WO1997023728A1 - Moteur a piston electromagnetique - Google Patents

Moteur a piston electromagnetique Download PDF

Info

Publication number
WO1997023728A1
WO1997023728A1 PCT/JP1996/003770 JP9603770W WO9723728A1 WO 1997023728 A1 WO1997023728 A1 WO 1997023728A1 JP 9603770 W JP9603770 W JP 9603770W WO 9723728 A1 WO9723728 A1 WO 9723728A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
cylinder
electromagnetic
biston
magnetic
Prior art date
Application number
PCT/JP1996/003770
Other languages
English (en)
French (fr)
Inventor
Muneaki Takara
Original Assignee
Muneaki Takara
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Muneaki Takara filed Critical Muneaki Takara
Priority to JP52350897A priority Critical patent/JP3416146B2/ja
Priority to CA002241532A priority patent/CA2241532C/en
Priority to EP96942635A priority patent/EP0870923B1/en
Priority to DE69628036T priority patent/DE69628036T2/de
Priority to US09/091,930 priority patent/US6049146A/en
Publication of WO1997023728A1 publication Critical patent/WO1997023728A1/ja

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/08Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for recovering energy derived from swinging, rolling, pitching or like movements, e.g. from the vibrations of a machine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0061Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electrical machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K25/00DC interrupter motors or generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs
    • H02K33/10Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs wherein the alternate energisation and de-energisation of the single coil system is effected or controlled by movement of the armatures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/075Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to an electromagnetic piston engine that obtains power by reciprocating a piston in a cylinder by electromagnetic force.
  • an electric motor is used as a power source.
  • a conventional electric motor directly rotates a rotor by electromagnetic force and extracts the rotational energy of the rotor as power:
  • combustion-type biston engine has various mechanical resistances due to its structure, for example,
  • An object of the present invention is to provide an electromagnetic biston engine having an advantage that the power transmission mechanism and the like for an internal combustion type piston engine can be easily diverted and energy efficiency is high.
  • an electromagnetic piston engine is configured such that a cylinder and a piston are formed of a magnetic material, and a cylinder electromagnet having an inner wall of the cylinder as one magnetic pole; A magnetizing device for fixedly magnetizing a portion to be magnetized to a single magnetic pole, and exciting the cylinder electromagnet to generate a magnetic attractive force between the cylinder and the piston, thereby causing the piston to rotate. The piston is moved in the opposite direction to generate a magnetic repulsive force, and then the piston is moved in the opposite direction.
  • the electromagnetic piston engine according to the present invention further includes a piston magnet having the cylinder and the piston formed of a magnetic material, and having a portion of the piston fitted to the cylinder as one magnetic pole;
  • a cylinder magnetizing device for fixedly magnetizing the inner wall of the cylinder to a single magnetic pole; and exciting the biston electromagnet to generate a magnetic attraction between the cylinder and the piston, thereby causing the piston to move. It is configured to move in one direction and then generate a magnetic repulsion to move the piston in the opposite direction and repeat this to obtain a reciprocating motion of the piston:
  • the cylinder and the piston are formed of a magnetic material, and a cylinder electromagnet having an inner wall of the cylinder as one magnetic pole; A histone electromagnet having a fitting portion as one magnetic pole; and exciting the cylinder electromagnet and the biston electromagnet to generate a magnetic attraction force between the cylinder and the biston, thereby causing the piston to rotate. , And then generate a magnetic repulsive force to move the biston in the opposite direction. By repeating this, the reciprocating motion of the histon is obtained.
  • the electromagnetic biston engine according to the present invention comprises a combination of the cylinder and the biston in each of the above embodiments as one assembly, and arranging a plurality of the assemblies to operate in parallel, thereby reciprocating the bistons of each assembly.
  • the crank mechanism is configured to convert to a single crankshaft rotational movement: Brief description of the drawings
  • Fig. 1 is a cross-sectional view of an embodiment of the electromagnetic biston engine of the present invention.
  • Fig. 2 is an external view of a cylinder and a piston part of the electromagnetic pistonton engine:
  • Fig. 3 is a view showing a modification of the brush in the embodiment.
  • FIG. 5 is a diagram showing a cylinder and a piston in the embodiment:
  • FIG. 6 is a view showing a modification of the cylinder and the piston.
  • FIG. 7 is a diagram showing an embodiment using a cooling device.
  • FIG. 8 is a diagram showing an embodiment of a non-contact type booster coil excitation mechanism in an electromagnetic piston engine.
  • FIG. 9 is a diagram showing outer poles of the non-contact booster coil excitation mechanism.
  • FIG. 1 () shows the inner pole of the non-contact type booster coil excitation mechanism.
  • FIG. 1 shows another embodiment of the electromagnetic biston engine
  • FIG. 12 is a diagram showing an example of a fitting mode of a cylinder and a piston.
  • FIG. 13 is a diagram showing an embodiment of an electromagnetic piston engine using a six-unit assembly.
  • Fig. 14 is a diagram for explaining how to drive an electromagnetic piston engine with a six-unit assembly with three-phase AC power.
  • Figure 15 is a diagram illustrating another method of driving an electromagnetic biston engine with a six-unit assembly with three-phase AC power:
  • Figure 16 is a diagram illustrating how to drive a six-assembly electromagnetic piston engine with a battery using a mechanical commutator.
  • FIG. 17 is a diagram for explaining the direction of the exciting current of the exciting coil in the embodiment of FIG. 16,-FIG. 18 is a diagram showing another embodiment of the mechanical commutator of FIG. 1 ei Fig. 19 is a diagram showing another embodiment of the electromagnet mechanism for the two assemblies.
  • Fig. 20 shows another method of driving an electromagnetic biston engine with a six-unit assembly on a battery using a mechanical commutator.
  • FIG. 2 is a view showing another embodiment of the mechanical commutator of FIG.
  • Figure 22 shows the rotary switch of an electromagnetic piston engine with a six-unit assembly:
  • FIG. 23 is a diagram showing a wiring mode of each electrode in the rotary switch.
  • Fig. 24 is a view showing a non-contact type split ring in a non-contact type rotary switch.
  • Fig. 25 is a view showing a non-contact type ring in a non-contact type rotary switch.
  • FIG. 1 is a cross-sectional view of an embodiment of an electromagnetic piston engine according to the present invention.
  • FIG. 2 is an external view of a cylinder and a piston part of the electromagnetic piston engine.
  • 3 is an outer cylinder
  • 4 and 9 are connecting parts, both made of silicon steel.
  • Cylinder 2 and outer cylinder 3 have closed tops.
  • the cylinder 2 is housed inside the outer cylinder 3 so that the coupling section 4 comes into contact with the inner wall at the top of the outer cylinder 3. It is fixed to the top with mounting screws 16.
  • An exciting coil 5 is wound around the connecting portion 4.
  • Two electrodes 6 are attached to the outer side of the top of the outer cylinder 3, and these two electrodes 6 penetrate the inner wall side of the outer cylinder 3 and are connected to the conductors at both ends of the exciting coil 5, respectively. Excitation coil 5 can be excited through
  • the piston 1 has a hollow inside and an open end, and a permanent magnet 7 is fixed to the base end so that the S pole side faces the base end surface of the permanent magnet 7. of the surface of the N-pole side Yes in coupling section 9 is fixed, further axial hole 1 of the other end of the connecting portion connecting rod 1 0 the shaft hole 9 a 9 is rotatably supported the connecting rod 1 ()
  • Reference numeral 0a denotes a booster exciting coil 8 (hereinafter referred to as a booster coil) wound around a connecting portion 9 which is supported by a crankshaft of a crank mechanism (not shown).
  • the conductors at both ends of the coil 8 are connected to copper plate electrodes 12 embedded in the outer wall side of the biston so as to extend in the axial direction, respectively.
  • Biston 1 is supported inside the cylinder 2 by bearings 15 so that it can smoothly reciprocate (vertically move) in the cylinder axis direction.
  • -Biston 1 moves the distance indicated by "L" in the figure. Reciprocate.
  • the bearings 5 are arranged at two upper and lower positions along the circumferential direction of the inner wall of the cylinder 2 (that is, the outer wall of the piston) so that the piston 1 and the cylinder 2 are not magnetically coupled.
  • a so-called roller may be used in place of the bearing 15: a brush electrode 14 (hereinafter simply referred to as a brush) penetrates from the outer wall side to the inner wall side in the cylinder 2, and the tip of the brush 14 Is in sliding contact with the copper plate electrode 12.
  • the other end of the brush 14 further penetrates the outer cylinder 3 so that current can flow from outside: 4 may be made of carbon, or the tip may be a so-called mouth to reduce abrasion due to sliding.
  • the configuration is shown ⁇ As shown in the figure, a cylindrical electrode 14a is rotatably attached to the tip so that the cylindrical electrode 14a comes into contact with the surface of the copper plate electrode 12 while rotating.
  • the contact mechanism for supplying power to the booster coil 8 is not limited to the above-described contact mechanism using the copper plate electrode 12 and the brush 14.
  • a variety of contact mechanisms can be employed, such as attaching a ring electrode that makes one rotation in the circumferential direction of the crankshaft to the crankshaft side and providing a sliding contact mechanism provided with a brush that slides on the ring electrode.
  • a current continues to flow through the booster coil 8 in a direction to strengthen the magnetic pole of the permanent magnet 7.
  • the piston 1 reciprocates in the cylinder 2.
  • Power can be supplied by supplying current through a brush 14 that slides on the copper plate electrode 12, whereby the entire piston 1 is magnetized to the S pole by the magnetic force of the permanent magnet 7 and the booster coil 8 c
  • Excitation of the exciting coil 5 is performed as follows: During the period in which the piston 1 moves from the top dead center to the bottom dead center (in the direction from top to bottom in the figure), the cylinder 2 has the S pole, While the outer cylinder 3 flows a current in the direction magnetized to the N pole, during the period from the bottom dead center to the top dead center (direction from bottom to top in the figure), the cylinder 2 has the N pole and the outer cylinder. 3 flows a current in the direction magnetized to the S pole. This excitation current is periodically repeated.
  • Figure 4 shows a simple experimental result to explain the magnetic force generated by the exciting coil 5 on the cylinder 2 side.
  • a nail with a diameter of 3 mm and a length of 65 mm was used as the iron core.
  • a coil having a predetermined thickness is wound a predetermined number of times, a current is applied to the coil using a DC voltage of 10 (V), and the magnitude of the current is adjusted using a variable resistor or the like. It was examined how much magnetic force could be obtained.
  • the cross-sectional area (mm 2 ), the number of turns, the flowing current value (A), and the obtained magnetic force (g) are shown corresponding to various thicknesses (mm) of the exciting coil 5.
  • the size of the magnetic force of the coil is generally from determined by the excitation current X convolutions number, of course, as the results of this experiment is large convolutions number and c indicate that the magnetic force as the exciting current is large becomes large,
  • the generated magnetic force is a force acting in the axial direction of the piston, so that a large magnetic force can be taken out from this viewpoint. Since the rotor is rotated using the magnetic force between the rotor and the stator acting in the circumferential direction, the method of using the magnetic force was not always efficient, but the electromagnetic piston of the present invention was used. In the engine, the magnetic force in the axial direction of the magnet, where the magnetic force of the electromagnet is the strongest, is used as it is for the reciprocating movement of the biston 1, so the efficiency of using the magnetic force is very high.
  • the shape of the piston ⁇ is, as shown in Fig. 5, a hollow inside
  • the distal end is opened, the shape is not limited to this.
  • the distal end may be closed, or the piston may be shaped like a truncated cone as shown in the cross-sectional view in Fig. 6.
  • the inside may be hollow.
  • the cylinder may have a hollow inside.
