WO1997021572A1 - Bremskraftverstärker und montageverfahren hierfür - Google Patents

Bremskraftverstärker und montageverfahren hierfür Download PDF

Info

Publication number
WO1997021572A1
WO1997021572A1 PCT/EP1996/005498 EP9605498W WO9721572A1 WO 1997021572 A1 WO1997021572 A1 WO 1997021572A1 EP 9605498 W EP9605498 W EP 9605498W WO 9721572 A1 WO9721572 A1 WO 9721572A1
Authority
WO
WIPO (PCT)
Prior art keywords
brake booster
input member
output member
length
input
Prior art date
Application number
PCT/EP1996/005498
Other languages
English (en)
French (fr)
Inventor
Gerd Preker
Original Assignee
Lucas Industries Public Limited Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Industries Public Limited Company filed Critical Lucas Industries Public Limited Company
Priority to US09/077,678 priority Critical patent/US6092453A/en
Priority to EP96943064A priority patent/EP0865372B1/de
Priority to DE59607236T priority patent/DE59607236D1/de
Priority to KR1019980704128A priority patent/KR19990071846A/ko
Publication of WO1997021572A1 publication Critical patent/WO1997021572A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • B60T13/573Vacuum systems indirect, i.e. vacuum booster units characterised by reaction devices
    • B60T13/575Vacuum systems indirect, i.e. vacuum booster units characterised by reaction devices using resilient discs or pads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T13/00Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems
    • B60T13/10Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release
    • B60T13/24Transmitting braking action from initiating means to ultimate brake actuator with power assistance or drive; Brake systems incorporating such transmitting means, e.g. air-pressure brake systems with fluid assistance, drive, or release the fluid being gaseous
    • B60T13/46Vacuum systems
    • B60T13/52Vacuum systems indirect, i.e. vacuum booster units
    • B60T13/565Vacuum systems indirect, i.e. vacuum booster units characterised by being associated with master cylinders, e.g. integrally formed

