WO1997017016A2 - Sensor zum nichtinvasiven und kontinuierlichen erfassen der arteriellen pulswellenlaufzeit - Google Patents

Sensor zum nichtinvasiven und kontinuierlichen erfassen der arteriellen pulswellenlaufzeit Download PDF

Info

Publication number
WO1997017016A2
WO1997017016A2 PCT/DE1996/002010 DE9602010W WO9717016A2 WO 1997017016 A2 WO1997017016 A2 WO 1997017016A2 DE 9602010 W DE9602010 W DE 9602010W WO 9717016 A2 WO9717016 A2 WO 9717016A2
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
sensor
sensor according
strip
housing
Prior art date
Application number
PCT/DE1996/002010
Other languages
English (en)
French (fr)
Other versions
WO1997017016A3 (de
Inventor
Margit Biehl
Stefan Kiefer
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority to US09/068,448 priority Critical patent/US6200270B1/en
Priority to EP96945523A priority patent/EP0859569A1/de
Publication of WO1997017016A2 publication Critical patent/WO1997017016A2/de
Publication of WO1997017016A3 publication Critical patent/WO1997017016A3/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/0001Transmitting or indicating the displacement of elastically deformable gauges by electric, electro-mechanical, magnetic or electro-magnetic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves

Definitions

  • the invention relates to a sensor for the non-invasive and continuous detection of the arterial pulse wave propagation time, according to the preamble of claim 1, as is known for example from US Pat. No. 4,245,648.
  • a desirable goal of numerous manufacturers of blood pressure monitors is the non-invasive, continuous measurement of human blood pressure without the use of disruptive compression cuffs.
  • a further example for determining the pulse wave speed can be seen in US Pat. No. 4,245,648, in which a method and a device for measuring blood pressure and for determining the pulse rate are described.
  • Two pressure-sensitive sensors housed in an arm cuff are arranged along a blood-carrying vessel.
  • the pressure rise values recorded at time intervals can be used to calculate the pressure wave velocity.
  • the large device structure is disadvantageous, which is why it is not possible to use it in places which are difficult to access.
  • the application of the device is associated with a considerable impairment of the motor system.
  • the invention is based on the object of developing the sensor known from US Pat. No. 4,245,648 in such a way that it is so small and compact that it can be combined, for example, with wristwatches.
  • a sensor for the non-invasive and continuous detection of the arterial pulse wave propagation time in which at least two piezoelectric pressure sensors are arranged one behind the other in the direction of the arterial course, is designed in such a way that the piezoelectric pressure sensors have a pressure-sensitive, strip-shaped surface, each of which is arranged perpendicular to the direction of the arterial course and that a housing is provided which has at least two recesses adapted to the contours of the strip-shaped surfaces, in which the pressure-sensitive, strip-shaped surfaces of the pressure sensors are arranged flush with the housing surface.
  • the sensor according to the invention non-invasively detects the pressure pulsations of the radial artery, preferably at the level of the human wrist, at two closely spaced positions, one of which is more proximal and the other more distal at the touch point of the radial artery in the region of the wrist. From the temporal shift of the pulse maximum with respect to the two measuring positions, the pulse wave speed and thus, with prior patient-related calibration, the mean blood pressure can be determined. The level of the systolic and diastolic pressure can be determined directly from the measured difference between the maximum and minimum pulse pressure at one of the two positions. The device is so small that it can be worn continuously on the wrist, similar to a wristwatch. pregnancy is largely avoided.
  • the sensor detects directly the transit time difference of the pulse wave that propagates in the artery and thereby sets more stringent measurement criteria, so that the sensor according to the invention works more precisely than previously known measurement methods in which the indirect detection of the pulse wave via skin color, resistance or -surface shape takes place. Inexpensive mass production of the sensor is also conceivable.
  • the senor according to the invention has at least two separately operating pressure sensors, each of which provides a pressure-sensitive, strip-shaped surface, each of which is arranged perpendicular to the direction of the artery in its longitudinal extent.
  • the individual pressure sensors made of piezoelectric material are integrated in a semi-cylindrical housing in such a way that they are introduced into angularly extending recesses in the housing wall on the convex, semicircular lateral surface of the half cylinder.
  • the individual pressure-sensitive surfaces therefore essentially follow the convex-shaped semicircular surface contour of the half-cylinder, which is pressed against the skin surface, so that the curved pressure-sensitive surfaces intersect the course of the arteries with radial polarization.
  • the convex curvature of the half-cylinder and the associated pressure-sensitive surfaces serve to ensure that the sensor housing is lightly pressed against the natural shape of the skin surface. fit to the measuring point and thus better mechanical contact to the test object is to be ensured. Furthermore, the semi-cylindrical surface contour of the sensor housing serves to make the sensor largely insensitive to tilting about the longitudinal axis.
