WO1997027607A1 - Process for producing cold emission points - Google Patents
Process for producing cold emission points Download PDFInfo
- Publication number
- WO1997027607A1 WO1997027607A1 PCT/DE1996/002246 DE9602246W WO9727607A1 WO 1997027607 A1 WO1997027607 A1 WO 1997027607A1 DE 9602246 W DE9602246 W DE 9602246W WO 9727607 A1 WO9727607 A1 WO 9727607A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- holes
- field emission
- insulating material
- plate
- metal
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
Definitions
- the invention relates to a method for producing field emission peaks according to the type of the independent patent claim.
- Methods for producing field emission peaks are already known from the textbook: Micromechanics, published by Anton Heuberger, Springer-Verlag 1989, page 426 ff. These field emission peaks are formed by etching silicon or by vapor deposition of metal.
- Methods for the production of so-called nanomaterials are known from the magazine article "Nano Materials: A membrane based synthetic approach" by Charles Martin, Science volume 266, December 23, 1994, page 1961 ff Electrochemical or chemical deposition Metals deposited in the holes The membranes processed in this way have special optical properties.
- the method according to the invention with the characterizing features of the independent claim has the advantage that a large number of simple methods of field emission peaks can be produced in parallel. Since holes with a particularly small diameter can be produced in insulating materials, the field emission peaks formed in this way have a small diameter and therefore show a considerable field emission even with small electrical fields present. Furthermore, the mechanically and thermally particularly robust construction of the field emission peaks is ensured by the embedding in the insulating material.
- the measures specified in the dependent claims allow advantageous developments and improvements of the method according to the independent claim.
- the holes are filled particularly easily by electrochemical or chemical deposition.
- the holes can be made in the insulating material either by bombarding the material by means of a particle stream and subsequent etching, or by electrochemical oxidation of aluminum.
- the arrangement on a carrier plate
- Field emission peaks created that are easy to handle If the carrier plate has regions that are mutually insulating, individual field emission peaks or groups of field emission peaks can be controlled separately.
- a metal electrode on the surface of the insulating material creates a control electrode with which the field emission current flowing from the field emission peaks can be influenced.
- FIG. 1 shows a first Embodiment of the field emission peaks
- Figure 2 shows a second embodiment with a control electrode
- Figure 3 shows a third embodiment with individually controllable field emission peaks.
- FIG. 1 shows a plate 1 made of insulating material, in which a large number of holes 2 are made.
- the holes 2 are filled with a metal in such a way that long, high metal bodies 3 are formed.
- the plate 1 made of insulating material and the metal body 3 are arranged on a common carrier plate 4.
- the proportions are shown very distorted. It is essential to the invention that the diameter of the holes 2 and thus also the diameter of the elongated metallic body 3 is in the order of magnitude of a few nanometers to a few tens of nanometers.
- the metallic bodies 3 thus form very fine tips, so that 3 high field strengths occur when an electrical voltage is applied to the tip of the metallic bodies. If the field strengths become sufficiently large, electrons emerge from the metal through a tunnel effect.
- the geometric dimensions of the plate 1 made of insulating material or of the carrier 4 are of no importance for the field emission.
- the metallic bodies 3, which form the field emission peaks, are first produced in the insulating material of the plate 1, in which holes 2 with a correspondingly small diameter are produced.
- a polymer material can be irradiated with a particle stream.
- the particle stream creates damage in the plastic material (usually polycarbonate) along the trajectory of the particle in the insulating material.
- Fine, pore-like holes can then be made in the plastic material along the trajectories by etching processes.
- Another method is to convert aluminum into aluminum oxide (Al 2 0 3 ) by anodic oxidation. This conversion process forms an aluminum oxide layer with fine, slim pores, the diameter of which is determined by the anodizing conditions and the concentration of the
- Electrolysts can be affected. Pore-like holes with a diameter of a few nanometers can also be produced in this way. In order to fill these holes with a metal, an electrochemical or chemical deposition process is used.
- Gold, silver, platinum, nickel or other metals, for example, are suitable for chemical or electrochemical deposition.
- the holes 2 should be closed on one side by a material on which galvanic deposition can take place. This is ensured, for example, by applying a metal layer on one side of the plate 1 or by arranging the plate 1 on a conductive carrier 4. Starting from the other side of the plate 1, galvanic deposition can then take place in the holes 2. Chemical deposition (also called electroless plating) can a starting layer may also be used.