Definitions

  • the invention relates to a brake booster according to the
  • a brake booster which is usually designed as a vacuum brake booster, at least in passenger cars, and which serves to keep the brake actuation force to be applied by a driver at a comfortable, ie relatively low, level.
  • a brake booster consists of a large number of individual parts, each of which is subject to tolerance. It cannot therefore be avoided that length tolerances occur in the brake booster along the actuation path, which must be compensated for in order to ensure a constant characteristic in a series of brake boosters.
  • a dimension between an input member of the brake force booster which is designed, for example, as a valve piston, and a force transmission member which adjoins it in the actuating direction and is often a disk made of elastomer material and is then referred to as a reaction disk.
  • the aforementioned dimension between the input member and the reaction disk is also referred to by experts as the z dimension. It essentially determines the behavior of a brake booster, also known as the jump-in behavior, in the initial phase of a brake application. If the z-dimension is small, the vehicle brake system responds less strongly with a given brake actuation force than with a larger z-dimension. Even small changes in the z dimension lead to noticeable changes in the response behavior of the brake booster, which is why the best possible tolerance compensation is desirable at this point in order to achieve a required one To be able to reliably maintain the characteristic even in series production.
  • the first method uses measurements on the partially assembled brake booster to determine the deviation between an actual dimension and a target dimension and then uses corresponding spacer pieces, for example spacers, to ensure that a predetermined target length is approximated as precisely as possible.
  • This presupposes that the distance-compensating pieces, disks, rings or the like are available in a relatively large number of graded sizes. Nevertheless, only an approximation to the desired dimension can be achieved in this way.
  • the installation of these distance-compensating means during the assembly of a brake booster is time-consuming and therefore expensive due to the necessary checks of the installed thicknesses and possibly also the installation position. If several spacer disks or rings have to be used, the unavoidable ripple of these parts can also result in a spring system which in turn undesirably influences the characteristics of the brake booster or the brake system.
  • the second method consists in making certain parts adjustable in length along the actuation path of the brake booster in order to be able to subsequently set a certain desired length.
  • a solution is known for example from DE 42 08 384 AI.
  • DE 43 17 490 A1 proposes a tubular sleeve with an extension that rotates the sleeve and a part of a multi-part valve piston coupled to it enables.
  • the adjustment work to be carried out for distance compensation is also time-consuming and, together with the higher price for a length-adjustable component, increases the cost of producing a brake booster.
  • the invention has for its object to provide a brake booster in which the length of the input member and / or the output member corresponds as closely as possible to the required target length.
  • the invention is also based on the object of specifying an assembly method for a brake booster which makes it possible to produce a brake booster in a cost-effective manner, the length of the input member and / or the output member of which corresponds as closely as possible to the required nominal length.
  • each brake booster of a series has an input member and / or an output member, the length of which is matched precisely to this one brake booster.
  • pressure forming means material forming by pressing or also by beating, which in particular on the surface of the formed material section leads to material compression and thus to it leads to a higher wear resistance. According to the invention, no material is removed from the input member or the output member, but the existing material is deformed by pressure so that the desired calibration is achieved.
  • an assembly method for a brake booster which comprises the steps mentioned in claim 9.
  • This assembly method is particularly suitable for calibrating metal parts, since the metal parts are compressed in a defined manner by the shaping and thus brought to a dimension corresponding to the desired length.
  • the assembly method according to the invention no longer has to provide differently dimensioned, distance-compensating components, but rather the input member and / or the output member itself are subjected to pressure in a calibration station as a function of the dimensions determined for a particular brake booster brought exactly the required target length.
  • input links and / or output links are provided, the length of which corresponds to at least one of the largest possible target lengths.
  • the calibration station comprises a press, with which the relevant part is quickly and precisely shaped.
  • the forming force is a function of the difference between the ascertained actual dimension and the predetermined target dimension.
  • the input member and / or the output member of the brake booster are constructed in several parts, so that only one end section of the input member or of the output member has to be subjected to the calibration process.
  • the input member of the brake force booster can be designed as an actuating or valve piston,
  • the end section facing the reaction disk is designed as a separate sensing disk. Only this feeler needs to be calibrated.
  • the output member of the brake booster can be designed as a reaction piston, the free end, ie the one facing a master cylinder
  • the calibration process is preferably carried out in such a way that the shape of the free end of the input member or of the output member does not change or at least does not change significantly. If, for example, the end of a sensing disk facing the reaction disk or the end of the separate head part facing the master cylinder has a certain shape, this shape should not be changed by the calibration process if possible. For the shaping, this means that the press ram striking or pressing on the part to be calibrated is shaped in accordance with the shape of the end face of the part to be calibrated facing it.
  • the calibration station is advantageously designed such that it automatically calibrates the input member and / or the output member to the desired length in accordance with the difference between the actual and desired dimensions and then makes them available for installation.
  • This can be achieved, for example, in that the calibration station is connected to a measuring device via a computing unit, so that the data resulting therefrom are available to the measuring process in a timely manner.
  • the parts to be calibrated can, for example, be conveyed to the calibration station by means of an oscillating conveyor and the calibrated parts can be transported from the calibration station, for example via a channel, to the assembly location of the brake booster.
  • a separate end section of the Input member can be calibrated by reshaping, in particular upsetting, the sensing disk has at least one material recess which is arranged such that a change in length of the sensing disk can be achieved by reshaping the same, without the diameter of the sensing disk changing.
  • a material recess preferably consists of an annular recess in the bottom of the sensing disk, into which the material can escape when the sensing disk is pressed together as part of the calibration process.
  • the output member is constructed in several parts, for example in the form of a reaction piston with a separate reaction piston head
  • the head of the reaction piston preferably has a base designed as an annular collar, the diameter of which is larger than the diameter of the other sections of the head .
  • This base is completely encompassed in the press during the forming, so that no change in the diameter of the base can occur.
  • forces occurring during the Uraform process can also be derived radially, thereby avoiding crack formation in the area of the base.
  • the diameter of the ring collar defines a limit with regard to the maximum permitted deformation, because a deformation of the head in the course of the calibration must not lead to the diameter of the remaining sections of the head being larger than the ring collar diameter after the deformation.
  • FIG. 1 shows a partial section through a vacuum brake booster, which has a separately formed sensor disk and a separate reaction piston head,
  • FIG. 5 shows a calibration station for calibrating a reaction piston head according to FIG. 2 by means of forming
  • FIG. 6 shows a sensor disk designed for calibration by means of shaping
  • FIG. 7 shows a calibration station for calibrating a sensing disk according to FIG. 6 by means of forming.
  • FIG. 1 shows a vacuum brake booster for a vehicle brake system, generally designated 10, which is followed by a master brake cylinder 12, which is referred to below as the master cylinder.
  • the brake booster 10 has a housing 14 which is essentially rotationally symmetrical about an axis A and which is composed of two half-shell-shaped housing parts 16 and 18.
  • a working chamber 20 and a vacuum chamber 22 are formed in the housing 14 by a movable wall 24, which separates the two chambers 20 and 22 in a gas-tight manner.
  • the vacuum chamber 22 is constantly with one Vacuum source connected, while the working chamber 20 is optionally connectable to the vacuum source or atmospheric pressure.
  • a control valve arrangement 26 is provided, the housing 28 of which is connected to the movable wall 24 for common relative movement with respect to the housing 14 of the brake booster 10.
  • the spherical end of a rod-shaped actuating member 30, the other end of which is not shown here, is connected to the brake pedal of the vehicle brake system on the control valve arrangement 26.
  • the actuating force exerted by the driver on the brake pedal when the brake system is actuated is introduced via the actuating member 30 into an input member 32 which is displaceable along the axis A and which is shown in FIG.
  • Embodiment consists of a valve piston 34 and a separate sensor disk 36 axially adjoining it in the actuating direction.
  • the sensing disk 36 is in contact with a force transmission element, which in the exemplary embodiment shown is formed by a reaction disk 38 made of an elastomer material, which is received in an end-side recess 40 of the housing 28 of the control valve arrangement 26.
  • An output member 42 axially adjoins the reaction disk 38 in the actuating direction of the brake booster, which is formed here by a reaction piston 44 which is T-shaped in longitudinal section and a separate reaction piston head 46 connected to it and having a free, hemispherical end 48.
  • a helical compression spring 56 which is clamped in the housing 14 of the brake booster 10, serves, after completion of a braking operation, to return the movable wall 24 to the starting position shown in FIG. 1, in which the two chambers 20 and 22 are arranged by the control valve arrangement 26 are separated.
  • the function and structure of the brake booster 10 corresponds to the usual brake boosters of this type and therefore need not be explained further.
  • z-dimension An important measure for the function of the brake booster 10, which significantly influences the response behavior of the brake booster, which is also referred to as the jump-in behavior, is the so-called z-dimension shown in FIG. 1, ie the distance between the sensing disk 36 and the reaction on disc 38.
  • Vehicle manufacturers specify a specific z-dimension for each vehicle model, with which the brake booster characteristic desired by the vehicle manufacturer is achieved.
  • the dimension B is the dimension B, which can also be seen in FIG. 1, i.e. the distance between the end of the output member 42, which is formed here by the hemispherical end 48 of the reaction piston head 46, and the surface 58 of the brake booster 10 facing one Mounting flange 60 of the master cylinder 12.
  • the axial position of the free hemispherical end 48 in With regard to the abovementioned contact surface 58, the axially position of the primary piston 54 in the master cylinder 12 and thus also the free travel, ie the path that the primary piston 54 in the longitudinal bore of the master cylinder 12 to, decisively determines in the fully assembled state of the brake booster / master cylinder unit at the beginning of a pressure build-up.
  • Even the smallest differences in the axial position of the output member 42 have a clearly noticeable effect, since, due to the mechanical ratio present, a given free travel in the brake booster results in a correspondingly larger free travel on the brake pedal.
  • Sensing disk 36 or the reaction piston head 46 is provided in a length which is sufficient to achieve at least the respectively required maximum length of the input member (32) or the output member 42.
  • the sensing disk 36 and the reaction piston head 46 are then subjected to material forming in a press, which leads to a reduction in length.
  • the length is shortened depending on the previously determined length tolerances of a particular brake booster 10 only to such an extent that after installation of the reaction piston head 46 or the feeler 36, which is shortened due to the material deformation, the desired dimension B or the required z dimension is set.
  • the forming process takes place continuously in that a drive motor of the press rotates a press spindle in a controlled manner depending on the path. After the predetermined length reduction, which is determined by a distance measurement, is reached, the drive motor is stopped.
  • the procedure is as follows: First, the control valve arrangement 26 without the sensor disk 36, reaction disk 38 and reaction piston 44 is inserted into the right half-shell-shaped housing part 18 of the brake booster housing 14 and clamped in a receiving device, not shown. Then the axial distance between the valve piston 34 and a first reference surface 64 is determined with a measuring device. This dimension represents the actual dimension, from which the required target length of the sensing disk 36 is obtained by subtracting the predetermined z dimension, which represents the target dimension. In a calibration station, which will be explained in more detail later, the length of a sensing disk 36 is then shortened by pressing so that it corresponds to the predetermined length determined previously. The sensor disk 36 thus calibrated is then made available for installation in the brake booster 10.
  • the input member 32 is formed in two parts. Its calibration is in this way This makes it easier because only its end section in the shape of the sensing disk 36 has to be calibrated. However, it is also possible to form the input member 32 in one piece and to calibrate it to the desired length in a suitable press station.
  • the output element 42 is also calibrated in an analogous manner. For this purpose, after the installation of a calibrated sensor disk 36, the reaction disk 38 and the reaction piston 44 are first installed, which are held by a holding and
  • a reaction piston head 46 is then shortened in length by pressing so that it has the predetermined length previously determined.
  • the calibrated reaction piston head 46 is then connected to the reaction piston 44, which completes the assembly of the brake booster 10.
  • FIGS. 2 to 4 show the structure of the reaction piston head 46 to be calibrated by pressing, while FIG. 5 shows a press which is used to deform the reaction piston head 46 and which is part of an automatic calibration station.
  • FIG. 2 shows the reaction piston head 46 in a state before forming, ie in the state in which it is fed to the press and in which it has a length L which corresponds at least to the largest possible nominal length.
  • the reaction piston head 46 has a cylindrical, slotted extension 70 of smaller diameter, which has a beveled end 72 with which it can be inserted into a corresponding recess in the reaction piston 44.
  • Extension 70 secures a resiliently clamping seat in the reaction piston 44.
  • reaction piston head 46 shows a reaction piston head 46, the original length L of which has been somewhat shortened by pressing in the axial direction. The pressing process leads to a material expansion in the middle section of the reaction piston head 46.
  • FIG. 4 shows a reaction piston head 46, the original length L of which has been shortened more than that of the state shown in FIG. 3 by pressing, which leads to a correspondingly greater bulging of material in the middle section of the reaction piston head 46.
  • the shape of the hemispherical end 48 of the reaction piston head 46 is not changed during the pressing. So that the shape of the end 48 remains unchanged, the press ram 74 of the press shown in FIG. 5 is designed with a corresponding dome-shaped recess 76, so that the forming force can be introduced into the reaction piston head 46 without the hemispherical head shape changes.
  • the base of the head 46 is designed as a ring collar 78 of larger diameter projecting radially outwards.
  • this ring collar 78 is used during the Pressing process completely and tightly surrounded by a protective cylinder 80, while the underside of the head 46 is supported by a press receptacle 82.
  • the press receptacle 82 is moved upward against the force of a spring 84 and thus presses the collar 78 out of the protective cylinder 80.
  • the reaction piston head 46 is only shaped in the defined area between the hemispherical end 48 and the annular collar 78.
  • the pressing force introduced into the reaction piston head 46 which is made of metal, leads to compression of the material at the hemispherical end 48 and thus to increased wear resistance in this area.
  • FIG. 6 shows a sensor disk 36 which is suitable for shortening its length by introducing an axial pressing force.
  • the feeler 36 has in its base 86 an annular recess 88 with a rectangular cross section, into which material can be displaced during the shaping process.
  • annular recess 88 with a rectangular cross section, into which material can be displaced during the shaping process.
  • one or more recesses of a different shape can also be provided; the only important thing is that the material of the sensing disk 36, which preferably also consists of metal, can be displaced into these recesses, the recesses being used for must not impair the intended use of the stability of the sensing disk.
  • FIG. 7 shows a second press with which the material shaping of the feeler disk 36 required for length adjustment can be carried out. It is also important in the case of the sensor disk 36 that neither the sensor disk diameter nor the shape of the surface of the sensor disk facing the reaction disk 38 change.
  • the sensing disk has a lenticular elevation 90 on its surface facing the reaction disk 38, which first penetrates into the reaction disk 38 when the brake is actuated and thus translates to a larger ratio at the start of braking. relationship leads.
  • the press ram 74 is therefore provided with a corresponding recess, so that the lenticular elevation 90 remains unchanged.
  • the press for the sensing disk 36 also has a protective cylinder 80 which tightly encloses the sensing disk during the pressing process and prevents its diameter from changing.
  • the presses shown in FIGS. 5 and 7 are part of a calibration station for the automatic calibration of the reaction piston head 46 or the sensing disk 36.
  • the two presses are electronically connected to the associated measuring devices and to an arithmetic unit, so that each time without disturbing time delay a reaction piston head 46 or a feeler 36 which is adapted in its length to a specific brake booster can be produced.
  • the uncalibrated reaction piston heads or feeler disks are made available to the presses by means of an automatically feeding vibratory conveyor and, after calibration, are also automatically brought to the assembly site of the brake booster by a transport system. In this way, very inexpensive, error-free and, above all, low-tolerance manufacture of brake boosters is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Braking Systems And Boosters (AREA)
  • Control Of Fluid Pressure (AREA)

Abstract

Ein insbesondere mit Unterdruck betriebener Bremskraftverstärker hat ein Eingangsglied (32), in das eine Betätigungskraft eingeleitet wird, und ein Ausgangsglied (42) zur Abgabe einer verstärkten Kraft an eine nachgeschaltete Baugruppe, beispielsweise einen Hauptzylinder (12). Da jedes Bauteil des Bremskraftverstärkers (10) toleranzbehaftet ist, treten zwangsläufig entlang des Betätigungsweges Längentoleranzen auf, die einen unerwünschten Einfluß auf die Charakteristik des Bremskraftverstärkers haben und deshalb beseitigt oder zumindest reduziert werden müssen. Um zu vermeiden, daß zum Längenausgleich eine Reihe unterschiedlich dicker Fühlscheiben (36) und Distanzscheiben (62) bereit gehalten werden müssen, wird vorgeschlagen, die Länge des Eingangsgliedes (32) und/oder des Ausgangsgliedes (42) durch Druckumformen desselben auf eine Sollänge zu kalibrieren, die sich aus einem Vergleich zwischen einem Istmaß und einem Sollmaß ergibt, und dann in den Bremskraftverstärker (10) einzubauen.

Description

Bremskraftverstärker und Montageverfahren hierfür
Die Erfindung betrifft einen Bremskraftverstärker nach dem
Oberbegriff des Anspruchs 1 und ein Montageverfahren für ei¬ nen Bremskraftverstärker.
Fahrzeugbremsanlagen sind heutzutage in aller Regel mit einem Bremskraftverstärker ausgerüstet, der zumindest bei Personen¬ wagen zumeist als Unterdruckbremskraftverstärker ausgeführt ist und der dazu dient, die von einem Fahrer aufzubringende Bremsbetätigungskraft auf einem komfortablen, d.h. relativ niedrigen Niveau zu halten. Ein solcher Bremskraftverstärker besteht aus einer Vielzahl von Einzelteilen, von denen jedes toleranzbehaftet ist. Es läßt sich deshalb nicht vermeiden, daß im Bremskraftverstärker entlang des Betätigungsweges Län¬ gentoleranzen auftreten, die ausgeglichen werden müssen, um bei einer Serie von Bremskraftverstärkern eine gleichbleiben- de Charakteristik zu gewährleisten. Besonders kritisch ist diesbezüglich ein Maß zwischen einem beispielsweise als Ven¬ tilkolben ausgebildeten Eingangsglied des Bremskraftverstar¬ kers und einem sich in Betätigungsrichtung daran anschließenden Kraftübermittlungsglied, das häufig eine Scheibe aus Elastomermaterial ist und dann als Reaktions¬ scheibe bezeichnet wird. Das vorgenannte Maß zwischen dem Eingangsglied und der Reaktionsscheibe wird unter Fachleuten auch als z-Maß bezeichnet. Es bestimmt ganz wesentlich das auch Einsprungverhalten genannte Verhalten eines Bremskraft- Verstärkers in der Anfangsphase einer Bremsbetätigung. Ist das z-Maß klein, so spricht die Fahrzeugbremsanlage bei einer vorgegebenen Bremsbetätigungskraft weniger stark an als bei einem größeren z-Maß. Schon kleine Änderungen des z-Maßes führen zu spürbaren Änderungen des Ansprechverhaltens des Bremskraftverstarkers, weshalb an dieser Stelle ein möglichst guter Toleranzausgleich wünschenswert ist, um eine geforderte Charakteristik auch in der Serienfertigung zuverlässig ein¬ halten zu können.
Ein weiteres wichtiges Maß ergibt sich zwischen dem Ausgangs- glied eines Bremskraftverstarkers und einer nachgeschalteten Baugruppe, beispielsweise einem Hauptbremszylinder. Auch hier führen die unvermeidbaren Längentoleranzen zu mehr oder weni¬ ger großen Leerwegen, die in unerwünschter Weise das Verhal¬ ten der Bremsanlage während einer Betätigung beeinflussen.
Zur Erzielung eines Toleranzausgleichs sind zwei unterschied¬ liche Methoden vorgeschlagen worden, die beide in der Praxis Anwendung finden. Die erste Methode stellt durch Messungen am teilweise zusammengebauten Bremskraftverstärker die Abwei- chung zwischen einem Iεt- und einem Sollmaß fest und sorgt dann durch Verwendung entsprechender Distanzausgleichsstücke, beispielsweise Distanzscheiben, dafür, daß eine vorgegebene Sollänge möglichst genau angenähert wird. Dies setzt voraus, daß die distanzausgleichenden Stücke, Scheiben, Ringe oder ähnliches in einer relativ großen Zahl abgestufter Größen zur Verfügung stehen. Dennoch ist auf diese Weise immer nur eine Annäherung an das gewünschte Maß erreichbar. Desweiteren ist der Einbau dieser distanzausgleichenden Mittel während der Montage eines Bremskraftverstarkers aufgrund der erforderli- chen Kontrollen der eingebauten Dicken und eventuell auch der Einbaulage zeitaufwendig und damit kostspielig. Müssen mehre¬ re Distanzscheiben oder -ringe verwendet werden, kann es auf¬ grund der unvermeidbaren Welligkeit dieser Teile auch dazu kommen, daß ein Federsystem entsteht, das die Charakteristik des Bremskraftverstarkers bzw. der Bremsanlage wiederum in unerwünschter Weise beeinflußt.
Die zweite Methode besteht darin, bestimmte Teile entlang des Betätigungsweges des Bremskraftverstarkers längeneinstellbar zu gestalten, um nachträglich eine bestimmte Sollänge ein¬ stellen zu können. Eine solche Lösung ist beispielsweise aus der DE 42 08 384 AI bekannt. Um eine Längeneinstellung des längenveränderbaren Bauteils auch dann vornehmen zu können, wenn der Bremskraftverstärker bereits in ein Fahrzeug einge¬ baut ist, schlägt die DE 43 17 490 AI eine rohrformige Hülse mit einer Verlängerung vor, die ein Verdrehen der Hülse und eines damit gekoppelten Teils eines mehrteiligen Ventilkol- bens ermöglicht. Die für einen Distanzausgleich vorzunehmen¬ den Einstellarbeiten sind ebenfalls zeitaufwendig und wirken sich zusammen mit dem ohnehin höheren Preis für ein län¬ geneinstellbares Bauteil kostensteigernd auf die Produktion eines Bremskraftverstarkers aus.
Der Erfindung liegt die Aufgabe zugrunde, einen Bremskraft- verstärker anzugeben, bei dem die Länge des Eingangsgliedes und/oder des Ausgangsgliedes möglichst genau der geforderten Sollänge entspricht. Der Erfindung liegt auch die Aufgabe zu¬ grunde, ein Montageverfahren für einen Bremskraftverstärker anzugeben, das es auf kostengünstige Weise ermöglicht, einen Bremskraftverstärker herzustellen, dessen Eingangsglied und/oder dessen Ausgangsglied in ihrer Länge möglichst genau der geforderten Sollänge entsprechen.
Diese Aufgabe ist erfindungsgemaß mit einem Bremskraftver¬ stärker gelöst, bei dem die Länge des Eingangsgliedes und/oder des Ausgangsgliedes durch Druckumformung seines Ma- terials auf eine Sollänge kalibriert ist. Beim erfindungsge¬ mäßen Bremskraftverstärker ist die Länge des Eingangsgliedes und/oder des Ausgangsgliedes also nicht nur der geforderten Sollänge angenähert, sondern sie entspricht der geforderten Sollänge. Das bedeutet, daß jeder Bremskraftverstärker einer Serie ein Eingangsglied und/oder ein Ausgangsglied aufweist, dessen Länge genau auf diesen einen Bremskraftverstärker ab¬ gestimmt ist.
Mit Druckumformung ist im Rahmen der vorliegenden Erfindung eine Materialumformung durch Pressen oder auch durch Schlagen gemeint, die insbesondere an der Oberfläche des umgeformten Materialabschnitts zu einer Materialverdichtung und damit zu einer höheren Verschleißtestigkeit führt. Erfindungsgemäß wird von dem Eingangsglied oder dem Ausgangsglied also kein Material entfernt, sondern das vorhandene Material wird durch Druck so umgeformt, daß die gewünschte Kalibrierung erzielt wird.
Die vorgenannte Aufgabe ist auch durch ein Montageverfahren für einen Bremskraftverstärker gelöst, das die im Anspruch 9 genannten Schritte umfaßt. Dieses Montageverfahren eignet sich besonders zum Kalibrieren von Metallteilen, denn die Me¬ tallteile werden durch das Umformen definiert gestaucht und so auf ein der Sollänge entsprechendes Maß gebracht. Gegen¬ über herkömmlichen Montageverfahren für Bremskraftverstärker müssen beim erfindungsgemäßen Montageverfahren keine unter- schiedlich dimensionierten, distanzausgleichenden Bauteile mehr vorgehalten werden, sondern das Eingangsglied und/oder das Ausgangsglied selbst werden in einer Kalibrierstation in Abhängigkeit der für einen bestimmten Bremskraftverstärker ermittelten Maße durch Materialumformung mittels Druck auf genau die geforderte Sollänge gebracht. Hierzu werden Ein- gangsglieder und/oder Ausgangsglieder bereitgestellt, deren Länge mindestens einer größtmöglichen Sollänge entspricht. Die Kalibrierstation umfaßt eine Presse, mit der die Umfor¬ mung des entsprechenden Teiles schnell und genau vorgenommen wird.
Bei einer bevorzugten Ausführungsform des erfindungsgemäßen Montageverfahrens ist die Umformkraft eine Funktion der Dif¬ ferenz zwischen dem ermittelten Istmaß und dem vorgegebenen Sollmaß.
Besonders bevorzugt sind das Eingangsglied und/oder das Aus¬ gangsglied des Bremskraftverstarkers mehrteilig ausgebildet, so daß nur ein Endabschnitt des Eingangsgliedes oder des Aus- gangsgliedes dem Kalibriervorgang unterworfen werden muß.
Beispielsweise kann das Eingangsglied des Bremskraftverstar¬ kers als Betätigungs- bzw. Ventilkolben ausgeführt sein, des- sen der Reaktionsscheibe zugewandter Endabschnitt als separa¬ te Fühlscheibe ausgebildet ist. Kalibriert zu werden braucht dann nur diese Fühlscheibe. Ebenso kann das Ausgangsglied des Bremskraftverstarkers als Reaktionskolben ausgeführt sein, dessen freies Ende, d.h. das einem Hauptzylinder zugewandte
Ende, als separates Kopfteil ausgebildet ist, so daß nur die¬ ses Kopfteil kalibriert zu werden braucht.
Bevorzugt wird der Kalibriervorgang so durchgeführt, daß sich die Gestalt des freien Endes des Eingangsgliedes oder des Ausgangsgliedes nicht oder jedenfalls nicht wesentlich än¬ dert. Weist also beispielsweise das der Reaktionsscheibe zu¬ gewandte Ende einer Fühlscheibe oder das dem Hauptzylinder zugewandte Ende des separaten Kopfteiles eine bestimmte Ge- stalt auf, so soll diese Gestalt durch den Kalibriervorgang möglichst nicht verändert werden. Für das Umformen bedeutet dies, daß der auf das zu kalibrierende Teil schlagende oder drückende Pressenstempel entsprechend der Gestalt der ihm zu¬ gewandten Endfläche des zu kalibrierenden Teiles geformt ist.
Vorteilhaft ist beim erfindungsgemäßen Montageverfahren die Kalibrierstation so ausgestaltet, daß sie das Eingangsglied und/oder das Ausgangsglied automatisch entsprechend der Dif¬ ferenz zwischen Ist- und Sollmaß auf die Sollänge kalibriert und anschließend zum Einbau zur Verfügung stellt. Dies läßt sich beispielsweise dadurch erreichen, daß die Kalibriersta¬ tion über eine Recheneinheit mit einer Meßvorrichtung verbun¬ den ist, so daß ihr zeitnah zu dem Meßvorgang die sich daraus ergebenden Daten zur Verfügung stehen. Die zu kalibrierenden Teile lassen sich beispielsweise mit einem Schwingförderer zur Kalibrierstation befördern und die kalibrierten Teile können aus der Kalibrierstation über beispielsweise eine Rin¬ ne an den Montageplatz des Bremskraftverstarkers transpor¬ tiert werden.
Damit bei einem erfindungsgemäßen Bremskraftverstärker ein als Fühlscheibe ausgebildeter, separater Endabschnitt des Eingangsgliedes durch Umformen, insbesondere Stauchen, kali¬ briert werden kann, hat die Fühlscheibe wenigstens eine Mate¬ rialaussparung, die so angeordnet ist, daß sich eine Längenänderung der Fühlscheibe durch Umformen derselben er¬ zielen läßt, ohne daß sich der Durchmesser der Fühlscheibe ändert. Bevorzugt besteht eine solche Materialaussparung in einer kreisringförmigen Ausnehmung im Boden der Fühlscheibe, in die beim Zusammenpressen der Fühlscheibe im Rahmen des Ka¬ libriervorganges das Material ausweichen kann.
Ist bei einem erfindungsgemaßen Bremskraftverstärker das Aus¬ gangsglied mehrteilig ausgebildet, beispielsweise in Gestalt eines Reaktionskolbens mit einem separaten Reaktionskolben¬ kopf, so weist bevorzugt der Kopf des Reaktionskolbens eine als Ringbund ausgebildete Basis auf, deren Durchmesser größer ist als der Durchmesser der übrigen Abschnitte des Kopfes. Diese Basis wird während des Umformens in der Presse voll¬ ständig umfangen, so daß keine Durchmesseränderung der Basis auftreten kann. Gleichzeitig können so im Rahmen des Uraform- Vorgangs auftretende Kräfte auch radial abgeleitet werden, wodurch eine Rißbildung im Bereich der Basis vermieden wird. Darüberhinaus ist durch den Durchmesser des Ringbundes eine Grenze bezüglich der maximal erlaubten Verformung festgelegt, denn eine Umformung des Kopfes im Zuge der Kalibrierung darf nicht dazu führen, daß der Durchmesser der übrigen Abschnitte des Kopfes nach der Umformung größer als der Ringbunddurch¬ messer ist.
Generell ist beim erfindungsgemäßen Bremskraftverstärker bzw. beim erfindungsgemäßen Montageverfahren also darauf zu ach¬ ten, daß die Kalibrierung des Eingangsgliedes und/oder des Ausgangsgliedes des Bremskraftverstarkers lediglich durch ei¬ ne Längenänderung der entsprechenden Bauteile erfolgt und daß der Durchmesser sich dabei nicht ändert. Nur wenn es unver- meidlich ist, darf sich der Durchmesser in genau definierten und für die Funktion des Bremskraftverstarkers unkritischen Bereichen im Rahmen des Kalibriervorgangs ändern. Ein bevorzugtes Ausführungsbeispiel eines erfindungsgemäßen Bremskraftverstarkers und ein Montageverfahren für diesen Bremskraftverstärker wird im folgenden anhand der beigefügten Figuren näher erläutert. Es zeigt:
Fig.l einen Teilschnitt durch einen Unterdruckbremskraft Verstärker, der eine separat ausgebildete Fühl¬ scheibe und einen separaten Reaktionskolbenkopf aufweist,
Fig.2 die Seitenansicht eines nicht kalibrierten Reakti¬ onskolbenkopfes,
Fig.3 die Seitenansicht des Reaktionskolbenkopfes aus
Fig.2 in einem kalibrierten Zustand, der durch eine geringe Umformung erreicht wurde,
Fig.4 die Seitenansicht des Reaktionskolbenkopfes aus
Fig.2 in einem kalibrierten Zustand, der durch eine maximal erlaubte Umformung erreicht wurde,
Fig.5 eine Kalibrierstation zur Kalibrierung eines Reak- tionskolbenkopfes gemäß Fig.2 mittels Umformen,
Fig.6 eine zur Kalibrierung mittels Umformen ausgestalte¬ te Fühlscheibe im Schnitt, und
Fig.7 eine Kalibrierstation zum Kalibrieren einer Fühl¬ scheibe gemäß Fig.6 mittels Umformen.
Fig. 1 zeigt einen allgemein mit 10 bezeichneten Unterdruck¬ bremskraftverstärker für eine Fahrzeugbremsanlage, dem ein Hauptbremszylinder 12 nachgeschaltet ist, der im folgenden nur als Hauptzylinder bezeichnet wird.
Der Bremskraftverstärker 10 hat ein im wesentlichen zu einer Achse A rotationssymmetrisches Gehäuse 14, das aus zwei halb- schalenförmigen Gehäuseteilen 16 und 18 zusammengesetzt ist. Im Gehäuse 14 sind eine Arbeitskammer 20 und eine Unterdruck- kammer 22 durch eine bewegliche Wand 24 gebildet, die die beiden Kammern 20 und 22 gasdicht voneinander trennt. Im Be- triebszustand ist die Unterdruckkammer 22 ständig mit einer Unterdruckquelle verbunden, während die Arbeitskammer 20 wahlweise mit der Unterdruckquelle oder dem Atmosphärendruck verbindbar ist. Zu diesem Zweck ist eine Steuerventilanord¬ nung 26 vorhanden, deren Gehäuse 28 mit der beweglichen Wand 24 zur gemeinsamen Relativbewegung bezüglich des Gehäuses 14 des Bremskraftverstarkers 10 verbunden ist.
Auf die Ξteuerventilanordnung 26 wirkt das im gezeigten Bei¬ spiel kugelig ausgeführte Ende eines stangenförmigen Betäti- gungsgliedes 30, dessen anderes hier nicht dargestelltes Ende mit dem Bremspedal der Fahrzeugbremsanlage verbunden wird. Die bei einer Betätigung der Bremsanlage vom Fahrer auf das Bremspedal ausgeübte Betätigungskraft wird über das Betäti- gungsglied 30 in ein längs der Achse A verschiebliches Ein- gangsglied 32 eingeleitet, das im gezeigten
Ausführungsbeispiel aus einem Ventilkolben 34 und einer sich in Betätigungsrichtung axial daran anschließenden, separaten Fühlscheibe 36 besteht.
Die Fühlscheibe 36 steht in Kontakt mit einem Kraftübermitt¬ lungsglied, das im dargestellten Ausführungsbeispiel durch eine Reaktionsscheibe 38 aus einem Elastomermaterial gebildet ist, die in einer stirnseitigen Ausnehmung 40 des Gehäuses 28 der Steuerventilanordnung 26 aufgenommen ist. An die Reakti- onsscheibe 38 schließt sich in Betätigungsrichtung des Brems¬ kraftverstarkers axial ein Ausgangsglied 42 an, das hier durch einen im Längsschnitt T-förmigen Reaktionskolben 44 und einen damit verbundenen, separaten Reaktionskolbenkopf 46 mit einem freien, halbkugeligen Ende 48 gebildet ist.
Wird eine Betätigungskraft über das Betätigungsglied 30 in das Eingangsglied 32 eingeleitet, so verschiebt sich letzte¬ res in Fig. 1 nach links, wodurch ein am Ventilkolben 34 aus¬ gebildeter Ventilsitz 50 von einem Ventilschließglied 52 abhebt und auf diese Weise eine Zufuhr von Atmosphärendruck in die Arbeitskammer 20 ermöglicht. Gleichzeitig dringt die Fühlscheibe 36 in die gummielastische Reaktionsscheibe 38 ein. Aufgrund der Zufuhr von Atmosphärendruck in die Arbeits¬ kammer 20 verschiebt sich die bewegliche Wand 24 zusammen mit dem Gehäuse 28 der Steuerventilanordnung 26 nach links und überträgt eine verstärkte Betätigungskraft auf das Ausgangs- glied 42, welches seinerseits diese Kraft über das halbkuge¬ lige Ende 48 des Reaktionskolbenkopfes 46 auf einen Primärkolben 54 des Hauptzylinders 12 weiterleitet. Eine Schraubendruckfeder 56, die im Gehäuse 14 des Bremskraftver¬ starkers 10 eingespannt ist, dient nach einer Beendigung ei- nes Bremsvorganges zur Rückstellung der beweglichen Wand 24 in die in Fig. 1 wiedergegebene Ausgangsstellung, in der die beiden Kammern 20 und 22 durch die Steuerventilanordnung 26 voneinander getrennt sind. Die Funktion und der Aufbau des Bremskraftverstarkers 10 entspricht insoweit üblichen Brems- kraftverstärkern dieser Bauart und braucht deshalb nicht wei¬ ter erläutert zu werden.
Ein für die Funktion des Bremskraftverstarkers 10 wichtiges Maß, welches insbesondere das auch Einsprungverhalten genann- te Ansprechverhalten des Bremskraftverstarkers wesentlich be¬ einflußt, ist das aus Fig. 1 ersichtliche, sogenannte z-Maß, also der Abstand zwischen der Fühlscheibe 36 und der Reakti¬ onsscheibe 38. Von Fahrzeugherstellern wird für jedes Fahr¬ zeugmodell ein bestimmtes z-Maß vorgegeben, mit dem die vom Fahrzeughersteller gewünschte Bremskraftverstärkercharakteri- stik erreicht wird. Ein größeres z-Maß steht dabei für ein schnelles und kräftiges Ansprechen des Bremskraftverstarkers 10, während ein kleineres z-Maß (auch z = 0 möglich) die ge¬ genteilige Wirkung hat.
Ein weiteres wichtiges Funktionsmaß des Bremskraftverstarkers 10 ist das ebenfalls aus Fig. 1 ersichtliche Maß B, also der Abstand zwischen dem Ende des Ausgangsgliedes 42, das hier durch das halbkugelige Ende 48 des Reaktionskolbenkopfes 46 gebildet ist, und der dem Bremskraftverstärker 10 zugewandten Fläche 58 eines Befestigungsflansches 60 des Hauptzylinders 12. Die axiale Position des freien, halbkugeligen Endes 48 in Bezug auf die vorgenannte Anlagefläche 58 bestimmt im fertig¬ montierten Zustand der Bremskraftverstärker/Hauptzylinder- Einheit maßgeblich die axiale Position des Primärkolbens 54 im Hauptzylinder 12 und damit auch den vorhandenen Leerweg, d.h. den Weg, den der Primärkolben 54 in der Längsbohrung des Hauptzylinders 12 bis zum Beginn eines Druckaufbaus zurückle¬ gen muß. Schon kleinste Unterschiede in der axialen Position des Ausgangsgliedes 42 wirken sich deutlich spürbar aus, da aufgrund der vorhandenen mechanischen Übersetzung ein gegebe- ner Leerweg im Bremskraftverstärker in einem entsprechend größeren Leerweg am Bremspedal resultiert.
Aufgrund der unvermeidbaren Herstellungstoleranzen der Teile des Bremskraftverstarkers 10 ergeben sich entlang seines Be- tätigungsweges Längentoleranzen, die beim Zusammenbau eines jeden Bremskraftverstarkers 10 zu einem unterschiedlichen z- Maß bzw. einem unterschiedlichen Maß B führen würden. Vor dem endgültigen Zusammenbau müssen daher diese Längentoleranzen soweit wie möglich beseitigt werden, um sicherzustellen, daß das geforderte z-Maß bzw. das geforderte Maß B und damit die gewünschte Bremskraftverstärkercharakteristik bei jedem Bremskraftverstärker eine Serie eingehalten wird. Bei dem dargestellten Ausführungsbeispiel wurde dies bisher dadurch erreicht, daß zum einen verschieden dicke Fühlscheiben 36 be- reitgestellt waren, so daß je nach der sich ergebenden Län¬ gentoleranz eine dickere oder dünnere Fühlscheibe 36 zum Ausgleich dieser Längentoleranz eingebaut wurde, um sich dem geforderten z-Maß so gut wie möglich anzunähern. Zum anderen gelangten, wie ebenfalls aus Fig. 1 ersichtlich, zwischen dem Reaktionskolben 44 und dem Reaktionskolbenkopf 46 eine oder mehrere Distanzscheiben 62 zum Einbau, die ebenfalls in ver¬ schiedenen Dicken bereitgestellt waren.
Diese Bereitstellung unterschiedlich dicker Distanzscheiben 62 bzw. Fühlscheiben 36 ist erfindungsgemäß nicht mehr not¬ wendig. Stattdessen werden die jeweiligen Endabschnitte des Eingangsgliedes 32 bzw. des Ausgangsgliedes 42, also die - 11-
Fühlscheibe 36 bzw. der Reaktionskolbenkopf 46 in einer Länge bereitgestellt, die dazu ausreicht, zumindest die jeweils ma¬ ximal erforderliche Sollänge des Eingangsgliedes (32) bzw. des Ausgangsgliedes 42 zu erreichen. Sodann werden die Fühl- scheibe 36 und der Reaktionskolbenkopf 46 in einer Presse einer Materialumformung unterzogen, die zu einer Längenver¬ kürzung führt. Die Längenverkürzung erfolgt dabei in Abhän¬ gigkeit der zuvor ermittelten Längentoleranzen eines bestimmten Bremskraftverstarkers 10 nur soweit, daß sich nach einem Einbau des durch die Materialumformung längenverkürzten Reaktionskolbenkopfes 46 bzw. der Fühlscheibe 36 genau das gewünschte Maß B bzw. das geforderte z-Maß einstellt. Der Um¬ formvorgang geht kontinuierlich vor sich indem ein Antriebs¬ motor der Presse eine Pressenspindel wegabhängig gesteuert dreht. Nach Erreichen der vorgegebenen Längenverkürzung, die über eine Wegmessung festgestellt wird, wird der Antriebsmo¬ tor gestoppt.
Beim Zusammenbau des Bremskraftverstarkers 10 wird hierzu wie folgt vorgegangen: Zunächst wird die Steuerventilanordnung 26 ohne Fühlscheibe 36, Reaktionsscheibe 38 und Reaktionskolben 44 in das in Fig. 1 rechte halbschalenförmige Gehäuseteil 18 des Bremskraftverstärkergehäuses 14 eingesetzt und in eine nicht näher dargestellte Aufnahmevorrichtung eingespannt. Dann wird mit einer Meßvorrichtung der axiale Abstand zwi¬ schen dem Ventilkolben 34 und einer ersten Bezugsfläche 64 bestimmt. Dieses Maß stellt das Istmaß dar, aus welchem sich durch Subtraktion des vorgegebenen z-Maßes, daß das Sollmaß darstellt, die erforderliche Sollänge der Fühlscheibe 36 er- gibt. In einer später noch näher erläuterten Kalibrierstation wird daraufhin die Länge einer Fühlscheibe 36 durch Pressen so verkürzt, daß sie mit der zuvor bestimmten Sollänge über¬ einstimmt. Die so kalibrierte Fühlscheibe 36 wird dann zum Einbau in den Bremskraftverstärker 10 zur Verfügung gestellt.
Im dargestellten Ausführungsbeispiel ist das Eingangsglied 32 zweiteilig ausgebildet. Seine Kalibrierung ist auf diese Wei- se erleichtert, da nur sein Endabschnitt m Gestalt der Fühl¬ scheibe 36 kalibriert werden muß. Es ist allerdings ebenso möglich, das Eingangsglied 32 einteilig auszubilden und in einer geeigneten Pressenstation auf die Sollange zu kalibrie- ren.
In analoger Weise wird auch das Ausgangsglied 42 kalibriert. Dazu werden zunächst, nach dem erfolgten Einbau einer kali¬ brierten Fühlscheibe 36, die Reaktionsscheibe 38 und der Re- aktionskolben 44 eingebaut, der durch eine Halte- und
Führungsklammer 66 am Gehäuse 28 der Steuerventilanordnung 26 gesichert wird. Anschließend wird das Gehäuse 14 des Brems¬ kraftverstarkers 10 durch Verbinden des in Fig. 1 linken halbschalenförmigen Gehäuseteiles 16 mit dem rechten Gehäuse- teil 18 komplettiert und die so erhaltende Einheit wird wie¬ derum in eine nicht näher dargestellte Aufnahmevorrichtung eingespannt. Mit einer Meßvorrichtung wird der Abstand zwi¬ schen dem freien Ende des Reaktionskolbens 44 und einer zwei¬ ten Bezugsfläche 68 auf der Außenseite des Gehäuseteiles 16 bestimmt, an der die Fläche 58 des Befestigungsflansches 60 des Hauptzylinders 12 anliegt, wenn die Bremskraftverstär¬ ker/Hauptzylinder-Einheit zusammengebaut ist. Dieses mit B bezeichnete Maß stellt das Istmaß dar, aus dem sich durch Subtraktion des vorgegebenen Sollmaßes B die geforderte Ξol- länge für den Reaktionskolbenkopf 46 ergibt. In einer weite¬ ren Kalibrierstation, deren Aufbau später ebenfalls noch näher erläutert ist, wird daraufhin ein Reaktionskolbenkopf 46 durch Pressen m seine Länge so verkürzt, daß er die zuvor bestimmte Sollänge aufweist. Der kalibrierte Reaktionskolben- köpf 46 wird dann mit dem Reaktionskolben 44 verbunden, womit die Montage des Bremskraftverstarkers 10 abgeschlossen ist.
Aus den Figuren 2 bis 4 geht der Aufbau des durch Pressen zu kalibrierenden Reaktionskolbenkopfes 46 hervor, wahrend in Fig. 5 eine zur Umformung des Reaktionskolbenkopfes 46 die¬ nende Presse gezeigt ist, die Teil einer automatischen Kali¬ brierstation ist. Fig. 2 zeigt den Reaktionskolbenkopf 46 in einem Zustand vor einer Umformung, d.h. in dem Zustand, in dem er der Presse zugeführt wird und in dem er eine Lange L aufweist, die min- destens der größtmöglichen Sollange entspricht. Zur Verbin¬ dung mit dem Reaktionskolben 44 hat der Reaktionskolbenkopf 46 einen zylinderförmigen, geschlitzten Fortsatz 70 geringe¬ ren Durchmessers, der ein abgeschrägtes Ende 72 aufweist, mit dem er in eine entsprechende Ausnehmung des Reaktionskolbens 44 eingeführt werden kann. Die geschlitzte Ausfuhrung des
Fortsatzes 70 sichert einen federnd klemmenden Sitz im Reak¬ tionskolben 44.
Fig. 3 zeigt einen Reaktionskolbenkopf 46, dessen ursprungli- ehe Lange L durch Pressen in axialer Richtung etwas verkürzt worden ist. Der Preßvorgang führt zu einer Materialausbau¬ chung im mittleren Abschnitt des Reaktionskolbenkopfes 46.
Fig. 4 zeigt einen Reaktionskolbenkopf 46, dessen ursprungli- chen Lange L durch eine PreßUmformung gegenüber dem in Fig. 3 gezeigten Zustand stärker verkürzt worden ist, was zu einer entsprechend größeren Materialausbauchung im mittleren Ab¬ schnitt des Reaktionskolbenkopfes 46 fuhrt.
Wie aus den Figuren 3 und 4 zu ersehen ist, wird die Gestalt des halbkugeligen Endes 48 des Reaktionskolbenkopfes 46 beim Pressen nicht verändert. Damit die Gestalt des Endes 48 un¬ verändert erhalten bleibt, ist der Preßstempel 74 der m Fig. 5 dargestellten Presse mit einer entsprechenden, kalottenfor- migen Vertiefung 76 ausgeführt, so daß die Umformkraft in den Reaktionskolbenkopf 46 eingeleitet werden kann, ohne daß sich die halbkugelige Kopfform ändert. Um des weiteren zu verhin¬ dern, das wahrend des Preß- bzw. Stauchungsvorgangs des Reak¬ tionskolbenkopfes 46 Materialumformungen in unkontrollierter Weise erfolgen, ist die Basis des Kopfes 46 als radial nach außen wegstehender Ringbund 78 größeren Durchmessers ausge¬ führt. In der Presse wird dieser Ringbund 78 wahrend des Preßvorgangs von einem Schutzzylinder 80 vollständig und eng umfaßt, während die Unterseite des Kopfes 46 durch eine Pres- senaufnähme 82 abgestützt ist. Nach Beendigung deε Preß- und Kalibriervorgangs wird die Pressenaufnahme 82 gegen die Kraft einer Feder 84 nach oben bewegt und drückt so den Ringbund 78 aus dem Schutzzylinder 80 heraus. Auf diese Weise findet wäh¬ rend des Umformvorgangs in der Presse eine Materialumformung des Reaktionskolbenkopfes 46 nur in dem definierten Bereich zwischen dem halbkugeligen Ende 48 und dem Ringbund 78 statt. Nebenbei führt die in den aus Metall bestehenden Reaktions¬ kolbenkopf 46 eingeleitete Preßkraft zu einer Verdichtung des Materials am halbkugeligen Ende 48 und damit zu einer erhöh¬ ten Verschleißtestigkeit in diesem Bereich.
Fig. 6 zeigt eine Fühlscheibe 36, die dazu geeignet ist, durch Einleiten einer axialen Preßkraft in ihrer Länge ver¬ kürzt zu werden. Die Fühlscheibe 36 weist in ihrem Boden 86 eine kreisringförmige Ausnehmung 88 rechteckigen Querschnitts auf, in die hinein beim Umformvorgang Material verdrängt wer- den kann. Statt einer kreisförmigen Ausnehmung können auch eine oder mehrere Ausnehmungen von anderer Gestalt vorgesehen werden, wichtig ist lediglich, daß das Material der Fühl¬ scheibe 36, die bevorzugt ebenfalls aus Metall besteht, in diese Ausnehmungen verdrängt werden kann, wobei die Ausneh- mungen die für den beabsichtigten Einsatz erforderliche Sta¬ bilität der Fühlscheibe nicht beeinträchtigen dürfen.
In Fig. 7 ist eine zweite Presse dargestellt, mit der die zur Längenanpassung erforderliche Materialumformung der Fühl- scheibe 36 durchgeführt werden kann. Auch bei der Fühlscheibe 36 ist es wichtig, das sich weder der Fühlscheibendurchmesser noch die Form der der Reaktionsscheibe 38 zugewandten Fläche der Fühlscheibe ändern. Im vorliegenden Fall hat beispiels¬ weise die Fühlscheibe auf ihrer der Reaktionsscheibe 38 zuge- wandten Fläche eine linsenförmige Erhebung 90, die bei einer Bremsbetätigung zuerst in die Reaktionsscheibe 38 eindringt und somit zu Beginn der Bremsung zu einem größeren Überset- zungsverhaltnis fuhrt. Der Preßstempel 74 ist daher mit einer entsprechenden Ausnehmung versehen, so daß die linsenförmige Erhebung 90 unverändert erhalten bleibt. Analog zur Presse für den Reaktionskolbenkopf 46 hat auch die Presse für die Fühlscheibe 36 einen Schutzzylinder 80, der wahrend des Preß- vorgangs die Fühlscheibe eng umschließt und verhindert, das sich deren Durchmesser ändert.
Die in den Figuren 5 und 7 gezeigten Pressen sind Teil einer Kalibrierstation zur automatischen Kalibrierung des Reakti¬ onskolbenkopfes 46 bzw. der Fühlscheibe 36. Die beiden Pres¬ sen sind elektronisch mit den zugehörigen Messvorrichtungen und mit einer Recheneinheit verbunden, so daß ohne störende Zeitverzogerung jeweils ein in seiner Lange an einen bestimm- ten Bremskraftverstärker angepaßter Reaktionskolbenkopf 46 bzw. eine Fühlscheibe 36 erzeugt werden können. Die unkali- brierten Reaktionskolbenkopfe bzw. Fuhlscheiben werden den Pressen mittels eines automatisch zufuhrenden Schwingförde¬ rers zur Verfugung gestellt und nach erfolgter Kalibrierung ebenfalls automatisch durch ein Transportsystem an den Monta¬ geplatz des Bremskraftverstarkers gebracht. Auf diese Weise ist eine sehr kostengünstige, fehlerfreie und vor allem tole¬ ranzarme Herstellung von Bremskraftverstarkern möglich.

Claims

Patentansprüche
5 l. Bremskraftverstärker, insbesondere Unterdruckbremskraft- verstärker (10) , mit einem Eingangsglied (32) , in das eine Betätigungskraft eingeleitet wird, und einem Ausgangsglied (42) zur Abgabe einer verstärkten Kraft an eine nachgeschal- tete Baugruppe, 10 dadurch gekennzeichnet, daß die Länge des Eingangsgliedes (32) und/oder des Ausgangsglie¬ des (42) durch Druckumformung seines Materials auf eine Sollänge kalibriert ist.
15 2. Bremskraftverstärker nach Anspruch 1, dadurch gekennzeichnet, daß das Eingangsglied (32) mehrteilig ist und nur ein separater Endabschnitt des Eingangsgliedes einer Druckumformung unterzogen wurde.
0 3. Bremskraftverstärker nach einen der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß das Ausgangsglied (42) mehrteilig ist und nur ein separater Endabschnitt des Ausgangsgliedes einer Druckumformung unterzogen wurde.
25 4. Bremskraftverstärker nach Anspruch 2 , dadurch gekennzeichnet, daß der Endabschnitt des Eingangs¬ gliedes (32) eine Fühlscheibe (36) ist.
5. Bremskraftverstärker nach Anspruch 4, ">0 dadurch gekennzeichnet, daß die Fühlscheibe (36) wenigstens eine Materialaussparung aufweist, die eine Längenänderung der Fühlscheibe (36) durch Druckumformen derselben ohne gleich¬ zeitige Durchmesseränderung ermöglicht.
3^ 6. Bremskraftverstärker nach Anspruch 5, dadurch gekennzeichnet, daß die Materialaussparung eine kreisringformige Ausnehmung (88) im Boden (86) der Fühlschei¬
Figure imgf000019_0001
7. Bremskraftverstärker nach Anspruch 3 , dadurch gekennzeichnet, daß der Endabschnitt des Ausgangs¬ gliedes (42) der Kopf (46) eines Reaktionskolbens (44) ist.
8. Bremskraftverstärker nach Anspruch 7, dadurch gekennzeichnet, daß der Kopf (46) des Reaktionskol- bens (44) eine als Ringbund (46) ausgebildete Basis aufweist, deren Durchmesser größer ist als der Durchmesser der übrigen Abschnitte des Kopfes (46) .
9. Montageverfahren für einen Bremskraftverstärker, insbe- sondere Unterdruckbremskraftverstärker, wobei der Bremskraft¬ verstärker ein Eingangsglied, in das eine Betätigungskraft eingeleitet wird, ein Ausgangsglied, über das eine verstärkte Kraft an eine nachgeschaltete Baugruppe abgegeben wird, und ein zwischen dem Eingangsglied und dem Ausgangsglied angeord- netes Kraftübermittlungsglied aufweist, mit den Schritten:
- Bereitstellen eines Eingangsgliedes und/oder eines Aus¬ gangsgliedes, dessen bzw. deren Länge mindestens einer größt¬ möglichen Sollänge entspricht, in einer Kalibrierstation,
- Ermitteln eines Istmaßes zwischen dem Eingangsglied und dem Kraftubermittlungsglied und/oder zwischen dem Ausgangsglied und einer Referenzfläche am Bremskraftverstärker,
- Vergleichen jedes ermittelten Istmaßes mit einem entspre¬ chenden, vorgegebenen Sollmaß zur Bestimmung der Sollänge des Eingangsgliedes und/oder des Ausgangsgliedes, - Kalibrieren des Eingangsgliedes und/oder des Ausgangsglie¬ des auf die bestimmte Sollange durch Druckumformen in der Ka¬ librierstation, und
- Einbauen des kalibrierten Eingangsgliedes und/oder Aus¬ gangsgliedes in den Bremskraftverstärker.
10. Montageverfahren nach Anspruch 9, dadurch gekennzeichnet, daß die Umformkraft jeweils eine Funktion der Differenz zwischen dem ermittelten Istmaß und dem vorgegebenen Sollmaß ist.
11. Montageverfahren nach Anspruch 9, dadurch gekennzeichnet, daß der Druckumformvorgang in der Ka¬ librierstation weggesteuert abläuft und kontinuierlich mit¬ tels einer Wegmessung überwacht wird.
12. Montageverfahren nach einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, daß das Eingangsglied oder/und das Ausgangsglied mehrteilig ist/sind und daß nur ein Endab¬ schnitt des Eingangsgliedes oder des Ausgangsgliedes dem Ka¬ libriervorgang unterworfen wird.
13. Montageverfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß die Gestalt des freien Endes des Eingangsgliedes oder des Ausgangsgliedes sich durch den Kali¬ briervorgang nicht oder zumindest nicht wesentlich ändert.
14. Montageverfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, daß die Kalibrierstation das Ein¬ gangsglied und/oder das Ausgangsglied automatisch entspre¬ chend der Differenz zwischen Ist- und Sollmaß auf die Sollänge kalibriert und anschließend zum Einbau zur Verfügung stellt.
PCT/EP1996/005498 1995-12-08 1996-12-09 Bremskraftverstärker und montageverfahren hierfür WO1997021572A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US09/077,678 US6092453A (en) 1995-12-08 1996-12-09 Brake servo unit and method assembling said unit
EP96943064A EP0865372B1 (de) 1995-12-08 1996-12-09 Bremskraftverstärker und montageverfahren hierfür
DE59607236T DE59607236D1 (de) 1995-12-08 1996-12-09 Bremskraftverstärker und montageverfahren hierfür
KR1019980704128A KR19990071846A (ko) 1995-12-08 1996-12-09 브레이크 부스터 및 그 조립 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19545947.4 1995-12-08
DE19545947A DE19545947C2 (de) 1995-12-08 1995-12-08 Bremskraftverstärker und Montageverfahren hierfür

Publications (1)

Publication Number Publication Date
WO1997021572A1 true WO1997021572A1 (de) 1997-06-19

Family

ID=7779630

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/005498 WO1997021572A1 (de) 1995-12-08 1996-12-09 Bremskraftverstärker und montageverfahren hierfür

Country Status (6)

Country Link
US (1) US6092453A (de)
EP (1) EP0865372B1 (de)
KR (1) KR19990071846A (de)
DE (2) DE19545947C2 (de)
ES (1) ES2160852T3 (de)
WO (1) WO1997021572A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862931A1 (fr) * 2003-12-01 2005-06-03 Bosch Gmbh Robert Servofrein comportant un piston de decompression en materiau plastique integre a la tige de poussee.