  • the pressure-sensitive pressure sensor surfaces must be designed to be relatively narrow in the direction of the arterial path, so that the shortest possible transit time of the pulse wave through each individual sensor area can be achieved, as a result of which a high temporal resolution capability can be achieved.
  • the distance between the two pressure-sensitive surface areas must be chosen to be so small that both pressure sensors still come to rest in the area of the surface of the radial artery. Only in this way can both pressure sensors detect the same temporal pulse profile. On the other hand, the distance should be large enough to still be able to resolve the temporal shift of the pulse maximum between the two pressure sensors. Tests have shown that these conditions can be realized with a width of the individual pressure-sensitive surfaces of 1 mm and a mutual distance of 1 cm.
  • the individual piezoelectric pressure sensors consist of piezoelectric material and, with their surface opposite the artery, protrude through the aforementioned recesses, which are incorporated in the convex-shaped housing wall.
  • the individual piezoelectric pressure sensors take on a semi-circular shape, in which, under external pressure loading, they are proportional between their outer and inner surfaces for the mechanical pressure or voltage effect polarization charges are released, which lead to an electrical voltage between the surfaces of the pressure sensors.
  • a simple impedance converter circuit that can be implemented as small as possible should preferably be provided, which consists, for example, of a field effect transistor and two resistors which are integrated directly in the interior of the sensor housing. Because of their high-impedance input, the entire sensor electronics should be completely shielded from electrical interference.
  • FIG. 1 external view of a sensor according to the invention
  • FIG. 2 longitudinal section through a sensor according to the invention. Description of exemplary embodiments
  • the sensor housing 1 shows an embodiment of a sensor according to the invention for non-invasive and continuous detection of the arterial pulse wave transit time, which has a semi-cylindrical housing 1.
  • a semi-cylindrical housing 1 On its circular, convex-shaped outer contour, two piezoelectric pressure sensors 2 spaced apart from one another are incorporated. With its convex, circular half-cylinder surface, the sensor according to the invention is pressed against the area of an artery 3 through which pulse waves 4 pass.
  • the sensor housing 1 preferably has a radius of curvature in the convex, semicircular jacket region of 2.5 mm and a total housing length of approximately 14 mm.
  • two angularly extending recesses are provided in the convex, semicircular jacket region of the housing 1, through which piezoelectric pressure sensor materials 2 protrude from the inside.
  • FIG. 2 shows a longitudinal sectional view through a sensor according to the invention, the semicircular convex surface of which lies opposite the artery 3.
  • the upper side of the semi-cylindrical housing 1 is interrupted by two recesses through which a piezoelectric film 5 projects from the inside.
  • the piezopolymer film 5 projects slightly beyond the surface of the housing 1.
  • the outward-facing, pressure-sensitive surface of the film is also metallized and thus electrically contacted with the metallic sensor housing 1.
  • the contact is preferably made via press or adhesive contact.
  • half disks made of conductive elastomer 6 are provided, which connect the piezopolymer film to an impedance converter circuit, which are applied to a substrate 7 for each individual pressure sensor.
  • the voltage tapping on the inside of each pressure sensor takes place in the region of the recesses via the respective conductive elastomer half-discs 6 of approximately 1 mm in thickness.
  • the elastomer half disks 6 are contacted by pressing contact with the non-metallized inside of the piezo film 5 with the respective signal input of the two integrated impedance converter circuits on the substrate 7.
  • the elastic backing of the film using elastic elastomer washers ensures that the film surface is pressed slightly outwards at the recesses, and thus comes to lie essentially flush with the housing surface or slightly raised.
  • the time shift of the pulse maxima is evaluated by differentiating the impedance converter output signals.
  • the time-shifted zero crossings of the two differentiated pulse pressure profiles can be used to start and stop an electronic stopwatch. Due to the small design of the sensor, it could be worn on a wristband together with miniaturized evaluation electronics and a display for displaying pulse frequency and blood pressure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Physiology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

Beschreiben wird ein Sensor zum nichtinvasiven und kontinuierlichen Erfassen der arteriellen Pulswellenlaufzeit, bei dem wenigstens zwei piezoelektrische Drucksensoren (2) voneinander beabstandet in Arterienverlaufsrichtung (4) hintereinander angeordnet sind. Die Erfindung zeichnet sich dadurch aus, daß die piezoelektrischen Drucksensoren (2) eine drucksensitive, streifenförmige Öberfläche aufweisen, die jeweils in ihrer Längserstreckung senkrecht zur Arterienverlaufsrichtung (4) angeordnet sind, und daß ein Gehäuse (1) vorgesehen ist, das wenigstens zwei, an die Konturen der streifenförmigen Oberflächen (5) angepaßte Ausnehmungen aufweist, in denen die drucksensitiven, streifenförmigen Oberflächen (5) der Drucksensoren bündig mit der Gehäuseoberfläche angeordnet sind.

Description

Sensor zum nichtinvasiven und kontinuierlichen Er¬ fassen der arteriellen Pulswellenlaufzeit
B e s c h r e i b u n g
Technisches Gebiet
Die Erfindung bezieht sich auf einen Sensor zum nicht¬ invasiven und kontinuierlichen Erfassen der arteriel¬ len Pulswellenlaufzeit, gemäß dem Oberbegriff des Patentanspruchs 1, wie er beispielsweise aus der US 4 245 648 bekannt ist.
Stand der Technik
Ein erstrebenswertes Ziel zahlreicher Hersteller von Blutdruckmeßgeräten ist die nichtinvasive, kontinuier¬ liche Messung des menschlichen Blutdruckes ohne die Zuhilfenahme störender Kompressionsmanschetten.
Wie seit langem bekannt ist, korreliert der menschliche Blutdruck, individuell unterschiedlich, mit der Puls¬ wellengeschwindigkeit. Diese Tatsache konnte bisher nicht zur kontinuierlichen Blutdruckmessung ausgenutzt werden, da keine zuverlässigen, preiswerten Sensoren zur Erfassung der Pulswellengeschwindigkeit erhältlich sind.
Bisher ist versucht worden, die Pulswellengeschwindig¬ keit, die am Handgelenk etwa 10 m/s beträgt, über die Änderung der Hautfarbe, die Änderung der Form der Haut¬ oberfläche oder über eine Änderung des elektrischen Hautwiderstandes zu erfassen. Auch eine Messung der Pulswellengeschwindigkeit mit Hilfe der Ultraschall- Doppler Methode wurde versucht, -eine zuverlässige, aber nicht unbedingt preiswerte Methode. Ein derartiger Ansatz ist in der DE-OS-1 905 620 beschrieben. Zwei voneinander beabstandete piezoelektrische Schwingersysteme, deren Schallkegel ein zu unter¬ suchendes Gefäß bestrahlen sowie ein Doppier- Empfangsgerät erlauben die Erfassung der Ge¬ fäßwandgeschwindigkeit, mit die Gefäßwand durch die, das Gefäß durchströmenden Blutdruckwellen ausgelenkt wird. Über spezielle Auswetrealgorithmen erhält man schließlich Auskunft über die Pulwellengeschwindigkeit.
Ein weiteres Beispiel zur Bestimmung der Pulswellengschwindigkeit geht aus der US 4 245 648 hervor, in der ein Verfahren und eine Vorrichtung zur Blutdruckmessung und zur Bestimmung der Pulsrate be¬ schrieben ist. Zwei in einer Armmanschette untergebrachte druckempfindliche Sensoren sind entlang eines blutführenden Gefäßes angeordnet. Die in zeitlichen Abständen erfassten Druckanstiegswerte können zur Berechnung der Druckwellengeschwindigkeit verwendet werden. Nachteilhaft ist jedoch der große Vor¬ richtungsaufbau, weshalb der Einsatz an schwer zu¬ gänglichen Stellen nicht möglich ist. Ferner ist die Applikation der Vorrichtung mit einer erheblichen Be¬ einträchtigung der Motorik verbunden.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde den aus der US 4 245 648 bekannten Sensor so weiterzubilden, daß er derart klein und kompakt ausgeführt ist, daß er beispielsweise mit Armbanduhren kombiniert werden kann.
Die Lösung, der der Erfindung zugrundeliegenden Aufgabe ist im Anspruch 1 angegeben. Vorteilhafte Ausgestaltungen sind Gegenstand der Unteransprüche.
Erfindungsgemäß ist ein Sensor zum nichtinvasiven und kontinuierlichen Erfassen der arteriellen Pulswellenlaufzeit, bei dem wenigstens zwei piezoelektrische Drucksensoren voneinander beabstandet in Arterienverlaufsrichtung hintereinander angeordnet sind, derart ausgebildet, daß die piezoelektrischen Drucksensoren eine drucksensitive, streifenförmige Oberfläche aufweisen, die jeweils in ihrer Längserstreckung senkrecht zur Arterienverlaufsrichtung angeordnet sind, und daß ein Gehäuse vorgesehen ist, das wenigstens zwei, an die Konturen der streifenformigen Oberflächen angepaßte Ausnehmungen aufweist, in denen die drucksensitiven, streifenformigen Oberflächen der Drucksensoren, bündig mit der Gehäuseoberfläche angeordnet sind.
Der erfindungsgemäße Sensor erfaßt nichtinvasiv die Druckpulsationen der arteria radialis vorzugsweise in Höhe des menschlichen Handgelenkes an zwei dicht bei¬ einanderliegenden Positionen, von denen sich die eine mehr proximal und die andere mehr distal am Tastpunkt der arteria radialis im Bereich des Handgelenkes befin¬ det. Aus der zeitlichen Verschiebung des Pulsmaximums bezüglich der beiden Meßpositionen läßt sich die Puls¬ wellengeschwindigkeit und damit, bei vorheriger patien¬ tenbezogener Kalibrierung, auch der mittlere Blutdruck ermitteln. Die Höhe des systolischen und diastolischen Druckes läßt sich unmittelbar aus der gemessenen Dif¬ ferenz zwischen Pulsdruckmaximum und -minimum an einer der beiden Positionen bestimmen. Die Einrichtung ist so klein, daß sie ähnlich einer Armbanduhr kontinuierlich am Handgelenk getragen werden kann, wodurch eine Beein- trächtigung des Patienten weitgehend vermieden wird.
