WO1997014279A1 - Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode - Google Patents
Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode Download PDFInfo
- Publication number
- WO1997014279A1 WO1997014279A1 PCT/BE1996/000101 BE9600101W WO9714279A1 WO 1997014279 A1 WO1997014279 A1 WO 1997014279A1 BE 9600101 W BE9600101 W BE 9600101W WO 9714279 A1 WO9714279 A1 WO 9714279A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cyclotron
- air gap
- radius
- hills
- sectors
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H13/00—Magnetic resonance accelerators; Cyclotrons
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H7/00—Details of devices of the types covered by groups H05H9/00, H05H11/00, H05H13/00
- H05H7/10—Arrangements for ejecting particles from orbits
Definitions
- the present invention relates to a method for extracting charged particles during an isochronous cyclotron in which the particle beam is focused by sectors.
- the present invention is: apc: r: e also has ⁇ said isochronous cyclotron applying this ⁇ etr.eoe o 'extraction of charged particles.
- the present invention relates -: ⁇ sc, oier. to compact isochronous cyclotrons than to cvc-otrcr.s focused by sectors. Likewise, the present invention relates to isochronous cyclotrons known as superconductive or non-superconductive.
- Cyclotrons are particle accelerators used in particular for the production of radioactive isotopes. These cyclotrons usually consist of two separate main assemblies, formed on the one hand by the electromagnet and on the other hand by the high frequency resonator. The electromagnet guides the charged particles on a path having approximately a spiral of increasing radius around the acceleration. In modern isochronous cyclotrons, the electromagnet poles are divided into sectors alternately having a reduced air gap and a larger air gap. The azimuthal variation of the magnetic field that results has the effect of ensuring the vertical and horizontal focusing of the beam during acceleration.
- isochronous cyclotrons which are energized by at least one main circular coil, and so-called separate sector cyclotrons, where the magnetic structure is divided into separate fully autonomous units.
- the second set is made up of accelerating electrodes, often called “gods" for historical reasons.
- An alternating voltage of several tens of kilovolts is thus applied to the electrodes at the frequency of rotation of the particles in the magnet, or alternatively at a frequency which is an exact multiple of the frequency of rotation of the particles in the magnet. This has the effect of accelerating the particles of the rotating beam in the cyclotron.
- This beam extraction operation is considered by those skilled in the art as the most difficult step in the production of a beam of particles accelerated by means of a cyclotron. This operation consists in bringing the beam from the part of the magnetic field where it is accelerated to the place where the magnetic field can no longer hold the beam. In this case, the beam is free to escape the action of the field and is extracted from the cyclotron.
- cyclotrons accelerating particles positively charged the use of an electrostatic deflector is known, the role of which is to pull the particles out of the magnetic field as an extraction device.
- the septum which will intercept a part of these particles.
- the extraction yield is relatively limited, and the loss of particles in the septum will in particular contribute to making the cyclotron highly radioactive.
- cyclotrons accelerating positive particles make it possible to produce higher beam current intensities, and increase the reliability of the system, while allowing a large reduction in the size and weight of the machine.
- Document US-A-0324379 relates to a device of the cyclotron type intended to accelerate particles which has magnetic means being essentially independent of the azimuthal angle. This means that it is a non-isochronous cyclotron.
- the cyclotron described has beam extraction means which are constituted by “regenerators” and “compressors”, which make it possible, by disturbing the magnetic field, to obtain an extraction of the beam from particles.
- the present invention aims to propose a method of extracting charged particles from an isochronous cyclotron while avoiding the use of extraction devices as described above.
- a complementary object of the present invention therefore aims to provide an isochronous cyclotron which is of simpler and more economical design than those usually used.
- the present invention also aims to increase the extraction efficiency of the particle beam, and in particular in the case of extraction of positive particles.
- the present invention relates to a method of extracting charged particles from an isochronous cyclotron comprising an electromagnet constituting the magnetic circuit which includes a certain number of pairs of sectors called “hills” where the air gap is reduced, separated by spaces in the form of sectors called “valleys” where the air gap is larger; this method being characterized by the fact that an isochronous cyclotron is produced with a magnet gap between the hills, the dimensions of which are chosen so that the minimum value of this gap in the vicinity of the maximum radius between the hills is less than twenty times the gain in radius per revolution of the particles accelerated by the cyclotron at this radius.
- the ions can be extracted from the influence of the magnetic field without the aid of any extraction device.
- the air gap of the magnet is generally between 5 and 20 cm, while the gain in radius per revolution is approximately 1 mm. In this case, the ratio of the air gap to the radius gain per turn is greater than 50.
- the magnetic field decreases very suddenly in the vicinity of the limit of the pole of the magnet, so that the self-extraction point is reached before the phase shift of the particles with respect to the accelerating voltage does not reach 90 degrees. In this way, the particles automatically leave the magnetic field without the intervention of any extraction device.