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6711981B2 (en) * 2001-05-18 2004-03-30 Bosch Sistemas De Frenado S.L. Servomotor with a deformation-adjustable sleeve and setup for the adjustment of such sleeve
US6681681B2 (en) 2001-12-26 2004-01-27 Delphi Technologies, Inc. Vacuum booster rear bearing
FR2847540B1 (fr) * 2002-11-22 2005-02-25 Bosch Sist De Frenado Sl Procede de reglage de la course morte d'un ensemble maitre-cylindre et servomoteur d'assistance pneumatique dans un dispositif de freinage
FR2849818A1 (fr) * 2003-01-14 2004-07-16 Delphi Tech Inc Procede pour ajuster l'un a l'autre un amplificateur de force et un maitre-cylindre et ensemble maitre-cylindre/amplificateur de force obtenu par le procede
DE10302780B4 (de) * 2003-01-24 2008-04-24 Lucas Automotive Gmbh Ventilelement für ein Steuerventil eines Bremskraftverstärkers, Bremskraftverstärker und Verfahren zur Herstellung eines Ventilelements
FR2850344B1 (fr) * 2003-01-27 2005-04-08 Bosch Sist De Frenado Sl Servofrein comportant un piston de decompression integre au piston primaire du maitre-cylindre
FR2850343B1 (fr) * 2003-01-27 2005-04-08 Bosch Sist De Frenado Sl Servofrein comportant un piston de decompression integre a la tige de poussee
DE102009018605A1 (de) 2008-05-24 2009-11-26 Continental Teves Ag & Co. Ohg Bremsbetätigungsvorrichtung
WO2011161878A1 (ja) 2010-06-23 2011-12-29 ボッシュ株式会社 負圧倍力装置、この負圧倍力装置を備えたブレーキシステム、および負圧倍力装置のプレートプランジャの製造方法
DE102015223498A1 (de) 2015-11-26 2017-06-01 Continental Teves Ag & Co. Ohg Pneumatischer Bremskraftverstärker mit einem Übertragungsglied
EP3492327B1 (de) 2016-07-19 2020-09-09 Robert Bosch GmbH Verfahren zur herstellung von bremsverstärkern
DE102016219410B4 (de) * 2016-10-06 2019-01-03 Continental Teves Ag & Co. Ohg Justierverfahren für ein Funktionsmaß in einem Aktuator und ein geeigneter Aktuator
DE102016219412B4 (de) 2016-10-06 2019-01-03 Continental Teves Ag & Co. Ohg Justierverfahren für ein Funktionsmaß in einem Aktuator und ein geeigneter Aktuator
DE102018201727A1 (de) * 2018-02-05 2019-08-08 Lucas Automotive Gmbh Verfahren zum Herstellen einer Bremskrafteinrichtung für eine Fahrzeugbremsanlage und eine solche Bremskrafteinrichtung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2163587A1 (de) * 1970-12-22 1972-07-13 Girling Ltd., Birmingham (Großbritannien); Vir: Wuesthoff, F., Dr.-Ing.; Pechmann, E. von, Dr.; Behrens, D., Dr.-Ing.; Goetz, R., Dipl.-Ing.; Pat.-Anwälte, 8000 München Differenzdruckverstärker
DE3941604A1 (de) * 1989-12-16 1991-06-20 Teves Gmbh Alfred Unterdruck-bremskraftverstaerker
DE4208384A1 (de) * 1992-03-16 1993-09-23 Teves Gmbh Alfred Unterdruck-bremskraftverstaerker
DE4317490A1 (de) * 1993-05-26 1994-12-01 Teves Gmbh Alfred Unterdruck-Bremskraftverstärker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2074270B (en) * 1980-04-16 1984-03-14 Lucas Industries Ltd Servo valves for brake boosters
FR2647741B1 (fr) * 1989-05-31 1991-08-23 Bendix France Procede de reglage de la valeur du saut d'un servomoteur d'assistance au freinage
DE3939499A1 (de) * 1989-11-30 1991-06-06 Teves Gmbh Alfred Unterdruckbremskraftverstaerker
DE4124518A1 (de) * 1991-07-24 1993-01-28 Kugelfischer G Schaefer & Co Verfahren zum einstellen des ansteuerleerwegs von hauptbremszylindern an bremskraftverstaerkern
US5233905A (en) * 1992-05-27 1993-08-10 Allied-Signal Inc. Adjustable plunger for control valve

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2163587A1 (de) * 1970-12-22 1972-07-13 Girling Ltd., Birmingham (Großbritannien); Vir: Wuesthoff, F., Dr.-Ing.; Pechmann, E. von, Dr.; Behrens, D., Dr.-Ing.; Goetz, R., Dipl.-Ing.; Pat.-Anwälte, 8000 München Differenzdruckverstärker
DE3941604A1 (de) * 1989-12-16 1991-06-20 Teves Gmbh Alfred Unterdruck-bremskraftverstaerker
DE4208384A1 (de) * 1992-03-16 1993-09-23 Teves Gmbh Alfred Unterdruck-bremskraftverstaerker
DE4317490A1 (de) * 1993-05-26 1994-12-01 Teves Gmbh Alfred Unterdruck-Bremskraftverstärker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2862931A1 (fr) * 2003-12-01 2005-06-03 Bosch Gmbh Robert Servofrein comportant un piston de decompression en materiau plastique integre a la tige de poussee.
EP1538050A1 (de) * 2003-12-01 2005-06-08 ROBERT BOSCH GmbH Bremskraftverstärker mit einem in der Stösselstange integrierten Dekompressionskolben aus einem elastischen Material

Also Published As

Publication number Publication date
DE19545947C2 (de) 2002-08-22
KR19990071846A (ko) 1999-09-27
DE19545947A1 (de) 1997-06-12
ES2160852T3 (es) 2001-11-16
EP0865372A1 (de) 1998-09-23
US6092453A (en) 2000-07-25
EP0865372B1 (de) 2001-07-04
DE59607236D1 (de) 2001-08-09

Similar Documents

Publication Publication Date Title
EP0865372A1 (de) Bremskraftverstärker und montageverfahren hierfür
DE60205738T2 (de) Verfahren und vorrichtung zur herstellung eines katalysators
DE2925550C2 (de) Fluiddruck-Verstärker
DE1293028B (de) Stroemungsdruck-Servomotor
EP0645290B1 (de) Kraftverstärkergehäuse, insbesondere für Kraftfahrzeugbremsanlagen, und Verfahren zum Zusammenbauen eines solchen Kraftverstärkergehäuses
EP1400425B1 (de) Unterdruck-Bremskraftverstärker für eine Hilfskraft-Bremsanlage für Kraftfahrzeuge
DE4317490A1 (de) Unterdruck-Bremskraftverstärker
WO1999010215A1 (de) Vollhydraulische bremskrafterzeuger/hauptzylinder-einheit mit verbesserter bremsdruckrückmeldung
EP0373315B1 (de) Anordnung zur Steuerung eines elektrisch gesteuerten Bremskreises einer in einem Fahrzeug angeordneten Mehrkreis-Bremsanlage mit druckmittelbetätigten Bremsen
EP1993892B1 (de) Pneumatischer bremskraftverstärker
DE19741133C2 (de) Unterdruck-Bremskraftverstärker
WO1993018948A1 (de) Unterdruck-bremskraftverstärker
EP2170539B1 (de) Verfahren und vorrichtung zur herstellung einer hochdruckdichten verbindung und zugehörige ventilpatrone für ein magnetventil
EP3350047B1 (de) Kombinierter zylindrischer betriebsbrems- und federspeicherbremszylinder und verfahren zu seiner herstellung
WO2015043970A1 (de) Kombinierter betriebsbrems- und federspeicherbremszylinder mit verbördelung zwischen dem betriebsbremszylinder und einer zwischenwand
DE19718097B4 (de) Differenzdruckbetätigter Bremskraftverstärker
EP1525128A1 (de) Bremskraftverstärker mit notbremsassistentfunktion
DE10049106A1 (de) Pneumatischer Bremskraftverstärker mit veränderlichem Kraftübersetzungsverhältnis
EP1202891B1 (de) Pneumatischer bremskraftverstärker und verfahren zu dessen herstellung
DE19581042B4 (de) Verfahren zum Herstellen eines Teils mit einer Hinterschneidung
EP0929430A1 (de) Bremskraftverstärker mit elektromagnetischer betätigungseinheit
DE3204408C2 (de) Verfahren zum Einstellen eines Schaltdrucks bei einer Ventilanordnung für einen Fluiddruckregler, Ventilanordnung zur Durchführung des Verfahrens und Fluiddruckregler mit zwei an jeweils einen eigenen Fluidkreis anschließbaren Ventilanordnungen
DE3140267A1 (de) Herstellverfahren fuer einen arbeitszylinder, insbesondere fuer einen pneumatischen bremskraftverstaerker fuer kraftfahrzeuge und vorrichtung zur durchfuehrung des verfahrens
DE60131620T2 (de) Bremskraftverstärker
DE19632278C2 (de) Elektronisch gesteuerter Bremskraftverstärker und Verfahren zu dessen Einstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996943064

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1019980704128

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09077678

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 521727

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996943064

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980704128

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996943064

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1019980704128

Country of ref document: KR