WO1997016628A2 - Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine - Google Patents

Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine Download PDF

Info

Publication number
WO1997016628A2
WO1997016628A2 PCT/DE1996/001980 DE9601980W WO9716628A2 WO 1997016628 A2 WO1997016628 A2 WO 1997016628A2 DE 9601980 W DE9601980 W DE 9601980W WO 9716628 A2 WO9716628 A2 WO 9716628A2
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
components
transition
gas duct
transition element
Prior art date
Application number
PCT/DE1996/001980
Other languages
English (en)
French (fr)
Other versions
WO1997016628A3 (de
Inventor
Siegfried BÄHR
Jens Rackow
Dirk Lorenz
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP96945509A priority Critical patent/EP0858551B1/de
Priority to DE59604798T priority patent/DE59604798D1/de
Publication of WO1997016628A2 publication Critical patent/WO1997016628A2/de
Publication of WO1997016628A3 publication Critical patent/WO1997016628A3/de
Priority to US09/070,402 priority patent/US6062814A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/30Exhaust heads, chambers, or the like

Definitions

  • the invention relates to a transition element between components of a flue gas duct, which is connected downstream of a gas turbine of a power plant.
  • Gas turbines are used in many areas, particularly in
  • Power plants used to drive generators or work machines.
  • the energy content of a fuel is used to generate the rotational movement of the turbine shaft.
  • the working fluid or hot gas that arises when the fuel is burned is stored in the
  • Gas turbine relaxed and then fed as exhaust gas or flue gas to a flue gas duct connected to the gas turbine.
  • the flue gas duct of the gas turbine usually comprises several interconnected components or duct pieces. Depending on the design and type of use of the gas turbine, a diffuser, a compensator and / or other elements, such as e.g. a main chimney, a bypass chimney.
  • each component is usually heated by the exhaust gas or flue gas flowing through it.
  • the flue gas cools down along the flue gas direction by heat exchange with the respective components.
  • each component is heated to a different temperature.
  • the invention is therefore based on the object of specifying a transition element between the components of a flue gas duct of the type mentioned above, which enables the components and thus the entire gas turbine system to have a particularly long service life.
  • the transition element has a first heat insulation element, the thickness of which varies in order to set a temperature profile in a transition region as a function of the location variables along the flue gas duct.
  • the invention is based on the consideration that abrupt temperature jumps between adjacent components should be avoided for a long service life of the components of the flue gas duct of the gas turbine. This can be achieved by a temperature profile which changes slowly in the region of the transition between two components of the flue gas duct.
  • the setting of a suitable temperature profile can accordingly be brought about by a correspondingly modified heat insulation element by varying its thickness as a function of the location variables along the flue gas duct.
  • the set temperature profile is expediently constant for a particularly effective reduction of transient temperature loads on the components.
  • the thermal insulation could be step-shaped.
  • non-step-shaped thermal insulation should be used for the temperature profile.
  • the thickness of the heat insulation element should preferably depend linearly on the location coordinate. Such a transition element can also be produced in a particularly simple manner.
  • the length of the transition region is preferably greater than the temperature decay length of the wall material of the components.
  • the temperature decay length is the physical parameter for describing a local temperature change within a material.
  • a transient temperature load on the wall material of the components is also reduced by expediently varying the extent of at least one of the components in at least one subarea of the flue gas duct linearly with the location variable. With a round cross section of the flue gas duct, this partial area is thus conical. In the case of a square cross section of the flue gas duct, however, the partial area corresponds to the outer surface of a truncated pyramid.
  • the transition element in the transition region expediently has a first heat insulation element as inner insulation and a second heat insulation element as outer insulation, the thicknesses of which function as a function of the location variables vary in opposite directions.
  • the advantages achieved by the invention are, in particular, that a temperature change due to the varying thickness of the heat insulation element during operation of the gas turbine.
  • turprofil sets such that excessive material loads on the components of the flue gas duct are avoided.
  • Radial constraints resulting from different thermal expansions of different components can be compensated, in particular also by the partial area in which the extent of at least one of the components varies linearly with the location variable.
  • FIG. 1 schematically shows a side view of a gas turbine with a flue gas duct opening into a waste heat boiler
  • FIG. 2 and 3 show a section II and III from FIG. 1 on a larger scale, each with a transition element between two components at two different locations in the flue gas duct of the gas turbine in a longitudinal section.
  • FIG. 1 shows, as part of a power plant, a gas turbine system 1 with a waste heat boiler 6 connected downstream of the gas turbine 2 via a flue gas duct 4 for steam generation, for example for a steam turbine (not shown).
  • the Flue gas duct 4 comprises, as components or duct pieces, a metal compensator 8, a diffuser 10, a bypass chimney 12 and a duct piece 14 opening into the waste heat boiler 6.
  • hot flue gas RG emerging from the gas turbine 2 flows through the flue gas channel 4 in the direction of arrow 20 into the waste heat boiler 6.
  • the flue gas RG cooled in the waste heat boiler 6 during steam generation leaves the waste heat boiler 6 via its chimney 22 .
  • the speed of the hot flue gas RG emerging axially from the gas turbine 2 is reduced in the diffuser 10 connected to the metal compensator 8, so that the static flue gas pressure rises. Due to the high outlet temperature of the hot flue gas RG of approximately 500 to 600 ° C., thermal expansions occur which are to be compensated for by the metal compensator 8. At connection points between two components 8 and 10, and 12 and 14 of the flue gas channel 4, local and / or transient temperature loads also occur due to a continuous cooling of the flue gas RG along a location coordinate x indicated by the arrow 24 in the direction of the flue gas duct 4.
  • the flue gas duct 4 has at the connection points between two of the components 8, 10, 12, 14 each have a transition element 30 and 30 ', as shown in detail in FIGS. 2 and 3, respectively.
  • the transition elements 30, 30 ' serve to connect two components 8 and 10 or 12 and 14 of the flue gas duct 4.
  • the transition element 30, 30' can also be part of one of the components 8, 10 and 12 , Be 14.
  • Transition elements 30, 30 ' are also provided at other connection points to two duct sections of the smoke duct 4.
  • the transition element 30 shown in FIG. 2 comprises a first heat insulation element 34 for setting a temperature profile along the location coordinates x during operation of the gas turbine 2, the thickness d of which decreases linearly as a function of the location variables x in a transition region 36. Due to the steady temperature profile that arises
  • the circumference of the transition element 30 measured on the outer wall 38 of the flue gas duct 4 decreases linearly. This results in a conical configuration of the outer wall 38 in the partial region 37 in the case of a round cross section of the flue gas duct 4.
  • the corresponding scope of the components 8 and 10 can also vary linearly.
  • the transition element 30 has a second heat insulation element 40, the thickness d 'of which, as a function of the location variable x, varies in opposition to the thickness d of the first heat insulation element 34 .
  • the heat insulation element 34 'of the transition element 30' according to FIG. 3 also has a thickness d which varies as a function of the location coordinates x in order to set a temperature profile.
  • the thickness d of the heat insulation element 34 ' varies linearly as a function of the spatial coordinates x, also in a second region 42. Eddies of the The flue gas RG flowing through the flue gas duct 4 and the flow losses resulting therefrom are thus kept low.
  • the circumference of the outer wall 38 'of the transition element 30' which varies linearly with the location variable x in the partial region 37 'ends in a flange 44 with a particularly small flange
  • Flange height h With such a low flange height h, the flange 44 is less sensitive to thermal expansion and thus has a particularly long service life.
  • the transition element 30 ' also has a tissue compensator 46 connected to the flange 44, which is particularly flexible with regard to temperature-induced tension.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Lift Valve (AREA)
  • Incineration Of Waste (AREA)

Abstract

Um beim Betrieb einer Gasturbine (2) Materialspannungen zwischen Komponenten (8, 10) des Rauchgaskanals (4) zu verringern, weist ein Übergangselement (30, 30') zwischen den Komponenten (8, 10) erfindungsgemäß ein erstes Wärmeisolationselement (34, 34') auf, dessen Dicke (d) zur Einstellung eines vorgegebenen Temperaturprofils in einem Übergangsbereich (36, 36') als Funktion einer Ortsvariablen (x) entlang des Rauchgaskanals (4) variiert. Um den Übergang von einer außen isolierten Komponente (8) auf eine innen isolierte Komponente (10) zu ermöglichen, ist vorteilhafterweise ein zweites Wärmeisolationselement (40) vorgesehen, dessen Dicke (d') gegenläufig zur Dicke (d) des ersten Wärmeisolationselements (34) variiert.

Description

Beschreibung
Übergangselement zwischen Komponenten des Rauchgaskanals ei¬ ner Gasturbine
Die Erfindung bezieht sich auf ein Übergangselement zwischen Komponenten eines Rauchgaskanals, der einer Gasturbine einer Kraftwerksanlage nachgeschaltet ist.
Gasturbinen werden in vielen Bereichen, insbesondere in
Kraftwerksanlagen, zum Antrieb von Generatoren oder von Ar¬ beitsmaschinen eingesetzt. Dabei wird der Energieinhalt eines Brennstoffs zur Erzeugung der Rotationsbewegung der Turbinen¬ welle benutzt. Das bei der Verbrennung des Brennstoffs ent- stehende Arbeitsmittel oder heiße Gas wird dazu in der
Gasturbine entspannt und sodann als Abgas oder Rauchgas einem an die Gasturbine angeschlossenen Rauchgaskanal zugeführt.
Der Rauchgaskanal der Gasturbine umfaßt üblicherweise mehrere miteinander verbundene Komponenten oder Kanalstücke. Je nach Auslegung und Einsatzart der Gasturbine sind als Komponenten ein Diffusor, ein Kompensator und/oder weitere Elemente, wie z.B. ein Hauptkamin, ein Bypasskamin, vorgesehen.
Jede Komponente wird beim Betrieb der Gasturbine üblicher¬ weise durch das sie durchströmende Abgas oder Rauchgas aufge¬ heizt. Dabei kühlt sich das Rauchgas entlang der Rauchgas¬ richtung durch Wärmeaustausch mit den jeweiligen Komponenten ab. Je nach ihrer Position im Rauchgaskanal wird somit jede Komponente auf eine unterschiedliche Temperatur aufgeheizt.
Im Bereich des Übergangs zwischen zwei Komponenten liegen so¬ mit auf unterschiedliche Temperaturniveaus aufgeheizte Struk¬ turteile aneinander, was zu mechanischen Spannungen zwischen den Komponenten führt. Insbesondere bei Lastwechseln der Gasturbine, wie beispielsweise bei Anfahrvorgängen, kann eine transiente Temperaturbelastung in einer erheblichen Beanspru¬ chung der Komponenten des Rauchgaskanals resultieren. Dadurch verursachte Schäden an den Komponenten des Rauchgaskanals ha¬ ben eine Verringerung der Lebensdauer der gesamten Gasturbi- nenanlage zur Folge, was zu einer äußerst unerwünschten Redu¬ zierung der Verfügbarkeit der Gasturbinenanlage führt .
Der Erfindung liegt daher die Aufgabe zugrunde, ein Über¬ gangselement zwischen den Komponenten eines Rauchgaskanals der obengenannten Art anzugeben, das eine besonders lange Le¬ bensdauer der Komponenten und somit der gesamten Gasturbinen¬ anlage ermöglicht.
Diese Aufgabe wird erfindungsgemäß gelöst, indem das Über- gangselement ein erstes Wärmeisolationselement aufweist, des¬ sen Dicke zur Einstellung eines Temperaturprofils in einem Übergangsbereich als Funktion der Ortsvariablen entlang des Rauchgaskanals variiert.
Die Erfindung geht dabei von der Überlegung aus, daß für eine lange Lebensdauer der Komponenten des Rauchgaskanals der Gasturbine abrupte Temperatursprünge zwischen benachbarten Komponenten vermieden sein sollten. Dies ist durch ein sich im Bereich des Übergangs zwischen jeweils zwei Komponenten des Rauchgaskanals langsam veränderndes Temperaturprofil er¬ reichbar. Die Einstellung eines geeigneten Temperaturprofils kann demnach durch ein entsprechend modifiziertes Wärmeisola¬ tionselement bewirkt werden, indem dessen Dicke als Funktion der Ortsvariablen entlang des Rauchgaskanals variiert.
Für eine besonders effektive Reduzierung transienter Tempera¬ turbelastungen der Komponenten ist zweckmäßigerweise das ein¬ gestellte Temperaturprofil stetig. Dazu könnte die Wärmeiso¬ lierung stufenförmig ausgebildet sein. Zur Einstellung eines für die Vermeidung von Materialspannungen besonders geeigne- ten Temperaturprofils sollte jedoch eine nicht-stufenförmige Wärmeisolation eingesetzt werden. Dabei sollte die Dicke des Wärmeisolationselementes vorzugsweise linear von der Ortsko¬ ordinaten abhängen. Ein derartiges Übergangselement ist zudem auf besonders einfache Weise herstellbar.
Um lokale Temperaturschwankungen in den Komponenten besonders effektiv zu unterbinden und somit die Lebensdauer der Kompo¬ nenten besonders wirkungsvoll zu steigern, ist die Länge des Übergangsbereichs vorzugsweise größer als die Temperatur-Ab¬ klinglänge des Wandmaterials der Komponenten. Die Temperatur- Abklinglänge ist dabei die physikalische Kenngröße zur Be¬ schreibung einer lokalen Temperaturveränderung innerhalb ei¬ nes Materials.
Eine transiente Temperaturbelastung des Wandmaterials der Komponenten wird zudem verringert, indem zweckmäßigerweise der Umfang mindestens einer der Komponenten in mindestens ei¬ nem Teilbereich des Rauchgaskanals linear mit der Ortsvariab- len variiert. Bei einem runden Querschnitt des Rauchgaskanals ist dieser Teilbereich somit konisch ausgebildet. Bei einem viereckigen Querschnitt des Rauchgaskanals entspricht der Teilbereich hingegen der Mantelfläche eines Pyramidenstumpfs.
Um eine Verbindung einer innen isolierten Komponente des Rauchgaskanals mit einer außen isolierten Komponente des Rauchgaskanals zu ermöglichen, weist das Übergangselement im Übergangsbereich zweckmäßigerweise ein erstes Wärmeisola¬ tionselement als Innenisolierung und ein zweites Wärmeisola- tionselement als Außenisolierung auf, deren Dicken als Funk¬ tion der Ortsvariablen gegenläufig variieren.
Die mit der Erfindung erzielten Vorteile bestehen insbeson¬ dere darin, daß sich durch die variierende Dicke des Wärme- isolationselementes beim Betrieb der Gasturbine ein Tempera- turprofil derart einstellt, daß überhöhte Materialbelastungen der Komponenten des Rauchgaskanals vermieden sind. Insbeson¬ dere auch durch den Teilbereich, in dem der Umfang mindestens einer der Komponenten linear mit der Ortsvariablen variiert, sind aus unterschiedlichen thermischen Dehnungen verschiede¬ ner Komponenten resultierende radiale Zwängungen kompensier¬ bar.
Insbesondere auch bei Lastwechsel der Gasturbine ist somit eine zusätzliche Beanspruchung der Komponenten des Rauchgas¬ kanals aufgrund der als Folge einer transienten Temperaturbe¬ lastung auftretenden Spannungen vermindert. Die zulässige Zyklenzahl der Gasturbine ist damit erhöht, was eine längere Lebensdauer bedingt .
Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:
FIG 1 schematisch in einer Seitenansicht eine Gastur- bine mit einem in einen Abhitzekessel einmünden¬ den Rauchgaskanal und
FIG 2 und 3 einen Ausschnitt II bzw. III aus Figur 1 in grö¬ ßerem Maßstab mit jeweils einem Übergangselement zwischen zwei Komponenten an zwei unterschiedli¬ chen Stellen des Rauchgaskanals der Gasturbine im Längsschnitt.
Einander entsprechende Teile sind in allen Figuren mit den- selben Bezugszeichen versehen.
Figur 1 zeigt - als Teil einer Kraftwerksanlage - eine Gasturbinenanlage 1 mit einem der Gasturbine 2 über einen Rauchgaskanal 4 nachgeschalteten Abhitzekessel 6 zur Dampfer- zeugung, z.B. für eine (nicht dargestellte) Dampfturbine. Der Rauchgaskanal 4 umfaßt als Komponenten oder Kanalstücke einen Metallkompensator 8, einen Diffusor 10, einen Bypasskamin 12 und ein in den Abhitzekessel 6 mündendes Kanalstück 14.
Beim Betrieb der Gasturbinenanlage 1 strömt aus der Gastur¬ bine 2 austretendes heißes Rauchgas RG durch den Rauchgaska¬ nal 4 in Richtung des Pfeils 20 in den Abhitzekessel 6. Das im Abhitzekessel 6 bei der Dampferzeugung abgekühlte Rauchgas RG verläßt den Abhitzekessel 6 über dessen Kamin 22.
Die Geschwindigkeit des axial aus der Gasturbine 2 austreten¬ den heißen Rauchgases RG wird in dem mit dem Metallkompensa¬ tor 8 verbundenen Diffusor 10 verringert, so daß der stati¬ sche Rauchgasdruck ansteigt. Aufgrund der hohen Austrittstem- peratur des heißen Rauchgases RG von etwa 500 bis 600° C ent¬ stehen Wärmedehnungen, die von dem Metallkompensator 8 kom¬ pensiert werden sollen. An Verbindungsstellen zwischen je¬ weils zwei Komponenten 8 und 10, sowie 12 und 14 des Rauch¬ gaskanals 4 treten darüber hinaus lokale und/oder transiente Temperaturbelastungen aufqrund einer kontinuierlichen Abküh¬ lung des Rauchgases RG entlang einer durch den Pfeil 24 ange¬ deuteten Ortskoordinate x in Richtung des Rauchgaskanals 4 auf .
Um derartige Wärmespannungen durch Temperaturbelastungen zu kompensieren und daraus resultierende Beschädigungen der Kom¬ ponenten 8 und 10, sowie 12 und 14 des Rauchgaskanals 4 zu vermeiden, weist der Rauchgaskanal 4 an den Verbindungsstel¬ len zwischen jeweils zwei der Komponenten 8, 10, 12, 14 je- weils ein Übergangselement 30 und 30' auf, wie diese in den Figuren 2 bzw. 3 im Ausschnitt dargestellt sind. Die Über¬ gangselemente 30, 30' dienen zur Verbindung zweier Komponen¬ ten 8 und 10 bzw. 12 und 14 des Rauchgaskanals 4. Das Über¬ gangselement 30, 30' kann dabei auch Teil einer der Komponen- ten 8, 10 bzw. 12, 14 sein. Entsprechende (nicht gezeigte) Übergangselemente 30, 30' sind auch an anderen Verbindungs¬ stellen zu jeweils zwei Kanalstücken des Rauchkanals 4 vorge¬ sehen.
Das in Figur 2 dargestellte Übergangselement 30 umfaßt zur Einstellung eines Temperaturprofils entlang der Ortskoordina¬ ten x beim Betrieb der Gasturbine 2 ein erstes Wärmeisola¬ tionselement 34, dessen Dicke d als Funktion der Ortsvariab¬ len x in einem Übergangsbereich 36 linear abnimmt. Durch das sich somit einstellende stetige Temperaturprofil ist ein
"weicher" Temperaturubergang zwischen den Komponenten 8 und 10, und dadurch ist eine verminderte Spannungsbelaεtung der Komponenten 8 und 10 gewahrleistet.
In einem Teilbereich 37 der Außenwand 38 nimmt der an der Au¬ ßenwand 38 des Rauchgaskanals 4 gemessene Umfang des Über¬ gangselements 30 linear ab. Somit ergibt sich bei einem run¬ den Querschnitt des Rauchgaskanals 4 eine konische Ausbildung der Außenwand 38 im Teilbereich 37. Alternativ kann aber auch der entsprechende Umfang der Komponente 8 und 10 linear vari¬ ieren.
Um den Übergang von einer innen isolierten Komponente 8 auf eine außen isolierte Komponente 10 zu ermöglichen, weist das Übergangselement 30 ein zweites Warmeisolationselement 40 auf, dessen Dicke d' als Funktion der Ortsvariablen x gegen¬ läufig zur Dicke d des ersten Wärmeisolationselements 34 va¬ riiert.
Auch das Warmeisolationselement 34' des Ubergangselements 30' gemäß Figur 3 weist zur Einstellung eines vorgesehenen Tempe- raturprofils eine als Funktion der Ortskoordinaten x variie¬ rende Dicke d auf. Zusatzlich variiert die Dicke d des Warme- lsolationselementes 34' als Funktion der Ortskoordinaten x auch in einem zweiten Bereich 42 linear. Verwirbelungen des den Rauchgaskanal 4 durchströmenden Rauchgases RG und daraus resultierende Strömungsverluste sind somit gering gehalten. Der im Teilbereich 37 ' linear mit der Ortsvariablen x variie¬ rende Umfang der Außenwand 38' des Übergangselements 30' mün- det in einen Flansch 44 mit einer besonders geringen
Flanschhöhe h. Durch eine derart geringe Flanschhöhe h ist der Flansch 44 unempfindlicher gegenüber Wärmedehnungen und weist somit eine besonders lange Lebensdauer auf.
Das Übergangselement 30' weist zudem einen an den Flansch 44 angeschlossenen Gewebekompensator 46 auf, der im Hinblick auf temperatur-induzierte Verspannungen besonders flexibel ist.

Claims

Patentansprüche
1. Übergangselement (30, 30') zwischen Komponenten (8, 10, 12, 14) eines Rauchgaskanals (4), der einer Gasturbine (2) einer Kraftwerksanlage nachgeschaltet ist, mit einem ersten Warmeisolationselement (34, 34'), dessen Dicke (d) zur Ein¬ stellung eines Temperaturprofils in einem Übergangsbereich (36, 36') als Funktion der Ortsvariablen (x) entlang des Rauchgaskanals (4) variiert.
2. Übergangselement nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß das ein¬ gestellte Temperaturprofil stetig ist.
3. Übergangselement nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Dicke (d) des ersten Wärmeisolationselementes (34, 34') linear von der Ortskoordinate (x) abhängt.
4. Übergangselement nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß in minde¬ stens einem Teilbereich (37) der Umfang mindestens einer der Komponenten (8, 10, 12, 14) linear mit der Ortsvariablen (x) variiert.
5. Übergangselement für einen Wechsel von einer innen iso¬ lierten Komponente (8) auf eine außen isolierte Komponente (10) nach einem der Ansprüche 1 bis 4, g e k e n n z e i c h n e t durch ein zusätzlich zum ersten Warmeisolationselement (34) vorgesehenes zweites Warmeisola¬ tionselement (40), wobei im Übergangsbereich (36) die Dicken (d, d') der beiden Wärmeisolationselemente (34, 40) gegenläu¬ fig variieren.
PCT/DE1996/001980 1995-10-31 1996-10-17 Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine WO1997016628A2 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP96945509A EP0858551B1 (de) 1995-10-31 1996-10-17 Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine
DE59604798T DE59604798D1 (de) 1995-10-31 1996-10-17 Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine
US09/070,402 US6062814A (en) 1995-10-31 1998-04-30 Transition element between components of a flue-gas duct of a gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19540606.0 1995-10-31
DE19540606 1995-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/070,402 Continuation US6062814A (en) 1995-10-31 1998-04-30 Transition element between components of a flue-gas duct of a gas turbine

Publications (2)

Publication Number Publication Date
WO1997016628A2 true WO1997016628A2 (de) 1997-05-09
WO1997016628A3 WO1997016628A3 (de) 1997-07-03

Family

ID=7776305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001980 WO1997016628A2 (de) 1995-10-31 1996-10-17 Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine

Country Status (3)

Country Link
EP (1) EP0858551B1 (de)
DE (1) DE59604798D1 (de)
WO (1) WO1997016628A2 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2378176A1 (fr) * 1977-01-19 1978-08-18 Bertin & Cie Conduit insonorise, en particulier pour echappement de moteurs thermiques
FR2469563A1 (fr) * 1979-11-14 1981-05-22 Nissan Motor Moteur a turbine a gaz avec agencement diffuseur et collecteur des gaz d'echappement
EP0345700A1 (de) * 1988-06-07 1989-12-13 SKODA koncernovy podnik Auslassgehäuse einer Strömungsmaschine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2378176A1 (fr) * 1977-01-19 1978-08-18 Bertin & Cie Conduit insonorise, en particulier pour echappement de moteurs thermiques
FR2469563A1 (fr) * 1979-11-14 1981-05-22 Nissan Motor Moteur a turbine a gaz avec agencement diffuseur et collecteur des gaz d'echappement
EP0345700A1 (de) * 1988-06-07 1989-12-13 SKODA koncernovy podnik Auslassgehäuse einer Strömungsmaschine

Also Published As

Publication number Publication date
DE59604798D1 (de) 2000-04-27
EP0858551B1 (de) 2000-03-22
EP0858551A2 (de) 1998-08-19
WO1997016628A3 (de) 1997-07-03

Similar Documents

Publication Publication Date Title
EP1945911B1 (de) Dampfturbine
DE69816532T2 (de) Wärmeübergangsstruktur
EP2342427B1 (de) Axial segmentierter leitschaufelträger für eine gasturbine
DE102011052671A1 (de) Turbomaschinendichtungen
WO2000011324A1 (de) Turbinengehäuse
EP3548705B1 (de) Turbolader
EP1741877A1 (de) Hitzeschild und Turbinenleitschaufel für eine Gasturbine
WO2006048401A1 (de) Optimierte turbinenstufe einer turbinenanlage sowie auslegungsverfahren
EP1653049B1 (de) Leitschaufelring einer Strömungsmaschine und zugehöriges Modifikationsverfahren
WO2013029914A1 (de) Umleitdampfleitung
CH694257A5 (de) Dampfturbine.
DE2449430C2 (de) Dehnungsverbindung von Leitungsteilen
EP2347101B1 (de) Gasturbine und zugehörige Gas- bzw. Dampfturbinenanlage
EP1744014A1 (de) Befestigungseinrichtung der Turbinenleitschaufeln einer Gasturbinenanlage
WO1997016628A2 (de) Übergangselement zwischen komponenten des rauchgaskanals einer gasturbine
EP0965732A1 (de) Schrumpfring für Turbine mit Anzapfung
EP3670845B1 (de) Strömungsmaschine mit statischer dichtungsanordnung
EP1234962B1 (de) Verfahren zum Betrieb einer Gassturbinenanlage mit Verbrennungsluftkühlung
EP1429077A1 (de) Gasturbine
EP3256783B1 (de) Heissgasführendes gehäuse
WO1993004318A1 (de) Gasbeheizter abhitzedampferzeuger
EP0819842B1 (de) Vorrichtung zum Befestigen eines Abdeckbleches im Rauchgaskanal einer Gasturbine
DE3309812C2 (de) Äußeres Gehäuse für ein Gasturbinentriebwerk
EP2031189A1 (de) Dicht-Ring für die Abdichtung eines Spaltes zwischen den Leitschaufeln eines Leitschaufelkranzes einer stationären axial durchströmbaren Strömungsmaschine und dessen Rotor
DE19743548C2 (de) Verbindungssystem zur Verbindung zweier Kanalstücke eines von einem heißen Fluid durchströmbaren Kanals

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR PL RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR PL RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996945509

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09070402

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996945509

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 97516974

Format of ref document f/p: F

WWG Wipo information: grant in national office

Ref document number: 1996945509

Country of ref document: EP