electronique a structures de contact souples et procede de fabrication d'un tel composant | |
WO2009006988A1 (fr) | Structure de contact pour un composant semi-conducteur et son procédé de fabrication | |
DE102012024185A1 (de) | Kontaktelement und Verfahren zu seiner Herstellung | |
DE102004060738B4 (de) | Verfahren zum strukturierten Aufbringen von Molekülen auf eine Leiterbahn | |
EP1224676A1 (fr) | Dispositif dote d'une electrode, d'une couche de percolation spongieuse, d'un electrolyte et d'un moyen permettant d'appliquer une tension | |
WO1997027607A1 (fr) | Procede de production de pointes d'emission de champ | |
DE102008049654B4 (de) | Elektronenstrahlquelle, Elektronenstrahlsystem mit derselben, Verfahren zur Herstellung der Elektronenstrahlquelle sowie deren Verwendung | |
EP1543863B1 (fr) | Structure d'életrode, procédés de sa fabrication et son utilisation | |
DE68917310T2 (de) | Delta-phi-Mikrolinse für Teilchenstrahlen niedriger Energie. | |
EP1323463B1 (fr) | Procédé et appareil pour fabriquer une membrane métallique | |
DE102018111220B3 (de) | Verfahren zum Herstellen einer Atomfalle sowie Atomfalle | |
DE69505914T2 (de) | Herstellungsverfahren einer Mikrospitzen-Elektronenquelle | |
DE102009014993B4 (de) | Verfahren zum elektrischen Kontaktieren eines elektronischen Bauelements | |
DE19600782C1 (de) | Verfahren zum Herstellen von nebeneinanderliegenden Gräben oder Löchern in einem elektrisch nichtisolierenden Substrat, insbesondere einem Halbleitersubstrat | |
EP1656702B1 (fr) | Procede de fabrication de nano-transistor vertical | |
EP2380193B1 (fr) | Composant présentant une connexion traversante, et procédé de production d'un tel composant | |
DE102009012145B4 (de) | Verfahren zur Herstellung von Bauteilen, sowie Bauteile selbst | |
WO2006094821A2 (fr) | Procede pour produire une fine couche d'oxyde de magnesium | |
EP1334520B1 (fr) | Film constitue d'un materiau comprenant des pointes metalliques | |
DE102020116068A1 (de) | Transparente Resonante Tunneldiode und Verfahren zu ihrer Herstellung | |
WO1993004495A1 (fr) | Structure en electret, son procede de fabrication et son utilisation dans un convertisseur electro-acoustique | |
EP0250043A1 (fr) | Dispositif d'électrolyse de vapeur d'eau à haute température | |
DE102013204468A1 (de) | Verfahren und Vorrichtung zum Herstellen einer elektrisch leitenden Schicht auf einem Trägermaterial |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97526399 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |