WO1997024742A1 - Procede et appareil pour localiser une decharge partielle dans des transformateurs electriques - Google Patents

Procede et appareil pour localiser une decharge partielle dans des transformateurs electriques Download PDF

Info

Publication number
WO1997024742A1
WO1997024742A1 PCT/US1996/020642 US9620642W WO9724742A1 WO 1997024742 A1 WO1997024742 A1 WO 1997024742A1 US 9620642 W US9620642 W US 9620642W WO 9724742 A1 WO9724742 A1 WO 9724742A1
Authority
WO
WIPO (PCT)
Prior art keywords
acoustic
electrical
partial discharge
signals
signal
Prior art date
Application number
PCT/US1996/020642
Other languages
English (en)
Inventor
Karen Weissman
Kurt Brungardt
Original Assignee
Quiet Power Systems, Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quiet Power Systems, Inc filed Critical Quiet Power Systems, Inc
Priority to AU14691/97A priority Critical patent/AU1469197A/en
Publication of WO1997024742A1 publication Critical patent/WO1997024742A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/62Testing of transformers

Definitions

  • the present invention relates to methods and apparatus for locating partial discharge sources in oil-filled electrical transformers.
  • Partial discharge refers to an electrical charge which is emitted inside the transformer due to a failure of its insulation properties This failure can occur due to the presence of a particle contaminant, an air bubble in the oil- soaked paper, or a physical breakdown of the insulating paper. Such a contami ⁇ nant or air bubble provides a conductive path which can sustain a spark, but not a complete arcing, hence the term partial discharge.
  • PD is indicative of, or can lead to, serious insulation problems that can ultimately cause the transformer to mal ⁇ function or fail.
  • Transformer manufacturers and owners routinely monitor for the occurrence of partial discharge by either electrical, acoustic or chemical means
  • Partial discharges can be detected electrically by measuring the voltage or the current off of the cap taps on the transformer. When partial discharges occur, pressure waves are generated in the surrounding oil which propagate in the transformer tank. These pressure waves can be measured as acoustic signals. Additionally, the occurrence of PD releases chemicals into the oil due to the breakdown of the insulating paper. PD can be detected by measuring the quantities of these chemicals in the transformer oil. This last technique is called dissolved gas-in-oil analysis (DGA).
  • DGA dissolved gas-in-oil analysis
  • a broad source location is then achieved by taking measurements on all high and low voltage cap taps, and noting where the electrical signal is strongest This technique can narrow the location down to a particular lead.
  • a microphone is sometimes used to listen for the acoustic waves caused by the PD. The distance in the arrival time between the electrical and acoustic signals is used to determine the distance between the source and the microphone.
  • PD signal at a three different sensors and triangulating to back-figure the source location.
  • two sensors are used, as in Howells and Norton, to locate a plane in which the source lies. This plane is located by moving the two sensors around on a single side of the transformer until the arrival times at both sensors are the same. In this configuration the source is equidistant from both sensors and lies on the plane that crosses half way between the two sensor locations. This process is repeated to find another plane perpendicular to the first. The intersection of the two planes defines a line containing the source. The process is repeated another time to find the locations of the source along this line.
  • This process although mathematically simple, can be difficult to implement because it requires PD signals to be accurately measured at many locations on the tank.
  • PD acoustic signals are made up of frequency components between 20 kHz and 500 kHz, with most of the energy concentrated around 150 kHz.
  • one PD acoustic monitoring system listens only for components at 150 kHz.
  • such limited bandwidths result m false negatives, i.e., failures to detect actual PDs
  • Higher frequency components at 10 MHZ and at 50 MHZ are discussed m James I
  • the partial discharge (PD) locator locates the PD source after the presence of PD has been established by electrical detection.
  • a schematic of the overall system is shown in Figure 1
  • the main components of the PD Locator are the two or more ultrasonic acoustic sensors, signal conditioning hardware, data acquisition hardware and software, and signal processing software.
  • the sensors are sensitive to the ultrasonic range of acoustic frequencies.
  • the data acquisition hardware is, for example, a PC-based acquisition board with additional processing and analysis capabilities such as filtering and signal averaging.
  • the sensors are connected to the signal conditioning and data acquisition hardware through low noise shielded cables.
  • the signal processing software controls the data acquisition board and executes the subsequent signal processing
  • the hardware may also include a plug for headphones, so that a user can listen to PD components in the audible range
  • the presence of partial discharge is detected by radio influence voltage (RIV) or apparent charge measurements made independently by the user. Output from either of these electrical measurements is used as an external trigger to the PD Locator system.
  • the electrical trigger signals the occurrence of a partial discharge.
  • measurements are taken at each of the sensors to record the acoustic signals that propagate from the PD source through the oil (or other liquid, or, for a dry-type transformer, through air) to the tank wall.
  • the sensors are coupled to the tank wall using a lubricating grease, e.g., petroleum jelly such as VaselineTM or Moly E.P. multipurpose grease, which enhances transmission of out-of-plane waves in the tank wall, and minimizes transmission of in-plane waves.
  • the waves which travel directly from the source to the receiver are out-of-plane waves Accordingly, the arrival time of out-of-plane waves can be used to calculate the distance from the source to the sensor.
  • the speed of acoustic waves (the "wave speed") in the oil (or other transformer liquid or. for a dry-type transformer, the wave speed in air) is entered by the user.
  • the wave speed is roughly constant over a wide range of frequencies.
  • the present invention includes charts of wave speed as a function of oil (or other fluid) temperature as a guide.
  • the system calculates the time delay from the source to each sensor and converts it into a distance based on the wave speed in the oil (or other fluid).
  • a bandpass filter is applied to the acoustic signal to eliminate operating noise on the low frequency end, and electrical noise and aliasing on the high frequency end.
  • the sampling rate and duration for the acoustic signal are fixed for the normal operating mode.
  • the sampling rate is based on the 40 kHz to 300 kHz frequency band and the duration is based on the storage capabilities of the on-board memory of the data acquisition card.
  • the PD locator also has a "long distance" mode which samples at a slower rate, thereby lengthening the duration to capture arrival times at sensors placed far apart.
  • the PD locator repeatedly samples and averages the signals to clarify the arrival time, i.e., to better define the arrival time by improving the signal-to-noise ratio.
  • the display is continuously updated to show the running average of the arrival time.
  • the running average is stored in the PC memory, while the newly acquired signal to be averaged next is stored in the acquisition board.
  • the averaging stops and the PD locator positions a cursor at the start of each acoustic signal and calculates the distances from the source. The user may override the PD locator's estimation of the arrival time by positioning the cursors manually and executing the "Calculate Distance" command.
  • the input gain is variable to avoid clipping.
  • the input gain can be set manually, or automatically using the "Auto Gain option.
  • the PC memory stores two traces that can later be recalled to the screen for comparison
  • the system also has a fast Fourier transform (FFT) function When the FFT is run, the time histories are saved in PC memory
  • Figure 1 is a schematic of the PD locator mounted on the trans ⁇ former This figure shows a typical arrangement of the acoustic sensors placed on the transformer, and the electrical and acoustic inputs feeding into the data acquisition box
  • Figure 2 is a diagram of the data acquisition and signal processing display and control panel showing the functions available on the PD locator
  • Figure 3 is a flow chart depicting the acquisition of a single sample and the subsequent processing Figure 4 is a drawing of the spring-loaded magnetic mount used to hold the acoustic sensors to the tank wall.
  • Figure 5 is a flow chart of the process for setting the auto gain.
  • Figure 6a is a schematic diagram of the signal conditioning board.
  • Figure 6b is a schematic diagram of the data acquisition board. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention is a system and method for locating partial discharge in transformers at the service station and at test facilities. It improves upon existing systems for locating partial discharge by using both electrical and acoustic detection procedures in a data acquisition and signal processing system that automatically calculates the distances between the sensors and the source location.
  • the main hardware components of the PD locator device are a PC-based signal conditioning, data acquisition, and signal processing system, two or more ultrasonic acoustic sensors, and two low-noise shielded cables.
  • Figure 1 is a schematic of these main components, showing a typical arrangement for their use on the transformer.
  • Two acoustic sensors 12 are placed on the tank wall to measure the acoustic emission from the transformer. The two sensors have similar calibration curves, so that they produce similar amplitudes for the same input signal.
  • the signal is carried to data acquisition box 11 through shielded, low noise cables 13, e.g., Belden 9223 low noise coaxial cable, 50 ohm RT.
  • the external trigger 14 comes from the electrical PD monitoring device 15 and is plugged into the data acquisition box.
  • the ultrasonic acoustic sensors e.g., piezoelectric sensors such as Dunnegan SE 900 sensors, used in the present invention are sensitive in the range from 40 kHz to 300 kHz .
  • This frequency range extends lower than that typically used in the prior art, because the frequency content of partial discharge, particularly in new transformers, can be significant at frequencies between 40 kHz and 100 kHz. Therefore, concentrating the measurements at 150 kHz, as in some prior art systems, may not register PD signals generated by all types of PD sources The response spectra of the two sensors need not be completely flat in this frequency range, as long as they are reasonably sensitive throughout the range.
  • FIG. 2 shows a diagram of the data acquisition and signal pro ⁇ cessing system with all of its components and functions.
  • the viewing screen displays two channels of data 21 which correspond to the input signal coming from the two acoustic sensors
  • the screen 22 also shows the sampling rate, the arrival time, and the distance to the source for each of two sensors 12 The two distances are obtained by processing the data as described below
  • Blocks 23 through 28 represent the data acquisition and processing functions
  • the "Start” button 23 starts the signal averaging, acquiring a new signal with each electrical trigger.
  • the "Calculate Distance” button 24 stops the averaging and calculates the arrival times and distances between the source and the sensors that are shown on screen 22 If the "Start" button is hit again, the averaging continues, incorporating new signals into the existing average.
  • the "Reset” button 25 is used to clear the buffers before the start function is executed
  • the " FFT” button 26 calculates the fast Fourier transform of the two averaged signals on the screen.
  • the FFT function displays the frequency spectra on the screen and saves the time histories to a buffer
  • the FFT function is used to examine the frequency content of the acoustic signals. Partial discharge signals tend to be fairly consistent in their frequency content, with most of the energy ranging from 80 kHz to 200 kHz. An experienced user can use the frequency content display to distinguish between signals due to partial discharge and those due to other phenomena.
  • a pair of signals on the screen can be saved to a buffer by using the "Save” button 27, and then recalled to the screen at a later time using the "Recall” button 28. Hitting the "Recall” button again brings back the screen display that was present at the time the saved signals were recalled When m FFT mode, the "Recall” button 28 is used to toggle the screen display between the spectra and the time histories
  • Blocks 29 through 32 represent the controls used to set the acquisition, display and calculation parameters.
  • the input gam can be set manually, using dial 29, or automatically, using "Auto Gam Function” button 30 (which samples a number of triggers and adjusts the input gain to make full use of the dynamic range of the system, while avoiding clipping).
  • the "Wave Speed Control” 31 is used to input the value of the speed of sound in the transformer oil, or other fluid.
  • the instruction manual for the present invention includes charts of wave speed as a function of oil, or other fluid, temperature "Long Distance" switch 32 reduces the sampling rate to increase the data acquisition time The sampling rate is set to capture frequencies m the range from 40 kHz to 300 kHz.
  • the "Long Distance mode sacrifices some of the high frequency resolution, to detect arrival times at sensors placed farther apart This function is used to determine initial sensor placement, and is then turned off for more accurate distance calculations
  • Blocks 33 through 35 represent the input and output ports
  • the input from the sensors are plugged into the ports 33 labeled "Channel 1" and “Channel 2".
  • the electrical trigger is plugged into the "Trigger” port 34
  • the "Audio Output” port 35 is used to listen to the audible components of the acoustic signals. Headsets are plugged into this port.
  • the audio output is the unfiltered acoustic signal measured by the sensor, which would include audible frequencies. This feature is used to determine initial sensor placement However, if the signals are filtered at the sensors themselves the audible frequencies would be filtered out, and the "Audio Port" 35 would not be included
  • the data acquisition hardware consists of an IBM-compatible personal computer, with a storage drive, a color monitor for viewing the acquired data, and a keyboard and a mouse.
  • the keyboard and the mouse can be used to change the system configurations.
  • the microprocessor in the IBM-compatible personal computer is an Intel 486 or Pentium microprocessor, or equivalent.
  • the signals received from the sensors are supplied to a signal conditioning board As shown in Figure 6a, the signals are amplified by amplifier 51. and filtered using low-pass anti-aliasing filters 52 at about 300 kHz. then high-pass filters 53 at about 40 kHz, using standard filters.
  • the signal conditioning board also contains conditioning for the trigger signal (components 54, 55, 56 and 61) and the audio output ack 35. channel selector knob 60, and the audio gam adjuster knob 59 The two conditioned input signals and the trigger signals are then supplied to data acquisition board 70 ( Figure 6b)
  • the signals are first amplified by a programmable gain amplifier 71.
  • the two input signals are then simultaneously sampled by a pair of sample-and-hold amplifiers 72. and then supplied to multiplexer 73.
  • the multiplexer 73 could be replaced with two A/D converters (not shown) using methods known to those skilled in the art.
  • the multiplexed signals are then digitized using high speed (approximately 10 megasamples per second) 8 or 12 bit A/D converter 74.
  • the output from A/D converter 74 is then supplied to storage buffer 75.
  • Storage buffer 75 allows sequential samples to be acquired and stored. Storage buffer 75 must have at least enough memory to store five thousand samples.
  • the personal computer controls all functions and operating parameters of the data acquisition card, including signal gam. acquisition sample rate, sample count, and the timing of the data acquisition and data transfer.
  • FIG. 3 shows a flow chart of the acquisition of a sample and the subsequent processing. Steps 301 through 303 are preferably performed at the sensor to maximize the signal-to-noise ratio, although some of these steps may be performed by the data acquisition and signal processing apparatus, if necessary.
  • the acoustic sensor measures a signal off of the tank wall (step 301). It is then sent through a pre-amplifier (step 302) which is driven by a power supply. The amplified signal is then sent through a bandpass filter (step 303) to filter out operating noise of the transformer on the low end. and aliasing and electrical noise on the high frequency end
  • the frequency bandwidth ranges from 40 kHz to 300 kHz.
  • the software waits for the external trigger and acquires a sample of data (step 305) from the acoustic sensor upon detecting a trigger If the buffer is not empty, the newly acquired signal is averaged in (step 306) and the new average is saved to the buffer (step 307). If the buffer is empty, the new signal is stored in the buffer This acquisition and averaging process is repeated until the "calculate distance” command is executed (step 308) At this point, the averaging stops and the software finds the arrival time of each of the two signals, (step 309) The arrival time is multiplied by the wave speed in the oil (step 310) to calculate the distance between each sensor and the source This calculation is then output and is displayed on the screen (step 311)
  • the auto gain function determines the optimal input gain This process is illustrated for a single channel in Figure 5
  • step 501 of Figure 5 the input from the acoustic sensor is triggered randomly, with an initial setting of the input gain.
  • step 502. the percentage of the dynamic range used by the peak-to- peak value of the acquired signal is calculated. For example, assume the input gam is adjusted so that 10 mV spans the full dynamic range If the triggered signal has a maximum value of +2 5 mV and a minimum value of -2 5 mV, then the peak-to-peak value is 5 raV, which is 50% of the dynamic range.
  • step 503 if the peak-to-peak value is within the dynamic range, the input gain is adjusted such that the peak-to-peak value is roughly 70% of the dynamic range As shown in step 505, if the peak-to-peak value is greater than the dynamic range, such that the signal is clipped, then the input gam is halved until the signal falls within the dynamic range
  • step 506 A signal is then triggered five more times to insure that all acquired samples are within the dynamic range (steps 506 through 510) If any sample is outside the dynamic range, then step 505 is repeated, to readjust the input gain Once five samples in a row have been acquired within the dynamic range, the input gain is set for that channel
  • buttons and dials depicted in Figure 2 are all "virtual " I e created on the computer display
  • the functionality of the invention remains the same, with the exception that the input ports 33 through 35 might be located on a separate junction box that is external to the PC
  • the sensor is mounted to the transformer tank wall using the magnetic mount shown in Figure 4
  • the mount is spring loaded to provide constant, uniform coupling between the sensor and the tank wall
  • a torqumg screw 41 is provided for fine adjustments.
  • the torquing screw controls a piston which pushes on the spring-loaded mount 42.
  • the mount attaches to the tank wall by two magnets 43.
  • the design of this mount allows for airflow around the sensor, to prevent heat build up. This design also permits the sensor to be easily dismounted and moved to a new location on the tank wall. F. Examples of Use
  • the user begins by placing the sensors in various locations and using the headphones to determine the vicinity in which the noise is the loudest.
  • the location of the loudest noise is not necessarily the location closest to the source of the noise. It is the location which has a clear unobstructed path between the source and the sensor.
  • the user would listen, for example, in the top and bottom halves on four sides of the transformer.
  • the goal of this preliminary step is to define a region in which two sensors can be placed, preferably no more than 10 feet apart.
  • the user then sets the input gain manually, or by using the auto gain feature, and enters the wave speed parameter.
  • the user pushes the start button to begin the signal averaging and watches the averaging on the screen.
  • the user executes the "calculate distance" command.
  • the user then moves the sensor that is farther away from the source to a new location, leaving the closer sensor in place as a frame of reference. This process is repeated until moving the sensors no longer gets you any closer to the source At this point (if not before) the sequential measurements will have defined a reasonably small area in which the source is located. To confirm the location, the entire process can be repeated starting from a different section of the tank wall
  • Example 1 A variation on Example 1 is to use the long distance mode instead of the headphones to locate the general region where the acoustic emission is the loudest
  • the user starts by placing each sensor on a different side of the tank.
  • the device is put into the long distance mode, and then the signal averaging is performed as usual until the arrival time is clear enough to perform the distance calculation This process is repeated until the region in which the acoustic emission is loudest has been identified and the sensors can be placed within ten feet of each other in that region. Then the device is taken out of the
  • the operation of the transformer can produce noise between 40 kHz and 60 kHz
  • the user runs the "FFT" function to view the fre ⁇ quency spectra of the measured signals If the signal appears to be dominated by frequency components at the low end of the bandwidth (around 40 kHz) or the high end of the bandwidth (around 300 kHz) then the sensors may be locating on a noise source that is not partial discharge. The user then moves the sensors around to compare the frequency spectra at different locations to see where the frequencies are concentrated away from the ends of the bandwidth

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Testing Relating To Insulation (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Procédé et appareil pour localiser automatiquement les sources de décharge partielle dans des transformateurs électriques. Ledit appareil comporte des capteurs acoustiques ultrasonores (12) placés à l'extérieur du transformateur, du matériel de mise en forme des signaux (51, 52, 53, 71, 73), un logiciel (301-311) et du matériel d'acquisition (74), et un logiciel de traitement des signaux. Dans des conditions de fonctionnement, des signaux de déclenchement électriques (14) provoquent la mesure de signaux acoustiques au niveau de chaque capteur (12). Ces mesures sont utilisées pour calculer la distance entre la source et le capteur (12) en fonction du moment d'arrivée des ondes hors plan au niveau des capteurs.
PCT/US1996/020642 1995-12-27 1996-12-27 Procede et appareil pour localiser une decharge partielle dans des transformateurs electriques WO1997024742A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU14691/97A AU1469197A (en) 1995-12-27 1996-12-27 Method and apparatus for locating partial discharge in electrical transformers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US926495P 1995-12-27 1995-12-27
US60/009,264 1995-12-27

Publications (1)

Publication Number Publication Date
WO1997024742A1 true WO1997024742A1 (fr) 1997-07-10

Family

ID=21736589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/020642 WO1997024742A1 (fr) 1995-12-27 1996-12-27 Procede et appareil pour localiser une decharge partielle dans des transformateurs electriques

Country Status (2)

Country Link
AU (1) AU1469197A (fr)
WO (1) WO1997024742A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044516A1 (fr) * 2001-10-31 2003-05-30 Sintef Energiforskning As Dispositif et procede pour la detection et la localisation acoustiques de defauts
WO2005121821A1 (fr) * 2004-06-08 2005-12-22 Sp Electric Limited Procede et dispositif permettant de localiser une decharge partielle (dp)
US8115475B2 (en) 2009-09-23 2012-02-14 Electrical Reliability Services, Inc. Manipulation assembly for online electrical system test probe installation
GB2492456A (en) * 2011-06-27 2013-01-02 Gen Electric Monitoring faults in an electrical substation using acoustic sensors
DE102013104155A1 (de) * 2013-04-24 2014-11-13 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Faseroptischer Sensor, Hochspannungseinrichtung und Verfahren zum Prüfen einer Isolierung einer Hochspannungseinrichtung
EP2857852A1 (fr) * 2013-10-01 2015-04-08 Rockwell Automation Technologies, Inc. Systèmes et procédés de détection de décharge partielle dans des composants électriques
FR3015045A1 (fr) * 2013-12-17 2015-06-19 Commissariat Energie Atomique Detection d'arcs electriques
GB2527161A (en) * 2014-12-29 2015-12-16 Ipec Ltd Handheld switchgear partial discharge testing device
EP3133408A1 (fr) 2015-08-21 2017-02-22 Power Diagnostix Consult GmbH Procédé pour tester des composants électriques
TWI624676B (zh) * 2017-08-01 2018-05-21 崑山科技大學 以儀器輔助配電變壓器維護檢點之檢測方法
DE102017207818B3 (de) 2017-05-09 2018-05-30 Siemens Aktiengesellschaft Verfahren und Anordnung zum Lokalisieren einer elektrischen Entladung in einer elektrischen Anlage
US10012616B2 (en) 2015-11-06 2018-07-03 Andritz Inc. Acoustic emission system and method for predicting explosions in dissolving tank
CN109239555A (zh) * 2018-10-15 2019-01-18 云南电网有限责任公司红河供电局 一种自动定向型变电站局放监测定位装置及方法
US20190138371A1 (en) * 2017-11-07 2019-05-09 The Regents Of The University Of California Methods, systems, and devices for accurate signal timing of power component events
US10338130B2 (en) 2016-06-21 2019-07-02 Chentronics, Llc System and method for electrical spark detection
JP2020008365A (ja) * 2018-07-05 2020-01-16 東日本旅客鉄道株式会社 電力設備機器の劣化診断装置
IT202000004303A1 (it) * 2020-03-02 2021-09-02 St Microelectronics Srl Circuito per rilevare scariche parziali, dispositivo, sistema e procedimento corrispondenti

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173086A (en) * 1962-07-18 1965-03-09 Gen Electric Apparatus including mechanical vibration detector means for detecting and locating incipient internal faults in electric induction apparatus
US3430136A (en) * 1965-12-21 1969-02-25 Gen Electric Test equipment for identification and location of electrical faults in fluid-filled electric apparatus
US3622872A (en) * 1970-04-16 1971-11-23 Westinghouse Electric Corp Methods and apparatus for detecting and locating corona discharge in high-voltage, fluid-filled electrical inductive apparatus
US4095173A (en) * 1976-12-27 1978-06-13 General Electric Company Method and system for corona source location by acoustic signal detection
US4158168A (en) * 1977-12-06 1979-06-12 Westinghouse Electric Corp. Acoustic waveguides for sensing and locating corona discharges
US4158169A (en) * 1977-12-06 1979-06-12 Westinghouse Electric Corp. Corona testing apparatus including acoustic waveguides for transmitting acoustic emissions from electrical apparatus
USH536H (en) * 1986-07-18 1988-10-04 The United States Of America As Represented By The Secretary Of The Army Method of detecting and locating an electrostatic discharge event
US5530366A (en) * 1994-11-01 1996-06-25 Abb Power T&D Company Inc. Acoustic optical system for partial discharge detection and location