  • the piston was made hollow to reduce the weight, but iron or silicon without internal cavities was used. It could also be a block of steel: in this case, the biston itself could have the effect of a "flywheel" mounted on the crankshaft of a typical internal combustion piston engine:
  • the outer cylinder 3 is provided outside the cylinder 2.However, this is not always necessary.
  • the cylinder 2 is magnetized to one magnetic pole, the other magnetic pole can be formed with the exciting coil 5 interposed therebetween.
  • the shape is not limited as long as the amount of magnetic material is small.
  • the piston is fixedly magnetized to one polarity using the permanent magnet and the booster coil.
  • the piston is fixedly fixed to one pole only by the permanent magnet or only the electromagnet. It may be magnetized to:
  • FIG. 8 shows such an embodiment. As shown in FIG. 8, the side wall of the outer cylinder 3 extends longer than the cylinder 2 and the outer pole 23 is attached to the inner wall, while the piston] side has the inner pole 2 under the booster coil 8. Attach 6—
  • the outer pole 23 has a cylindrical shape having a height of the reciprocating distance L of the piston 1 and is made of a magnetic material such as a silicon steel plate. as shown in), this as the outer electrode 2 3 shown in c Figure 9 having a plurality of stator teeth 2 4 projecting towards the inside (D), each salient pole 2 4 further cylinder axis It may be divided into multiple parts or one line in the cylinder axis direction. As shown in FIG. 9 (C), a coil 25 is wound around each salient pole 24.
  • the coils 25 of each salient pole are connected in series with each other and have the same winding direction: Therefore, when an exciting current is applied to these coils 24, the tip side of the salient pole 24 (that is, the outer pole 2
  • the inner side of 3 is all S pole
  • the base end of salient pole 24 is all N pole.
  • the inner pole 26 has an annular shape and is made of a magnetic material such as a silicon steel plate.
  • This inner pole has a large number of salient poles 27 protruding outward.
  • a coil 28 is wound around each salient pole 27 in the same direction, and the coils 28 are connected in series with each other. Both ends of the coil 28 connected in series are connected to each other.
  • the booster coil 8 is connected to conductors at both ends. .
  • the outer pole 23 and the inner pole 26 are attached to the outer cylinder 3 side and the piston 1 side, and the piston 1 is reciprocated while exciting current flows to the coil 25 of the outer pole 23. Then, a DC current is induced in the coil 28 of the inner pole 26 by electromagnetic induction from the outer pole 23 to the inner pole 26, and this flows into the booster coil 8, whereby the magnetic force of the permanent magnet 7 is strengthened.
  • the coils wound around the salient poles 24 are in the same direction. However, the present invention is not limited to this. The winding direction may be alternately reversed between adjacent salient poles. Since an alternating current is induced in the coil 28 of 6, the induced current is supplied to the booster coil 8 via a rectifier.
  • the present invention is not limited to the one using the cylinder and the piston in the form as in the above-described embodiment .
  • a cylinder 30 made of a magnetic material is used.
  • a magnetic pole 31 is provided on the top side of the cylinder 30 and the exciting coil 32 is wound around the connecting portion 38.
  • a disk-shaped permanent magnet 33 is used as a piston,
  • the lower side of the magnet 3 3 is pivotally supported on a connecting rod via a connecting rod 34, and a booster coil 35 for strengthening magnetic force is wound around the connecting rod 34, and power is supplied to the booster coil 35 using a copper plate electrode 3. in the 6 and the brush 3 7 t done through
  • a booster coil 35 for strengthening magnetic force is wound around the connecting rod 34, and power is supplied to the booster coil 35 using a copper plate electrode 3. in the 6 and the brush 3 7 t done through
  • the opposing surfaces of the inner wall of the cylinder top and the tip of the piston may be flat with each other as shown in FIG. 12 (1), or as shown in FIG. 12 (2).
  • the shape may be concave toward the center of the surface, or one may be convex and the other concave, as shown in Fig. 12 (3).
  • an exciting coil may be wound directly around the outer circumference of the cylinder 2.
  • the reciprocating motion is obtained by inverting the current of the exciting coil 5 disposed on the cylinder side to apply a repulsive force and an attractive force to the biston.
  • a combination of a permanent magnet and a booster coil is arranged on the cylinder side, fixedly magnetized to one polarity, and an excitation coil is arranged on the By reversing the current, a repulsive force and a suction force act on the biston to obtain the reciprocating motion.
  • the combination of permanent magnet and booster coil on the cylinder side can be changed to permanent magnet only or only electromagnet. If both cylinder and biston sides are only electromagnet, the combination between the piston and cylinder
  • the excitation coil of each electromagnet can be controlled in various ways so that the repulsive force and the attractive force act alternately.
  • FIG. 13 shows an embodiment in which an electromagnetic biston engine is constructed by using a plurality of the above-mentioned electromagnetic biston engines.
  • an assembly For convenience, the combination of the above-mentioned one cylinder and one piston is shown in FIG.
  • This embodiment will be referred to as an assembly:
  • This embodiment is a six-assembly electromagnetic piston engine. As shown, six assemblies are arranged in series, and the outer cylinder 3 of each assembly is magnetized. Coupled 1 ( ⁇ ) For convenience, the first assembly, the second assembly ...
  • the distal end side of the sixth assembly performs the excitation of the arrangement and blanking one Sutakoiru 8 permanent magnet 7 so that the S pole - each pin scan tons of the first to sixth assembly, With reference to the first assembly (0.), their top dead centers are respectively mounted on the crankshaft 40 at equal intervals of 60-crank angle: where between the first and second assemblies The crank angle phase difference between the third and fourth assemblies and between the fifth and sixth assemblies should be 180 °, respectively. Also, between the first and third assemblies and between the third and fifth assemblies Make sure that the phase difference of the crank angle is 1 2 0-The crank shaft 40 is rotatably supported on the engine body by bearings 4 1
  • An excitation current is supplied from the inverter 42 to each of the excitation coils 5 of the first to sixth assemblies:
  • the inverter 42 converts the DC output of the battery 43 into a three-phase AC output to convert each of the excitation coils. Supply to 5 .. The frequency of this three-phase AC output can be changed freely.
  • DC current is supplied from the battery 43 to the booster coils 8 of the first to sixth assemblies via the brush 14. This DC current flows in the direction where the tip of biston 1 becomes the S pole.
  • FIG. 14 (A) shows how power is supplied from the inverter 42 to each of the exciting coils 5.
  • the three-phase AC R and S phases are connected to the exciting coils 5 of the first and second assemblies in opposite phases, and the three-phase AC exciting coils 5 are connected to the exciting coils 5 of the third and fourth assemblies.
  • the S ⁇ T phases are connected in opposite phases, and the T ⁇ R phases of three-phase alternating current are connected to the excitation coil 5 of the fifth and sixth assemblies in opposite phases.
  • FIG. 14 (B) The position of each of the bistons of the first to sixth assemblies with respect to the crank angle when the first assembly is the reference (0) is shown.
  • FIG. 14 (C) shows the relationship between the three-phase AC and the crank angle.
  • the excitation coil 5 has a maximum at the center of the piston's forward and backward movement, and the direction of the excitation current at the piston's top dead center or bottom dead center. current to invert flow: this results in the crank angle 0 Y, first, in the second ⁇ Senpuri anti Force including suction force acts from near 0 respectively, third, fourth Asen In the pre-process, the increasing suction force and the repulsive force act near the beak value, respectively, and in the fifth and sixth assemblies, the decreasing repulsive force and the suction force act respectively near the beak value.
  • the suction force and the repulsion force during application near the beak value act respectively
  • the suction force and the repulsion force decreasing near the beak value act respectively
  • the fifth and 6In the assembly the repulsive force and the suction force start to work from near 0 each.
  • the relationship between suction and repulsion shifts the first to sixth assemblies sequentially according to the crank angle.
  • the cycle of the reciprocating movement of the piston of each assembly is synchronized with the frequency of the three-phase alternating current in a manner similar to the principle of the synchronous motor. If the AC frequency is variably controlled, the rotational speed of the electromagnetic biston engine can be variably controlled accordingly.
  • the position of each piston of the first to sixth assemblies with respect to the crank angle is 60 crank angles.
  • the present invention is not limited to this.
  • the same crank as used in a six-cylinder internal combustion type piston engine in a recent automobile is often used.
  • the piston positions of the two cylinders may be the same with respect to the angle:
  • the piston positions of the second and fifth assemblies are the same with respect to the crank angle of 120, and the piston positions of the third and fourth assemblies are the same with the crank angle of 240 °.
  • Set the same for Each exciting coil 5 of the first to sixth assemblies is excited according to this crank angle:
  • Fig. 16 shows another embodiment of an electromagnetic piston piston engine with a six-unit assembly.
  • FIG. 17 shows the excitation for generating a S or N pole in cylinder 2 for the polarity of the magnetic pole of piston 1.
  • the polarity of the excitation current of coil 5 is indicated:
  • This embodiment is a method without using three-phase alternating current to supply power to excitation coil 5, with the same height of the bistons of the first, third and fifth assemblies. (That is, the crank angles are the same), the pistons of the second, fourth, and sixth assemblies are at the same height, and the screws of the first, third, and fifth assemblies and the second, fourth, and sixth assemblies are set.
  • the tone position is reversed phase-6 ring-shaped electrodes 51 to 56 are attached to the crankshaft.
  • Electrodes 5 to 5 4 Is an unsplit ring.
  • Electrodes 55, 56 are diametrically split two-split rings: split rings 55, 56 are both split at the same crank angle position, and split pieces 5 Rings 5 1 to 5 4 are divided into brushes (electrodes) 6 1 to 6 4, respectively.
  • 6 2 are connected to the exciting coils 5 of the third, fifth, and fifth assemblies, respectively, and the brushes 63, 64 are connected to the exciting coils 5 of the second, fourth, and fifth assemblies, respectively.
  • the two-part ring 55 should be in sliding contact with the brushes 65, 67 on the diameter line
  • the two-part ring 56 should be in sliding contact with the brush electrodes 66, 68 on the diameter line, respectively.
  • Rings 5 5a and 5 6a are rings 5 respectively. 1 and 5 and the split pieces 55b and 56b are connected to the rings 53 and 54, respectively.
  • the piston-side booster coils 8 of the first to sixth assemblies are connected in parallel from the battery 43 respectively. DC current in the same direction:
  • crankshaft When connected as above, the crankshaft is 180.
  • the direction of the exciting current flowing through the exciting coil 5 of the first to sixth assemblies is reversed by the reversal of the current in the two split rings 55, 56, and the attractive force in the cylinder 2
  • the magnetic field is reversed so that it switches to the repulsive force.
  • the outer cylinder 3 of the first and second assemblies when attention is paid to adjacent assemblies, for example, the first and second assemblies, when one generates a suction force, the other generates a repulsive force.
  • the outer cylinder 3 of the first assembly when the outer cylinder 3 of the first assembly is, for example, an S pole, the outer cylinder 3 of the second assembly is an N pole. 1, the outer cylinder of the second assembly
  • an electromagnetic biston engine may be rotated by performing only excitation for generating a repulsive force without performing excitation for generating an attractive force.
  • FIG. 18 shows an embodiment in that case, and the rings 51 to 5 in FIG.
  • the repulsive force can be used to operate the biston engine.
  • the repulsive force is generated in the first assembly (that is, the repulsive force is generated).
  • the exciting coil 5 When the exciting coil 5 is excited, the outer cylinder 3 becomes the N pole, but the outer cylinder 3 of the first and second assemblies is magnetically coupled.
  • the outer cylinder 3 of the second assembly also has an N pole, and the N pole appears in the cylinder 2 of the second assembly as it is because the exciting coil 5 of the second assembly is not excited.