- a carrier plate 4 made of metal is shown in FIG.
- the carrier plate 4 can also consist of insulating material, on the surface of which conductive layers are applied.
- FIG. 1 A further exemplary embodiment of the invention is shown in FIG.
- a plate 1 made of insulating material is applied to a metallic carrier plate 4.
- the plate 1 made of insulating material is applied to a metallic carrier plate 4.
- the plate 1 made of insulating material is applied to a metallic carrier plate 4.
- the metallic bodies 3 are designed such that, starting from the metallic carrier plate 4, they only extend to significantly below the top of the plate 1.
- a further metal layer 5, which forms a control electrode, is applied to the top of the metallic plate 1.
- a counter electrode 6 is shown for clarification, which is arranged opposite the field emission tips 3.
- the filling of the holes 2 is interrupted after a predetermined time, so that the holes 2 are not completely filled.
- the metal layer 5 is then deposited on the top of the plate 1 by vapor deposition or sputtering.
- a voltage is applied between the metallic carrier plate 4, through which the field emission tips 3 are contacted, and the counter electrode 6.
- a field emission current from the field emission tips 3 becomes Flow counter electrode 6.
- the field emission current can be influenced by applying an electrical voltage to the metal layer 5.
- the metal layer 5 thus acts like the control grid of a triode.
- FIG. 3 shows a further exemplary embodiment of the invention, the plate 1 with the holes 2 and the field emission peaks 3 generated therein corresponding to the exemplary embodiment according to FIG. 1.
- an insulating plate 7 is provided as the carrier, which has superficial, conductive layers 8.
- FIG. 3 shows two conductive layers 8 which are insulated from one another. Due to the conductive layers 8, individual field emission peaks 3 or groups of field emission peaks 3 can be subjected to different voltages. It is thus possible to control individual groups of field emission peaks independently of one another. Such a control of individual field emission peaks, like the arrangement according to FIG. 2, is particularly suitable for the production of thin flat screens.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cold Cathode And The Manufacture (AREA)
Abstract
The proposal is for a process for producing cold emission points in which a plurality of holes (2) is made in an insulating material (1) and then filled with a metal. Metal bodies (3) are thus formed which, owing to the small diameter of the holes (2), form the cold emission points. The typical diameter of the holes (2) is from a few to a few tens of nanometres.
Description
Verfahren zur Herstellung von FeldemissionsspitzenProcess for the production of field emission peaks
Stand der TechnikState of the art
Die Erfindung geht aus von einem Verfahren zur Herstellung von Feldemissionsspitzen nach der Gattung des unabhängigen Patentanspruchs. Aus dem Lehrbuch: Mikromechanik, Herausgeber Anton Heuberger, Springer-Verlag 1989, Seite 426 ff, sind bereits Verfahren zur Herstellung von Feldemissionsspitzen bekannt. Diese Feldemmissionsspitzen werden durch Ätzen von Silicium oder durch Aufdampfen von Metall gebildet. Aus dem Zeitschriftenartikel „Nano Materials: A membrane based synthetic approach" von Charles Martin, Science volume 266 23.12.1994, Seite 1961 ff, sind Verfahren zur Herstellung sogenannter Nanomaterialien bekannt. Dabei werden Membranen mit einer Vielzahl von kleinen Löchern versehen und es werden durch elektrochemische oder chemische Abscheidungen Metalle in den Löchern abgeschieden. Die so bearbeiteten Membranen weisen besondere optische Eigenschaften auf.The invention relates to a method for producing field emission peaks according to the type of the independent patent claim. Methods for producing field emission peaks are already known from the textbook: Micromechanics, published by Anton Heuberger, Springer-Verlag 1989, page 426 ff. These field emission peaks are formed by etching silicon or by vapor deposition of metal. Methods for the production of so-called nanomaterials are known from the magazine article "Nano Materials: A membrane based synthetic approach" by Charles Martin, Science volume 266, December 23, 1994, page 1961 ff Electrochemical or chemical deposition Metals deposited in the holes The membranes processed in this way have special optical properties.
Vorteile der ErfindungAdvantages of the invention
Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des unabhängigen Patentanspruchs hat demgegenüber den Vorteil, daß durch ein einfaches Verfahren eine Vielzahl
von Feldemissionsspitzen parallel gefertigt werden können. Da in isolierenden Materialien Löcher mit besonders geringem Durchmesser erzeugt werden können, weisen die so gebildeten Feldemissionsspitzen einen geringen Durchmesser auf und zeigen daher bereits bei geringen anliegenden elektrischen Feldern eine erhebliche Feldemission. Weiterhin wird durch die Einbettung in dem isolierenden Material ein mechanisch und thermisch besonders robuster Aufbau der Feldemissionsspitzen gewährleistet .The method according to the invention with the characterizing features of the independent claim has the advantage that a large number of simple methods of field emission peaks can be produced in parallel. Since holes with a particularly small diameter can be produced in insulating materials, the field emission peaks formed in this way have a small diameter and therefore show a considerable field emission even with small electrical fields present. Furthermore, the mechanically and thermally particularly robust construction of the field emission peaks is ensured by the embedding in the insulating material.
Durch die in den abhängigen Patentansprüchen angegebenen Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des Verfahrens nach dem unabhängigen Patentanspruch möglich. Besonders einfach erfolgt das Auffüllen der Löcher durch elektrochemische oder chemische Abscheidung. Das Einbringen der Löcher in dem isolierenden Material kann entweder durch den Beschüß des Materials mittels eines Teilchenstroms und anschließendes Ätzen oder durch elektrochemische Oxidation von Aluminium erfolgen. Durch die Anordnung auf einer Trägerplatte werdenThe measures specified in the dependent claims allow advantageous developments and improvements of the method according to the independent claim. The holes are filled particularly easily by electrochemical or chemical deposition. The holes can be made in the insulating material either by bombarding the material by means of a particle stream and subsequent etching, or by electrochemical oxidation of aluminum. The arrangement on a carrier plate
Feldemissionsspitzen geschaffen, die sich problemlos handhaben lassen. Wenn dabei die Trägerplatte gegen einander isolierende Bereiche aufweist, so können einzelne Feldemissionsspitzen oder Gruppen von Feldemissionsspitzen separat angesteuert werden. Durch das Anbringen einerField emission peaks created that are easy to handle. If the carrier plate has regions that are mutually insulating, individual field emission peaks or groups of field emission peaks can be controlled separately. By attaching one
Metallschicht auf der Oberfläche des isolierenden Materials wird eine Steuerelektrode geschaffen, mit dem der aus den Feldemissionsspitzen fließende Feldemissionsstrom beeinflußt werden kann.A metal electrode on the surface of the insulating material creates a control electrode with which the field emission current flowing from the field emission peaks can be influenced.
Zeichnungendrawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen die Figur 1 ein erstes
Ausführungsbeispiel der Feldemissionsspitzen, die Figur 2 ein zweites Ausführungsbeispiel mit einer Steuerelektrode und Figur 3 ein drittes Ausführungsbeispiel mit einzeln ansteuerbaren Feldemissionsspitzen.Embodiments of the invention are shown in the drawings and explained in more detail in the following description. 1 shows a first Embodiment of the field emission peaks, Figure 2 shows a second embodiment with a control electrode and Figure 3 shows a third embodiment with individually controllable field emission peaks.
Beschreibungdescription
In der Figur 1 wird eine Platte 1 aus isolierendem Material gezeigt, in der eine Vielzahl von Löchern 2 eingebracht sind. Die Löcher 2 sind mit einem Metall derart aufgefüllt, daß sich lange, hohe Metallkörper 3 bilden. Die Platte 1 aus isolierendem Material und die Metallkörper 3 sind auf einer gemeinsamen Trägerplatte 4 angeordnet. In der Figur 1 werden die Größenverhältnisse stark verzerrt dargestellt. Wesentlich ist an der Erfindung, daß der Durchmesser der Löcher 2 und somit auch der Durchmesser der länglichen metallischen Körper 3 in der Größenordnung von einigen Nanometern bis einigen zehn Nanometern liegt. Die metallischen Körper 3 bilden so sehr feine Spitzen, so daß beim Anliegen einer elektrischen Spannung an der Spitze der metallischen Körper 3 hohe Feldstärken auftreten. Wenn dabei die Feldstärken ausreichend groß werden, so treten durch einen Tunneleffekt Elektronen aus dem Metall aus. Dieser, als Feldemission bekannter Vorgang, erfolgt in Abhängigkeit vom Durchmesser der metallischen Körper 3. Je geringer der Durchmesser ist, umso geringere Spannungen werden benötigt, um Elektronen durch Feldemission zu erhalten. Es ist daher wünschenswert, daß die metallischen Körper 3, die die Feldemissionsspitzen bilden, einen möglichst geringen Durchmesser aufweisen, vorzugsweise geringer als zehnFIG. 1 shows a plate 1 made of insulating material, in which a large number of holes 2 are made. The holes 2 are filled with a metal in such a way that long, high metal bodies 3 are formed. The plate 1 made of insulating material and the metal body 3 are arranged on a common carrier plate 4. In Figure 1, the proportions are shown very distorted. It is essential to the invention that the diameter of the holes 2 and thus also the diameter of the elongated metallic body 3 is in the order of magnitude of a few nanometers to a few tens of nanometers. The metallic bodies 3 thus form very fine tips, so that 3 high field strengths occur when an electrical voltage is applied to the tip of the metallic bodies. If the field strengths become sufficiently large, electrons emerge from the metal through a tunnel effect. This process, known as field emission, takes place as a function of the diameter of the metallic body 3. The smaller the diameter, the lower the voltages required to obtain electrons through field emission. It is therefore desirable that the metallic bodies 3, which form the field emission peaks, have the smallest possible diameter, preferably less than ten
Nanometer. Die geometrischen Abmessungen der Platte 1 aus isolierendem Material oder des Trägers 4 sind für die Feldemission ohne Bedeutung.
Die Herstellung der metallischen Körper 3, die die Feldemissionsspitzen bilden, erfolgt zunächst im isolierenden Material der Platte 1, in dem Löcher 2 mit entsprechend geringem Durchmesser erzeugt werden. Dazu kann ein polyτneres Material mit einem Teilchenstrom bestrahlt werden. Der Teilchenstrom erzeugt im Kunststoffmaterial (in der Regel Polycarbonat) Schädigungen entlang der Flugbahn des Teilchens im isolierenden Material. Entlang der Flugbahnen können dann durch Ätzprozesse feine, porenartige Löcher in das Kunststoffmaterial eingebracht werden. Eine weitere Methode besteht darin, Aluminium durch anodische Oxydation in Aluminiumoxyd (Al203) umzuwandeln. Bei diesem Umwandlungsprozeß bildet sich eine Aluminiumoxydschicht mit feinen, schlanken Poren, deren Durchmesser durch die Anodisierungsbedingungen und die Konzentration desNanometers. The geometric dimensions of the plate 1 made of insulating material or of the carrier 4 are of no importance for the field emission. The metallic bodies 3, which form the field emission peaks, are first produced in the insulating material of the plate 1, in which holes 2 with a correspondingly small diameter are produced. For this purpose, a polymer material can be irradiated with a particle stream. The particle stream creates damage in the plastic material (usually polycarbonate) along the trajectory of the particle in the insulating material. Fine, pore-like holes can then be made in the plastic material along the trajectories by etching processes. Another method is to convert aluminum into aluminum oxide (Al 2 0 3 ) by anodic oxidation. This conversion process forms an aluminum oxide layer with fine, slim pores, the diameter of which is determined by the anodizing conditions and the concentration of the
Elektrolysten beeinflußt werden kann. Auch so lassen sich porenartige Löcher mit einem Durchmesser von einigen Nanometern erzeugen. Um nun diese Löcher mit einem Metall aufzufüllen, wird ein elektrochemischer oder chemischer Abscheidungsprozeß verwendet.Electrolysts can be affected. Pore-like holes with a diameter of a few nanometers can also be produced in this way. In order to fill these holes with a metal, an electrochemical or chemical deposition process is used.
Für die chemische oder elektrochemische Abscheidung sind beispielsweise Gold, Silber, Platin, Nickel oder andere Metalle geeignet.Gold, silver, platinum, nickel or other metals, for example, are suitable for chemical or electrochemical deposition.
Sofern ein galvanischer (d.h. elektrochemischer) Prozeß verwendet wird, sollten die Löcher 2 auf der einen Seite durch ein Material verschlossen werden, auf dem eine galvanische Abscheidung erfolgen kann. Dies wird beispielsweise durch Aufbringen einer Metallschicht auf einer Seite der Platte 1 oder durch Anordnung der Platte 1 auf einem leitfähigen Träger 4 sichergestellt. Ausgehend von der anderen Seite der Platte 1 kann dann eine galvanische Abscheidung in den Löchern 2 erfolgen. Bei der chemischen Abscheidung (auch stromloses Abscheiden genannt) kann
gegebenfalls auch eine Startschicht verwendet werden. In der Figur 1 wird eine Trägerplatte 4 aus Metall gezeigt. Gegebenenfalls kann die Trägerplatte 4 auch aus isolierendem Material bestehen, auf dessen Oberfläche leitfähige Schichten aufgebracht sind.If a galvanic (ie electrochemical) process is used, the holes 2 should be closed on one side by a material on which galvanic deposition can take place. This is ensured, for example, by applying a metal layer on one side of the plate 1 or by arranging the plate 1 on a conductive carrier 4. Starting from the other side of the plate 1, galvanic deposition can then take place in the holes 2. Chemical deposition (also called electroless plating) can a starting layer may also be used. A carrier plate 4 made of metal is shown in FIG. Optionally, the carrier plate 4 can also consist of insulating material, on the surface of which conductive layers are applied.
In der Figur 2 wird ein weiteres Ausführungsbeispiel der Erfindung gezeigt. Auf einer metallischen Trägerplatte 4 ist eine Platte 1 aus isolierendem Material aufgebracht. Wie bei Figur 1 weist die Platte 1 aus isolierendem Material eineA further exemplary embodiment of the invention is shown in FIG. A plate 1 made of insulating material is applied to a metallic carrier plate 4. As in Figure 1, the plate 1 made of insulating material
Vielzahl von Löchern 2 auf, die mit einem Metall aufgefüllt sind, welches metallische Körper 3 bildet. Im Unterschied zur Figur 1 sind jedoch die metallischen Körper 3 derart ausgebildet, daß sie sich ausgehend von der metallischen Trägerplatte 4 nur bis deutlich unterhalb der Oberseite der Platte 1 erstrecken. Auf der Oberseite der metallischen Platte 1 ist noch eine weitere Metallschicht 5 aufgebracht, die eine Steuerelektrode bildet. Weiterhin ist zur Verdeutlichung noch eine Gegenelektrode 6 gezeigt, die gegenüber den Feldemissionsspitzen 3 angeordnet ist.A plurality of holes 2, which are filled with a metal, which forms metallic body 3. In contrast to FIG. 1, however, the metallic bodies 3 are designed such that, starting from the metallic carrier plate 4, they only extend to significantly below the top of the plate 1. A further metal layer 5, which forms a control electrode, is applied to the top of the metallic plate 1. Furthermore, a counter electrode 6 is shown for clarification, which is arranged opposite the field emission tips 3.
Zur Herstellung des Aufbaus nach der Figur 2 wird das Auffüllen der Löcher 2 nach einer vorgegebenen Zeit unterbrochen, so daß die Löcher 2 nicht vollständig aufgefüllt werden. Auf der Oberseite der Platte 1 wird dann durch Aufdampfen oder Aufsputtern die Metallschicht 5 abgeschieden.To produce the structure according to FIG. 2, the filling of the holes 2 is interrupted after a predetermined time, so that the holes 2 are not completely filled. The metal layer 5 is then deposited on the top of the plate 1 by vapor deposition or sputtering.
Zur Erzeugung eines Feldemissionsstromes aus den Feldemissionsspitzen 3 wird zwischen der metallischen Trägerplatte 4, durch die die Feldemissionsspitzen 3 kontaktiert sind und der Gegenelektrode 6 eine Spannung angelegt. Wenn das elektrische Feld an den Feldemissionsspitzen 3 groß genug wird, so wird ein Feldemissionsstrom von den Feldemissionsspitzen 3 hin zur
Gegenelektrode 6 fließen. Durch Anlegen einer elektrischen Spannung an der Metallschicht 5 kann der Feldemissionsstrom beeinflußt werden. Die Metallschicht 5 wirkt somit wie das Steuergitter einer Triode.To generate a field emission current from the field emission tips 3, a voltage is applied between the metallic carrier plate 4, through which the field emission tips 3 are contacted, and the counter electrode 6. When the electric field at the field emission tips 3 becomes large enough, a field emission current from the field emission tips 3 becomes Flow counter electrode 6. The field emission current can be influenced by applying an electrical voltage to the metal layer 5. The metal layer 5 thus acts like the control grid of a triode.
In der Figur 3 wird ein weiteres Ausführungsbeispiel der Erfindung gezeigt, wobei die Platte 1 mit den Löchern 2 und den darin erzeugten Feldemissionsspitzen 3 dem Ausführungsbeispiel nach der Figur 1 entsprechen. Als Träger ist hier jedoch eine isolierende Platte 7 vorgesehen, die oberflächliche, leitfähige Schichten 8 aufweist. Exemplarisch werden in der Figur 3 zwei leitfähige Schichten 8 gezeigt, die gegeneinander isoliert sind. Durch die leitfähigen Schichten 8 können einzelne Feldemissionsspitzen 3 oder Gruppen von Feldemissionsspitzen 3 mit unterschiedlichen Spannungen beaufschlagt werden. Es ist so möglich, einzelne Gruppen von Feldemissionsspitzen unabhängig voneinander anzusteuern. Eine derartige Ansteuerung einzelner Feldemissionsspitzen sind ebenso wie die Anordnung nach Figur 2 insbesondere für die Herstellung von dünnen Flachbildschirmen geeignet.
FIG. 3 shows a further exemplary embodiment of the invention, the plate 1 with the holes 2 and the field emission peaks 3 generated therein corresponding to the exemplary embodiment according to FIG. 1. However, an insulating plate 7 is provided as the carrier, which has superficial, conductive layers 8. By way of example, FIG. 3 shows two conductive layers 8 which are insulated from one another. Due to the conductive layers 8, individual field emission peaks 3 or groups of field emission peaks 3 can be subjected to different voltages. It is thus possible to control individual groups of field emission peaks independently of one another. Such a control of individual field emission peaks, like the arrangement according to FIG. 2, is particularly suitable for the production of thin flat screens.
Claims
1. Verfahren zur Herstellung von Feldemissionsspitzen, bei dem eine Vielzahl von Feldemissionsspitzen parallel erzeugt werden, dadurch gekennzeichnet, daß in einem isolierenden Material (1) eine Vielzahl von Löchern (2) eingebracht werden und daß durch Auffüllen der Löcher (2) mit einem Metall metallische Körper (3) gebildet werden, die die Feldemissionsspitzen bilden.1. A method for producing field emission peaks, in which a plurality of field emission peaks are generated in parallel, characterized in that a plurality of holes (2) are made in an insulating material (1) and in that the holes (2) are filled with a metal metallic bodies (3) are formed, which form the field emission peaks.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Auffüllen der Löcher (2) durch elektrochemische oder chemische Abscheidung erfolgt.2. The method according to claim 1, characterized in that the filling of the holes (2) is carried out by electrochemical or chemical deposition.
3. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Einbringen der Löcher (2) durch Beschüß mit einem Teilchenstrom und anschließendem Ätzen des isolierenden Materials (1) entlang von Teilchenbahnen erfolgt.3. The method according to any one of the preceding claims, characterized in that the holes (2) are introduced by bombardment with a particle stream and subsequent etching of the insulating material (1) along particle paths.
4. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß für das isolierende Material (1) Aluminiumoxyd (A1203) verwendet wird, welches durch anodische Oxydation von Aluminium gebildet wird.4. The method according to claim 1 or 2, characterized in that for the insulating material (1) aluminum oxide (A1 2 0 3 ) is used, which is formed by anodic oxidation of aluminum.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das isolierende Material (l) als Platte auf einer Trägerplatte (4, 7) ausgebildet ist, das mindestens Teile der Oberfläche der Trägerplatte (4, 7) aus Metall besteht Löcher derart in die isolierende Platte eingebracht sind, daß sie von einer Oberseite der isolierenden Platte bis zur Trägerplatte reichen.5. The method according to any one of the preceding claims, characterized in that the insulating material (l) is designed as a plate on a carrier plate (4, 7), the At least parts of the surface of the carrier plate (4, 7) made of metal have holes made in the insulating plate such that they extend from an upper side of the insulating plate to the carrier plate.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, daß die Trägerplatte (7) mindestens zwei leitende Bereiche (8) aufweist, die gegeneinander isoliert sind.6. The method according to claim 5, characterized in that the carrier plate (7) has at least two conductive areas (8) which are insulated from one another.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß die Löcher (2) nicht vollständig mit Metall aufgefüllt werden und daß die Oberfläche des isolierenden Materials mit einer Metallschicht versehen wird. 7. The method according to any one of the preceding claims, characterized in that the holes (2) are not completely filled with metal and that the surface of the insulating material is provided with a metal layer.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19602595.8 | 1996-01-25 | ||
DE1996102595 DE19602595A1 (en) | 1996-01-25 | 1996-01-25 | Process for the production of field emission peaks |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997027607A1 true WO1997027607A1 (en) | 1997-07-31 |
Family
ID=7783629
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE1996/002246 WO1997027607A1 (en) | 1996-01-25 | 1996-11-22 | Process for producing cold emission points |
Country Status (2)
Country | Link |
---|---|
DE (1) | DE19602595A1 (en) |
WO (1) | WO1997027607A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649824B1 (en) | 1999-09-22 | 2003-11-18 | Canon Kabushiki Kaisha | Photoelectric conversion device and method of production thereof |
FR2857954A1 (en) * | 2003-07-25 | 2005-01-28 | Thales Sa | localized growth of nanowires or nanotubes in the nanopores of a nanoporous structure for field emission applications in the fabrication of flat screens |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6525461B1 (en) | 1997-10-30 | 2003-02-25 | Canon Kabushiki Kaisha | Narrow titanium-containing wire, process for producing narrow titanium-containing wire, structure, and electron-emitting device |
JPH11246300A (en) * | 1997-10-30 | 1999-09-14 | Canon Inc | Titanium nano fine wire, production of titanium nano fine wire, structural body, and electron-emitting element |
EP1061554A1 (en) * | 1999-06-15 | 2000-12-20 | Iljin Nanotech Co., Ltd. | White light source using carbon nanotubes and fabrication method thereof |
JP2001052652A (en) * | 1999-06-18 | 2001-02-23 | Cheol Jin Lee | White light source and its manufacture |
DE19931328A1 (en) * | 1999-07-01 | 2001-01-11 | Codixx Ag | Flat electron field emission source and method for its production |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3745402A (en) * | 1971-12-17 | 1973-07-10 | J Shelton | Field effect electron emitter |
US4163918A (en) * | 1977-12-27 | 1979-08-07 | Joe Shelton | Electron beam forming device |
EP0351110A1 (en) * | 1988-07-13 | 1990-01-17 | THORN EMI plc | Method of manifacturing a cold cathode, field emission device and a field emission device manufactured by the method |
US5145435A (en) * | 1990-11-01 | 1992-09-08 | The United States Of America As Represented By The Secretary Of The Navy | Method of making composite field-emitting arrays |
US5164632A (en) * | 1990-05-31 | 1992-11-17 | Ricoh Company, Ltd. | Electron emission element for use in a display device |
DE4209301C1 (en) * | 1992-03-21 | 1993-08-19 | Gesellschaft Fuer Schwerionenforschung Mbh, 6100 Darmstadt, De | Manufacture of controlled field emitter for flat display screen, TV etc. - using successive etching and deposition stages to form cone shaped emitter peak set in insulating matrix together with electrodes |
US5315206A (en) * | 1991-02-20 | 1994-05-24 | Ricoh Company, Ltd. | Electron emission elements integrated substrate |
WO1994028569A1 (en) * | 1993-05-27 | 1994-12-08 | Commissariat A L'energie Atomique | Microtips diplay device and method of manufacture using heavy ion lithography |
WO1995007543A1 (en) * | 1993-09-08 | 1995-03-16 | Silicon Video Corporation | Fabrication and structure of electron-emitting devices having high emitter packing density |
WO1996006443A1 (en) * | 1994-08-18 | 1996-02-29 | Isis Innovation Limited | Field emitter structures |
-
1996
- 1996-01-25 DE DE1996102595 patent/DE19602595A1/en not_active Withdrawn
- 1996-11-22 WO PCT/DE1996/002246 patent/WO1997027607A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3745402A (en) * | 1971-12-17 | 1973-07-10 | J Shelton | Field effect electron emitter |
US4163918A (en) * | 1977-12-27 | 1979-08-07 | Joe Shelton | Electron beam forming device |
EP0351110A1 (en) * | 1988-07-13 | 1990-01-17 | THORN EMI plc | Method of manifacturing a cold cathode, field emission device and a field emission device manufactured by the method |
US5164632A (en) * | 1990-05-31 | 1992-11-17 | Ricoh Company, Ltd. | Electron emission element for use in a display device |
US5145435A (en) * | 1990-11-01 | 1992-09-08 | The United States Of America As Represented By The Secretary Of The Navy | Method of making composite field-emitting arrays |
US5315206A (en) * | 1991-02-20 | 1994-05-24 | Ricoh Company, Ltd. | Electron emission elements integrated substrate |
DE4209301C1 (en) * | 1992-03-21 | 1993-08-19 | Gesellschaft Fuer Schwerionenforschung Mbh, 6100 Darmstadt, De | Manufacture of controlled field emitter for flat display screen, TV etc. - using successive etching and deposition stages to form cone shaped emitter peak set in insulating matrix together with electrodes |
WO1994028569A1 (en) * | 1993-05-27 | 1994-12-08 | Commissariat A L'energie Atomique | Microtips diplay device and method of manufacture using heavy ion lithography |
WO1995007543A1 (en) * | 1993-09-08 | 1995-03-16 | Silicon Video Corporation | Fabrication and structure of electron-emitting devices having high emitter packing density |
WO1996006443A1 (en) * | 1994-08-18 | 1996-02-29 | Isis Innovation Limited | Field emitter structures |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6649824B1 (en) | 1999-09-22 | 2003-11-18 | Canon Kabushiki Kaisha | Photoelectric conversion device and method of production thereof |
FR2857954A1 (en) * | 2003-07-25 | 2005-01-28 | Thales Sa | localized growth of nanowires or nanotubes in the nanopores of a nanoporous structure for field emission applications in the fabrication of flat screens |
WO2005015596A2 (en) * | 2003-07-25 | 2005-02-17 | Thales | Method for the localized growth of nanothreads or nanotubes |
WO2005015596A3 (en) * | 2003-07-25 | 2006-04-06 | Thales Sa | Method for the localized growth of nanothreads or nanotubes |
Also Published As
Publication number | Publication date |
---|---|
DE19602595A1 (en) | 1997-07-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2951287C2 (en) | Process for producing surfaces with a multitude of very fine points | |
EP1595266B1 (en) | Quantum point made of electrically conducting carbon, production method, and application | |
WO2000079589A1 (en) | Electronic component with flexible contact structures and method for the production of said component | |
WO2009006988A1 (en) | Contact structure for a semiconductor component and a method for production thereof | |
DE102012024185A1 (en) | Contact element and method for its production | |
DE102004060738B4 (en) | Process for the structured application of molecules to a conductor track | |
EP1224676A1 (en) | Device with an electrode, a spongiform permeable layer, an electrolyte and a means for applying a voltage | |
WO1997027607A1 (en) | Process for producing cold emission points | |
DE102008049654B4 (en) | Electron beam source, electron beam system with the same, method for producing the electron beam source and its use | |
EP1543863B1 (en) | Electrode structure, methods of manufacture and use of it | |
DE68917310T2 (en) | Delta-phi microlens for low energy particle beams. | |
EP1323463B1 (en) | Method and device for the production of a metal membrane | |
DE102018111220B3 (en) | Method for producing an atomic trap and atomic trap | |
DE69505914T2 (en) | Manufacturing process of a microtip electron source | |
DE102009014993B4 (en) | Method for electrically contacting an electronic component | |
DE19600782C1 (en) | Forming adjacent channels or holes in semiconductor substrate, for application of masking layer | |
EP1656702B1 (en) | Method for producing vertical nano-transistor | |
EP2380193B1 (en) | Component having a via, and a method for producing the component | |
DE102009012145B4 (en) | Process for the production of components, as well as components themselves | |
WO2006094821A2 (en) | Method for producing a thin magnesium oxide layer | |
EP1334520B1 (en) | Film material comprising metal spikes | |
DE102020116068A1 (en) | Transparent resonant tunnel diode and process for its manufacture | |
WO1993004495A1 (en) | Electret feature, method of producing it, and its use in an electro-acoustic transducer | |
EP0250043A1 (en) | Apparatus for the high-temperature electrolysis of water vapour | |
DE102013204468A1 (en) | Method and device for producing an electrically conductive layer on a carrier material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): JP KR US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
NENP | Non-entry into the national phase |
Ref country code: JP Ref document number: 97526399 Format of ref document f/p: F |
|
122 | Ep: pct application non-entry in european phase |