Der Sensor erfaßt unmittelbar die Laufzeitdifferenz der Pulswelle, die sich in der Arterie fortpflanzt und setzt dadurch schärfere Meßkriterien, so daß der erfin¬ dungsgemäße Sensor genauer als bisher bekannte Meßverfah¬ ren arbeitet, bei denen die indirekte Erfassung der Pulswelle über Hautfarbe, -widerstand oder -oberflä- chenform erfolgt. Eine preiswerte Massenproduktion des Sensors ist ebenso denkbar.
Der erfindungsgemäße Sensor weist zur Druckerfassung wenigstens zwei getrennt arbeitende Drucksensoren auf, die jeweils eine drucksensitive, streifenförmige Ober¬ fläche vorsehen, die jeweils in ihrer Längserstreckung senkrecht zur Arterienverlaufsrichtung angeordnet sind. Die einzelnen aus piezoelektrischem Material bestehen¬ den Drucksensoren sind in einem halbzylinderförmigen Gehäuse derart integriert, daß sie in angulär verlaufende Ausnehmungen in der Gehäusewand, an der konvex, halbkreisförmig ausgebildeten Mantelfläche des Halbzylinders eingebracht sind.
Die einzelnen drucksensitiven Oberflächen folgen daher im wesentlichen der konvex geformten halbkreisförmigen Oberflächenkontur des Halbzylinders, die gegen die Hautoberfläche gepreßt wird, so daß die gekrümmten drucksensitiven Oberflächen mit radialer Polarisation den Arterienverlauf senkrecht schneiden.
Die konvexe Krümmung des Halbzylinders sowie der damit verbundenen drucksensitiven Oberflächen dient dazu, daß bei leichtem Andrücken des Sensorgehäuses an die natürliche Form der Hautoberfläche eine bessere An- passung an die Meßstelle und damit eine bessere mechanische Kontaktierung zum Meßobjekt zu ge¬ währleisten ist. Ferner dient die halbzylinderförmige Oberflächenkontur des Sensorgehäuses dazu, daß der Sensor weitgehend unempfindlich gegen Verkippen um die Längsachse ist.
Ferner müssen die drucksensitiven Drucksensoroberflächen in Richtung des Arterienverlaufes verhältnismäßig schmal ausgebildet sein, so daß eine möglichst kurze Durch¬ laufzeit der Pulswelle durch jeden einzelnen Sensorbe¬ reich erreicht werden kann, wodurch ein hohes zeit¬ liches Auflösungsvermögen zu erzielen ist. Der Abstand beider drucksensitiven Oberflächenbereiche muß dabei derart klein gewählt werden, so daß beide Drucksensoren noch im Bereich des oberflächennahen Verlaufs der arte¬ ria radialis zu liegen kommen. Nur auf diese Weise können beide Drucksensoren den gleichen zeitlichen Pulsverlauf detektieren. Andererseits sollte der Abstand groß genug sein, um die zeitliche Verschiebung des Pulsmaximums zwischen den beiden Drucksensoren noch auflösen zu können. Versuche haben gezeigt, daß diese Bedingungen mit einer Breite der einzelnen drucksensitiven Oberflä¬ chen von 1 mm und einem gegenseitigen Abstand von 1 cm realisiert werden können.
Die einzelnen piezoelektrischen Drucksensoren bestehen aus piezoelektrischem Material und ragen mit ihrer der Arterie gegenüberliegenden Oberfläche durch die vorge¬ nannten Ausnehmungen, die in der konvex geformten Ge¬ häusewand eingearbeitet sind. Die einzelnen piezoelek¬ trischen Drucksensoren nehmen auf diese Weise Halbring¬ form an, in denen bei äußerer Druckbelastung zwischen ihrer äußeren und ihrer inneren Oberfläche proportional zur mechanischen Druck- oder Spannungseinwirkung Pola¬ risationsladungen freigesetzt werden, die zu einer elektrischen Spannung zwischen den Oberflächen der Drucksensoren führen.
Da unter Druckeinwirkung zwischen den Oberflächen der piezoelektrischen Drucksensoren eine hohe Spannung durch vergleichsweise wenig Ladungen erzeugt wird, lassen sich niederfrequente Druckschwankungen, wie arterielle Druckpulsationen, nicht mehr erfassen, sofern der Auf¬ nehmer direkt an ein niederohmiges Signalverarbeitungs¬ system angeschlossen ist. Ein Vorverstärker mit mög¬ lichst hohem Eingangswiderstand und geringem Ausgangs¬ widerstand ist daher erforderlich, der möglichst nahe bei dem piezoelektrischen Element anzuordnen ist.
Vorzugsweise ist für jeden piezoelektrischen Drucksensor eine einfache, möglichst klein zu re¬ alisierende Impedanzwandlerschaltung vorzusehen, die beispielsweise aus einem Feldeffekttransistor und zwei Widerständen, die unmittelbar im Inneren des Sensorge¬ häuses integriert sind, besteht. Die gesamte Senso¬ relektronik sollte aufgrund ihres hochohmigen Eingangs lückenlos gegen elektrische Einstreuungen abgeschirmt sein.
Kurze Beschreibung der Zeichnung
Die Erfindung wird anhand eines Ausführungsbeispiels unter Bezugnahme auf die Zeichnungen exemplarisch beschrieben. Es zeigen:
Fig. 1 Außenansicht eines erfindungsgemäßen Sensors und
Fig. 2 Längsschnitt durch einen erfindungsgemäßen Sensor. Beschreibung von Ausführungsbeispielen
In Fig. 1 geht eine erfindungsgemäße Ausführungsform eines Sensors zur nichtinvasiven und kontinuierlichen Erfassung der arteriellen Pulswellenlaufzeit hervor, der ein halbzylinderförmiges Gehäuse 1 aufweist. An dessen kreisförmig, konvex geformte Außenkontur sind zwei voneinander beabstandete piezoelektrische Drucksensoren 2 eingearbeitet. Der erfindungsgemäße Sensor wird mit seiner konvex kreisförmig ausgebildeten Halbzylin¬ deroberfläche an den Bereich einer Arterie 3 gedrückt, die von Pulswellen 4 durchwandert werden. Das Sensorge¬ häuse 1 weist vorzugsweise einen Krümmungsradius im konvex, halbkreisförmigen Mantelbereich von 2,5 mm und eine gesamte Gehäuselänge von etwa 14 mm auf. Vorzugs¬ weise sind im konvex halbkreisförmig ausgebildeten Mantelbereich des Gehäuses 1 zwei angulär verlaufende Ausnehmungen vorgesehen, durch die von innen piezoelek¬ trische Drucksensormaterialien 2 hindurchragen.
Aus Fig. 2 geht eine Längsschnittdarstellung durch einen erfindungsgemäßen Sensor hervor, dessen halb¬ kreisförmig konvex ausgebildete Manteloberfläche der Arterie 3 gegenüberliegt. Wie aus der Darstellung her¬ vorgeht, ist die Oberseite des halbzylinderförmigen Gehäuses 1 durch zwei Ausnehmungen unterbrochen, durch die von Innen eine piezoelektrische Folie 5 hindurch¬ ragt. Die Piezopolymerfolie 5 ragt leicht über die Oberfläche des Gehäuses 1 hinaus. Die nach außen gerichtete, drucksensitive Oberfläche der Folie ist darüber hinaus metallisch bedampft und somit mit dem metallischen Sensorgehäuse 1 elektrisch kontaktiert. Die Kontaktierung erfolgt vorzugsweise über Preß- oder Klebekontaktierung. Um die bei der Deformation der Piezopolymerfolie erzeugten Polarisationsladungen an der Unterseite der Folie abzugreifen, sind Halbscheiben aus leitfähigem Elastomer 6 vorgesehen, die die Piezopolymerfolie mit einer Impedanzwandlerschaltung, die für jeden einzelnen Drucksensor auf einem Substrat 7 aufgebracht sind, verbunden. Der Spannungsabgriff an der Innenseite eines jeden Drucksensors erfolgt im Bereich der Ausnehmungen über die jeweils leitenden Elastomerhalbscheiben 6 von ca. 1 mm Dicke. Die Elastomerhalbscheiben 6 werden durch Preßkontaktierung mit der nichtmetallisierten Innenseite der Piezofolie 5 mit dem jeweiligen Signaleingang der beiden integrierten Impedanzwandler¬ schaltungen auf dem Substrat 7 kontaktiert. Gleichzeitig ist durch die elastische Hinterfütterung der Folie durch Verwendung elastischer Elastomerhalb¬ scheiben dafür gesorgt, daß die Folienoberfläche an den Ausnehmungen leicht nach außen gedrückt ist, und somit im wesentlichen frontbündig oder leicht erhaben mit der Gehäuseoberfläche zu liegen kommt.
Die Auswertung der zeitlichen Verschiebung der Puls- maxima erfolgt durch Differenzierung der Impedanzwand¬ ler-Ausgangssignale. Die zeitlich verschobenen Null¬ durchgänge der beiden differenzierten Pulsdruckverläufe können zum Starten und Stoppen einer elektronischen Stoppuhr herangezogen werden. Durch die kleine Bauart des Sensors könnte dieser zusammen mit einer miniaturisierten Auswerteelektronik sowie einem Display zur Anzeige von Pulsfrequenz und Blutdruck an einem Armband getragen werden.

Claims

P a t e n t a n s p r ü c h e
1. Sensor zum nichtinvasiven und kontinuierlichen Erfassen der arteriellen Pulswellenlaufzeit, bei dem wenigstens zwei piezoelektrische Drucksensoren voneinander beabstandet in Arterienverlaufsrichtung hintereinander angeordnet sind, dadurch gekennzeichnet, daß die piezoelektrischen Drucksensoren eine drucksensitive, streifenförmige Oberfläche aufweisen, die jeweils in ihrer Längserstreckung senkrecht zur Arterienverlaufsrichtung angeordnet sind, und daß ein Gehäuse vorgesehen ist, das wenigstens zwei, an die Konturen der streifenformigen Oberflächen angepaßte Ausnehmungen aufweist, in denen die drucksensitiven, streifenformigen Oberflächen der Drucksensoren, bündig mit der Gehäuseoberfläche angeordnet sind.
2. Sensor nach Anspruch 1, dadurch gekennzeichnet, daß das Gehäuse metallisch ist.
3. Sensor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die drucksensitiven, streifenformigen Oberflächen der piezoelektrischen Drucksensoren jeweils eine Streifenbreite auf¬ weisen, die kleiner ist als der gegenseitige Abstand zweier in Arterienverlaufsrichtung angeordneten Drucksensoren.
4. Sensor nach Ansprch 3, dadurch gekennzeichnet, daß der Abstand der beiden piezoelektrischen Drucksensoren 1 cm und die "Breite ihrer streifenformigen Oberflächen 1 mm betragen.
5. Sensor nach Anspruch 2, dadurch gekennzeichnet, daß das metallische Gehäuse halbzylinderförmig ausgebildet ist und an seiner konvex, halbkreisförmig ausgebildeten Mantelfläche die Ausnehmungen derart aufweist, so daß sie angulär wenigstens teilweise um die Zylinderachse verlaufen.
6. Sensor nach Anspruch 5, dadurch gekennzeichnet, daß der Krümmungsradius des Halbzylinders 2,5 mm beträgt.
7. Sensor nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß ein piezoelektrischer Drucksensor eine Piezopolymerfolie, vorzugsweise aus Polyvinylidenfluorid, aufweist, die zumindest auf ihrer dem Gehäuse zugewandten Seite an den Bereichen der drucksensitiven Oberfläche metallisch beschichtet ist.
8. Sensor nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß jeder piezoelektrische Drucksensor eine Impedanzwandlerschaltung zur Vorver¬ stärkung der piezoelektrischen Signale aufweist.
9. Sensor nach Anspruch 1 und 8, dadurch gekennzeichnet, daß zur elektrischen Kontaktierung der innseitigen drucksensitiven Oberfläche jedes piezoelektrischen Drucksensors mit der Impedanzwandlerschaltung ein leitfähiges Verformelement vorgesehen ist.
10. Sensor nach Anspruch 9, dadurch gekennzeichnet, daß das leitfähige Ve"r- formelement aus leitfähigem Silikonkautschuk besteht.
11. Sensors nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß zum Erfassen des zeitlichen Abstandes der Pulswellenmaxima in der arteria radialis der zeitliche Abstand der Nulldurchgänge der ersten zeitlichen Ableitung der beiden Sensorsignale re¬ gistriert wird.
12. Sensor nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß er an einem Armband oder in einer Armbanduhr integriert zur Pulsfrequenz- und Blutdruckmessung angeordnet ist.
PCT/DE1996/002010 1995-11-10 1996-10-23 Sensor zum nichtinvasiven und kontinuierlichen erfassen der arteriellen pulswellenlaufzeit WO1997017016A2 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US09/068,448 US6200270B1 (en) 1995-11-10 1996-10-23 Sensor for non-invasive and continuous determination of the duration of arterial pulse waves
EP96945523A EP0859569A1 (de) 1995-11-10 1996-10-23 Sensor zum nichtinvasiven und kontinuierlichen erfassen der arteriellen pulswellenlaufzeit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19542019A DE19542019C1 (de) 1995-11-10 1995-11-10 Sensor zum nichtinvasiven und kontinuierlichen Erfassen der arteriellen Pulswellenlaufzeit
DE19542019.5 1995-11-10

Publications (2)

Publication Number Publication Date
WO1997017016A2 true WO1997017016A2 (de) 1997-05-15
WO1997017016A3 WO1997017016A3 (de) 1997-09-12

Family

ID=7777181

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/002010 WO1997017016A2 (de) 1995-11-10 1996-10-23 Sensor zum nichtinvasiven und kontinuierlichen erfassen der arteriellen pulswellenlaufzeit

Country Status (4)

Country Link
US (1) US6200270B1 (de)
EP (1) EP0859569A1 (de)
DE (1) DE19542019C1 (de)
WO (1) WO1997017016A2 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021940A1 (de) 2012-11-11 2014-05-15 Holger Redtel Blutdruck- und Pulsmessung mittels Pulswellenlaufzeit, mit handelsüblichen Kameras für Video und Einzelbilder, vorzugsweise mit einem Smartphone und verbundenen Geräten
DE102013001553A1 (de) 2013-01-30 2014-07-31 Holger Redtel Vitalparametermessung mittels Auswertung von RR- Intervallen und der Pulswellenlaufzeit, sowie Sauerstoff- und Atemmessung, Identitätserkennung, mit handelsüblichen Kameras für Video und oder Einzelbilder, Vorzugsweise mit einem Smartphone und Folgesystemen und deren verbundenen Geräten mit und ohne Berührung, Berührungsfrei-Fernmessung
US9892505B2 (en) 2012-11-11 2018-02-13 Kenkou Gmbh Method and device for determining vital parameters

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0008883D0 (en) * 2000-04-12 2000-05-31 Univ Ulster Bodily flow measuring system
US20040148601A1 (en) * 2000-08-02 2004-07-29 Kroening James L. Method and system for calculation and use of a disk image identifer
TW570769B (en) * 2002-04-26 2004-01-11 Chin-Yu Lin Method and device for measuring pulse signals for simultaneously obtaining pulse pressure and blood flow rate
WO2005079189A2 (en) 2003-09-12 2005-09-01 The Regents Of The University Of California Arterial endothelial function measurement method and apparatus
CA2613241A1 (en) 2005-06-21 2007-01-04 Cardiomems, Inc. Method of manufacturing implantable wireless sensor for in vivo pressure measurement
US20080167563A1 (en) * 2007-01-08 2008-07-10 Juvent, Inc. Non-invasive blood flow monitor
WO2008084464A1 (en) * 2007-01-09 2008-07-17 Emergent Medical Innovations Patents Limited A system for providing cardiovascular information
US8636670B2 (en) 2008-05-13 2014-01-28 The Invention Science Fund I, Llc Circulatory monitoring systems and methods
US9717896B2 (en) 2007-12-18 2017-08-01 Gearbox, Llc Treatment indications informed by a priori implant information
US20090287120A1 (en) 2007-12-18 2009-11-19 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Circulatory monitoring systems and methods
DE102008024737B3 (de) 2008-05-20 2010-01-07 SectorCon Ingenieurgesellschaft für System- und Softwaretechnik mbH Piezoelektrischer Sensor zur Druckfluktuationsmessung
US20120059237A1 (en) * 2009-05-04 2012-03-08 Jack Amir System and method for monitoring blood glucose levels non-invasively
CN103002797A (zh) * 2010-06-25 2013-03-27 德雷塞尔大学 非侵入性血压传感器
EP3116381A1 (de) 2014-03-09 2017-01-18 Kenkou GmbH System zur bestimmung von vitalparametern
TWM547950U (zh) * 2016-05-31 2017-09-01 宜強科技股份有限公司 不具加壓泵的穿戴式血壓量測裝置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245648A (en) * 1978-09-20 1981-01-20 Trimmer Gordon A Method and apparatus for measuring blood pressure and pulse rate
EP0289700A1 (de) * 1987-05-02 1988-11-09 Colin Electronics Co., Ltd. Gerät zur Anzeige von Pulswellen

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1905620A1 (de) * 1969-02-05 1970-08-20 Siemens Ag Geraet zur Messung der Pulswellengeschwindigkeit
GB8401500D0 (en) * 1984-01-20 1984-02-22 Johnson Matthey Plc Measurement of physiological parameter
JPS62292137A (ja) * 1986-06-11 1987-12-18 株式会社 シグナル テクノロジ− 血圧測定器
IL86010A (en) * 1987-07-03 1993-02-21 Hi Bridge Kk Apparatus for measuring blood pressure
DE9104516U1 (de) * 1991-04-13 1992-05-14 Kiefer, Lutz, Dr.med., 6750 Kaiserslautern Pulsdrucksensor zur Messung des Blutdrucks und der Karotis Pulskurve
JP3409399B2 (ja) * 1993-11-30 2003-05-26 セイコーエプソン株式会社 投薬制御装置
US5533511A (en) * 1994-01-05 1996-07-09 Vital Insite, Incorporated Apparatus and method for noninvasive blood pressure measurement
US5590649A (en) * 1994-04-15 1997-01-07 Vital Insite, Inc. Apparatus and method for measuring an induced perturbation to determine blood pressure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4245648A (en) * 1978-09-20 1981-01-20 Trimmer Gordon A Method and apparatus for measuring blood pressure and pulse rate
EP0289700A1 (de) * 1987-05-02 1988-11-09 Colin Electronics Co., Ltd. Gerät zur Anzeige von Pulswellen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SENSORS AND ACTUATORS - A PHYSICAL, Bd. a21-a23, Nr. 1/3, April 1990, LAUSANNE, CH, Seiten 879-882, XP000355777 CHEN ET AL.: "A piezopolymer finger pulse and breathing wave sensor" *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012021940A1 (de) 2012-11-11 2014-05-15 Holger Redtel Blutdruck- und Pulsmessung mittels Pulswellenlaufzeit, mit handelsüblichen Kameras für Video und Einzelbilder, vorzugsweise mit einem Smartphone und verbundenen Geräten
US9892505B2 (en) 2012-11-11 2018-02-13 Kenkou Gmbh Method and device for determining vital parameters
DE102013001553A1 (de) 2013-01-30 2014-07-31 Holger Redtel Vitalparametermessung mittels Auswertung von RR- Intervallen und der Pulswellenlaufzeit, sowie Sauerstoff- und Atemmessung, Identitätserkennung, mit handelsüblichen Kameras für Video und oder Einzelbilder, Vorzugsweise mit einem Smartphone und Folgesystemen und deren verbundenen Geräten mit und ohne Berührung, Berührungsfrei-Fernmessung

Also Published As

Publication number Publication date
US6200270B1 (en) 2001-03-13
WO1997017016A3 (de) 1997-09-12
EP0859569A1 (de) 1998-08-26
DE19542019C1 (de) 1997-03-06

Similar Documents

Publication Publication Date Title
DE19542019C1 (de) Sensor zum nichtinvasiven und kontinuierlichen Erfassen der arteriellen Pulswellenlaufzeit
DE102008024737B3 (de) Piezoelektrischer Sensor zur Druckfluktuationsmessung
DE69930523T2 (de) Sensor mit einer dünnen piezoelektrischen polymerschicht
DE3533912C2 (de)
DE69128044T2 (de) Verfahren und Gerät zur Anzeige und Auswertung der Schluckbewegung eines Patienten
DE69829152T2 (de) Vorrichtung zur Messung von Pulswellen
EP0625025B1 (de) Sensor und einrichtung zum messen des blutdruckes
DE3873742T2 (de) Verfahren und geraet zum nicht eindringenden pruefen der elastizitaet von weichen biologischen geweben.
DE2911258C2 (de) Vorrichtung zum noninvasiven Messen der Blutströmungsgeschwindigkeit nach der Ultraschall-Doppler-Effekt-Methode
DE3689698T2 (de) Blutgeschwindigkeitsmesser nach dem Ultraschall-Doppler-Prinzip.
DE69026137T2 (de) Ultraschallführungssystem für einen Katheter
DE19602460A1 (de) Blutdruckmeßverfahren und zugehörige Vorrichtung
DE3807672A1 (de) Verfahren zum kontinuierlichen messen des blutdrucks am menschen und blutdruckmessgeraet zum durchfuehren des verfahrens
DE19649679B4 (de) Schwingungserfassungssensor
EP3801281A1 (de) Verfahren und system zum ermitteln der schallgeschwindigkeit in einem fluid im bereich eines implantierten, vaskulären unterstützungssystems
US20040015094A1 (en) Measuring device
DE69115599T2 (de) Druckmessgerät
US5460184A (en) Mental-concentration measuring method and apparatus
DE3345739C2 (de) Am Handgelenk zu befestigende Einrichtung zum Erfassen und Anzeigen der Pulsfrequenz und anderer hiervon ableitbarer Kreislaufparameter
EP3669177B1 (de) Photoakustik-sensorkopf und photoakustik-messapparat mit verbesserter störsignal-unterdrückung
DE19609698A1 (de) Blutdruckmeßgerät
DE69122929T2 (de) Pulsmessgerät
DE2848198A1 (de) Sensoranordnung fuer eine elektronische blutdruckmessung
EP3879582A1 (de) System aus graphentransistoren zur messung elektrophysiologischer signale
DE112009001006T5 (de) Vorrichtung zum Bewerten des Risikos von zerebrovaskulären Krankheiten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1996945523

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09068448

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996945523

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97517735

Format of ref document f/p: F

WWR Wipo information: refused in national office

Ref document number: 1996945523

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996945523

Country of ref document: EP