  • the piston S A weak attractive force is applied to the pole).
  • Such a measure can be applied even when the above-mentioned three-phase alternating current is used, so that the excitation current does not flow in the direction of the attractive force. It can be controlled by Ichita 4 2:
  • the pistons of the first, third, and fifth assemblies always have the S pole
  • the pistons of the second, fourth, and sixth assemblies have the tip. It may be set to always have N pole.
  • both the outer cylinders 3 of the first and second assemblies have N poles, and thus the cylinder 2 is connected to the exciting coil 5 of the second assembly. It is considered that the first and second assemblies do not cancel each other out even if an exciting current flows in the direction of the S pole, so that the S pole of the cylinder 2 in the second assembly is N pole can be sucked
  • two ⁇ assemblies example first adjacent second Asenburi outer cylinder 3, 3 to form 2 with wood charge of the nonmagnetic material exciting coil 5 Te,, 5 2 so as not to the other pole, alternatively, the first Chi Sunawa connecting the connecting post 4 of the exciting coil 5 i, 5 2 of the two assemblies to each other, the second assembly cylinder
  • the connecting columns 4 are directly connected to each other by connecting columns 4.
  • the connecting columns 4 are formed of a magnetic material such as a silicon steel plate:
  • the first and second assembly pistons 1, 1, and 12 the cylinder 2 is S pole in the magnetic pole this example respectively the same polarity, and to face 2 two directions:
  • excitation coil 5 ⁇ second assembly when excited at the 5 2 same, as in the embodiment of FIG. 1 6 above, the exciting coil 5, 5,.
  • the excitation current whose polarity is alternately reversed should be applied.
  • the commutation mechanism of the magnetic current (the mechanism for reversing the polarity of the excitation current) may be the same as that shown in Fig. 16.
  • excitation coil 5 of the second assembly, and 5 2 to the excitation alternately is possible i.e., the other is when they are excited with one excitation coil
  • the excitation coil stops excitation and repeats this alternately.
  • the excitation coil 5, of the first assembly is excited to generate an S pole in the cylinder 2, and a repulsive force acts on the piston 1, It is allowed, during that period ,, thus energizing stop the excitation coil 5 of the second assembly, the cylinder 2 2 of the second assembly in piston 1 2 N pole generated suction force is generated.
  • the excitation current required for the first and second assemblies should be only the amount of current for exciting one of the excitation coils 5, and the amount of excitation current consumed should be reduced to save energy.
  • the excitation current required for the first and second assemblies should be only the amount of current for exciting one of the excitation coils 5, and the amount of excitation current consumed should be reduced to save energy.
  • excitation coil 5 of the second assembly if reversed to each other convolutions direction of [delta] 2, the exciting coil 5, the direction of the exciting current applied to the 5 2 always Since the direction is one-way, it is not necessary to reverse the polarity of the exciting current, so that the commutation mechanism shown in the above-described embodiment of FIG. 16 can be simplified.
  • a single excitation coil may be used to excite the respective excitation coils 5,,, 5,, so that simultaneous excitation is not basically performed.
  • the method of alternately exciting, that is, when one exciting coil is excited, the other exciting coil stops exciting is the same as described above.
  • a brush 6 7 in the embodiment of FIG. 16 is used. If when convolutions thus overlap to remove the 68 excitation coil 5, by excitation of the 5 2, the cylinder 2, 2 forces et appearing very strong comparable pole 2, the magnetic force Use It becomes possible:
  • a method of winding the exciting coils 5, 5, and so on so as not to overlap with each other at a half of the length of the connecting pole 4 can be considered: in this case, for example cylinders 2, the in the case of exciting the exciting coil 5 1 to the S pole, the exciting coil 5 2 by excitation to the cylinder 2 2 N pole Bayoi:,
  • the two cylinders 2, les linking two 2 was wound around only a single exciting coil 5 to the connecting post 4 Ru, to which the commutation mechanism It may be used to provide an exciting current of alternating polarity: this method requires that the exciting current be reversed, but one exciting coil for two assemblies. Since it is sufficient to provide a specific arrangement, the number of parts can be reduced.
  • the brushes 6 7 and 6 8 in the embodiment of FIG. 16 may be deleted, the wires of the brushes 6 1 and 6 4 may be connected to each other, and the wires of the brushes 6 2 and 6 may be connected to each other. Wiring can be simplified. Also, as shown in Fig.
  • the number of turns per excitation coil 5 is such that only two excitation coils 5: and 5 are not wound around the connecting pole 4 and only a single excitation coil 5 is wound. Rotation makes it possible to further reduce the thickness compared to Fig. 19 ( ⁇ ). Therefore, the generated magnetic force can be further increased, and the exciting current can be reduced accordingly, thus further saving energy. Can be.
  • crank angles of the first to sixth assemblies were shifted by 180: 3 for each three.
  • Each crank angle is 6 ().
  • the present invention is also applicable to the case where they are shifted from each other.
  • FIG. 20 shows such an embodiment. That is, a total of 12 rings (electrodes) are attached to both ends of each excitation coil 5 of the 6th to 6th assemblies, and 6 split rings are provided. The split positions of these 2 split rings with respect to the crank angle position are shown in the figure. As shown in the figure, if these rings and the split ring are used to make the connections shown in the drawing so that the current flowing through the exciting coil 5 is reversed every 180 revolutions of the crankshaft, the three-phase current Excitation is possible.
  • FIGS. 16 to 21 is an embodiment in which the rotation speed is not variably controlled. If the rotation speed is variably controlled in these embodiments, for example, the DC voltage of the battery is changed to DC-DC.
  • a method of variably controlling with a converter or the like is also possible, but as another method, an embodiment in which the rotational speed control is actively performed is shown below.
  • FIG. 22 shows such an embodiment.
  • the rings 51 to 54 and the two split rings 55, 56 are separated from the crankshaft, and are instead attached to a rotating shaft that is rotated by a motor whose rotation speed can be controlled. Yes, this is referred to here for convenience as a rotary switch:
  • the motor is mounted on the rotary shaft of this rotary switch via a burry or a bracket.
  • the rotating shaft 60 is rotatably supported on the case 57 by the bearing 58, and the above-described two-part rings 55, 56, and rings 51 to 64 are attached to the rotating shaft 60-case 5.
  • the brushes 6 1 to 6 8 are pushed out of the respective rings 5 1 to 5 6 by pressing them against the rings 5 1 to 5 6 with a spring 59.
  • an insulator 69 is provided inside each ring, and a through-hole may be appropriately formed in each of the insulators to allow the wires to pass through each other.
  • FIGS. 24 and 25 show such an embodiment.
  • This embodiment is an alternative to the rotary switch of FIG. 22 and is referred to as a non-contact rotary switch for convenience.
  • FIG. 24 shows a mechanism that plays a role of the two-part ring 55 or 56 in the embodiment of FIG. 22.
  • it is referred to as a non-contact two-part ring.
  • FIG. 24 shows a mechanism that plays a role of the two-part ring 55 or 56 in the embodiment of FIG. 22.
  • FIG. 24 shows a mechanism that plays a role of the two-part ring 55 or 56 in the embodiment of FIG. 22.
  • FIG. 24 shows a mechanism that plays a role of the two-part ring 55 or 56 in the embodiment of FIG. 22.
  • FIG. 24 shows a mechanism that plays a role of the two-part ring 55 or 56 in the embodiment of FIG. 22.
  • FIG. 24 shows a mechanism that plays a role of the two-part ring 55 or 56 in the embodiment of FIG. 22
  • this ring is referred to as a non-contact type ring.
  • Two split rings are provided corresponding to the two split rings 55, 56, and four non-contact rings shown in Fig. 25 are provided corresponding to the rings 51 to 54, respectively:
  • the non-contact type split ring of No. 4 will be described.
  • the case 57 is made of a non-magnetic material and the rotating shaft 60 is rotatably supported inside.
  • the rotating shaft 60 is fitted with two-split rotors 70 and 71:
  • the two-split rotor 70 is half It has a ring shape, is made of a magnetic material, has a plurality of salient poles 701 protruding radially outward, and a coil is wound around the salient poles 701 in the same direction. These coils are connected in series with each other, and the two-split rotor 71 has exactly the same configuration.
  • the stator 72 has a salient pole projecting into the case inside a coil cover 724 made of a non-magnetic material. 7 2 1 and the coil 7 2 2 wound around this salient pole are accommodated. A strong permanent magnet made of rare earth 7 2 3 is arranged on the other end of 2 1. The permanent magnet 7 2 3 is attached so that the surface facing the salient pole 7 2 1 becomes the N pole.
  • the coil 7 2 2 Both ends are connected to the positive and negative terminals of the battery 4 3, so that a direct current flows in the coil 7 2 2 in the direction in which the tip of the salient pole 7 2 1 becomes the N pole:
  • the coil cover 7 2 4 is screwed
  • the stator 73 has the same configuration, except that the surface of the permanent magnet facing the salient pole is the S pole, and the coil has a direction in which the tip of the salient pole is the S pole. DC current is supplied to the
  • This non-contact type ring includes a rotor 74 fixed to the rotating shaft 60 and a stator 75 fixed to the inner wall of the case 57.
  • the stator 75 and the rotor 74 are both made of a magnetic material, and the rotor 74 is mounted concentrically inside the stator 75.
  • the rotor 74 has a ring shape, and has a plurality of salient poles 7141 projecting outward in the diametrical direction.
  • a coil 742 is wound around each of the salient poles 741 in the same direction. These coils 742 are connected in series with each other.
  • the stator 75 has a ring shape, and has a plurality of salient poles 75 protruding inward in the diameter direction. Coils 752 are wound in the same direction on 751, and these coils 752 are connected to each other in series.
  • the electrical connection between the two non-contact two-split rings and the four non-contact rings in this non-contact rotary switch is the same as that shown in Figure J6.
  • the two ends of the rotor of the contact type split ring are connected to both ends of the non-contact type ring corresponding to the rings 51 and 53, respectively, and correspond to the split ring 56.
  • the windings of the non-contact type ring corresponding to 5 are connected in series and connected in parallel to the exciting coils 5 of the third, fifth and fifth assemblies, respectively.
  • corresponding to the rings 5 3 and 5 4 The windings of the non-contact type ring are connected in series and it is connected to the excitation coil 5 of the second, fourth and sixth assemblies. Connect in parallel:
  • Excitation coil 5 of 1st to 6th assembly is excited by electric power.
  • This excitation current is a DC current, and the direction is reversed every half cycle of crank angle (every 180.).
  • a detector for detecting the crank angle is provided on the crankshaft:
  • This detector is, for example, a crankshaft. This can be realized by arranging magnets at several locations along the circumferential direction of the above, and fixedly arranging a Hall element in the vicinity of the magnet, and detecting the arrangement position of the magnet on the crank axis by the Hall element.
  • the excitation coil drive circuit composed of an electronic circuit excites each assembly so that attraction and repulsion act alternately according to the piston position. Supply power to coil 5.
  • the electromagnetic piston engine of the present invention operates by utilizing an electromagnetic action, and is driven by generating a large magnetic force with a small exciting current in order to greatly reduce the number of turns of the exciting coil due to its structure. Since it can be used as power, it is extremely advantageous from the viewpoint of energy saving compared to ordinary electric motors, and is particularly suitable for use as a driving power source for electric vehicles, etc.
  • the electromagnetic piston engine does not generate a large amount of heat, unlike a non-combustible biston engine in principle, it does not require a cooling mechanism for an automobile engine, contributing to a reduction in the weight and size of an automobile. Some places are big.
  • various mechanical resistances that have arisen from the structure of the internal combustion piston engine can be eliminated, so that the energy use efficiency can be improved:
  • this electromagnetic piston engine is much more efficient in terms of energy use than gasoline engines, so it is extremely useful from the viewpoint of energy saving, and uses the clean energy of electricity to protect the global environment. Very useful from the perspective of

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Description

明 細 書 電磁式ビス トン機関 技術分野
本発明は、 シリンダ内でビストンが電磁力により往復運動することで動力を得 る電磁式ビストン機関に関するものである 背景技術
近年、 電気自動車の開発が活発化している かかる電気自動車では動力源とし て電動機が用いられる 従来の電動機は電磁力によりロータを直接に回転させ、 そのロータの回転エネルギーを動力として取り出すものである:
しカゝし、 かかるタイプの電動機では、 大きな出力を取り出そうとすると必然的 にロータの重量が増し、 結果として回転部分相当重量が大きくなるなどの問題点 が生じる また、 動力を動力源から車輪に伝える動力伝達機構も電動機の特性に あつたものを設計する必要があり、 従来の自動車で一般的に用いられている内燃 式ビストン機関用の動力伝 構をそのまま電気自動車に転用することが必ずし もできず、 電気自動車の設計の負担を大きく している
また、 內燃式ビス トン機関はその構造上、 各種の機械的抵抗がある, 例えば、
①エア一クリ一ナ一の空気吸込み抵抗
②カムシャフ ト抵抗
③シリンダ内の圧縮抵抗
④ビス トンとシリンダ内壁抵抗
⑤冷却ファン抵抗
⑥ウォータ一ホンプ抵抗
⑦オイルホンブ抵抗
などである これらの抵抗によるエネルギー損失は内燃式ビストン機関のェネル ギー効率を低下させる原因となっている また、 内燃式ピス トン機関は、 その原 理上かなりの発熱は避けられないため、 それを冷却する機構が必要になるなど全 体の重量がかなりのものになることも問題である
本発明はかかる事情に鑑みてなされたものであり、 内燃式ヒス トン機関の上記 各種抵抗を無くすことができ、 大きな出力を取り出しても回転部分相当重量を小 さく抑えることができ、 また従来の内燃式ビストン機関用の動力伝達機構などを 簡単に転用でき、 エネルギー利用効率が高いなどの利点を有する電磁式ビス トン 機関を提供することを目的とする 発明の開示
本発明に係る電磁式ピス トン機関は、 一つの形態として、 シリンダとピス トン が磁性材料で形成され、 該シリンダの内壁を一方の磁極とするシリンダ電磁石と、 該ビス トンの該シリンダに嵌合する部分を単一の磁極に固定的に磁化するヒス卜 ン磁化装置とが備えられ、 該シリンダ電磁石を励磁することにより該シリンダと 該ピストンの間に磁気吸引力を発生させて該ピストンを 1方向に移動させ、 次い で磁気反発力を発生させて該ピストンを反対方向に移動させ、 これを繰り返すこ とで該ビス トンの連続した往復運動を得るように構成される _
また本発明に係る電磁式ピストン機関は、 他の形態として、 該シリンダと該ピ ストンが磁性材料で形成され、 該ピストンの該シリンダに嵌合する部分を一方の 磁極とするビストン電磁石と、 該シリンダの内壁を単一の磁極に固定的に磁化す るシリンダ磁化装置とが備えられ、 該ビストン電磁石を励磁することにより該シ リンダと該ピストンの間に磁気吸引力を発生させて該ピストンを 1方向に移動さ せ、 次いで磁気反発力を発生させて該ピストンを反対方向に移動させ、 これを繰 り返すことで該ピス トンの往復運動を得るように構成される:
また本発明に係る電磁式ピストン機関は、 また他の形態として、 シリンダとピ ストンが磁性材料で形成され、 該シリンダの内壁を一方の磁極とするシリンダ電 磁石と、 該ビス トンの該シリンダに嵌合する部分を一方の磁極とするヒス トン電 磁石とが備えられ、 該シリンダ電磁石とビストン電磁石を励磁することにより該 シリンダと該ビス トンの間に磁気吸引力を発生させて該ピストンを 1方向に移動 させ、 次いで磁気反発力を発生させて該ビス トンを反対方向に移動させ、 これを 繰り返すことで該ヒス トンの往復運動を得るように構成される また本発明に係る電磁式ビス トン機関は、 上記各形態におけるシリンダとビス トンの組合せを 1つのアセンブリとし、 このアセンブリを複数台配置して並列運 転させ、 各アセンブリのビス トンの往復運動をクランク機構で単一のクランク軸 の回転運動に変えるよう構成される: 図面の簡単な説明
図 1は本発明の電磁式ビス トン機関の実施例の横断面図である..
図 2はこの電磁式ビストン機関のシリンダとビストン部分の外観図である: 図 3は実施例におけるブラシの変形例を示す図である。
図 4は磁力に関する簡単な実験結果を示す図である:
図 5は実施例におけるシリンダとピスントを示す図である:
図 6はシリンダとビストンの変形例を示す図である。
図 7は冷却装置を用いた実施例を示す図である。
図 8は電磁式ビス 卜ン機関における非接触式ブースタコィル励磁機構の実施例 を示す図である。
図 9は非接触式ブースタコイル励磁機構の外極を示す図である。
図 1 ()は非接触式ブースタコイル励磁機構の内極を示す図である。
図 1 】は電磁式ビス トン機関の他の実施例を示す図である:
図 1 2はシリンダとビストンの嵌合態様の例を示す図である, - 図 1 3は 6連アセンブリによる電磁式ビストン機関の実施例を示す図である。 図 1 4は 6連アセンブリによる電磁式ビストン機関を 3相交流電力で駆動する 仕方を説明する図である。
図 1 5は 6連アセンブリによる電磁式ビス トン機関を 3相交流電力で駆動する 他の仕方を説明する図である.:
図 1 6は 6連アセンブリによる電磁式ピストン機関を機械的整流子を用いてバ ッテリで駆動する仕方を説明する図である
図 1 7は図 1 6の実施例における励磁コイルの励磁電流の方向を説明する図で ある, - 図 1 8は図 1 eiの機械的整流子の他の実施例を示す図である 図 1 9は二つのアセンブリについての電磁石機構の他の実施例を示す図である 図 2 0は 6連アセンブリによる電磁式ビストン機関を機械的整流子を用いてバ ッテリで駆動する他の仕方を説明する図である。
図 2 】は図 2 0の機械的整流子の他の実施例を示す図である
図 2 2は 6連アセンブリによる電磁式ビストン機関の回転スィツチを示す図で ある:
図 2 3は回転スィツチにおける各電極の配線態様を示す図である
図 2 4は非接触式回転スィツチにおける非接触形 2分割リングを示す図である.. 図 2 5は非接触式回転スィツチにおける非接触形リングを示す図である: 発明を実施するための最良の形態
以下、 図面を参照して本発明の実施例を説明する
図】は本発明の電磁式ピス トン機関の実施例の横断面図である また、 図 2は この電磁式ビストン機関のシリンダとビストン部分の外観図である 図 1におい て、 1はピス トン、 2はシリンダ、 3は外側シリンダ、 4、 9は連結部であり、 ともに珪素鋼板で作られている シリンダ 2と外側シリンダ 3は頂部が閉じられ た形状になっている, シリンダ 2の頂部外壁には連結部 4が一体成形されており、 シリンダ 2は連結部 4が外側シリンダ 3の頂部内壁に当接するようにして外側シ リンダ 3の内部に収容され、 この連結部 4が外側シリンダ: 3の頂部に取付けネジ 1 6で固定されている。 この連結部 4には励磁コイル 5が卷回される。 外側シリ ンダ 3の頂部外側には二つの電極 6が取り付けられ、 この二つの電極 6は外側シ リンダ 3の内壁側に貫通して励磁コイル 5の両端の導線にそれぞれ接続され、 こ の電極 6を通して励磁コイル 5を励磁できるようになっている
ピス トン 1は、 内部が空洞であって先端側が開口しており、 基端側には永久磁 石 7が S極側がビス卜ン基端面に向かうようにして固定してある: この永久磁石 7の N極側の面には連結部 9が固定してあり、 さらにこの連結部 9の軸孔 9 aに はコンロッド 1 0が軸支されている このコンロッド 1 ()の他端の軸孔 1 0 aは 図示しないクランク機構のクランク軸に軸支される 連結部 9にはブースタ用励 磁コイル 8 (以下、 ブースタコイルと称する) が卷回されており、 このブースタ コイル 8の両端の導線は、 ビストンの外壁側面に軸方向に延びるように埋め込ん だ銅板電極 1 2にそれぞれ接続される,
ビストン 1はシリンダ 2の内部にベアリング 1 5により支持されており、 シリ ンダ軸方向に滑らかに往復運動 (上下運動) できるようになつている- ビストン 1は図中に " L " で示す距離を往復運動する。 ベアリング】 5はシリンダ 2の内 壁 (すなわちピス トン】の外壁) の円周方向に沿って、 上下の 2つの位置に配置 されており、 ピス トン 1とシリンダ 2が磁気的に結合しないようにセラミックで 製造されている。 このベアリング 1 5に代えていわゆるコロを用いてもよい: シリンダ 2にはブラシ電極 1 4 (以下、 単にブラシと称する) が外壁側から内 壁側に貫通しており、 このブラシ 1 4の先端は前記の銅板電極 1 2に摺動接触す るようになっている ブラシ 1 4の他端はさらに外側シリンダ 3を貫通して外部 から電流を流すことができるようになつている: このブラシ】 4はカーボンで製 造してもよいし、 先端部をいわゆるコ口にして摺動による擦り減りを低減させる ようにしてもよい, 図 3にはブラシ 1 4の先端をコ口にした場合の構成が示され る < 図示のように、 先端に円筒形の電極 1 4 aを回転自在に取り付け、 この円筒 電極 1 4 aが銅板電極 1 2の面と回転しながら接触するようにする,.
なお、 ブースタコイル 8給電用の接点機構は、 上述の銅板電極 1 2とブラシ 1 4による接点機構に限られるものではなく、 例えばコンロッ ド 1 ϋの内側を空洞 にしてそこにブースタコイル 8の導線を通し、 クランク軸側にクランク軸円周方 向に一回転するリング電極を取り付け、 これと摺動するブラシを設けた摺動接点 機構を設けるなど、 種々の接点機構が採用可能である。
この電磁式ビス トン機関の動作を以下に述べる,:
このビス トン機関の作動中、 ブースタコイル 8には永久磁石 7の磁極の強さを 強化する方向に電流を流し続ける 後述するようにビストン 1はシリンダ 2内を 往復運動するが、 ブースタコイル 8への給電は、 銅板電極 1 2に摺動するブラシ 1 4を通して電流を供給することで行える これによりピストン 1は永久磁石 7 とブースタコイル 8の磁力により全体が S極に磁化される c
励磁コイル 5の励磁は次のようにして行う すなわち、 ピス トン 1が上死点か ら下死点 (図中を上から下に向かう方向) に向かう期間中は、 シリンダ 2が S極、 外側シリンダ 3が N極に磁化される方向に電流を流す 一方、 下死点から上死点 (図中を下から上に向かう方向) に向かう期間中は、 シリンダ 2が N極、 外側シ リンダ 3が S極に磁化される方向に電流を流す, この励磁電流の通電を周期的に 繰り返す.
上記のようにして励磁コィル 5を励磁すると、 ビストン 1が下死点から上死点 に向かう間は、 ピス トン;!の S極とシリンダ 2の N極とが吸引し合い、 ピス トン 1はこの吸引力により上死点に向かって上昇する。 ビストン 1が上死点に達した ら、 励磁コイル 5の励磁電流を反転させる これによりシリンダ 2は S極に磁化 されるので、 ピス トン 1の S極とシリンダ 2の S極は今度は互いに反発し合い、 その反発力によりヒス 卜ン 1は下方向に押し出され、 下死点に向かって下降する: 下死点に達したら、 再び励磁コイル 5の励磁電流を反転させる.— これを繰り返す ことによりビストン 1はシリンダ 2内を往復運動することになり、 この往復運動 はコンロッ ド 1 ()を介してクランク軸 1 1の回転運動に変換される:
図 4にはシリンダ 2側の励磁コイル 5が発生する磁力について説明するための 簡単な実験結果が示される この実験は、 鉄心として直径 3 mm、 長さ 6 5 m m の釘を用い、 この釘に所定の太さのコイルを所定の卷回数だけ卷ぃてこのコイル に直流電圧 1 0 ( V ) を用いて電流を流し、 その電流の大きさを可変抵抗等を用 いて調整しつつ、 各場合にどれだけの磁力が得られるかを検査したものである。 図中には、 励磁コイル 5の各種の太さ (mm) に対応して、 その断面積 (mm 2 ) 、 卷回数、 流した電流値 (A) 、 得られた磁力 (g ) が示され コイルの 磁力の大きさは一般に、 励磁電流 X卷回数で求まるから、 当然ながら、 この実験 結果は卷回数が大きいほど、 また励磁電流が大きいほど磁力が大きくなることを 示している c,
この実験結果から分かることは、 本発明の電磁式ピストン機関では、 励磁コィ ル 5の卷回数を十分に多くすれば、 励磁コイル 5の励磁電流が小さくても、 シリ ンダ 2とピス トン 1の間に非常に大きな磁力 (吸引力と反発力) が得られること を示している t そして本発明の電磁式ピストン機関は、 その構造上、 電気モータ 等に比較して、 励磁コイル 5を卷回するための充分大きな空間を確保することが 容易であるから、 卷回数が極めて多くなつても問題はなく、 それにより小さい電 流 (すなわち低消費電力) で大きな磁力 (すなわち駆動力) を得ることができる ので、 省エネルギ一の面から見ても大変に有利である
また、 本発明の電磁式ピス トン機関においては、 発生する磁力はピス トンの軸 方向に働く力であるため、 この観点からも大きな磁力を取り出すことができる すなわち、 一般の電気モータでは、 ロータの円周方向に作用する、 ロータとステ —タ間の磁力を使ってロータを回転させているため、 磁力の利用の仕方としては 必ずしも効率のよいものではなかったが、 本発明の電磁式ピス トン機関では、 電 磁石の磁力が最も強くなる磁石の軸方向の磁力をそのままビス トン 1の往復動に 利用しているので、 磁力の利用の仕方としても大変効率がよレ、:
図 1に示された電磁式ビス トン機関は種々な変形形態が可能である. 例えば上 述の実施例ではピス トン〗の形状は、 図 5に示されように、 内部を空洞とし、 力 つ先端側を開口したものとしたが、 これに限られるものではなく、 先端側を閉じ た形状としてもよいし、 図 6に断面図で示されように、 ピストンを外観が円錐台 形の形状にして内部を空洞にしてもよい。 これに応じてシリンダも内部に空洞を 持つものにしてもよい。 このような形状を適宜選定することにより所望の箇所の 磁力を強めることも可能である. また、 ピス トンは軽量化を図るために內部を空 洞としたが、 内部空洞を持たない鉄あるいは珪素鋼板の塊とすることもできる: この場合、 ビス トン自体に、 一般の内燃式ピス トン機関のクランク軸に取り付け られている 「はずみ車」 の作用を持たせることも可能と考えれる:
また、 上述の実施例ではシリンダ 2の外側に外側シリンダ 3を設けたが、 これ は必ずしも必要ではなく、 シリンダ 2を一方の磁極に磁化した時に、 励磁コイル 5を挟んで他方の磁極を形成できるだける量の磁性材料であれば、 その形状は限 定されない。
また、 上述の実施例では、 ピス トンを永久磁石とブースタコイルを用いて一方 の極性に固定的に磁化したが、 もちろん、 永久磁石のみ、 あるいは電磁石のみに よりビス トンを一方の極に固定的に磁化するものであってもよい:
また、 励磁コイル 5部分での発熱が大きい場合は、 図 7に示されるように、 シ リンダ 2と外側シリンダ 3の間に冷却パイブ 2 0を配設し、 冷却装置 2 1力 ら冷 却液を循環させるようにして、 励磁コイル 5を冷却してもよい また、 上述の実施例ではブースタコイル 8への給電を銅板電極 1 2にブラシ 1 4を摺動接触させることで行うようにしたが、 本発明はこれに限られるものでは なく、 電 導を利用して非接触で給電を行うようにすることもできる 図 8に はかかる実施例が示される。 図 8に示されるように、 外側シリンダ 3の側壁をシ リンダ 2よりも長く延ばし、 その内壁面に外極 2 3を取り付ける 一方、 ピス ト ン ]側はブースタコイル 8の下側に内極 2 6を取り付ける—
外極 2 3は、 図 9 (A) に示されるように、 ピス トン 1の往復動距離 Lの高さ を持つ円筒形状をしており、 珪素鋼板等の磁性材料からなる. 図 9 ( B ) に示さ れるように、 この外極 2 3は内側に向かって突出する多数の突極 2 4を有する c 図 9 ( D ) に示されるように、 各突極 2 4はシリンダ軸方向にさらに複数に分割 されていてもよいし、 シリンダ軸方向の 1本のラインとしてもよい。 図 9 ( C ) に示されるように、 各突極 2 4にはそれぞれコイル 2 5が卷回される。 各突極の コイル 2 5は互いに直列に接続されており、 卷回方向は同一としてある: よって、 これらのコイル 2 4に励磁電流を流すと、 突極 2 4の先端側 (すなわち外極 2 3 の内側面) は全て S極、 突極 2 4の基端側 (すなわち外極 2 3の外側面) が全て N極となるようになつている。
一方、 図 1 0に示されるように、 内極 2 6は円環形状をしており、 珪素鋼板等 の磁性材料からなる この内極は外側に向かって突出する多数の突極 2 7を有す る 各突極 2 7にはコイル 2 8が同一方向に卷回されており、 かつそれらのコィ ル 2 8は互いに直列に接続されており、 この直列に接続されたコイル 2 8の両端 は、 ブースタコイル 8の両端の導線に接続される。 。
このように、 外側シリンダ 3側に外極 2 3、 ピス トン 1側に内極 2 6を取り付 け、 外極 2 3のコイル 2 5に励磁電流を流しながら、 ピス トン 1を往復動させる と、 外極 2 3から内極 2 6への電磁誘導によって内極 2 6のコイル 2 8に直流電 流が誘導され、 これがブースタコイル 8に流れ、 それにより永久磁石 7の磁力が 強化される · なお、 上記では各突極 2 4に卷回するコイルは同一方向としたが、 これに限られるものではなく、 隣接する突極で交互に卷方向を反転させてもよい この場合、 内極 2 6のコイル 2 8には交流電流が誘導されるから、 この誘導電流 を整流器を介してブースタコイル 8に給電するようにする. また、 本発明は上述の実施例のような形態のシリンダとビス卜ンを用いるもの に限られるものではなレ、.. 例えば図 1 1に示されるように、 磁性材料からなるシ リンダ 3 0を用い、 このシリンダ 3 0内の頂部側に磁極 3 1 を設けてその連結部 3 8に励磁コイル 3 2を卷回する: さらに、 ビストンとして円板形の永久磁石 3 3を用い、 この永久磁石 3 3の下側を連結棒 3 4を介してコンロッドに軸支し、 この連結棒 3 4に磁力強化用のブースタコイル 3 5を卷回し、 このブースタコィ ル 3 5への給電は銅板電極 3 6とブラシ 3 7を介して行う t このようにして、 励 磁コィノレ 3 2を励磁して、 磁極 3 1を S極と N極に交互に切り換えることで、 ピ ストンを往復動させる。
なお、 シリンダ頂部の内壁とビス卜ン先端との対向する各面は、 図 1 2 ( 1 ) に示されるように、 互いを平面としてもよいし、 図 1 2 ( 2 ) に示されるように、 互いを面の中心に向かって凹となっている形状にしてもよいし、 図 1 2 ( 3 ) に 示されるように、 一方が凸、 他方が凹となっている形状にしてもよい.
また、 シリンダ 2の外周に直接に励磁コイルを卷回してもよい
また、 上述の実施例では、 シリンダ側に配設した励磁コイル 5の電流を反転さ せることで、 ビス トンに反発力と吸引力を作用させてその往復動を得ているが、 もちろん本発明はこれに限られるものではなく、 シリンダ側を永久磁石とブース タコイルの組合せを配設して一方の極性に固定的に磁化し、 ヒス トン側に励磁コ ィルを配設してその励磁コイルの電流を反転させることで、 ビストンに反発力と 吸引力を作用させてその往復動を得るものであってもよい。 シリンダ側の永久磁 石とブースタコイルの組合せは、 永久磁石のみ、 あるいは電磁石のみに替えても ょレ、 シリンダ側もビストン側も共に電磁石のみにした場合には、 ビス卜ンとシ リンダ間に反発力と吸引力が交互に働くように、 種々の態様で各電磁石の励磁コ ィルを励磁制御することができる,
図 1 3には上述の電磁式ビストン機関を複数台用いて電磁式ビス トン機関を構 成した場合の実施例が示される ここでは便宜上、 上述の一つのシリンダと一つ のピストンの組合せを一つのアセンブリ (assembl y) と称することにする: この 実施例は 6連アセンブリの電磁式ピストン機関である 図示されるように、 6つ のァセンブリを直列に配置し、 各ァセンブリの外側シリンダ 3を磁気的に結合さ 1 (■) せる 便宜上、 図面左側から順番に番号を付けて第 1アセンブリ、 第 2ァセンブ リ · · ·第 6アセンブリと称することにする、
第 1〜第6アセンブリの各ピス トン 1は全て先端側が S極となるように永久磁 石 7の配置およびブ一スタコイル 8の励磁を行う― 第 1〜第 6アセンブリの各ピ ス トンは、 第 1アセンブリを基準 (0。 ) とした時、 それらの上死点がそれぞれ 6 0 - クランク角ごとの等間隔でクランク軸 4 0に取り付けられている: ここで、 第 1 と第 2アセンブリ間、 第 3と第 4アセンブリ間および第 5と第 6アセンブリ 間はクランク角の位相差がそれぞれ 1 8 0 ° あるようにする また、 第 1と第 3 ァセンブリ間、 および第 3と第 5アセンブリ間はクランク角の位相差がそれぞれ 1 2 0 あるようにする- クランク軸 4 0はエンジン本体にベアリング 4 1で回 転自在に支持されている
第 1〜第 6アセンブリの各励磁コイル 5にはィンバ一タ 4 2から励磁電流を供 給する: インバ一タ 4 2はバッテリ 4 3の直流出力を 3相交流出力に変換して各 励磁コィル 5に供給する.. この 3相交流出力の周波数は自由に変えることができ る また第 1〜第 6アセンブリの各ブースタコイル 8にはブラシ 1 4を介してバ ッテリ 4 3から直流電流を供給する. この直流電流はビス トン 1先端が S極とな る方向に流す。
図 1 4 ( A) にはインバータ 4 2から各励磁コイル 5への給電の仕方が示され る。 図示されるように、 第 1 と第 2アセンブリの励磁コイル 5には 3相交流の R • S相が互いに逆相で接続され、 第 3と第 4アセンブリの励磁コイル 5には 3相 交流の S ♦ T相が互いに逆相で接続され、 第 5と第 6アセンブリの励磁コイル 5 には 3相交流の T♦ R相が互いに逆相で接続される. 図 1 4 ( B ) には、 第 1ァ センプリを基準 (0 ) とした時のクランク角に対する第 1〜第 6アセンブリの 各ビス トンの位置が示される, また、 図 1 4 ( C ) には 3相交流とクランク角と の関係が示される- 上述のように接続すると、 各アセンブリでは、 励磁コイル 5に、 ピス トンの往 復動の中央位置で最大となり、 ピス トンの上死点または下死点で励磁電流の方向 が反転するように電流が流れる: この結果、 クランク角 0 ϋ では、 第 1、 第 2ァ センプリでは反発力と吸引力がそれぞれ 0近くから働き始め、 第 3、 第 4ァセン プリではビーク値に近い増加中の吸引力と反発力がそれぞれ働き、 第 5、 第 6ァ センブリではビーク値に近い減少中の反発力と吸引力がそれぞれ働く . またクラ ンク角 6 0 では、 第 1、 第 2アセンブリではビーク値に近い增加中の吸引力と 反発力がそれぞれ働き、 第 3、 第 4アセンブリではビーク値に近い減少中の吸引 力と反発力がそれぞれ働き、 第 5、 第 6アセンブリでは反発力と吸引力がそれぞ れ 0近く力 ら働き始める。 このように、 吸引 ·反発の関係がクランク角に応じて 第 1〜第 6アセンブリを逐次にシフトしていく。 これにより、 各アセンブリのビ ス トンの往復動の周期は、 同期モータの原理と同様にして、 3相交流の周波数に すべりなく同期することになる よって、 インバ一タ 4 2で発生する 3相交流の 周波数を可変制御してやれば、 それに応じてこの電磁式ビス トン機関の回転数を 可変制御することができる。
なお、 この実施例では、 クランク角に対する第 1〜第 6アセンブリの各ピス ト ンの位置はクランク角 6 0。 毎にずれるようにしたが、 もちろん本発明はこれに 限られるものではなく 例えば図 1 5に示されるように、 最近の自動車における 6気筒内燃式ビストン機関に多く用いられているように、 同じクランク角に対し て二つの気筒のピストン位置を同じにしてもよい: 例えば図 1 5に示されるよう に、 第 1アセンブリを基準 (0。 ) とした時、 第 1、 第 6アセンブリのピス トン 位置のクランク角 0 に対して同じに、 第 2、 第 5アセンブリのピス トン位置を クランク角 1 2 0 に対して同じに、 第 3、 第 4アセンブリのピストン位置をク ランク角 2 4 0 ° に対して同じに設定する。 第 1〜第 6アセンブリの各励磁コィ ル 5はこのクランク角に応じて励磁するようにする:
図 1 6には 6連アセンブリによる電磁式ビストン機関の他の実施例が示される— 図 1 7にはピストン 1の磁極の極性に対し、 シリンダ 2に S極または N極発生す るための励磁コイル 5の励磁電流の極性が示される: この実施例は励磁コイル 5 への給電に 3相交流を用いない方法である,: 第 1、 第 3、 第 5アセンブリのビス トンを同じ高さにし (すなわちクランク角を同じにし) 、 第 2、 第 4、 第 6ァセ ンプリのピス トンを同じ高さにし、 第 1、 第 3、 第 5アセンブリ と第 2、 第 4、 第 6アセンブリのビス 卜ン位置は逆相とする- クランク軸に 6つのリング状の電極 5 1〜5 6を取り付ける 電極 5 〜5 4 は分割されていないリングである また電極 5 5、 5 6は直径方向に 2分割され た 2分割リングである: 2分割リング 5 5、 5 6はともに同じクランク角位置で 分割し、 分割片 5 5 a、 5 5 bと分割片 5 6 a、 5 6 bとにそれぞれ分ける リング 5 1〜 5 4はそれぞれブラシ (電極) 6 1〜 6 4と摺動接触するように し、 ブラシ 6 1、 6 2はそれぞれ第]、 第 3、 第 5アセンブリの励磁コイル 5に 接続し、 ブラシ 6 3、 6 4はそれぞれ第 2、 第 4、 第 5アセンブリの励磁コイル 5に接続する。 また 2分割リング 5 5はブラシ 6 5、 6 7に直径線上でそれぞれ 摺動接触するようにし、 2分割リング 5 6はブラシ電極 6 6 , 6 8に直径線上で それぞれ摺動接触するようにする r ブラシ 6 5, 6 8はバッテリのプラス (+ ) 側端子に接続し、 ブラシ 6 6、 6 7はマイナス (一) 側端子に接続する. 分割片 5 5 a、 5 6 aをそれぞれリング 5 1、 5 2に接続し、 分割片 5 5 b、 5 6 bを それぞれリング 5 3、 5 4に接続する また、 第 1〜第 6アセンブリのピストン 側ブースタコイル 8にはバッテリ 4 3からそれぞれ並列に直流電流を同じ方向に 流すようにする:.
以上のように接続すると、 クランク軸が 1 8 0。 回転する毎に、 2分割リング 5 5、 5 6での電流の反転により、 第〗〜第 6アセンブリの励磁コイル 5に流れ る励磁電流の方向が反転することになり、 シリンダ 2内では吸引力と反発力に交 互に切り替わるよう磁場が反転することになる.
ところで、 この実施例では、 隣り合うアセンブリ、 例えば第 1、 第 2ァセンブ リに着目すると、 一方が吸引力を発生している時には他方は反発力を発生してい ることになる。 この場合、 第 1、 第 2アセンブリの外側シリンダ 3の極性を考え ると、 第 1アセンブリの外側シリンダ: 3が例えば S極のときには第 2アセンブリ の外側シリンダ 3は N極となる, すると、 第 1、 第 2アセンブリの外側シリンダ
3は互いに磁気的に結合しているので、 外側シリンダ 3側での磁極の発生の態様 は複雑になる。 このような複雑な磁極が発生しないようにする方法としては、 吸 引力を発生させる励磁は行わず反発力を発生させる励磁のみを行って電磁式ビス トン機関を回転させるようにしてもよい
図 1 8はその場合の実施例を示すものであり、 図 1 6におけるリング 5 1 〜5
4を 2分割リングにかえてその分割片の一方だけを使用し、 吸引力を発生させる 方向の電流は励磁コイル 5に流さないようにする これにより反発力を用いてビ ストン機関を作動させることができる この場合でも、 例えば第 1アセンブリに おいて反発力を発生させるように (すなわちそのシリンダ 2を S極とするよう に) その励磁コイル 5を励磁すると、 その外側シリンダ 3は N極となるが、 第 1、 第 2アセンブリの外側シリンダ 3は磁気的に結合しているため、 第 2アセンブリ の外側シリンダ 3も N極となり、 この N極は、 第 2アセンブリの励磁コイル 5が 励磁されていないから第 2アセンブリのシリンダ 2にそのまま現れ、 その結果、 第 2アセンブリのピス トン (S極) には弱い吸引力が働くことになる このよう な対策は前述の 3相交流を用いるときにも適用でき、 吸引力発生方向への励磁電 流が流れないようにィンバ一タ 4 2により制御できる:
また他の方法としては、 図 1 6の実施例において、 第 1、 第 3、 第 5ァセンブ リのピス トンは先端が常に S極、 第 2、 第 4、 第 6アセンブリのピス トンは先端 が常に N極になるように設定してもよい。 このようにすれば、 例えば第 1ァセン プリで反発力を発生している場合には、 第 1、 第 2アセンブリの外側シリンダ 3 はともに N極となり、 従って第 2アセンブリの励磁コイル 5にシリンダ 2を S極 とする方向の励磁電流を流しても、 第 1、 第 2アセンブリが互いに磁力を打ち消 し合うことはないと考えられ、 これにより第 2アセンブリにおいてシリンダ 2の S極はビス トンの N極を吸引できる
さらに他の方法としては、 図 1 9 ( A) に示されるように、 隣り合う二つのァ センブリ例えば第 1、 第 2ァセンブリの外側シリンダ 3 , 、 3 2 を非磁性体の材 料で形成して励磁コイル 5 , 、 5 2 の他方の磁極とならないようにし、 代わりに、 二つのアセンブリの励磁コイル 5 i 、 5 2 の連結柱 4を互いに連結する すなわ ち第 1、 第 2アセンブリのシリンダ 2 , 、 2 2 を連結柱 4で直接に互いに連結す るようにする: この連結柱 4は珪素鋼板等の磁性体で形成する: 第 1、 第 2ァセ ンプリのピストン 1 , 、 1 2 はそれぞれ同極性の磁極この例では S極がシリンダ 2 , 、 2 2 方向を向くようにする:
このような構成において、 第 1、 第 2アセンブリの励磁コイル5〖 、 5 2 を同 時に励磁する場合には、 前述の図 1 6の実施例と同様にして、 励磁コイル 5 , 、 5 ,. のそれぞれに、 極性が交互に反転する励磁電流を流せばよい この場合の励 磁電流の転流機構 (励磁電流の極性を反転させる機構) は図 1 6に示したものと 同様でよい
一方、 図 1 9 (Λ ) の構成において、 第 1、 第 2アセンブリの励磁コイル 5 , 、 5 2 を交互に励磁することも可能である すなわち、 一方の励磁コイルを励磁し ている時には他方の励磁コィルは励磁停止し、 これを交互に繰り返す場合である- この場合、 第 1アセンブリの励磁コイル 5 , を励磁してシリンダ 2 , に S極を発 生させてピストン 1 , に反発力を作用させ、 その期間中は第 2アセンブリの励磁 コイル 5 を励磁停止する,, よって、 第 2アセンブリのシリンダ 2 2 には N極が 発生してピス トン 1 2 には吸引力が発生する。 次の期間では、 第 2アセンブリの 励磁コイル 5 2 を励磁してシリンダ 2 2 に S極を発生させてヒストン 1 に反発 力を作用させ、 その期間中は第 1アセンブリの励磁コイル 5 , を励磁停止する: よって、 第 1アセンブリのシリンダ 2 , には N極が発生してピス トン 1 , には吸 引力が発生する この動作を繰り返すようにすれば、 第 1、 第 2アセンブリの何 れか一方の励磁コイル 5だけを励磁するものであっても、 一方のアセンブリで反 発力を発生させている場合には、 他方のアセンブリでは吸引力が発生することに なる.
この交互励磁の方法の場合、 第 1、 第 2アセンブリに必要な励磁電流としては、 一方の励磁コイル 5を励磁する電流量だけで足り、 励磁電流の消費量を削減して 省エネルギー化を図ることができる: また、 このような構成とすれば、 励磁コィ ル 5を卷回するための空間として前述の実施例よりもさらに大きな空間を確保す ることが可能となるので、 卷回数をさらに増やすことができ、 よって、 図 4を参 照して説明したように、 より大きな磁力をより小さレ、電力で得ることが可能とな り、 磁力の利用の仕方として無駄がなく、 省エネルギー化の観点から極めて有利 である
また、 この交互励磁の方法では、 第 1、 第 2アセンブリの励磁コイル 5 , 、 δ 2 の卷回方向を互いに逆にしておけば、 励磁コイル 5 , 、 5 2 に流す励磁電流の 方向は常に一方向となるので、 励磁電流の極性を反転させる必要がなくなり、 よ つて前述の図 1 6の実施例で示した転流機構を簡素化することができる 具体的 には、 図 1 6の実施例におけるブラシ 6 7と 6 8を削除する この図 1 9 (A) の例では、 概念を分かり易くするために、 連結柱 4の各シリ ンダ 2 , 、 22 の近傍にそれぞれ励磁コイル 5 , 、 5, を卷回した場合を示した 力;、 より好ましくは、 励磁コイル 5 , 、 52 が連結柱 4上において互いにオーバ 一ラップするようにしてそれぞれの励磁コイル 5 , 、 52 を連結柱 4の全体部分 に卷回したほうがよい このように構成すると、 励磁コイル 5 , からみるとシリ ンダ 2、 がー方の磁極であるときにはシリンダ 22 が他方の磁極となり、 同様に、 励磁コイル 52 からみると、 シリンダ 22 がー方の磁極であるときにはシリンダ 2 , が他方の磁極となる- すなわち、 励磁コイル 5 , 、 52 それぞれからみてシ リンダ 2 , 、 22 はそれぞれ対等な磁極となる.:
二のようにオーバラップして卷回する場合には、 励磁コィノレ 5 , 、 5 , の励磁 を同時に行うことによってそれぞれの発生磁力を互いに打ち消しあっては意味が なく、 また磁力が互いに打ち消し合わないようにそれぞれの励磁コイル 5 , 、 5 , を励磁するのであれば後述の図 1 9 (B) のように単一の励磁コイルにすれば よいので、 基本的には同時励磁は行わない また、 交互に励磁する方法、 すなわ ち一方の励磁コイルを励磁している時には他方の励磁コィルは励磁停止するのは 前述同様である 具体的な配線としては、 図 1 6の実施例におけるブラシ 6 7と 68を削除する このようにオーバラップして卷回する場合には、 励磁コイル 5 , 、 52 の励磁により、 シリンダ 2, 、 22 には非常に強い対等な磁極が現れる 力 ら、 磁力を効率よく利用することが可能になる:
なお、 図】 9 (A) の更に変形例としては、 励磁コイル 5 、 5,, を連結柱 4 の半分ずつの長さに互いにォ一バラップしないように卷回する方法なども考えら れる: この場合には、 例えばシリンダ 2 , を S極にするように励磁コイル 51 を 励磁する場合には、 励磁コイル 52 はシリンダ 22 を N極にするように励磁すれ ばよい:,
また、 図 1 9 (B) に示すように、 上記二つのシリンダ 2 , 、 22 を連結して レ、る連結柱 4に単一の励磁コイル 5のみを卷回し、 これに転流機構を使用して極 性が交互に変わる励磁電流を供給するようにしてもよい: この方法によれば、 励 磁電流を反転させることが必要であるが、 二つのァセンブリに対して一つの励磁 コイル 5を備えれば足りるので、 部品点数を削減することができる 具体的な配 1 β 線としては、 図 1 6の実施例におけるブラシ 6 7と 6 8を削除し、 ブラシ 6 1 と 6 4の配線を互いに接続し、 ブラシ 6 2と 6 の配線を互いに接続すればよく、 配線を単純化できる。 また、 一つの励磁コイル 5あたりの卷回数は、 図 1 9 ( Α) の方法のように連結柱 4に二つ励磁コイル 5 : 、 5 を卷回しないで単一の 励磁コイル 5のみを卷回しているので、 図 1 9 (Α) に比べてさらに增やすこと ができる., よって、 発生する磁力をさらに大きくでき、 その分、 励磁電流を小さ くできるので、 一層の省エネルギー化を図ることができる。
図 1 6の実施例は第 1〜第 6アセンブリのクランク角が 3つずつ 1 8 0: ずれ たものであつたが、 これを図 1 3の実施例のように、 第 1〜第 6アセンブリの各 クランク角がそれぞれ 6 ()。 ずつずれたものにした場合にも適用できる. 図 2 0 にはかかる実施例が示される。 すなわち、 第】〜第 6アセンブリの各励磁コイル 5の両端にそれぞれリング (電極) を合計 1 2個取り付け、 2分割リングを 6個 設けてこれらの 2分割リングのクランク角位置に対する分割位置は図中に示す如 くにし、 これらのリングと 2分割リングを用いてクランク軸の 1 8 0し 回転毎に 励磁コイル 5に流れる電流が反転するように図示の結線を行えば、 3相電流によ る励磁が可能である。 このような結線はァセンブリの数に応じて何相であっても 適宜行うことができる。 さらに、 上述したと同様に、 反発力を発生させる励磁だ けを行うためには、 図 2 1に示すように、 上記 1 2個のリングを 2分割リングに それぞれ替え、 吸引力側の励磁を行うタイミングの 割片は使用しないようにす ればよい。
図 1 6〜図 2 1の実施例は回転速度の可変制御を行わない実施例である: これ らの実施例で回転速度の可変制御を行うとすれば、 例えばバッテリの直流電圧を D C— D Cコンバータ等で可変制御する方法も可能であるが、 この他の方法とし て、 積極的に回転速度制御を行う実施例を次に示す 図 2 2はかかる実施例を示 す: この実施例は図 1 6の実施例におけるリング 5 1〜 5 4と 2分割リング 5 5、 5 6の部分をクランク軸から切り離し、 代わりに、 回転速度が制御可能なモータ で回転される回転軸に取り付けたものであり、 これをここでは便宜上、 回転スィ ツチと称する: モータはこの回転スィツチの回転軸にブーリあるいはスブロケッ トを介して取り付けられる その他の構成は図 1 6の実施例と同じである すな わち、 回転軸 6 0をケース 5 7にベアリング 5 8により回転自在に支持し、 この 回転軸 6 0に前述の 2分割リング 5 5、 5 6、 リング 5 1〜6 4を取り付ける- ケース 5 7からブラシ 6 1〜6 8を各リング 5 1〜5 6に対してスプリング 5 9 で押圧しつつ突き出す: リング 5 1〜 5 4と 2分割リング 5 5、 5 6間の電気接 続は、 図 2 3に示されるように、 それぞれのリングの内側に絶縁体 6 9を設け、 これに適宜に貫通孔をあけて互いの配線を通せばよい: 上述のように構成すると、 モータで回転軸の回転速度を自由に制御することで、 それに応じて電磁式ビス卜 ン機関の回転速度も制御できる。 モータとしては高いトルクは必要ないので、 小 型のもので足りる:
次に、 上述の図 1 6〜図 2 2の各実施例は励磁コイル 5への給電をリングとブ ラシによる摺動接触方式により行ったが、 本発明はこれに限られず、 これを電磁 誘導による非接触方式で行い、 ブラシを削除することも可能である。 図 2 4、 図 2 5にはかかる実施例が示される,: この実施例は図 2 2の回転スィッチの代わり となるものであり、 便宜上、 これを非接触形回転スィッチと称する。 図 2 4は図 2 2の実施例における 2分割リング 5 5または 5 6の役割をする機構であり、 こ こでは便宜上、 非接触形 2分割リングと称する. また、 図 2 5は図 2 2の実施例 におけるリング 5 1、 5 2、 5 3または 5 4の役割をする機構であり、 ここでは 便宜上、 非接触形リングと称する この非接触形回転スィッチでは、 図 2 4の非 接触形 2分割リングが 2分割リング 5 5、 5 6に対応して 2つ設けられ、 また、 図 2 5の非接触形リングがリング 5 1〜 5 4にそれぞれ対応して 4つ設けられる: まず図 2 4の非接触形 2分割リングについて説明する。 ケース 5 7を非磁性体 で形成し、 中に回転軸 6 0を回転き在に支持する- 回転軸 6 0には 2分割ロータ 7 0、 7 1を取り付ける: 2分割ロータ 7 0は半分のリング形をしていて磁性材 料からなり、 直径方向外向きに突出する複数の突極 7 0 1を有し、 それらの突極 7 0 1にはコイルが同一方向に卷回されており、 それらのコイルは互いに直列に 接続されている 2分割ロータ 7 1も全く同じ構成となっている.
ケース 5 7にはその直径線上に対向して 2つのステータ 7 2、 7 3が取り付け られる ステ一タ 7 2は、 非磁性体からなるコイルカバー 7 2 4内に、 ケース内 に突出する突極 7 2 1 とこの突極に卷回されたコイル 7 2 2とを収容し、 突極 7 2 1の他端側に希土類の強力な永久磁石 7 2 3を配置して構成される 永久磁石 7 2 3は突極 7 2 1を向く面が N極となるよう取り付ける. コイル 7 2 2の両端 はバッテリ 4 3のプラス端子とマイナス端子に接続され、 それによりコイル 7 2 2には突極 7 2 1の先端が N極となる方向に直流電流が流れる: コイルカバ一 7 2 4はネジ込みによりケース 5 7に取り付けられる,. ステータ 7 3も同様の構成 であるが、 永久磁石は突極を向く面が S極である点が異なり、 コイルには突極の 先端が S極となる方向に直流電流が流される。
次に図 2 5の非接触形リングについて説明する: この非接触形リングは回転軸 6 0に固定されるロータ 7 4と、 ケース 5 7の内壁に固定されるステ一タ 7 5と からなる」 ステータ 7 5とロータ 7 4はともに磁性体からなり、 ステ一タ 7 5の 内側にロータ 7 4が同心上に取り付けられる。 ロータ 7 4はリング形状をしてお り、 直径方向外向きに突出する複数の突極 7 4 1を有し、 これらの突極 7 4 1に はコイル 7 4 2がそれぞれ同一方向に卷回されており、 これらのコイル 7 4 2は 互いに直列に接続される ステータ 7 5はリング形状をしており、 直径方向内向 きに突出する複数の突極 7 5 ] を有し、 これらの突極 7 5 1にはコイル 7 5 2が それぞれ同一方向に卷回されており、 これらのコイル 7 5 2は互いに直列に接続 される。
この非接触形回転スィツチにおける 2つの非接触形 2分割リングと 4つの非接 触形リングとの電気接続は図 J 6で示したものと同様になる すなわち、 2分割 リング 5 5に対応する非接触形 2分割リングのロータ 7 0、 7 1の卷線両端をそ れぞれリング 5 1 、 5 3に対応する非接触形リングの卷線両端に接続し、 2分割 リング 5 6に対応する非接触形 2分割リングのロータ 7 0、 7 1の卷線両端をそ れぞれをリング 5 2、 5 4に対応する非接触形リングの卷線両端に接続する: ま たリング 5 1 、 5 に対応する非接触形リングの卷線は直列に接続し、 それを第 】、 第 3、 第 5アセンブリの励磁コイル 5にそれぞれ並列に接続する 同様に、 リング 5 3、 5 4に対応する非接触形リングの巻線は直列に接続し、 それを第 2、 第 4、 第 6アセンブリの励磁コイル 5にそれぞれ並列に接続する:
以上のように接続すると、 クランク軸が回転すると、 非接触形 2分割リングの ステ一タ 7 2 7 3 ^バッテリ 4 3の出力で励磁することで生じた磁界により、 回転しているロータ 7 0、 7 1にそれぞれ起電力が電磁誘導され、 この起電力に より各ロータ 7 0、 7 1にそれぞれ接続された非接触形リングのロータ 7 4の卷 線に電流が流れ、 この電流によりロータ 7 4が磁化される この磁化はクランク 角が例えば 0 ' 〜 1 8 0 ° 区間はロータ 7 4の外側が全て N極となり、 1 8 0 " 〜3 6 0。 区間では外側が全て S極に切り替わるように磁ィヒされる。 ロータ 7 4 は回転しているので、 このロータ 7 4の磁界によりステ一タ 7 5側に起電力が電 磁誘導される: この起電力により第 1〜第 6アセンブリの励磁コイル 5を励磁す る- この励磁電流は直流的な電流であり、 クランク角の半周期毎 (1 8 0。 毎) に方向が反転する
この電磁式ビストン機関の回転速度を制御すろ方法としては上述の他にも種々 の方法が可能である- 例えば、 クランク軸にそのクランク角を検出する検出器を 設ける: この検出器は例えばクランク軸の円周方向に沿って幾つかの箇所に磁石 を配置し、 その近傍にホール素子を固定的に配置して、 このホール素子によりク ランク軸における磁石の配置位置を検出することで実現できる。 この検出器で検 出したクランク角に応じて、 電子回路で構成した励磁コイル用駆動回路から、 各 アセンブリに対して、 そのピストン位置に応じて、 吸引力と反発力が交互に働く ように励磁コイル 5に給電を行うようにする。 産業上の利用可能性
本発明の電磁式ピストン機関は、 電磁作用を利用して作動するものであり、 そ の構造上から励磁コイルの卷回数を大幅に增やせるため、 小さな励磁電流で大き な磁力を発生して駆動力として利用できるから、 通常の電動機に比べて省エネル ギ一の観点から極めて有利であり、 特に電気自動車等の駆動力源として用いるに 適している
このように電気自動車の駆動力源として用いる場合には、 自動車において内燃 式ビス トン機関に対し開発されてきた各種の技術、 例えば動力伝 構などを、 電気自動車に対しても容易に転用できる可能性が高いから、 電気自動車の製造に も既存の工場設備をそのまま流用でき、 電気自動車の開発促進に寄与するところ が大きい また、 従来の自動車用電動機のように電磁作用でロータを直接に回転させるも のではないため、 従来の自動車用電動機で問題となっていた回転部分相当重量な どの問題も一挙に解決することができる t.
また、 この電磁式ピス トン機関は、 その原理上、 內燃式ビス トン機関のような 大きな発熱を伴わないので、 自動車エンジンの冷却機構を不要にでき、 自動車の 軽量化、 小型化に寄与するところも大きい。 また、 内燃ピス トン機関の構造上か ら生じていた各種の機械的抵抗をなくすことができるので、 エネルギーの利用効 率を高めることができる:
また、 この電磁式ピストン機関は、 ガソリン式エンジンに比べてエネルギ一の 利用効率がはるかに高いので、 省エネルギー化の観点から極めて有用であり、 ま た電気というクリーンエネルギーを用いるため、 地球環境保全上の観点からも極 めて有用である

Claims

請 求 の 範 囲
1 . シリンダ内でビス トンが磁力を用いて往復運動する電磁式ビス 卜ン機関で あって、 該シリンダと該ピス トンが磁性材料で形成され、 該シリンダの内壁を一 方の磁極とするシリンダ電磁石と、 該ピストンの該シリンダに嵌合する部分を単 一の磁極に固定的に磁化するビストン磁化装置とが備えられ、 該シリンダ電磁石 を励磁することにより該シリンダと該ピス卜ンの間に磁気吸引力を発生させて該 ヒス トンを】方向に移動させ、 次いで磁気反発力を発生させて該ピス トンを反対 方向に移動させ、 これを繰り返すことで該ピストンの連続した往復運動を得るよ うに構成される電磁式ビス トン機関
2 . 該ピス トン磁化装置は、 ビス トン基端側に永久磁石を取り付けることで構 成される請求項 1記載の電磁式ビス トン機関。
3 . 該ピス トン磁化装置は、 ピス トン基端側に永久磁石を取り付け、 さらに該 永久磁石を磁力強化するためのブースタ電磁石をビストン基端側に取り付け、 該 ブースタ電磁石に摺動接点機構を介して電流供給するように構成される請求項 1 記載の電磁式ビス トン機関
4 . 該ビストン磁化装置は、 ピストン基端側にコイルを卷回したピス トン電磁 石からなり 該ピス トン電磁石に摺動接点機構を介して電流供給するように構成 される請求項 1記載の電磁式ビス トン機関。
5 . 上記ブースタ電磁石またはビストン電磁石に摺動接点機構を介して電流供 給することに代えて、 該ブースタ電磁石またはビストン電磁石に電流供給するた めの発電コイルを該ピストン基端側に設けるとともに、 この発電用コイルに対向 するシリンダ側位置に給電用磁力発生装置を設け、 該給電用磁力発生装置から該 発電用コィルへの電 導を利用して該発電用コィルに起電力を発生させること で摺動接点機構を用いずに該ブースタ電磁石またはビス トン電磁石を励磁するよ うに構成される請求項 3記載の電磁式ピストン機関 c
6 . 上記ブースタ電磁石またはビス トン電磁石に摺動接点機構を介して電流供 給することに代えて、 該ブースタ電磁石またはビストン電磁石に電流供給するた めの発電コイルを該ピストン基端側に設けるとともに、 この発電用コイルに対向 するシリンダ側位置に給電用磁力発生装置を設け、 該給電用磁力発生装置から該 発電用コィルへの電磁誘導を利用して該発電用コィルに起電力を発生させること で摺動接点機構を用いずに該ブースタ電磁石またはビス トン電磁石を励磁するよ うに構成される請求項 4記裁の電磁式ビス トン機関.:
7 . 該シリンダ電磁石による反発力と吸引力の発生の切換えは、 ピス トンが下 死点から上死点に向かう時に吸引力が、 上死点から下死点に向かう時に反発力が 働くよう行われる請求項 1記載の電磁式ビス卜ン機関。
8 . 該シリンダ電磁石は、 該シリンダを内側に収納する磁性材料からなる外側 シンリダを有し、 該シリンダと該外側シリンダをそれぞれの頂部側で磁性体から なる連結部により連結し、 該連結部に励磁コイルを卷回して、 該シリンダを一方 の磁極、 該外側シリンダを他方の磁極とするように構成される請求項 1記載の電 磁式ビス トン機関 c
9 . 該シリンダと該外側シリンダの間に該シリンダを冷却するための冷却機構 を配置するように構成される請求項 8記載の電磁式ビストン機関。
1 0 . 請求項 1〜 9のいずれかに記載の電磁式ビストン機関の該シリンダと該 ビス トンの組合せを 1つのアセンブリとし、 このアセンブリを複数台配置して並 列運転させ、 各アセンブリのビストンの往復運動をクランク機構で単一のクラン ク軸の回転運動に変えるよう構成された電磁式ビス トン機関:
1 1 . 交流電力を発生するインバ一タを備え、 該インバータからの交流電力の 各相を各アセンブリのシリンダ電磁石に、 ビストンが下死点から上死点に向かう 時はピス トンに吸引力、 上死点から下死点に向かう時は反発力が働くように、 供 給するように構成される請求項 1 0記載の電磁式ビス トン機関。
1 2 . クランク軸に機械的整流子を取り付け、 この機械的整流子を介して直流 バッテリからの直流電力を各アセンブリのシリンダ電磁石に、 ビストンが下死点 力 ^上死点に向かう時はビス トンに吸引力、 上死点から下死点に向かう時は反発 力が働くように、 供給するよう構成される請求項 1 0記載の電磁式ピス トン機関 :
1 3 . 回転速度を任意に制御できるモータで回転される回転軸に機械的整流子 を取り付け、 この機械的整流子を介して直流バッテリからの直流電力を各ァセン プリのシリンダ電磁石に、 ビス トンが下死点から上死点に向かう時はビス トンに 吸引力、 上死点から下死点に向かう時は反発力が働くように、 供給するよう構成 される請求項】 0記載の電磁式ビス トン機関,
1 4 . 上記機械的整流子に代えて、 コイルを有する第 1、 第 2のステ一タを筐 体側に、 コイルが互いにループを構成する第 1、 第 2のロータをクランク軸また は回転軸側に備え、 直流バッテリから第 1のステ一タのコイルに給電して第 1の ステ一タにより磁界を発生させ、 その磁界により第 1のロータのコイルに電流を 電 ¾ 導して第 2のロータにも電流を流し、 その第 2のロータからの電磁誘導で 第 2のステータのコイルに起電力を発生させる構成の非接触 ·電磁誘導式整流子 を用いる請求項 1 2または 1 3記載の電磁式ビス トン機関:
1 5 . 該複数のアセンブリのピス トンの下死点を該クランク軸の等間隔毎の回 転位置にそれぞれ配置して滑らかな回転運動を得るように構成された請求項 1 0 記載の電磁式ビス トン機関。
1 6 . 二つのアセンブリのシリンダ電磁石をシリンダと反対側の磁極側で磁気 的に互いに連結し、 該二つのアセンブリのビストンは互いに位置が逆相となるよ うに設定され、 また該二つのアセンブリのビストンは共に同極性の磁極となるよ うに磁化され、 該二つのアセンブリは一方のシリンダ電磁石が反発力を発生して いる間は、 他方のシリンダ電磁石は励磁停止されるように構成される請求項 1 0 記載の電磁式ビストン機関-
1 7 . 二つのァセンブリのシリンダ電磁石をシリンダと反対側の磁極側で磁気 的に互いに連結し、 該二つのアセンブリのビス卜ンは互いに位置が逆相となるよ うに設定され、 該二つのアセンブリのピストンは一方が S極、 他方が N極となる ように磁化され、 該二つのアセンブリのシリンダ電磁石は各シリンダが互いに同 極性となるように同期して励磁されるよう構成される請求項 1 0記載の電磁式ピ ス トン機関
1 8 . 二つのアセンブリのシリンダ電磁石を、 該二つのアセンブリのシリンダ を連結部で互いに連結して該連結部に二つの励磁コイル 5を巻回することで構成 し、 該二つのアセンブリのビス トンは互いに位置が逆相となるように設定され、 また該二つのアセンブリのビス トンは共に同極性の磁極となるように磁化され、 該二つのァセンブリは、 該二つの励磁コイルを同時または交互に励磁することで、 一方のシリンダ電磁石が反発力を発生している間は、 他方のシリンダ電磁石は吸 引力を発生するように構成される請求項 1 0記載の電磁式ビストン機関
1 9 . 二つのァセンブリのシリンダ電磁石を、 該二つのァセンブリのシリンダ を連結部で互いに連結して該連結部に励磁コィル 5を卷回することで構成し、 該 二つのアセンブリのビス トンは互いに位置が逆相となるように設定され、 また該 二つのアセンブリのビストンは共に同極性の磁極となるように磁化され、 該二つ のァセンブリは、 該励磁コィルを励磁電流の極性を周期的に反転しつつ励磁する ことで、 一方のシリンダ電磁石が反発力を発生している間は、 他方のシリンダ電 磁石は吸引力を発生するように構成される請求項 1 ()記載の電磁式ピストン機関:
2 0 . クランク軸の回転位置を検出する位置検出器を設け、 この位置検出器で 検出したクランク軸の回転位置に応じて、 直流バッテリからの直流電力を各ァセ ンプリのシリンダ電磁石に、 ビストンが下死点から上死点に向かう時はビス卜ン に吸引力、 上死点から下死点に向かう時は反発力が働くように、 供給する励磁電 流駆動装置を備えた請求項 1 ()記載の電磁式ビス トン機関
2 1 . シリンダ内でビストンが磁力を用いて往復運動する電磁式ビストン機関 であって、 該シリンダと該ピス トンが磁性材料で形成され、 該ピス トンの該シリ ンダに嵌合する部分を一方の磁極とするビス卜ン電磁石と、 該シリンダの内壁を 単一の磁極に固定的に磁化するシリンダ磁化装置とが備えられ、 該ピストン電磁 石を励磁することにより該シリンダと該ピストンの間に磁気吸引力を発生させて 該ビストンを 1方向に移動させ、 次いで磁気反発力を発生させて該ピストンを反 対方向に移動させ、 これを繰り返すことで該ピストンの往復運動を得るように構 成される電磁式ビストン機関。
2 2 . シリンダ内でピストンが磁力を用いて往復運動する電磁式ピストン機関 であって、 該シリンダと該ピス トンが磁性材料で形成され、 該シリンダの内壁を —方の磁極とするシリンダ電磁石と、 該ピストンの該シリンダに嵌合する部分を 一方の磁極とするビストン電磁石とが備えられ、 該シリンダ電磁石とヒストン電 磁石を励磁することにより該シリンダと該ピストンの間に磁気吸引力を発生させ て該ビストンを】方向に移動させ、 次いで磁気反発力を発生させて該ピストンを 反対方向に移動させ、 これを繰り返すことで該ビス トンの往復運動を得るように 構成される電磁式ビス トン機関
2 3 . シリンダ内でピス 卜ンが磁力を用レ、て往復運動する電磁式ビストン機関 であって、 該シリンダと該ピストンが磁性材料で形成され、 該シリンダと該ピス トンの少なくとも一方に励磁コイルを取り付けると共に他方は単一の磁極に固定 的に磁化されるようにし、 、 該励磁コイルを励磁することにより該シリンダと該 ビストンの間に磁気吸引力を発生させて該ピストンを 1方向に移動させ、 次いで 磁気反発力を発生させて該ピストンを反対方向に移動させ、 これを繰り返すこと で該ビス 卜ンの連続した往復運動を得るように構成される電磁式ピス卜ン機関 2 4 . 上記励磁コイルの磁気吸引力を発生させる方向の励磁は行わないように した請求項 1 、 2 1 、 2 1または 2 3記載の電磁式ピス トン機関-
PCT/JP1996/003770 1995-12-25 1996-12-24 Moteur a piston electromagnetique WO1997023728A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP52350897A JP3416146B2 (ja) 1995-12-25 1996-12-24 電磁式ピストン機関
CA002241532A CA2241532C (en) 1995-12-25 1996-12-24 Electromagnetic piston engine
EP96942635A EP0870923B1 (en) 1995-12-25 1996-12-24 Electromagnetic piston engine
DE69628036T DE69628036T2 (de) 1995-12-25 1996-12-24 Elektromagnetischer kolbenmotor
US09/091,930 US6049146A (en) 1995-12-25 1996-12-24 Electromagnetic piston engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP7/337422 1995-12-25
JP33742295 1995-12-25

Publications (1)

Publication Number Publication Date
WO1997023728A1 true WO1997023728A1 (fr) 1997-07-03

Family

ID=18308490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/003770 WO1997023728A1 (fr) 1995-12-25 1996-12-24 Moteur a piston electromagnetique

Country Status (6)

Country Link
US (1) US6049146A (ja)
EP (1) EP0870923B1 (ja)
JP (2) JP3416146B2 (ja)
KR (1) KR100622890B1 (ja)
DE (1) DE69628036T2 (ja)
WO (1) WO1997023728A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896269B1 (ja) * 2011-10-24 2012-03-14 末治 前之園 駆動装置

Families Citing this family (65)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2292684A1 (en) 1999-12-17 2001-06-17 Wayne Ernest Conrad Self-contained light and generator
US6286310B1 (en) 1999-12-17 2001-09-11 Fantom Technologies Inc. Heat engine
US6269640B1 (en) 1999-12-17 2001-08-07 Fantom Technologies Inc. Heat engine
US6269639B1 (en) 1999-12-17 2001-08-07 Fantom Technologies Inc. Heat engine
US6279318B1 (en) 1999-12-17 2001-08-28 Fantom Technologies Inc. Heat exchanger for a heat engine
US6311490B1 (en) 1999-12-17 2001-11-06 Fantom Technologies Inc. Apparatus for heat transfer within a heat engine
US6332319B1 (en) 1999-12-17 2001-12-25 Fantom Technologies Inc. Exterior cooling for a heat engine
US6345666B1 (en) * 1999-12-17 2002-02-12 Fantom Technologies, Inc. Sublouvred fins and a heat engine and a heat exchanger having same
US6226990B1 (en) 2000-02-11 2001-05-08 Fantom Technologies Inc. Heat engine
US6279319B1 (en) 2000-02-11 2001-08-28 Fantom Technologies Inc. Heat engine
US6700233B2 (en) * 2000-12-07 2004-03-02 Frank Cordiale Brushless electric motor
US6954019B2 (en) * 2001-11-13 2005-10-11 M International, Llc Apparatus and process for generating energy
KR20040019465A (ko) * 2002-08-28 2004-03-06 정철진 연료 없이 솔레노이드(전자석)의 원리에 의한 직선왕복운동으로 동력을 발생하는 압축기 겸용 선형모터 엔진.
US7059294B2 (en) * 2004-05-27 2006-06-13 Wright Innovations, Llc Orbital engine
TWI268311B (en) * 2004-10-04 2006-12-11 qi-ming Qiu Electromagnetic type power device to convert the linear power of the power source into rotational power
CA2511070A1 (en) * 2005-06-29 2006-12-29 Scireq Scientific Respiratory Equipment Inc. Self-actuated cylinder and oscillation spirometer
CN2817200Y (zh) * 2005-08-10 2006-09-13 陈传生 电动引擎
US7579722B1 (en) * 2005-08-16 2009-08-25 Sean Borchert Torque harnessing electric engine
US7330094B2 (en) * 2006-05-16 2008-02-12 Mccarthy Michael Patrick Energy producing apparatus utilizing magnetic pistons
US7501725B2 (en) * 2006-08-21 2009-03-10 Steve Parker Method of converting piston driven engines to operate on electricity
US8151759B2 (en) * 2006-08-24 2012-04-10 Wright Innovations, Llc Orbital engine
DE102007001201A1 (de) * 2007-01-05 2008-07-10 Oerlikon Leybold Vacuum Gmbh Verfahren zur Ermittlung von Resonanzfrequenzen eines magnetgelagerten Rotors
US20080197721A1 (en) * 2007-02-21 2008-08-21 Magmotion, Llc Apparatus and method using an induced magnetic field to turn a crankshaft in an engine
JP2008228372A (ja) * 2007-03-08 2008-09-25 Masafumi Sakuranaka マグネットエンジン
DE102007013776A1 (de) 2007-03-22 2008-09-25 Stys, Antoni, Dipl.-Ing. Ein elektromagnetischer Eintaktkolbenmotor mit Trägheitsausstattungen 12 zur Erzeugung elektrischer Energie
US8201523B2 (en) * 2008-06-27 2012-06-19 Cohen Kenneth J Integrated combustion and electric hybrid engines and methods of making and use thereof
US8866350B2 (en) * 2008-11-26 2014-10-21 Magtricity, Llc Electro-magnetic engine with pivoting piston head
US8336409B2 (en) * 2008-12-11 2012-12-25 Magnamotor, Llc Magnetic piston apparatus and method
IT1393418B1 (it) * 2009-03-19 2012-04-20 Macari Generatore di elettricita' ad induzione
US9124154B2 (en) 2009-04-22 2015-09-01 Dynamic Energy Technologies, Llc Kinetic energy conversion device with variable output
US20110056444A1 (en) * 2009-09-08 2011-03-10 Im Chai S Polarity sequenced electro magnetic head gasket engine and replacement kit
WO2011071000A1 (ja) * 2009-12-09 2011-06-16 Abe Shigehito 磁力エンジン
US8188690B2 (en) 2010-02-08 2012-05-29 Magnetic Miles, Llc Magnetically powered reciprocating engine and electromagnet control system
MX2012014331A (es) 2010-06-07 2013-03-05 Dynamic Energy Technologies Llc Sistema de conversion de energia cinetica rotacional.
ES2402461B1 (es) * 2010-06-22 2014-03-11 Ismael REYES REGALADO Motor magnético.
US8344560B2 (en) * 2010-07-08 2013-01-01 Gosvener Kendall C Magnetically actuated reciprocating motor and process using reverse magnetic switching
US8324763B2 (en) * 2010-07-08 2012-12-04 Gosvener Kendall C Magnetically actuated reciprocating motor and process using reverse magnetic switching
US9325232B1 (en) 2010-07-22 2016-04-26 Linear Labs, Inc. Method and apparatus for power generation
AU2011316872B2 (en) * 2010-10-22 2016-08-04 Linear Labs, Inc. An improved magnetic motor
US20120169147A1 (en) * 2011-01-03 2012-07-05 Bashar Sadik Kirma Electromagnetic Propulsion Engine
US20120242174A1 (en) * 2011-03-27 2012-09-27 Wilson Ii Felix G C Hybrid Electro-Magnetic Reciprocating Motor
DE102011120699A1 (de) * 2011-12-09 2013-06-13 Simeon Stavridis Doppelkolbenmagnetmotor
CN102570922B (zh) * 2012-02-27 2016-01-20 吴光进 磁电混合驱动方法及动力装置
CN102588236B (zh) * 2012-04-01 2014-05-28 四川科德节能环保科技有限公司 一种往复式碾压发电机及其应用方法
US20140306532A1 (en) * 2013-04-16 2014-10-16 Richard Lloyd Gray Linear Alternator
US20140152125A1 (en) * 2012-04-17 2014-06-05 Richard Lloyd Gray Linear Alternator
CN103377792B (zh) * 2012-04-28 2015-11-25 比亚迪股份有限公司 一种电磁铁
US9219962B2 (en) 2012-09-03 2015-12-22 Linear Labs, Inc. Transducer and method of operation
WO2014036567A1 (en) 2012-09-03 2014-03-06 Linear Labs, Inc. An improved transducer and method of operation
US9343947B2 (en) * 2012-10-10 2016-05-17 Fuelless Technologies, LLC Electromagnetic reciprocating engine
US20140225468A1 (en) * 2013-02-11 2014-08-14 Sonny Loyd Chambers Remote integrated magnetic/elctro-magnetic AC/DC energy device/apparatus
KR101471851B1 (ko) 2013-10-24 2014-12-12 백성룡 자력을 이용한 회전동력 발생장치 및 그의 제어방법
DE102013020404A1 (de) * 2013-12-05 2015-06-11 Oskar Hausch Motor basierend auf Abstoßungskräften und Anziehungskräften zwischen Magneten
KR101543670B1 (ko) 2014-03-10 2015-08-12 한국에너지기술연구원 다중발전시스템
TW201607216A (zh) * 2014-08-14 2016-02-16 Lin mao ming 直線式磁阻馬達、引擎及電動機
KR101611086B1 (ko) * 2014-10-23 2016-04-21 현대자동차주식회사 자동차용 블로바이 가스 저감 장치 및 그 제어방법
CN104314680A (zh) * 2014-10-29 2015-01-28 浙江大学 磁力辅助活塞式内燃机
US10148151B2 (en) * 2015-04-20 2018-12-04 Patrick Dean Cummins Signals and systems for controlling an electromagnetic piston for a vehicle
US20190360426A1 (en) * 2018-05-24 2019-11-28 GM Global Technology Operations LLC Cylinder liners comprising induction coils and hybrid internal combustion engines and powertrains utilizing the same
CN110608096A (zh) * 2019-09-06 2019-12-24 吉林大学 连杆曲轴电磁感应式发电系统
DE202019106411U1 (de) 2019-11-18 2019-12-09 Andreas Iuliano Magnetkolbenmotor
EP3838495A1 (de) * 2019-12-20 2021-06-23 Hilti Aktiengesellschaft Arbeitsgerät
ES2932758A1 (es) * 2021-07-20 2023-01-25 Univ Granada Piston electromagnetico, motor que comprende dicho piston y procedimiento de control de dicho motor
US20230043254A1 (en) 2021-08-09 2023-02-09 Quantum Dynamics Enterprises, Inc. Apparatus and process for conversion of energy
US20240006934A1 (en) * 2022-07-03 2024-01-04 Kamil Podhola Electromagnetic power transfer system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056511A (ja) * 1973-09-18 1975-05-17
JPS5734762A (en) * 1980-08-07 1982-02-25 Hiroshi Sotodate Electromagnet rotating device
JPH0522894A (ja) * 1990-10-01 1993-01-29 Sasaki Moderu Kosakusho:Kk クリーンエンジン
JPH08326646A (ja) * 1995-06-02 1996-12-10 Masatake Mizumoto 磁気力機関

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3942913A (en) * 1974-01-10 1976-03-09 Raymond Frank Bokelman Rotating cylinder wheel and ball-piston wheel motor, generator, and pump assembly
US4631455A (en) * 1983-11-15 1986-12-23 Taishoff Howard A Method and apparatus for converting a conventional internal combustion engine into a high speed electric motor and generator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5056511A (ja) * 1973-09-18 1975-05-17
JPS5734762A (en) * 1980-08-07 1982-02-25 Hiroshi Sotodate Electromagnet rotating device
JPH0522894A (ja) * 1990-10-01 1993-01-29 Sasaki Moderu Kosakusho:Kk クリーンエンジン
JPH08326646A (ja) * 1995-06-02 1996-12-10 Masatake Mizumoto 磁気力機関

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4896269B1 (ja) * 2011-10-24 2012-03-14 末治 前之園 駆動装置
CN102957259A (zh) * 2011-10-24 2013-03-06 前之园末治 驱动装置
US8519576B2 (en) 2011-10-24 2013-08-27 Sueharu MAENOSONO Driving device

Also Published As

Publication number Publication date
JP2000291530A (ja) 2000-10-17
JP3416146B2 (ja) 2003-06-16
DE69628036T2 (de) 2004-04-08
DE69628036D1 (de) 2003-06-12
KR100622890B1 (ko) 2006-11-30
US6049146A (en) 2000-04-11
EP0870923A1 (en) 1998-10-14
EP0870923A4 (en) 2000-01-12
EP0870923B1 (en) 2003-05-07
KR19990076756A (ko) 1999-10-15

Similar Documents

Publication Publication Date Title
WO1997023728A1 (fr) Moteur a piston electromagnetique
US8786143B2 (en) Magnetically actuated reciprocating motor and process using reverse magnetic switching
US4757224A (en) Full flux reversal variable reluctance machine
US8344560B2 (en) Magnetically actuated reciprocating motor and process using reverse magnetic switching
US8324763B2 (en) Magnetically actuated reciprocating motor and process using reverse magnetic switching
US20140117786A1 (en) Magnetically Actuated Reciprocating Motor and Process Using Reverse Magnetic Switching
EP0559818A1 (en) POLYPHASE RELUCTANCE AND SWITCHING MOTOR.
JP2007527686A (ja) 電力発生またはモーティブドライブ用線形電気機械
US20120119594A1 (en) Magnetically Charged Solenoid for Use in Magnetically Actuated Reciprocating Devices
EP2528207A1 (en) Brushless electric machine
US20140111034A1 (en) Magnetically Actuated Reciprocating Motor and Process Using Reverse Magnetic Switching
EP0368930A1 (en) ENGINE OR ALTERNATOR.
TW201607216A (zh) 直線式磁阻馬達、引擎及電動機
WO2011015004A1 (zh) 同轴内外线圈电动机
CA2241532C (en) Electromagnetic piston engine
TWI608688B (zh) Circular linear reluctance motor
WO1997023727A1 (fr) Moteur
RU2133545C1 (ru) Генератор переменного тока
JPS60113658A (ja) 電動機
TW201817129A (zh) 無刷電機
JP2004254410A (ja) アクチュエータ及びこれを用いた電動歯ブラシ
SK284262B6 (sk) Elektrické rotačné zariadenie
JP2003125571A (ja) 動力発生装置
JP2001200786A (ja) 圧縮装置
JP2003339148A (ja) 動力発生装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1019980704879

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2241532

Country of ref document: CA

Ref country code: CA

Ref document number: 2241532

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996942635

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09091930

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996942635

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704879

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996942635

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980704879

Country of ref document: KR