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3173086A (en) * 1962-07-18 1965-03-09 Gen Electric Apparatus including mechanical vibration detector means for detecting and locating incipient internal faults in electric induction apparatus
US3430136A (en) * 1965-12-21 1969-02-25 Gen Electric Test equipment for identification and location of electrical faults in fluid-filled electric apparatus
US3622872A (en) * 1970-04-16 1971-11-23 Westinghouse Electric Corp Methods and apparatus for detecting and locating corona discharge in high-voltage, fluid-filled electrical inductive apparatus
US4095173A (en) * 1976-12-27 1978-06-13 General Electric Company Method and system for corona source location by acoustic signal detection
US4158168A (en) * 1977-12-06 1979-06-12 Westinghouse Electric Corp. Acoustic waveguides for sensing and locating corona discharges
US4158169A (en) * 1977-12-06 1979-06-12 Westinghouse Electric Corp. Corona testing apparatus including acoustic waveguides for transmitting acoustic emissions from electrical apparatus
USH536H (en) * 1986-07-18 1988-10-04 The United States Of America As Represented By The Secretary Of The Army Method of detecting and locating an electrostatic discharge event
US5530366A (en) * 1994-11-01 1996-06-25 Abb Power T&D Company Inc. Acoustic optical system for partial discharge detection and location

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044516A1 (fr) * 2001-10-31 2003-05-30 Sintef Energiforskning As Dispositif et procede pour la detection et la localisation acoustiques de defauts
WO2005121821A1 (fr) * 2004-06-08 2005-12-22 Sp Electric Limited Procede et dispositif permettant de localiser une decharge partielle (dp)
US8115475B2 (en) 2009-09-23 2012-02-14 Electrical Reliability Services, Inc. Manipulation assembly for online electrical system test probe installation
US8736252B2 (en) 2009-09-23 2014-05-27 Electrical Reliability Services, Inc. Manipulation assembly for online electrical system test probe installation
GB2492456A (en) * 2011-06-27 2013-01-02 Gen Electric Monitoring faults in an electrical substation using acoustic sensors
US9964625B2 (en) 2011-06-27 2018-05-08 General Electric Company Electrical substation fault monitoring and diagnostics
DE102013104155A1 (de) * 2013-04-24 2014-11-13 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Faseroptischer Sensor, Hochspannungseinrichtung und Verfahren zum Prüfen einer Isolierung einer Hochspannungseinrichtung
DE102013104155B4 (de) * 2013-04-24 2015-09-10 Bundesrepublik Deutschland, Vertreten Durch Den Bundesminister Für Wirtschaft Und Energie, Dieser Vertreten Durch Den Präsidenten Der Bundesanstalt Für Materialforschung Und -Prüfung (Bam) Hochspannungseinrichtung mit einem faseroptischen Sensor und Verfahren zum Prüfen einer Isolierung einer derartigen Hochspannungseinrichtung
EP2857852A1 (fr) * 2013-10-01 2015-04-08 Rockwell Automation Technologies, Inc. Systèmes et procédés de détection de décharge partielle dans des composants électriques
FR3015045A1 (fr) * 2013-12-17 2015-06-19 Commissariat Energie Atomique Detection d'arcs electriques
WO2015091071A1 (fr) * 2013-12-17 2015-06-25 Commissariat A L'energie Atomique Et Aux Energies Alternatives Detection d'arcs electriques
US10317454B2 (en) 2013-12-17 2019-06-11 Commissariat à l'énergie atomique et aux énergies alternatives Electric arc detection
GB2527161B (en) * 2014-12-29 2017-03-29 Ipec Ltd Handheld switchgear partial discharge testing device
GB2527161A (en) * 2014-12-29 2015-12-16 Ipec Ltd Handheld switchgear partial discharge testing device
EP3133408A1 (fr) 2015-08-21 2017-02-22 Power Diagnostix Consult GmbH Procédé pour tester des composants électriques
US10012616B2 (en) 2015-11-06 2018-07-03 Andritz Inc. Acoustic emission system and method for predicting explosions in dissolving tank
US10338130B2 (en) 2016-06-21 2019-07-02 Chentronics, Llc System and method for electrical spark detection
DE102017207818B3 (de) 2017-05-09 2018-05-30 Siemens Aktiengesellschaft Verfahren und Anordnung zum Lokalisieren einer elektrischen Entladung in einer elektrischen Anlage
TWI624676B (zh) * 2017-08-01 2018-05-21 崑山科技大學 以儀器輔助配電變壓器維護檢點之檢測方法
US20190138371A1 (en) * 2017-11-07 2019-05-09 The Regents Of The University Of California Methods, systems, and devices for accurate signal timing of power component events
US10908972B2 (en) * 2017-11-07 2021-02-02 The Regents Of The University Of California Methods, systems, and devices for accurate signal timing of power component events
JP2020008365A (ja) * 2018-07-05 2020-01-16 東日本旅客鉄道株式会社 電力設備機器の劣化診断装置
CN109239555A (zh) * 2018-10-15 2019-01-18 云南电网有限责任公司红河供电局 一种自动定向型变电站局放监测定位装置及方法
CN109239555B (zh) * 2018-10-15 2023-12-05 云南电网有限责任公司红河供电局 一种自动定向型变电站局放监测定位装置及方法
IT202000004303A1 (it) * 2020-03-02 2021-09-02 St Microelectronics Srl Circuito per rilevare scariche parziali, dispositivo, sistema e procedimento corrispondenti