- the extraction of the particles is concentrated on a sector thanks to an asymmetry brought deliberately to the shape or to the magnetic field of said sector.
- the angle of one of the sectors is reduced at the polar radius to allow the orbits to be displaced and thus obtain the extraction of the entire beam on this side. , so, for example, to be able to irradiate a large volume target.
- a particular distribution of the particle beam is carried out so as to simultaneously irradiate several targets mounted side by side on the beam path.
- the present invention advantageously allows it to be used for proton therapy or the production of radioisotopes, and more particularly of radioisotopes intended for positron emission tomography (PET).
- PET positron emission tomography
- Figure 3 shows schematically an exploded view of the main elements constituting an isochronous cyclotron.
- Figure 4 shows a sectional view of an isochronous cyclotron.
- the profile of the magnetic field in an isochronous cyclotron is such that the frequency of rotation of the particles must be constant and independent of their energy. To compensate for the relativistic increase in mass of the particles, the magnetic field must therefore increase with the radius to ensure this condition of isochronism.
- dB / B and dR / R are respectively the relative variations of the magnetic field and the radius to the radius R.
- FIG. 1 illustrates the variation of the field as a function of the radius in a conventional isochronous cyclotron.
- An increasing phase shift is established between the frequency of rotation of the particles and the frequency of resonance of the accelerating electrodes. When this phase shift reaches 90 degrees, the particles cease to be accelerated and they cannot exceed this radius.
- FIG. 2 illustrates the variation of the field as a function of the radius in an isochronous cyclotron using the extraction method according to the present invention.
- FIGS. 3 and 4 An isochronous cyclotron as used in the method for extracting charged particles according to the present invention is shown diagrammatically in FIGS. 3 and 4.
- This cyclotron is a compact isochronous cyclotron intended for the acceleration of positive particles, and more particularly protons.
- the magnetic structure 1 of the cyclotron consists of a number of elements 2, 3, 4 and 5 made of a ferro-magnetic material and of coils 6 preferably made of a conductive or superconductive material.
- the ferro-magnetic structure conventionally comprises: two base plates called yokes 2 and 2 ', - at least three upper sectors 3 called hills and the same number of lower sectors 3' located symmetrically with respect to a plane of symmetry 10 called median plane to the upper sectors 3, and which are separated by a small air gap 8, - between two consecutive hills, there is a space where the air gap is of higher dimension and is which is called valley 4, at least one flow return 5 rigidly joining the lower cylinder head 2 to the upper cylinder head 2 ',
- the coils 6 are of essentially circular shape, and are located in the annular space left between the sectors 3 or 3' and the flow returns 5.
- the central duct is intended to receive at least part of the source of particles 7 to be accelerated. These particles are injected into the center of the device by means known per se.
- the magnet is designed, according to the present invention, with a 10 mm air gap for a magnetic field of 2 teslas on the magnetic sectors 3 and 3 ' .
- the accelerating voltage is 80 kilovolts so as to obtain a radius gain of 1.5 mm at the maximum radius.
- the angle of one of the sectors is reduced at the level of the polar radius so as to allow the orbits to be displaced and the entire beam to be extracted on this side (see FIG. 4 ).
- the extracted particle beam is then axially focused and radially defocused.
- this beam profile is used for the simultaneous irradiation of four targets located between the two coils 6 mounted side by side on the beam path.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Particle Accelerators (AREA)
- Photoreceptors In Electrophotography (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/051,306 US6057655A (en) | 1995-10-06 | 1996-09-25 | Method for sweeping charged particles out of an isochronous cyclotron, and device therefor |
DE69603497T DE69603497T2 (de) | 1995-10-06 | 1996-09-25 | Verfahren zum entfernen der geladenen teilchen aus einem isochronen zyklotron und dieses verfahren verwendende vorrichtung |
EP96931694A EP0853867B1 (fr) | 1995-10-06 | 1996-09-25 | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode |
DK96931694T DK0853867T3 (da) | 1996-09-25 | 1996-09-25 | Fremgangsmåde til ekstraktion af ladede partikler fra en isokron cyklotron og indretning til anvendelse af denne fremgangsm |
CA002227228A CA2227228C (fr) | 1995-10-06 | 1996-09-25 | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode |
JP51457797A JP4008030B2 (ja) | 1995-10-06 | 1996-09-25 | アイソクロナスサイクロトロンから荷電粒子を抽出する方法及びこの方法を応用する装置 |
GR990402483T GR3031392T3 (en) | 1995-10-06 | 1999-09-30 | Method for sweeping charged particles out of an isochronous cyclotron, and device therefor |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
BE9500832A BE1009669A3 (fr) | 1995-10-06 | 1995-10-06 | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode. |
BE9500832 | 1995-10-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO1997014279A1 true WO1997014279A1 (fr) | 1997-04-17 |
Family
ID=3889224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/BE1996/000101 WO1997014279A1 (fr) | 1995-10-06 | 1996-09-25 | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode |
Country Status (9)
Country | Link |
---|---|
US (1) | US6057655A (fr) |
EP (1) | EP0853867B1 (fr) |
JP (1) | JP4008030B2 (fr) |
AT (1) | ATE182739T1 (fr) |
BE (1) | BE1009669A3 (fr) |
DE (1) | DE69603497T2 (fr) |
ES (1) | ES2135918T3 (fr) |
GR (1) | GR3031392T3 (fr) |
WO (1) | WO1997014279A1 (fr) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1069809A1 (fr) * | 1999-07-13 | 2001-01-17 | Ion Beam Applications S.A. | Cyclotron isochrone et procédé d'extraction de particules chargées hors de ce cyclotron |
US7456591B2 (en) | 2002-07-22 | 2008-11-25 | Ion Beam Applications S.A. | Cyclotron equipped with novel particle beam deflecting means |
CN102067740A (zh) * | 2008-05-30 | 2011-05-18 | 离子束应用股份有限公司 | 用于从回旋加速器提取粒子束的剥离部件、剥离总成和方法 |
US8324841B2 (en) | 2008-06-09 | 2012-12-04 | Ion Beam Applications S.A. | Twin internal ion source for particle beam production with a cyclotron |
Families Citing this family (134)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE513190C2 (sv) * | 1998-09-29 | 2000-07-24 | Gems Pet Systems Ab | Metod och system för minimerande av magnetstorlek i en cyclotron |
US7317192B2 (en) * | 2003-06-02 | 2008-01-08 | Fox Chase Cancer Center | High energy polyenergetic ion selection systems, ion beam therapy systems, and ion beam treatment centers |
CN101061759B (zh) * | 2004-07-21 | 2011-05-25 | 斯蒂尔瑞弗系统有限公司 | 用于同步回旋加速器的可编程的射频波形发生器 |
US9077022B2 (en) * | 2004-10-29 | 2015-07-07 | Medtronic, Inc. | Lithium-ion battery |
EP2389983B1 (fr) | 2005-11-18 | 2016-05-25 | Mevion Medical Systems, Inc. | Radiothérapie à particules chargées |
US7656258B1 (en) | 2006-01-19 | 2010-02-02 | Massachusetts Institute Of Technology | Magnet structure for particle acceleration |
WO2007084701A1 (fr) * | 2006-01-19 | 2007-07-26 | Massachusetts Institute Of Technology | Structure magnetique pour acceleration de particules |
FR2897398A1 (fr) * | 2006-02-14 | 2007-08-17 | Claude Poher | Dispositif propulseur par acceleration de particules et applications dudit dispositif |
US8003964B2 (en) * | 2007-10-11 | 2011-08-23 | Still River Systems Incorporated | Applying a particle beam to a patient |
US8581523B2 (en) | 2007-11-30 | 2013-11-12 | Mevion Medical Systems, Inc. | Interrupted particle source |
US8933650B2 (en) | 2007-11-30 | 2015-01-13 | Mevion Medical Systems, Inc. | Matching a resonant frequency of a resonant cavity to a frequency of an input voltage |
US10029122B2 (en) | 2008-05-22 | 2018-07-24 | Susan L. Michaud | Charged particle—patient motion control system apparatus and method of use thereof |
US9937362B2 (en) | 2008-05-22 | 2018-04-10 | W. Davis Lee | Dynamic energy control of a charged particle imaging/treatment apparatus and method of use thereof |
US7939809B2 (en) | 2008-05-22 | 2011-05-10 | Vladimir Balakin | Charged particle beam extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9737733B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle state determination apparatus and method of use thereof |
US9737272B2 (en) | 2008-05-22 | 2017-08-22 | W. Davis Lee | Charged particle cancer therapy beam state determination apparatus and method of use thereof |
US8374314B2 (en) | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Synchronized X-ray / breathing method and apparatus used in conjunction with a charged particle cancer therapy system |
US9682254B2 (en) | 2008-05-22 | 2017-06-20 | Vladimir Balakin | Cancer surface searing apparatus and method of use thereof |
US8969834B2 (en) | 2008-05-22 | 2015-03-03 | Vladimir Balakin | Charged particle therapy patient constraint apparatus and method of use thereof |
US8093564B2 (en) | 2008-05-22 | 2012-01-10 | Vladimir Balakin | Ion beam focusing lens method and apparatus used in conjunction with a charged particle cancer therapy system |
US9616252B2 (en) | 2008-05-22 | 2017-04-11 | Vladimir Balakin | Multi-field cancer therapy apparatus and method of use thereof |
US8975600B2 (en) | 2008-05-22 | 2015-03-10 | Vladimir Balakin | Treatment delivery control system and method of operation thereof |
US8378311B2 (en) | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Synchrotron power cycling apparatus and method of use thereof |
US10143854B2 (en) | 2008-05-22 | 2018-12-04 | Susan L. Michaud | Dual rotation charged particle imaging / treatment apparatus and method of use thereof |
US9177751B2 (en) | 2008-05-22 | 2015-11-03 | Vladimir Balakin | Carbon ion beam injector apparatus and method of use thereof |
US9974978B2 (en) | 2008-05-22 | 2018-05-22 | W. Davis Lee | Scintillation array apparatus and method of use thereof |
US9155911B1 (en) | 2008-05-22 | 2015-10-13 | Vladimir Balakin | Ion source method and apparatus used in conjunction with a charged particle cancer therapy system |
US8288742B2 (en) * | 2008-05-22 | 2012-10-16 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US10070831B2 (en) | 2008-05-22 | 2018-09-11 | James P. Bennett | Integrated cancer therapy—imaging apparatus and method of use thereof |
US8368038B2 (en) | 2008-05-22 | 2013-02-05 | Vladimir Balakin | Method and apparatus for intensity control of a charged particle beam extracted from a synchrotron |
US8569717B2 (en) | 2008-05-22 | 2013-10-29 | Vladimir Balakin | Intensity modulated three-dimensional radiation scanning method and apparatus |
US9744380B2 (en) | 2008-05-22 | 2017-08-29 | Susan L. Michaud | Patient specific beam control assembly of a cancer therapy apparatus and method of use thereof |
US9910166B2 (en) | 2008-05-22 | 2018-03-06 | Stephen L. Spotts | Redundant charged particle state determination apparatus and method of use thereof |
WO2009142544A2 (fr) * | 2008-05-22 | 2009-11-26 | Vladimir Yegorovich Balakin | Procédé et appareil de réglage du trajet d'un faisceau de traitement du cancer par particules chargées |
US8373145B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Charged particle cancer therapy system magnet control method and apparatus |
US8718231B2 (en) | 2008-05-22 | 2014-05-06 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US8144832B2 (en) * | 2008-05-22 | 2012-03-27 | Vladimir Balakin | X-ray tomography method and apparatus used in conjunction with a charged particle cancer therapy system |
US9498649B2 (en) | 2008-05-22 | 2016-11-22 | Vladimir Balakin | Charged particle cancer therapy patient constraint apparatus and method of use thereof |
US10092776B2 (en) | 2008-05-22 | 2018-10-09 | Susan L. Michaud | Integrated translation/rotation charged particle imaging/treatment apparatus and method of use thereof |
US10684380B2 (en) | 2008-05-22 | 2020-06-16 | W. Davis Lee | Multiple scintillation detector array imaging apparatus and method of use thereof |
US9782140B2 (en) | 2008-05-22 | 2017-10-10 | Susan L. Michaud | Hybrid charged particle / X-ray-imaging / treatment apparatus and method of use thereof |
US8373143B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | Patient immobilization and repositioning method and apparatus used in conjunction with charged particle cancer therapy |
US8487278B2 (en) * | 2008-05-22 | 2013-07-16 | Vladimir Yegorovich Balakin | X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8624528B2 (en) | 2008-05-22 | 2014-01-07 | Vladimir Balakin | Method and apparatus coordinating synchrotron acceleration periods with patient respiration periods |
US8598543B2 (en) * | 2008-05-22 | 2013-12-03 | Vladimir Balakin | Multi-axis/multi-field charged particle cancer therapy method and apparatus |
US8907309B2 (en) | 2009-04-17 | 2014-12-09 | Stephen L. Spotts | Treatment delivery control system and method of operation thereof |
US9095040B2 (en) | 2008-05-22 | 2015-07-28 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
CN102113419B (zh) * | 2008-05-22 | 2015-09-02 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | 多轴带电粒子癌症治疗方法和装置 |
US8399866B2 (en) | 2008-05-22 | 2013-03-19 | Vladimir Balakin | Charged particle extraction apparatus and method of use thereof |
US9168392B1 (en) | 2008-05-22 | 2015-10-27 | Vladimir Balakin | Charged particle cancer therapy system X-ray apparatus and method of use thereof |
JP2011523169A (ja) | 2008-05-22 | 2011-08-04 | エゴロヴィチ バラキン、ウラジミール | 荷電粒子癌治療システムと併用する荷電粒子ビーム抽出方法及び装置 |
US8178859B2 (en) * | 2008-05-22 | 2012-05-15 | Vladimir Balakin | Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system |
US8188688B2 (en) | 2008-05-22 | 2012-05-29 | Vladimir Balakin | Magnetic field control method and apparatus used in conjunction with a charged particle cancer therapy system |
US8089054B2 (en) | 2008-05-22 | 2012-01-03 | Vladimir Balakin | Charged particle beam acceleration and extraction method and apparatus used in conjunction with a charged particle cancer therapy system |
US9855444B2 (en) | 2008-05-22 | 2018-01-02 | Scott Penfold | X-ray detector for proton transit detection apparatus and method of use thereof |
US10548551B2 (en) | 2008-05-22 | 2020-02-04 | W. Davis Lee | Depth resolved scintillation detector array imaging apparatus and method of use thereof |
US9737734B2 (en) | 2008-05-22 | 2017-08-22 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US9058910B2 (en) * | 2008-05-22 | 2015-06-16 | Vladimir Yegorovich Balakin | Charged particle beam acceleration method and apparatus as part of a charged particle cancer therapy system |
US8896239B2 (en) | 2008-05-22 | 2014-11-25 | Vladimir Yegorovich Balakin | Charged particle beam injection method and apparatus used in conjunction with a charged particle cancer therapy system |
US9056199B2 (en) | 2008-05-22 | 2015-06-16 | Vladimir Balakin | Charged particle treatment, rapid patient positioning apparatus and method of use thereof |
CN102119585B (zh) | 2008-05-22 | 2016-02-03 | 弗拉迪米尔·叶戈罗维奇·巴拉金 | 带电粒子癌症疗法患者定位的方法和装置 |
US8519365B2 (en) | 2008-05-22 | 2013-08-27 | Vladimir Balakin | Charged particle cancer therapy imaging method and apparatus |
US8637833B2 (en) | 2008-05-22 | 2014-01-28 | Vladimir Balakin | Synchrotron power supply apparatus and method of use thereof |
US9579525B2 (en) | 2008-05-22 | 2017-02-28 | Vladimir Balakin | Multi-axis charged particle cancer therapy method and apparatus |
US8198607B2 (en) * | 2008-05-22 | 2012-06-12 | Vladimir Balakin | Tandem accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8710462B2 (en) | 2008-05-22 | 2014-04-29 | Vladimir Balakin | Charged particle cancer therapy beam path control method and apparatus |
US8129694B2 (en) * | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Negative ion beam source vacuum method and apparatus used in conjunction with a charged particle cancer therapy system |
US8642978B2 (en) | 2008-05-22 | 2014-02-04 | Vladimir Balakin | Charged particle cancer therapy dose distribution method and apparatus |
US8436327B2 (en) * | 2008-05-22 | 2013-05-07 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus |
US9044600B2 (en) | 2008-05-22 | 2015-06-02 | Vladimir Balakin | Proton tomography apparatus and method of operation therefor |
US8378321B2 (en) * | 2008-05-22 | 2013-02-19 | Vladimir Balakin | Charged particle cancer therapy and patient positioning method and apparatus |
EP2283710B1 (fr) | 2008-05-22 | 2018-07-11 | Vladimir Yegorovich Balakin | Dispositif de traitement anticancéreux par particules chargées à champs multiples |
US8309941B2 (en) | 2008-05-22 | 2012-11-13 | Vladimir Balakin | Charged particle cancer therapy and patient breath monitoring method and apparatus |
US8373146B2 (en) * | 2008-05-22 | 2013-02-12 | Vladimir Balakin | RF accelerator method and apparatus used in conjunction with a charged particle cancer therapy system |
US8129699B2 (en) | 2008-05-22 | 2012-03-06 | Vladimir Balakin | Multi-field charged particle cancer therapy method and apparatus coordinated with patient respiration |
US9981147B2 (en) | 2008-05-22 | 2018-05-29 | W. Davis Lee | Ion beam extraction apparatus and method of use thereof |
US8229072B2 (en) * | 2008-07-14 | 2012-07-24 | Vladimir Balakin | Elongated lifetime X-ray method and apparatus used in conjunction with a charged particle cancer therapy system |
US8625739B2 (en) | 2008-07-14 | 2014-01-07 | Vladimir Balakin | Charged particle cancer therapy x-ray method and apparatus |
US8627822B2 (en) * | 2008-07-14 | 2014-01-14 | Vladimir Balakin | Semi-vertical positioning method and apparatus used in conjunction with a charged particle cancer therapy system |
CN102387836B (zh) | 2009-03-04 | 2016-03-16 | 普罗汤姆封闭式股份公司 | 多场带电粒子癌症治疗设备 |
US8153997B2 (en) | 2009-05-05 | 2012-04-10 | General Electric Company | Isotope production system and cyclotron |
US8106570B2 (en) * | 2009-05-05 | 2012-01-31 | General Electric Company | Isotope production system and cyclotron having reduced magnetic stray fields |
US8106370B2 (en) * | 2009-05-05 | 2012-01-31 | General Electric Company | Isotope production system and cyclotron having a magnet yoke with a pump acceptance cavity |
US8374306B2 (en) | 2009-06-26 | 2013-02-12 | General Electric Company | Isotope production system with separated shielding |
US9737731B2 (en) | 2010-04-16 | 2017-08-22 | Vladimir Balakin | Synchrotron energy control apparatus and method of use thereof |
US10518109B2 (en) | 2010-04-16 | 2019-12-31 | Jillian Reno | Transformable charged particle beam path cancer therapy apparatus and method of use thereof |
US10179250B2 (en) | 2010-04-16 | 2019-01-15 | Nick Ruebel | Auto-updated and implemented radiation treatment plan apparatus and method of use thereof |
US10349906B2 (en) | 2010-04-16 | 2019-07-16 | James P. Bennett | Multiplexed proton tomography imaging apparatus and method of use thereof |
US10086214B2 (en) | 2010-04-16 | 2018-10-02 | Vladimir Balakin | Integrated tomography—cancer treatment apparatus and method of use thereof |
US10555710B2 (en) | 2010-04-16 | 2020-02-11 | James P. Bennett | Simultaneous multi-axes imaging apparatus and method of use thereof |
US10638988B2 (en) | 2010-04-16 | 2020-05-05 | Scott Penfold | Simultaneous/single patient position X-ray and proton imaging apparatus and method of use thereof |
US10751551B2 (en) | 2010-04-16 | 2020-08-25 | James P. Bennett | Integrated imaging-cancer treatment apparatus and method of use thereof |
US10376717B2 (en) | 2010-04-16 | 2019-08-13 | James P. Bennett | Intervening object compensating automated radiation treatment plan development apparatus and method of use thereof |
US10589128B2 (en) | 2010-04-16 | 2020-03-17 | Susan L. Michaud | Treatment beam path verification in a cancer therapy apparatus and method of use thereof |
US11648420B2 (en) | 2010-04-16 | 2023-05-16 | Vladimir Balakin | Imaging assisted integrated tomography—cancer treatment apparatus and method of use thereof |
US10188877B2 (en) | 2010-04-16 | 2019-01-29 | W. Davis Lee | Fiducial marker/cancer imaging and treatment apparatus and method of use thereof |
US10556126B2 (en) | 2010-04-16 | 2020-02-11 | Mark R. Amato | Automated radiation treatment plan development apparatus and method of use thereof |
US10625097B2 (en) | 2010-04-16 | 2020-04-21 | Jillian Reno | Semi-automated cancer therapy treatment apparatus and method of use thereof |
US9693443B2 (en) | 2010-04-19 | 2017-06-27 | General Electric Company | Self-shielding target for isotope production systems |
BE1019411A4 (fr) * | 2010-07-09 | 2012-07-03 | Ion Beam Applic Sa | Moyen de modification du profil de champ magnetique dans un cyclotron. |
US8653762B2 (en) | 2010-12-23 | 2014-02-18 | General Electric Company | Particle accelerators having electromechanical motors and methods of operating and manufacturing the same |
JP5665721B2 (ja) * | 2011-02-28 | 2015-02-04 | 三菱電機株式会社 | 円形加速器および円形加速器の運転方法 |
US8963112B1 (en) | 2011-05-25 | 2015-02-24 | Vladimir Balakin | Charged particle cancer therapy patient positioning method and apparatus |
US9336915B2 (en) | 2011-06-17 | 2016-05-10 | General Electric Company | Target apparatus and isotope production systems and methods using the same |
US8558485B2 (en) | 2011-07-07 | 2013-10-15 | Ionetix Corporation | Compact, cold, superconducting isochronous cyclotron |
CN102624286A (zh) * | 2012-03-27 | 2012-08-01 | 上海耀江幕墙工程有限公司 | 一种用于建筑物体的采用微型逆变器的太阳能发电系统 |
US9894746B2 (en) | 2012-03-30 | 2018-02-13 | General Electric Company | Target windows for isotope systems |
WO2014052708A2 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Éléments d'homogénéisation de champ magnétique permettant de modifier des champs magnétiques |
US9301384B2 (en) | 2012-09-28 | 2016-03-29 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US8927950B2 (en) | 2012-09-28 | 2015-01-06 | Mevion Medical Systems, Inc. | Focusing a particle beam |
EP2901820B1 (fr) | 2012-09-28 | 2021-02-17 | Mevion Medical Systems, Inc. | Focalisation d'un faisceau de particules à l'aide d'une variation de champ magnétique |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
WO2014052709A2 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Contrôle de l'intensité d'un faisceau de particules |
EP3581243A1 (fr) | 2012-09-28 | 2019-12-18 | Mevion Medical Systems, Inc. | Commande de thérapie par particules |
WO2014052721A1 (fr) | 2012-09-28 | 2014-04-03 | Mevion Medical Systems, Inc. | Système de commande pour un accélérateur de particules |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US8933651B2 (en) | 2012-11-16 | 2015-01-13 | Vladimir Balakin | Charged particle accelerator magnet apparatus and method of use thereof |
US8791656B1 (en) | 2013-05-31 | 2014-07-29 | Mevion Medical Systems, Inc. | Active return system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
EP3049151B1 (fr) | 2013-09-27 | 2019-12-25 | Mevion Medical Systems, Inc. | Balayage par un faisceau de particules |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
DE102014003536A1 (de) * | 2014-03-13 | 2015-09-17 | Forschungszentrum Jülich GmbH Fachbereich Patente | Supraleitender Magnetfeldstabilisator |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US9961756B2 (en) | 2014-10-07 | 2018-05-01 | General Electric Company | Isotope production target chamber including a cavity formed from a single sheet of metal foil |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US9907981B2 (en) | 2016-03-07 | 2018-03-06 | Susan L. Michaud | Charged particle translation slide control apparatus and method of use thereof |
US10037863B2 (en) | 2016-05-27 | 2018-07-31 | Mark R. Amato | Continuous ion beam kinetic energy dissipater apparatus and method of use thereof |
WO2018009779A1 (fr) | 2016-07-08 | 2018-01-11 | Mevion Medical Systems, Inc. | Planification de traitement |
CN106163073B (zh) * | 2016-07-29 | 2018-11-30 | 中国原子能科学研究院 | 一种中能超导质子回旋加速器的束流引出方法 |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
WO2019006253A1 (fr) | 2017-06-30 | 2019-01-03 | Mevion Medical Systems, Inc. | Collimateur configurable commandé au moyen de moteurs linéaires |
WO2020185543A1 (fr) | 2019-03-08 | 2020-09-17 | Mevion Medical Systems, Inc. | Collimateur et dégradeur d'énergie pour système de thérapie par particules |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3024379A (en) * | 1959-01-23 | 1962-03-06 | Philips Corp | Arrangement for accelerating particles |
US3175131A (en) * | 1961-02-08 | 1965-03-23 | Richard J Burleigh | Magnet construction for a variable energy cyclotron |
FR2139671A1 (fr) * | 1971-05-28 | 1973-01-12 | Thomson Csf | |
WO1993010651A1 (fr) * | 1991-11-22 | 1993-05-27 | Ion Beam Applications S.A. | Cyclotron isochrone compact |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU85895A1 (fr) * | 1985-05-10 | 1986-12-05 | Univ Louvain | Cyclotron |
US5463291A (en) * | 1993-12-23 | 1995-10-31 | Carroll; Lewis | Cyclotron and associated magnet coil and coil fabricating process |
-
1995
- 1995-10-06 BE BE9500832A patent/BE1009669A3/fr not_active IP Right Cessation
-
1996
- 1996-09-25 AT AT96931694T patent/ATE182739T1/de active
- 1996-09-25 EP EP96931694A patent/EP0853867B1/fr not_active Expired - Lifetime
- 1996-09-25 WO PCT/BE1996/000101 patent/WO1997014279A1/fr active IP Right Grant
- 1996-09-25 ES ES96931694T patent/ES2135918T3/es not_active Expired - Lifetime
- 1996-09-25 US US09/051,306 patent/US6057655A/en not_active Expired - Lifetime
- 1996-09-25 DE DE69603497T patent/DE69603497T2/de not_active Expired - Lifetime
- 1996-09-25 JP JP51457797A patent/JP4008030B2/ja not_active Expired - Fee Related
-
1999
- 1999-09-30 GR GR990402483T patent/GR3031392T3/el unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3024379A (en) * | 1959-01-23 | 1962-03-06 | Philips Corp | Arrangement for accelerating particles |
US3175131A (en) * | 1961-02-08 | 1965-03-23 | Richard J Burleigh | Magnet construction for a variable energy cyclotron |
FR2139671A1 (fr) * | 1971-05-28 | 1973-01-12 | Thomson Csf | |
WO1993010651A1 (fr) * | 1991-11-22 | 1993-05-27 | Ion Beam Applications S.A. | Cyclotron isochrone compact |
Non-Patent Citations (1)
Title |
---|
WOLBER ET AL.: "A kicker magnet for sweeping ion beams from a medical cyclotron", NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - A: ACCELERATORS, SPECTROMETERS, DETECTORS AND ASSOCIATED EQUIPMENT, vol. a256, no. 3, 15 May 1987 (1987-05-15), AMSTERDAM NL, pages 434 - 438, XP000573276 * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1069809A1 (fr) * | 1999-07-13 | 2001-01-17 | Ion Beam Applications S.A. | Cyclotron isochrone et procédé d'extraction de particules chargées hors de ce cyclotron |
WO2001005199A1 (fr) * | 1999-07-13 | 2001-01-18 | Ion Beam Applications S.A. | Cyclotron isochrone et procede d'extraction de particules chargees a partir dudit cyclotron |
US6683426B1 (en) | 1999-07-13 | 2004-01-27 | Ion Beam Applications S.A. | Isochronous cyclotron and method of extraction of charged particles from such cyclotron |
US7456591B2 (en) | 2002-07-22 | 2008-11-25 | Ion Beam Applications S.A. | Cyclotron equipped with novel particle beam deflecting means |
CN102067740A (zh) * | 2008-05-30 | 2011-05-18 | 离子束应用股份有限公司 | 用于从回旋加速器提取粒子束的剥离部件、剥离总成和方法 |
US8432090B2 (en) | 2008-05-30 | 2013-04-30 | Ion Beam Applications S.A. | Stripping member, a stripping assembly and a method for extracting a particle beam from a cyclotron |
US8324841B2 (en) | 2008-06-09 | 2012-12-04 | Ion Beam Applications S.A. | Twin internal ion source for particle beam production with a cyclotron |
Also Published As
Publication number | Publication date |
---|---|
EP0853867B1 (fr) | 1999-07-28 |
ES2135918T3 (es) | 1999-11-01 |
JPH11513528A (ja) | 1999-11-16 |
EP0853867A1 (fr) | 1998-07-22 |
DE69603497D1 (de) | 1999-09-02 |
ATE182739T1 (de) | 1999-08-15 |
DE69603497T2 (de) | 2000-02-03 |
BE1009669A3 (fr) | 1997-06-03 |
GR3031392T3 (en) | 2000-01-31 |
JP4008030B2 (ja) | 2007-11-14 |
US6057655A (en) | 2000-05-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE1009669A3 (fr) | Methode d'extraction de particules chargees hors d'un cyclotron isochrone et dispositif appliquant cette methode. | |
EP0613607B1 (fr) | Cyclotron isochrone compact | |
EP1566082B1 (fr) | Cyclotron | |
EP1496727B1 (fr) | Accélérateur à plasma à dérive fermée d'électrons | |
EP0013242B1 (fr) | Générateur d'ondes radioélectriques pour hyperfréquence | |
FR2472292A1 (fr) | Laser a electrons libres utilisant un accelerateur lineaire catalytique | |
EP1385362A1 (fr) | Cyclotron muni de nouveaux moyens d'inflexion du faisceau de particules | |
FR2531570A1 (fr) | Source d'ions negatifs et procede utilisant cette source pour reduire des electrons non voulus d'un flux de sortie | |
EP0248689A1 (fr) | Klystron à faisceaux multiples | |
EP0155875A1 (fr) | Dispositif de production d'ions d'une espèce déterminée utilisant pour les séparer d'autres ions, une sélection en énergie, application à l'implantation ionique | |
WO2012055958A1 (fr) | Synchrocyclotron | |
US6576127B1 (en) | Ponderomotive force plug for a plasma mass filter | |
EP2633741B1 (fr) | Synchrocyclotron | |
EP0530099B1 (fr) | Accélérateur électrostatique et laser à électrons libres utilisant cet accélérateur | |
BE1003551A3 (fr) | Cyclotrons focalises par secteurs. | |
EP0336850A1 (fr) | Accélérateur linéaire muni de cavités autofocalisantes à fort taux de capture électronique pour des tensions d'injection modérées | |
FR2544128A1 (fr) | Dispositif d'injection d'un faisceau d'electrons pour generateur d'ondes radioelectriques pour hyperfrequences | |
EP0813223B1 (fr) | Dispositif pour engendrer un champ magnétique et source ecr comportant ce dispositif | |
EP2311061A2 (fr) | Dispositif générateur d'ions à résonance cyclotronique électronique | |
WO2023170116A1 (fr) | Cyclotron à bi-secteurs séparés | |
WO2003092339A1 (fr) | Accelerateur de particules | |
FR2598850A1 (fr) | Obturateur de plasma a flux axial | |
Ramos et al. | The trapped-particle instability in the Boeing 1kW FEL oscillator | |
FR3114476A1 (fr) | Dispositif d’excitation pour transformer un gaz en plasma dans un tube capillaire diélectrique et accélérateur laser-plasma. | |
Bassaler | Study of the Rhodotron accelerator and outlook on its application to a free-electron laser |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CA JP US |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE |
|
DFPE | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101) | ||
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
WWE | Wipo information: entry into national phase |
Ref document number: 1996931694 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2227228 Country of ref document: CA Kind code of ref document: A Ref document number: 2227228 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 1997 514577 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 09051306 Country of ref document: US |
|
WWP | Wipo information: published in national office |
Ref document number: 1996931694 Country of ref document: EP |
|
WWG | Wipo information: grant in national office |
Ref document number: 1996931694 Country of ref document: EP |