Also Published As

Publication number Publication date
AU1469197A (en) 1997-07-28

Similar Documents

Publication Publication Date Title
WO1997024742A1 (fr) Procede et appareil pour localiser une decharge partielle dans des transformateurs electriques
KR101486995B1 (ko) 변압기 결함 검출 장치 및 방법
US6144341A (en) Electromagnetic emission location and measurement apparatus and method
JP5228558B2 (ja) 電磁波検知による部分放電検出装置及びその検出方法
JP2002090413A (ja) 高電圧機器の絶縁異常診断装置
JPH08503297A (ja) ケーブル内の部分放電を測定するための方法及び装置
JPS5847026B2 (ja) 音響放射変換器の較正方法
JP2009222537A (ja) 電磁波測定による部分放電検出方法
JP5120133B2 (ja) 磁界測定による部分放電検出方法
JP2005147890A (ja) 絶縁異常診断装置
CN111044792A (zh) 一种高压电缆介质损耗带电检测系统及方法
KR20100036567A (ko) 부분방전신호 검출모듈 및 이의 구동방법
US4760343A (en) Apparatus for detecting defective insulators in an insulating column supporting an electrical conductor in a power circuit line
Guidorzi et al. A Low-Cost System for Quick Measurements on Noise Barriers in Situ
JP4663846B2 (ja) パターン認識型部分放電検知器
EP0589974B1 (fr) Procede et systeme permettant de tester des transducteurs acoustiques capacitifs
JP2000002743A (ja) 配電用高圧架空ケーブル分岐接続体等の高圧機器の絶縁劣化診断方法
CN115421004A (zh) 一种手持便携式局部放电巡检定位装置及局部放电巡检方法
NO313848B1 (no) FremgangsmÕte og anordning for akustisk deteksjon og lokalisering av lydgenererende defekter
JP3176000B2 (ja) スイッチギヤの部分放電検出装置
KR100508711B1 (ko) 전력케이블에서의 부분방전 발생위치 추정시스템
US5555311A (en) Electro-acoustic system analyzer
Nainggolan et al. Location of partial discharge at joint section of XLPE cable using acoustic emission technique
CN110806528A (zh) 高压电缆在线局部放电监测系统
RU2262100C1 (ru) Устройство ультразвукового контроля высоковольтных изоляторов под напряжением

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97524531

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase