WO1997012359A1 - Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues - Google Patents

Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues Download PDF

Info

Publication number
WO1997012359A1
WO1997012359A1 PCT/FR1996/001512 FR9601512W WO9712359A1 WO 1997012359 A1 WO1997012359 A1 WO 1997012359A1 FR 9601512 W FR9601512 W FR 9601512W WO 9712359 A1 WO9712359 A1 WO 9712359A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
input
output
filtering
sensor means
Prior art date
Application number
PCT/FR1996/001512
Other languages
English (en)
Inventor
Christian Carme
André PREUMONT
Original Assignee
Technofirst
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technofirst filed Critical Technofirst
Priority to US09/043,822 priority Critical patent/US6449369B1/en
Priority to AU71360/96A priority patent/AU719457B2/en
Priority to EP96932664A priority patent/EP0852793B1/fr
Priority to AT96932664T priority patent/ATE209813T1/de
Priority to CA002231071A priority patent/CA2231071C/fr
Priority to DE69617449T priority patent/DE69617449T2/de
Publication of WO1997012359A1 publication Critical patent/WO1997012359A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/005Circuits for transducers, loudspeakers or microphones for combining the signals of two or more microphones
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1781Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions
    • G10K11/17813Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms
    • G10K11/17817Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase characterised by the analysis of input or output signals, e.g. frequency range, modes, transfer functions characterised by the analysis of the acoustic paths, e.g. estimating, calibrating or testing of transfer functions or cross-terms between the output signals and the error signals, i.e. secondary path
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1785Methods, e.g. algorithms; Devices
    • G10K11/17853Methods, e.g. algorithms; Devices of the filter
    • G10K11/17854Methods, e.g. algorithms; Devices of the filter the filter being an adaptive filter
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/175Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound
    • G10K11/178Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using interference effects; Masking sound by electro-acoustically regenerating the original acoustic waves in anti-phase
    • G10K11/1787General system configurations
    • G10K11/17879General system configurations using both a reference signal and an error signal
    • G10K11/17881General system configurations using both a reference signal and an error signal the reference signal being an acoustic signal, e.g. recorded with a microphone
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1008Earpieces of the supra-aural or circum-aural type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1083Reduction of ambient noise
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/108Communication systems, e.g. where useful sound is kept and noise is cancelled
    • G10K2210/1081Earphones, e.g. for telephones, ear protectors or headsets
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/10Applications
    • G10K2210/117Nonlinear
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3012Algorithms
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3023Estimation of noise, e.g. on error signals
    • G10K2210/30232Transfer functions, e.g. impulse response
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3026Feedback
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3027Feedforward
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3048Pretraining, e.g. to identify transfer functions
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/30Means
    • G10K2210/301Computational
    • G10K2210/3053Speeding up computation or convergence, or decreasing the computational load
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/503Diagnostics; Stability; Alarms; Failsafe
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K2210/00Details of active noise control [ANC] covered by G10K11/178 but not provided for in any of its subgroups
    • G10K2210/50Miscellaneous
    • G10K2210/512Wide band, e.g. non-recurring signals

Definitions

  • the present invention relates to active vibration attenuation, that is to say the operation which consists in attenuating certain vibrations, by superimposing other vibrations created in phase opposition with the vibrations to be attenuated.
  • the feedback loop includes an input connected to so-called “close” vibration sensor means, arranged on the frame, and an output connected to vibration actuator means arranged on the frame, near the nearby sensor means.
  • the signal measured by the nearby sensor means is directly injected into the actuator means through filtering means which correct said signal in an attempt to cancel its energy.
  • This retroactive technique makes it possible to obtain a vibration attenuation with a certain gain, without generating instability in a frequency band of treatment.
  • this processing band corresponds to low frequencies, for example in sound vibrations at the frequency band ranging from 0 to 600 Hz.
  • the anticipation technique is articulated around adaptive type filtering means whose coefficients are adapted in real time according to an algorithm chosen so as to minimize the energy of the vibrations picked up by nearby sensor means as a function of the energy of the vibrations of reference received by the remote sensor means.
  • the present invention provides a solution to these problems.
  • Another object of the invention is to provide active attenuation of the "hybrid" type in which the anticipation filtering is grafted onto the feedback filtering or vice versa, in order to improve the respective behavior of said anticipation and feedback filtering with a resulting attenuation greater than the algebraic sum of the attenuations of said filterings taken separately.
  • the present invention relates to an active vibration attenuation device, of the type comprising:
  • - Vibration actuator means arranged on the frame near the first sensor means; and filtering means comprising at least one input connected to the first sensor means and one output connected to the actuator means, the filtering means being arranged to generate active attenuation of the vibrations on the frame,
  • Second vibration sensor means arranged on the frame according to a second predetermined geometric relationship born with respect to said frame;
  • - summing means having a first input, a second input, and an output connected to the actuator means.
  • the filtering means comprise:
  • Non-adaptive type feedback filtering means having an input connected to the first sensor means and an output connected to the first input of the summing means, and capable of generating active non-adaptive attenuation of vibrations on the frame , without causing instability in a first frequency band;
  • - measurement means suitable for measuring, beforehand, in the presence of the filtering means by feedback, the transfer function between the actuator means and the first sensor means;
  • - adaptive type anticipation filtering means comprising a first input connected to the second sensor means, a second input connected to the first sensor means, and an output connected to the second input of the summing means;
  • the filter coefficients of the anticipation filter means being adapted in real time according to an algorithm chosen to minimize the energy of the vibrations picked up by the first sensor means as a function of the energy of the vibrations captured by the second sensor means, and from the transfer function previously measured;
  • the framework comprises at least one cavity delimited by an ear and passive attenuation means, the first sensor means and the actuator means being housed in said cavity while the second sensor means being arranged outside the cavity.
  • the frame comprises a metal type beam, a plate, a trellis, a seat, a ventilation duct or the like.
  • the first and second sensor means each comprise at least: a microphone-type sound sensor element, an accelerometer-type acceleration sensor element, a displacement sensor element, a speed sensor element, a sensor element of stress, a force-sensing element or the like.
  • the first sensor means comprise two sensor elements, one being associated with the anticipation filtering means, the other being associated with the feedback filtering means.
  • the actuator means comprise a source of speaker type sounds, a test body, a vibrating pot or the like.
  • the feedback filtering means comprise a plurality of active analog and / or digital filters of order greater than or equal to 1, arranged to generate a transfer function making it possible to avoid instabilities in the first frequency band in the sense of Nyquist, and the transfer function of the filtering means by feedback is determined so that the phase of said transfer function does not pass through the value 0 in the first frequency band.
  • the feedback filtering means are of the infinite impulse response type.
  • the means of anticipation filtering are with finite impulse response, and the minimization algorithm is of the least mean square type.
  • the device comprises a plurality of first sensor means, and actuator means and the device is articulated around a structure with master / slave multiprocessors, each slave proces ⁇ being responsible for controlling a single medium actuator.
  • the present invention also relates to a method of hybrid active attenuation of vibrations, in particular mechanical, sound or similar vibrations, implemented by the device described above.
  • FIG. 1 is a schematic representation of the active acoustic attenuation device according to the invention.
  • FIG. 2 schematically represents the essential and constituent means of the device of FIG. 1 according to the invention
  • FIG. 3 are curves illustrating the attenuation of sound vibrations in the presence / absence of filtering means by feedback, in a frequency band from 0 to 2500 Hz;
  • FIGS. 4 and 5 are curves illustrating the attenuation of sound vibrations in the presence / absence of hybrid filtering means according to the invention, in a frequency band going from 0 to 2500 Hz;
  • FIGS. 6 and 7 are curves illustrating the attenuation of sound vibrations in the presence / absence of the hybrid filtering means according to the invention, in a frequency band going from 500 Hz to 1500 Hz;
  • FIG. 8 is a curve illustrating the attenuation of sound vibrations in the presence / absence of the hybrid filtering means according to the invention, in a frequency band ranging from 0 to 500 Hz;
  • FIG. 11 schematically shows the structure of the multi-channel attenuation device according to the invention, in which the filtering by anticipation and by feedback is digital;
  • FIG. 12 schematically represents the constituent elements of the slave processor of the device of FIG. 11;
  • FIG. 13 schematically shows the structure of the multi-channel attenuation device according to the invention, in which the feedback filtering is analog;
  • FIG. 14 schematically represents the assembly of the filtering by analog feedback in the device of FIG. 13.
  • the frame likely to be subject to vibrations to be attenuated comprises a cavity 2 delimited by an ear 4 and attenuation means 6 of the helmet type 6.
  • the helmet with retroactive filter is the one sold by the company TECHNOFIRST.
  • this helmet is equipped with an active acoustic attenuation device by feedback.
  • this feedback attenuation device comprises for each ear:
  • pre-amplification means 9 comprising an input 7 connected to the microphone 8 and an output 11,
  • - Feedback filtering means 12 comprising an inlet 14 connected to the outlet 11, and an outlet 16;
  • amplification means 18 comprising an input 20 connected to the output 16, and an output 22 connected to the input of the loudspeaker 10.
  • the pre-amplification means 9, the feedback filtering means 12 and the amplification means 18 here constitute a feedback loop 30 arranged in a known manner to generate active acoustic attenuation without causing instability in a band of selected frequencies.
  • a noise source 40 capable of generating sound vibrations for experimental and test purposes.
  • the frequency band in which the feedback filtering means are effective without causing instability in the sense of Nyquist is of the order of 0 to 600 Hz for sound vibrations (FIG. 3).
  • the feedback filtering means 12 comprise a plurality of active analog filters of order greater than or equal to 1, arranged to generate a transfer function making it possible to avoid instabilities in the frequency band 0-600 Hz in the sense of Nyquist, and the transfer function of the filtering means 12 is determined so that the phase of said transfer function does not pass through the value 0 in the band 0-600 Hz.
  • the headphones allow broadband processing up to 600 Hz and noise attenuations of the order of 20 dB.
  • a pumping effect appears from 650 Hz which results in an increase in the noise level compared to the action of the passive attenuation means alone.
  • This phenomenon is well known to those skilled in the art, and constitutes non-linearity (degradations of performance) compared to the results expected from the observation of the open loop system.
  • the Applicant has posed the problem of remedying the drawbacks associated with feedback filtering.
  • the solution according to the invention consists first of all in using an additional microphone 100 placed at a certain distance from the microphone 8.
  • the additional microphone 100 is placed on the upper part of the means for attaching the two helmet shells. Under these conditions, the additional microphone 100 is close to the noise source 40 and thus makes it possible to recover useful information to be processed. Obviously, this remote microphone can be arranged differently.
  • summing means 110 are provided at the level of the feedback loop 30. These summing means 110 have a first input 112 connected to the output 16 of the filtering means 12, a second input 114 and a output 116 connected to input 20 of amplifier means 18.
  • anticipation type filtering means are grafted to the feedback loop 30 in order to improve the feedback filtering and, more precisely, in order to linearize the active attenuation in all of a frequency band wider than the 0-600 Hz band and thus improving the active attenuation gain in the widened band which can go up to 3000 Hz ( Figure 4), by total elimination of the pumping effect mentioned above.
  • the anticipation filtering means 130 comprise a first input 132 connected to the additional microphone 100, a second input 134 connected to the microphone 8 and an output 136 connected to the second input 114 of the summing means 110.
  • the filtering coefficients of the anticipation filtering means 130 are adapted in real time according to an algorithm chosen to minimize the energy of the vibrations picked up by the microphone 8, as a function of the energy. vibrations picked up by the microphone 100, in order to linearize the retroactive attenuation in a whole frequency band wider than the frequency band processed directly by feedback, to accelerate the convergence of the minimization algorithm, and of improvement rer robustness of anticipation filtering means.
  • the anticipation filtering means include finite impulse response filters of the adaptive type 140.
  • the coefficients of the filters 140 are reactuated in real time by a minimization algorithm 150.
  • the minimization algorithm is of the average least squares type, also called LMS for "LEAST MEAN SQUARES".
  • This linearization can be observed at least at two points, in particular at the level of the 0-600 Hz band in which the attenuation gain in the band is improved; as well as at the 600-1100 Hz band in which the reappearance of the vibrations linked to the pumping of the retroactive filtering is suppressed and in which an attenuation appears whereas this does not exist in the presence of a filtering by retroac ⁇ tion alone ( Figures 3 to 8).
  • the active attenuation of the "hybrid" type obtained according to the invention results from a combination of the anticipation and feedback filtering means in which the anticipation filtering is grafted onto the feedback filtering or vice versa.
  • This combination of anticipation and feedback filtering according to the invention makes it possible to improve the respective behavior of said filtering, with a resulting active attenuation greater than the algebraic sum of the individual attenuations of said filtering taken separately.
  • FIG. 2 shows in detail the constituent elements of the feedback filtering means as well as the constituent elements of the filtering means by antici ⁇ pation, the latter being combined with the filtering means by feedback according to the invention.
  • the anticipation filtering means 130 comprise a first acquisition module A8 associated with nearby sensor means 8 and a second acquisition module AlOO associated with remote sensor means 100.
  • the A8 and AlOO acquisition modules are generally similar. However, in certain configurations, the acquisition modules may be different. Their constituent elements are identified by the suffix 8 when they are associated with the sensor means 8 and 100 when they are associated with the remote capture means 100.
  • Each acquisition module includes:
  • An input pre-amplifier element PE having an input connected to the associated sensor means 8 or 100 and an output;
  • FAT conditioning filter specific to the chosen application, preferably of the anti-overlap type having an input connected to the output of the input preamplifier and an output;
  • an analog / digital ADC converter having an input connected to the output of the conditioning filter and an output.
  • Each acquisition module is connected to DSP processing means which will in particular provide the minimization algorithm described above.
  • the digital processing means are of the digital signal processor PSN type.
  • the DSP processor comprises an input E8 receiving the signals leaving the acquisition module A8 and an input E100 receiving the signals leaving the acquisition module AlOO.
  • the DSP processor includes an output delivering a digital signal intended for a reproduction module R.
  • This restitution module R comprises a digital / analog converter CNAR and a smoothing filter FLR, for example of the low pass type, the input of which receives the outgoing signal from the digital / analog converter CNAR and the output of which is connected to the second input 114 of the summing means 110.
  • the DSP processor is that sold by the company TEXAS INSTRUMENT under the reference TMS 320C25.
  • the feedback filtering means 12 are put into operation, as well as the noise source 40, while the anticipation filtering means are put in the pause position.
  • the input pre-amplifiers PE8 and PE100 are adjusted on the filtering means in advance, so as to be in full scale of the analog / digital converters CAN8 and CAN100.
  • the transfer function of the so-called secondary path between the loudspeaker 10 and the so-called control microphone 8 is then measured by an initialization method, for example by exciting the action means. by Diracs type signals, white noise, filtered reference or the like.
  • the transfer function is sampled and saved in the memory of the DSP processor.
  • the transfer function is sampled at the frequency of 3000 Hz on a number of 80 points.
  • the gain of the amplifier 18 is adjusted so that the excitation of the loudspeaker 10 produces at the output of the preamplifier PE8, a signal level close to that adjusted during the previous step relating to the dynamic adjustment of the converters.
  • the digital processing means acquire periodically, and in real time, the distant noise picked up by the remote sensor means 100. They also calculate the signal energy, representative of the sum of the energies of the signals delivered by the nearby sensor means 8.
  • the anticipation filter means 150 are placed in search of optimal parameters for the best active attenuation. Knowledge of the impulse responses previously measured, of the signals coming from the near and distant sensor means in real time, allows a chosen minimization algorithm to determine, in real time, the values of the active acoustic attenuation control signal.
  • the purpose of convergence here is to minimize the energy of the signals delivered by the microphone 8 arranged in the cavity to be denoised from the helmet.
  • the minimization algorithm uses the mean least squares technique which is most widespread in the field of real-time applications.
  • the minimization algorithm can be a frequency algorithm working on the Fourier transforms of the signals considered. It should be noted that the impulse response or the transfer function of the speaker / control microphone paths 8 takes account of the feedback filtering here.
  • the instability information linked to the feedback filtering is introduced into the impulse response of the filter in advance.
  • the broadband active attenuation information related to feedback filtering appears in the sampled elements of the impulse response.
  • anticipation filtering does not disturb that of feedback filtering in the sense that the minimization during anticipation filtering can be stopped without altering the performance of feedback filtering.
  • Figures 3 to 10B show the specific power densities measured using a microphone fixed in the ear of the experimenter in different configurations.
  • the undesirable effects due to the instability of feedback filtering (rejection up to 8 dB) are eliminated by the action of the anticipation filtering device (see Figures 3, 4 and 5).
  • the anticipation device makes it possible to obtain, outside the feed back processing band (o- 600 Hz), a gain in attenuation of 2 to 10 dB compared to a passive headset ( Figure 6) .
  • the device described with reference to FIGS. 1 and 2 uses a processing of the single-channel type, articulated around the TMS 320C25 processor from TEXAS INSTRUMENT which can execute 10 million instructions per second.
  • a multi-channel device comprising a plurality of sensors 8, remote sensors 100 and actuators 10.
  • the processor can only work at sampling frequencies less than or equal to 1000 Hz.
  • the present invention also provides a solution to these problems.
  • the attenuation device is capable of managing a plurality of channels, for example twenty analog input channels capable of receiving the signals emanating from 19 close sensors individualized in 8-1 to 8-19 and a remote sensor 100.
  • the device according to the invention also comprises at least sixteen output channels capable of conveying signals to sixteen actuators individualized in 10-1 to 10-16.
  • Such a structure involves the processing of I (integer number of error sensor 8) times J (integer number of actuators) impulse responses, an RIJ response for each combination of actuators J and error sensors I.
  • the device is articulated around a structure with multiprocessor master / slaves, each process sor slave is responsible for driving a 'one way action- coach.
  • the master processor DSPM acquires all the signals emanating from the sensors 8 and 100, in particular the so-called remote reference signals as well as the so-called error control signals. It then distributes them to all the DSPE slave processors, individualized here in DSPE-1 to DSPE-16.
  • Each DSPE slave processor calculates the output signal of a single actuator 10.
  • the sensors 8 and the remote sensor 100 are connected to the inputs of an acquisition block BA, the output of which is connected to the master processor DSPM.
  • This acquisition block BA comprises, like the acquisition modules A described with reference to FIG. 2, a pre-amplifier element PE, a conditioning filter preferably specific to the chosen application FAT and an analog / converter. digital CAN.
  • the conditioning filter can be digital (anti-overlap) or analog (specific).
  • a laptop type microcomputer can be provided. In this case, it is connected to the master processor and is fitted with all the control software for the entire installation.
  • the digital assembly is articulated around a digital signal processor element PSN, for example that sold by the company TEXAS INSTRUMENT under the reference TMS 320C50.
  • each slave processor is dedicated to the control of a single actuator.
  • this is the processor associated with the actuator 10-1 and which is in relation to all the microphones 8 as well as to the remote microphone 100.
  • All the signals from sensors 8 and 100 are routed via the BA acquisition block and the DSPM master processor to the DSPE-1 slave processor.
  • the DSPE slave processor generally comprises the same elements as those of the single-channel device described with reference to FIG. 2. Thus, there are the restitution means R, the feedback filtering means 12 as well as the anticipation filtering 130.
  • a summing element 110 receives on its two inputs the signals emanating from the two filterings to deliver on its output the attenuation signal to the actuator 10-1.
  • the slave processor includes communication with the DSPM master processor.
  • the feedback filtering only makes sense for a pair of transducers comprising an actuator and a sound sensor. Under these conditions, the number of filterings by digital or analog feedback is equal to:
  • pairs of transducers 8 and 10 is also defined, that is to say the processing channels on which the respective feedback filtering means are applied.
  • each DSPE slave processor calculates, in parallel with the anticipation filtering, the feedback filtering associated with it, in the case of a digital type feedback filtering.
  • FIG. 12 In the case of an analog type feedback filtering (FIG. 12), a network of connections is provided in which are plugged in filtering modules by feedback between the pairs of transducers 8, 10 chosen.
  • the frame subject to vibrations can also be a metal type beam, a plate, a trellis, a seat, a ventilation duct or the like.
  • the sensor means can be sound sensor means, but also acceleration, stress, force, displacement, speed or the like.
  • the actuator means can be not only a sound actuator such as a loudspeaker, but also a test body, a piezoelectric element, or the like.
  • the close sensor means may comprise two sensor elements, one being associated with the anticipation filtering means, the other being associated with the feedback filtering means.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Vibration Prevention Devices (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Les moyens de filtrage comprennent un filtre non adaptatif par rétroaction (12) engendrant une atténuation active des vibrations sur l'ossature, sans engendrer d'instabilité dans une première bande de fréquence, et un filtre adaptatif par anticipation (130). Les coefficients de filtrage (140) par anticipation sont adaptés en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par les moyens capteurs (8) en fonction de l'énergie des vibrations captées par les moyens capteurs (100) et de la fonction de transfert, préalablement mesurée, en présence des moyens de filtrage par rétroaction et en l'absence des moyens de filtrage par anticipation, entre les moyens actionneurs (10) et les premiers moyens capteurs (8). Le dispositif permet de linéariser l'atténuation rétroactive dans toute une seconde bande de fréquences plus large que la première bande de fréquences, d'accélérer la convergence de l'algorithme de minimisation, et d'améliorer la robustesse du filtre par anticipation.

Description

Procédé et dispositif d'atténuation active hybride de vibrations, notamment de vibrations mécaniques, sonores ou analogues
La présente invention concerne l'atténuation active de vibrations, c'est-à-dire l'opération qui consiste à atténuer certaines vibrations, en superposant d'autres vibrations créées en opposition de phase avec les vibrations à atténuer.
Elle s'applique à l'atténuation active de toutes vibrations et plus particulièrement aux vibrations sonores, mécaniques ou analogues.
On connaît déjà la technique d'atténuation active par rétroaction, appelée encore "FEED BACK", et qui est fondée sur une boucle de contre-réaction agencée pour engendrer une atténuation active sur une ossature sujette aux vibrations.
La boucle de contre-réaction comprend une entrée reliée à des moyens capteurs de vibrations dits "proches", disposés sur l'ossature, et une sortie reliée à des moyens actionneurs de vibrations disposés sur l'ossature, à proximité des moyens capteurs proches. Le signal mesuré par les moyens capteurs proches est directement injecté aux moyens actionneurs à travers des moyens de filtrage qui corrigent ledit signal pour tenter d'annuler son énergie.
Cette technique rétroactive permet d'obtenir une atténuation vibratoire avec un certain gain, sans engendrer d'instabilité dans une bande de fréquences de traitement. Le plus souvent, cette bande de traitement correspond à des basses fréquences, par exemple en vibrations sonores à la bande de fréquences allant de 0 à 600 Hz.
Toutefois, cette technique rétroactive engendre des instabi¬ lités en hautes fréquences. Elle n'est donc pas totalement satisfaisante pour obtenir une atténuation vibratoire dans une large bande de fréquences. On connaît aussi la technique d'atténuation active par anticipation, appelée encore "FEED FORWARD", dans laquelle des vibrations de référence, en amont de la propagation des vibrations, et destinées à se propager dans le milieu à traiter sont détectées par des moyens capteurs dits "dis¬ tants", puis traitées par des moyens de filtrage afin de déterminer la commande à appliquer aux moyens actionneurs.
La technique par anticipation est articulée autour de moyens de filtrage de type adaptatif dont les coefficients sont adaptés en temps réel selon un algorithme choisi de façon à minimiser l'énergie des vibrations captées par les moyens capteurs proches en fonction de l'énergie des vibrations de référence captées par les moyens capteurs distants.
Une telle technique par anticipation est satisfaisante généralement pour traiter des vibrations dans une bande de fréquences étroite. Par contre, lorsqu'il s'agit d'atténuer des vibrations dans une large bande de fréquences, elle nécessite généralement un filtrage adaptatif long et coûteux.
Une solution pour écourter le temps de convergence de l'algorithme de filtrage par anticipation est décrite dans le document MIYASAKI et al, 1994, "Considération about Feed back, Feed forward, Hybrid Control for Active Control of Micro-Vibration" , Second International Conférence on Motion on Vibration Control, Yokohama, Aug.30-sept. 3, 1994. Elle consiste à juxtaposer un amortissement actif de type rétroac¬ tif et le filtrage par anticipation. L'amortissement actif par rétroaction effectue d'abord un amortissement des vibra¬ tions à une fréquence donnée, généralement la fréquence fondamentale de vibration de l'ossature. Ensuite, le filtrage par anticipation effectue son atténuation sur des vibrations ainsi pré-amorties, ce qui permet de comprimer la réponse impulsionnelle des chemins secondaires moyens actionneurs/- moyens capteurs proches et écourte ainsi le traitement du filtrage par anticipation. Cependant, l'amortissement actif par rétroaction est ici effectué sur une seule fréquence, ce qui rend cette solution inappropriée et inefficace pour un traitement actif sur une large bande de fréquences. Cet amortissement actif est en fait équivalent à un amortissement passif puisqu'il ne traite que la fréquence fondamentale de l'ossature, ce qui est totalement différent d'un contrôle actif large bande par filtrage rétroactif. De plus, il s'agit ici d'une simple juxtaposition du filtrage par anticipation et d'un amortisse- ment actif dans laquelle aucune synergie des techniques est mise en place.
La présente invention apporte une solution à ces problèmes.
Elle vise tout d'abord à fournir une atténuation active des vibrations dans une large bande de fréquences.
Un autre but de l'invention est de fournir une atténuation active de type "hybride" dans laquelle le filtrage par anticipation est greffé sur le filtrage par rétroaction ou réciproquement, afin d'améliorer le comportement respectif desdits filtrages par anticipation et par rétroaction avec une atténuation résultante supérieure à la somme algébrique des atténuations desdits filtrages prises séparément.
La présente invention porte sur un dispositif d'atténuation active de vibrations, du type comprenant:
- une ossature susceptible d'être sujette à des vibrations à atténuer;
- des premiers moyens capteurs de vibrations, disposés sur l'ossature selon une première relation géométrique prédéter¬ minée par rapport à ladite ossature;
- des moyens actionneurs de vibrations, disposés sur l'ossa¬ ture à proximité des premiers moyens capteurs; et - des moyens de filtrage comprenant au moins une entrée reliée aux premiers moyens capteurs et une sortie reliée aux moyens actionneurs, les moyens de filtrage étant agencés pour engendrer une atténuation active des vibrations sur l'ossatu¬ re,
- des seconds moyens capteurs de vibrations, disposés sur l'ossature selon une seconde relation géométrique prédétermi¬ née par rapport à ladite ossature;
- des moyens sommateurs possédant une première entrée, une seconde entrée, et une sortie reliée aux moyens actionneurs.
Selon une définition générale de l'invention, les moyens de filtrage comprennent:
- des moyens de filtrage par rétroaction de type non adapta¬ tif possédant une entrée reliée aux premiers moyens capteurs et une sortie reliée à la première entrée des moyens somma- teurs, et propres à engendrer une atténuation active non adaptative des vibrations sur l'ossature, sans engendrer d'instabilité dans une première bande de fréquences;
- des moyens de mesure propres à mesurer, au préalable, en présence des moyens de filtrage par rétroaction, la fonction de transfert entre les moyens actionneurs et les premiers moyens capteurs;
- des moyens de filtrage par anticipation de type adaptatif comprenant une première entrée reliée aux seconds moyens capteurs, une seconde entrée reliée aux premiers moyens capteurs, et une sortie reliée à la seconde entrée des moyens sommateurs;
les coefficients de filtrage des moyens de filtrage par anticipation étant adaptés en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par les premiers moyens capteurs en fonction de l'énergie des vibrations captées par les seconds moyens capteurs, et de la fonction de transfert préalablement mesurée;
ce qui permet de linéariser l'atténuation rétroactive dans toute une seconde bande de fréquences plus large que la première bande de fréquences, d'accélérer la convergence de l'algorithme de minimisation, et d'améliorer la robustesse des moyens de filtrage par anticipation.
Selon un premier mode de réalisation de l'invention, l'ossa¬ ture comprend au moins une cavité délimitée par une oreille et des moyens d'atténuation passifs, les premiers moyens capteurs et les moyens actionneurs étant logés dans ladite cavité tandis que les seconds moyens capteurs étant disposés hors de la cavité.
Dans un autre mode de réalisation de l'invention, l'ossature comprend une poutre de type métallique, une plaque, un treillis, un siège, une gaine de ventilation ou analogue.
En pratique, les premiers et seconds moyens capteurs compren¬ nent chacun au moins: un élément capteur de sons de type microphone, un élément capteur d'accélération de type accéléromètre, un élément capteur de déplacement, un élément capteur de vitesse, un élément capteur de contrainte, un élément capteur de force ou analogue.
Dans une variante, les premiers moyens capteurs comprennent deux éléments capteurs, l'un étant associé aux moyens de filtrage par anticipation, l'autre étant associé aux moyens de filtrage par rétroaction.
De préférence, les moyens actionneurs comprennent une source de sons de type haut-parleur, un corps d'épreuve, un pot vibrant ou analogue.
Avantageusement, les moyens de filtrage par rétroaction comprennent une pluralité de filtres analogiques et/ou numériques actifs d'ordre supérieur ou égal à 1, agencés pour engendrer une fonction de transfert permettant d'éviter des instabilités dans la première bande de fréquences au sens de Nyquist, et la fonction de transfert des moyens de filtrage par rétroaction est déterminée de telle sorte que la phase de ladite fonction de transfert ne passe pas par la valeur 0 dans la première bande de fréquences.
En pratique, les moyens de filtrage par rétroaction sont de type à réponse impulsionnelle infinie.
Par exemple, les moyens de filtrage par anticipation sont à réponse impulsionnelle finie, et l'algorithme de minimisation est du type des moindres carrés moyens.
Selon un autre aspect de l'invention, le dispositif comprend une pluralité de premiers moyens capteurs, et de moyens actionneurs et le dispositif est articulé autour d'une structure à multiprocesseurs maître/esclaves, chaque proces¬ seur esclave étant chargé de piloter un seul moyen action- neur.
La présente invention a également pour objet un procédé d'atténuation active hybride des vibrations, notamment des vibrations mécaniques, sonores ou analogues, mis en oeuvre par le dispositif décrit ci-avant.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lumière de la description détaillée ci- après et des dessins annexés dans lesquels:
- la figure 1 est une représentation schématique du disposi¬ tif d'atténuation acoustique active selon l'invention;
- la figure 2 représente schématiquement les moyens essen- tiels et constitutifs du dispositif de la figure 1 selon l'invention;
- la figure 3 sont des courbes illustrant l'atténuation des vibrations sonores en présence/absence de moyens de filtrage par rétroaction, dans une bande de fréquences allant de 0 à 2500 Hz;
- les figures 4 et 5 sont des courbes illustrant l'atté- nuation des vibrations sonores en présence/absence de moyens de filtrage hybride selon l'invention, dans une bande de fréquences allant de 0 à 2500 Hz;
- les figures 6 et 7 sont des courbes illustrant l'atténua- tion des vibrations sonores en présence/absence des moyens de filtrage hybride selon l'invention, dans une bande de fréquences allant de 500 Hz à 1500 Hz;
- la figure 8 est une courbe illustrant l'atténuation des vibrations sonores en présence/absence des moyens de filtrage hybride selon l'invention, dans une bande de fréquences allant de 0 à 500 Hz;
- les figures 9, 10A et 10B sont des courbes illustrant l'atténuation des vibrations sonores en présence/absence des filtrage par anticipation;
- la figure 11 représente schématiquement la structure du dispositif d'atténuation multi-voies selon l'invention, dans lequel les filtrages par anticipation et par rétroaction sont numériques;
la figure 12 représente schématiquement les éléments constitutifs du processeur esclave du dispositif de la figure 11;
- la figure 13 représente schématiquement la structure du dispositif d'atténuation multi-voies selon l'invention, dans lequel le filtrage par rétroaction est analogique; et
- la figure 14 représente schématiquement l'assemblage du filtrage par rétroaction analogique dans le dispositif de la figure 13. Sur la figure 1, on a représenté une application particuliè¬ rement avantageuse, non limitative, de l'invention, à savoir l'atténuation des vibrations sonores. Dans cette application, l'ossature susceptible d'être sujette à des vibrations à atténuer comprend une cavité 2 délimitée par une oreille 4 et des moyens d'atténuation 6 de type casque 6.
Par exemple, le casque à filtre rétroactif est celui vendu par la société TECHNOFIRST.
De façon connue, ce casque est équipé d'un dispositif d'atté¬ nuation acoustique active par rétroaction.
En pratique, ce dispositif d'atténuation par rétroaction comprend pour chaque oreille:
- un microphone 8 disposé dans la cavité 2;
- un haut-parleur 10 disposé dans la cavité 2 à proximité du microphone 8;
- des moyens de pré-amplification 9 comprenant une entrée 7 reliée au microphone 8 et une sortie 11,
- des moyens de filtrage par rétroaction 12 comprenant une entrée 14 reliée à la sortie 11, et une sortie 16; et
- des moyens d'amplification 18 comprenant une entrée 20 reliée à la sortie 16, et une sortie 22 reliée à l'entrée du haut-parleur 10.
Les moyens de pré-amplification 9, les moyens de filtrage par rétroaction 12 et les moyens d'amplification 18 constituent ici une boucle de contre-réaction 30 agencée de façon connue pour engendrer une atténuation acoustique active sans engendrer d'instabilité dans une bande de fréquences choi¬ sies. Sur la figure 1, on a représenté à proximité du casque, une source de bruit 40 susceptible d'engendrer des vibrations sonores à des fins expérimentales et de test.
Par exemple, la bande de fréquences dans laquelle les moyens de filtrage par rétroaction sont efficaces sans engendrer d'instabilité au sens de Nyquist, est de l'ordre de 0 à 600 Hz pour des vibrations sonores (figure 3).
En pratique, les moyens de filtrage par rétroaction 12 comprennent une pluralité de filtres analogiques actifs d'ordre supérieur ou égal à 1, agencés pour engendrer une fonction de transfert permettant d'éviter des instabilités dans la bande de fréquence 0-600 Hz au sens de Nyquist, et la fonction de transfert des moyens de filtrage 12 est détermi¬ née de telle sorte que la phase de ladite fonction de transfert ne passe pas par la valeur 0 dans la bande 0- 600 Hz.
Un tel filtrage par rétroaction est par exemple décrit dans le Brevet français 86 03394.
En référence à la figure 3, le casque permet un traitement large bande jusqu'à 600 Hz et des atténuations de bruit de l'ordre de 20 dB. Cependant, un effet de pompage apparaît à partir de 650 Hz qui se traduit par une augmentation du niveau de bruit par rapport à l'action des moyens d'atténua¬ tion passive seule. Ce phénomène est tout à fait connu de l'homme du métier, et constitue une non-linéarité (dégrada- tions des performances) par rapport aux résultats attendus de l'observation du système en boucle ouverte.
Le Demandeur s'est posé le problème de remédier aux inconvé¬ nients liés au filtrage par rétroaction.
La solution selon l'invention consiste tout d'abord, à utiliser un microphone supplémentaire 100 disposé à une certaine distance du microphone 8. Par exemple, le microphone supplémentaire 100 est disposé sur la partie supérieure des moyens qui permettent de rattacher les deux coquilles du casque. Dans ces conditions, le microphone supplémentaire 100 est proche de la source de bruit 40 et permet ainsi de récupérer une information utile à traiter. Bien évidemment, ce microphone distant peut être disposé différemment.
Ensuite, selon l'invention, des moyens sommateurs 110 sont prévus au niveau de la boucle de contre-réaction 30. Ces moyens sommateurs 110 possèdent une première entrée 112 reliée à la sortie 16 des moyens de filtrage 12, une seconde entrée 114 et une sortie 116 reliée à l'entrée 20 des moyens amplificateurs 18.
Enfin, selon l'invention, des moyens de filtrage de type par anticipation sont greffés à la boucle de contre-réaction 30 afin d'améliorer le filtrage par rétroaction et, plus exactement, afin de linéariser l'atténuation active dans la totalité d'une bande de fréquences plus large que la bande 0- 600 Hz et d'améliorer ainsi le gain d'atténuation active dans la bande élargie qui peut aller jusqu'à 3000 Hz (figure 4), par suppression totale de l'effet de pompage mentionné ci-avant.
En pratique, les moyens de filtrage par anticipation 130 comprennent une première entrée 132 reliée au microphone supplémentaire 100, une seconde entrée 134 reliée au micro¬ phone 8 et une sortie 136 reliée à la seconde entrée 114 des moyens sommateurs 110.
Comme on le verra plus en détail ci-après, les coefficients de filtrage des moyens de filtrage par anticipation 130 sont adaptés en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par le microphone 8, en fonction de l'énergie des vibrations captées par le microphone 100, afin de linéariser l'atténuation rétroactive dans toute une bande de fréquences plus large que la bande de fréquences traitée directement par rétroaction, d'accélérer la convergence de l'algorithme de minimisation, et d'amélio¬ rer la robustesse des moyens de filtrage par anticipation. En pratique, les moyens de filtrage par anticipation com¬ prennent des filtres à réponse impulsionnelle finie de type adaptatif 140. Les coefficients des filtres 140 sont réactua¬ lisés en temps réel par un algorithme de minimisation 150. Par exemple, l'algorithme de minimisation est du type des moindres carrés moyens, appelés encore LMS pour "LEAST MEAN SQUARES".
Cette linéarisation est observable au moins en deux points, notamment au niveau de la bande 0-600 Hz dans laquelle le gain d'atténuation dans la bande est amélioré; ainsi qu'au niveau de la bande 600-1100 Hz dans laquelle la réapparition des vibrations liées au pompage du filtrage rétroactif est supprimée et dans laquelle une atténuation apparaît alors que celle-ci n'existe pas en présence d'un filtrage par rétroac¬ tion seul (figures 3 à 8).
Cette accélération de la convergence de l'algorithme de minimisation ainsi que l'amélioration de la robustesse des moyens de filtrage par anticipation est observable en comparant les courbes d'atténuation obtenues par les moyens de filtrage par anticipation seuls (figures 9, 10A et 10B) par rapport aux courbes d'atténuation obtenues par les moyens de filtrage hybride selon l'invention (figures 4 à 8).
Il est à remarquer que l'atténuation active de type "hybride" obtenue selon l'invention résulte d'une combinaison des moyens de filtrage par anticipation et par rétroaction dans laquelle le filtrage par anticipation est greffé sur le filtrage par rétroaction ou réciproquement.
Cette combinaison des filtrages par anticipation et par rétroaction selon l'invention permet d'améliorer le comporte¬ ment respectif desdits filtrages, avec une atténuation active résultante supérieure à la somme algébrique des atténuations individuelles desdits filtrages prises séparément.
Sur la figure 2, on a représenté en détail les éléments constitutifs des moyens de filtrage par rétroaction ainsi que les éléments constitutifs des moyens de filtrage par antici¬ pation, ces derniers étant combinés avec les moyens de filtrage par rétroaction selon l'invention.
Les moyens de filtrage par anticipation 130 comprennent un premier module d'acquisition A8 associé aux moyens capteurs proches 8 et un second module d'acquisition AlOO associé aux moyens capteurs distants 100.
Les modules d'acquisition A8 et AlOO sont généralement semblables. Toutefois, dans certaines configurations, les modules d'acquisitions peuvent être différents. Leurs éléments constitutifs sont individualisés par le suffixe 8 lorsqu'ils sont associés aux moyens capteurs 8 et 100 lorsqu'ils sont associés aux moyens de capture distants 100.
Chaque module d'acquisition comprend:
- un élément pré-amplificateur d'entrée PE possédant une entrée reliée aux moyens capteurs 8 ou 100 associés et une sortie;
- un filtre de conditionnement FAT spécifique à l'application choisie, de préférence de type anti-recouvrement possédant une entrée reliée à la sortie du pré-amplificateur d'entrée et une sortie; et
- un convertisseur analogique/numérique CAN possédant une entrée reliée à la sortie du filtre de conditionnement et une sortie.
Chaque module d'acquisition est relié à des moyens de traite¬ ment DSP qui vont assurer notamment l'algorithme de minimisa¬ tion décrite ci-avant.
En pratique, les moyens de traitement numérique sont de type processeur à signal numérique PSN. Le processeur DSP comprend une entrée E8 recevant les signaux sortant du module d'acquisition A8 et une entrée E100 recevant les signaux sortant du module d'acquisition AlOO.
Le processeur DSP comprend une sortie délivrant un signal numérique destiné à un module de restitution R.
Ce module de restitution R comprend un convertisseur numéri¬ que/analogique CNAR et un filtre de lissage FLR, par exemple de type passe-bas, dont l'entrée reçoit le signal sortant du convertisseur numérique/analogique CNAR et dont la sortie est reliée à la seconde entrée 114 des moyens sommateurs 110.
Par exemple, le processeur DSP est celui vendu par la société TEXAS INSTRUMENT sous la référence TMS 320C25.
Le fonctionnement du dispositif selon l'invention est le suivant.
Dans une première étape d'initialisation, les moyens de filtrage par rétroaction 12 sont mis en fonctionnement, ainsi que la source de bruit 40, tandis que les moyens de filtrage par anticipation sont mis en position pause.
On règle sur les moyens de filtrage par anticipation les pré¬ amplificateurs d'entrée PE8 et PE100, pour être en pleine échelle des convertisseurs analogiques/numériques CAN8 et CAN100.
Ensuite, on arrête la source de bruit 40. On mesure alors la fonction de transfert du chemin dit secondaire entre le haut- parleur 10 et le microphone dit de contrôle 8 par une méthode d'initialisation, par exemple en excitant les moyens action¬ neurs par des signaux de type Diracs, bruit blanc, de référence filtrée ou analogue.
Enfin, la fonction de transfert est échantillonnée et sauvegardée dans la mémoire du processeur DSP. Par exemple, la fonction de transfert est échantillonnée à la fréquence de 3000 Hz sur un nombre de 80 points. Avantageusement, on règle le gain de l'amplificateur 18 afin que l'excitation du haut- parleur 10 produise à la sortie du pré-amplificateur PE8, un niveau de signal proche de celui réglé lors de l'étape précédente relative au réglage dynamique des convertisseurs.
Cette fonction de transfert ainsi préalablement mesurée va servir ensuite dans la phase de calibration pour l'adaptation des éléments de filtrage par anticipation.
En condition de fonctionnement, c'est-à-dire pendant la phase de minimisation du dispositif de contrôle hybride (c'est-à- dire combinaison feedforward avec feedback ou réciproque¬ ment), les moyens de traitement numérique acquièrent périodi- quement, et en temps réel, le bruit distant capté par les moyens capteurs distants 100. Ils calculent également l'énergie du signal, représentative de la somme des énergies des signaux délivrés par les moyens capteurs proches 8. Ensuite, les moyens de filtrage par anticipation 150 sont placés en recherche des paramètres optimaux pour la meilleure atténuation active. La connaissance des réponses impulsion¬ nelles préalablement mesurées, des signaux issus des moyens capteurs proches et distants en temps réel, permet à un algorithme de minimisation choisi de déterminer, en temps réel, les valeurs du signal de commande d'atténuation acoustique active.
Le but de la convergence est ici de minimiser l'énergie des signaux délivrés par le microphone 8 disposé dans la cavité à débruiter du casque.
Par exemple, l'algorithme de minimisation utilise la techni¬ que des moindres carrés moyens qui est le plus répandu dans le domaine des applications en temps réel.
En variante, l'algorithme de minimisation peut être un algorithme fréquentiel travaillant sur les transformés de Fourier des signaux considérés. Il est à remarquer que la réponse impulsionnelle ou la fonction de transfert des chemins haut-parleur/microphone de contrôle 8 tient compte ici du filtrage par rétroaction.
Ainsi, les informations d'instabilité liées au filtrage par rétroaction sont introduites dans la réponse impulsionnelle du filtre par anticipation. De même, les informations d'atténuation active large bande liées au filtrage par rétroaction apparaissent dans les éléments échantillonnés de la réponse impulsionnelle.
Grâce à la participation de ces informations liées donc à l'instabilité du filtrage par rétroaction ainsi que les informations liées à l'atténuation active large bande de ce filtrage, le filtrage par anticipation va apporter plusieurs types d'améliorations en référence aux figures 3 à 10B :
- annulation des amplifications de signaux en haute fréquen¬ ces liées aux instabilités par rétroaction;
- atténuation du bruit en dehors de la bande de traitement du filtrage par rétroaction (gain jusqu'à 10 dB par rapport au traitement passif des coquilles dans le cas du casque);
- amélioration du traitement dans la totalité de la bande de traitement de filtrage par rétroaction (gain jusqu'à 15 dB par rapport au filtrage par rétroaction seul), ce qui permet de le rendre encore plus linéaire;
- amélioration de la robustesse du système, par exemple aux effets Larsen;
- amélioration des performances par rapport à des filtrages par rétroaction et des filtrages par anticipation utilisés séparément.
- accélération de la convergence de l'algorithme de minimisa¬ tion, - amélioration de la robustesse des moyens de filtrage par anticipation (observable en comparant les courbes d'atté¬ nuation obtenues par les moyens de filtrage par anticipation seuls (figures 9, 10A et 10B) par rapport aux courbes d'atténuation obtenues par les moyens de filtrage hybride selon l'invention (figures 4 à 8).
Il est à remarquer que l'action du filtrage par anticipation ne perturbe pas celle du filtrage par rétroaction dans le sens où l'on peut arrêter la minimisation en cours du filtrage par anticipation sans altérer les performances du filtrage par rétroaction.
Sur les figures 3 à 10B, on a représenté les densités spec- traies de puissance mesurées à l'aide d'un microphone fixé dans l'oreille de l'expérimentateur dans différentes configu¬ rations. Les effets indésirables dus à l'instabilité du filtrage par rétroaction (réjection jusqu'à 8 dB) sont éliminés par l'action du dispositif de filtrage par anticipa- tion (voir figures 3, 4 et 5).
Mieux encore, le dispositif par anticipation permet d'obte¬ nir, en dehors de la bande de traitement du feed back (o- 600 Hz), un gain en atténuation de 2 à 10 dB par rapport à un casque passif (figure 6).
De même, on a mesuré des meilleurs résultats d'anti-bruits en basse fréquences jusqu'à +15 dB.
Le dispositif décrit en référence aux figures 1 et 2, utilise un traitement de type mono-voie, articulé autour du proces¬ seur TMS 320C25 de chez TEXAS INSTRUMENT qui peut exécuter 10 millions d'instructions par seconde.
Toutefois, il peut être trop lent lorsqu'il doit piloter un dispositif multivoies comprenant une pluralité de capteurs 8, de capteurs distants 100 et d'actionneurs 10. Par exemple, pour un fonctionnement du dispositif avec cinq microphones 8, cinq hauts-parleurs 10, 60 points pour les réponses impulsionnelles et 15 coefficients de filtrage par anticipation, le processeur ne peut travailler qu'à des fréquences d'échantillonnage inférieures ou égales à 1000 Hz.
Or, certaines expérimentations nécessitent un traitement rapide, pour un nombre de microphones 8 dits d'erreurs et de sources de contre-bruits 10 supérieur à cinq.
De plus, pour garder la pleine efficacité de l'algorithme de minimisation, il peut être nécessaire d'avoir une bonne connaissance de la réponse impulsionnelle des trajets secondaires. Il faut donc enregistrer en mémoire cette réponse avec un grand nombre de points. Ce nombre de points détermine aussi le nombre d'échantillons du signal de référence issu du capteur distant 100 qu'il faut conserver également en mémoire interne, d'où le problème de la capacité mémoire.
La présente invention apporte également une solution à ces problèmes.
Selon l'invention, le dispositif d'atténuation est capable de gérer une pluralité de voies, par exemple vingt voies d'entrée analogiques susceptibles de recevoir les signaux émanant de 19 capteurs proches individualisés en 8-1 à 8-19 et d'un capteur distant 100. Le dispositif selon l'invention comprend également au moins seize voies de sorties capables de véhiculer des signaux vers seize actionneurs individuali¬ sés en 10-1 à 10-16.
Une telle structure implique le traitement de I (nombre entier de capteur d'erreur 8) fois J (nombre entier d'action- neurs) réponses impulsionnelles, une réponse RIJ pour chaque combinaison d'actionneurs J et de capteurs d'erreurs I.
Très avantageusement, le dispositif est articulé autour d'une structure à multiprocesseurs maître/esclaves, chaque procès- seur esclave étant chargé de piloter un 'seul moyen action- neur.
En référence à la figure 11, le processeur maître DSPM fait l'acquisition de tous les signaux émanant des capteurs 8 et 100, notamment les signaux de référence dits distants ainsi que les signaux de contrôle dits d'erreur. Il les distribue ensuite à tous les processeurs esclaves DSPE, individualisés ici en DSPE-1 à DSPE-16.
Chaque processeur esclave DSPE calcule le signal de sortie d'un seul actionneur 10.
En pratique, les capteurs 8 et le capteur distant 100 sont reliés aux entrées d'un bloc d'acquisition BA dont la sortie est reliée au processeur maître DSPM.
Ce bloc d'acquisition BA comprend, comme les modules d'acqui¬ sition A décrits en référence à la figure 2, un élément pré- amplificateur PE, un filtre de conditionnement de préférence spécifique à l'application choisie FAT et un convertisseur analogique/numérique CAN.
Le filtre de conditionnement peut être numérique (anti-recou- vrement) ou bien analogique (spécifique).
Un micro-ordinateur de type PC portable peut être prévu. Il est dans ce cas relié au processeur maître et est muni de tous les logiciels de pilotage de l'ensemble de l'instal- lation.
L'ensemble numérique est articulé autour d'un élément proces¬ seur de signal numérique PSN, par exemple celui vendu par la société TEXAS INSTRUMENT sous la référence TMS 320C50.
En référence à la figure 12, Chaque processeur esclave est dédié à la commande d'un seul actionneur. Par exemple, il s'agit du processeur associé à l'actionneur 10-1 et qui est en relation avec tous les microphones 8 ainsi qu'avec le microphone distant 100.
Tous les signaux des capteurs 8 et 100 sont acheminés via le bloc d'acquisition BA et le processeur maître DSPM vers le processeur esclave DSPE-1.
Le processeur esclave DSPE comprend généralement les mêmes éléments que ceux du dispositif monovoie décrit en référence à la figure 2. Ainsi, on retrouve les moyens de restitution R, les moyens de filtrage par rétroaction 12 ainsi que le filtrage par anticipation 130. Un élément sommateur 110 reçoit sur ses deux entrées les signaux émanant des deux filtrages pour délivrer sur sa sortie le signal d'atténuation vers l'actionneur 10-1.
Le processeur esclave comprend une communication avec le processeur maître DSPM.
Dans le cas d'un filtrage par rétroaction de type analogique (figure 14), des modifications sont apportées au niveau du bloc de restitution. Un sommateur individuel 100-1, c'est-à- dire associé au processeur esclave DSPE-1, permet d'ajouter le signal analogique issu du filtrage par rétroaction 12-1 au signal analogique issu du filtrage spécifique FLR-1.
Il est à remarquer que le filtrage par rétroaction n'a de sens que pour un couple de transducteurs comprenant un actionneur et un capteur de sons. Dans ces conditions, le nombre de filtrages par rétroaction numériques ou analogiques est égal à:
- soit au nombre de capteurs 8, lorsque ce nombre est égal au nombre d'actionneurs 10,
- soit au nombre d'actionneurs 10, si ce nombre est inférieur au nombre de capteurs 8, - soit au nombre de capteurs 8, si celui-ci est inférieur au nombre d'actionneurs 10.
On définit ainsi le nombre maximal de filtrages par rétroac- tion.
On définit aussi la notion de couples de transducteurs 8 et 10, c'est-à-dire les voies de traitement sur lesquelles sont appliquées les moyens de filtrage par rétroaction respectifs.
Ensuite, chaque processeur esclave DSPE calcule, en parallèle du filtrage par anticipation, le filtrage par rétroaction qui lui est associé, dans le cas d'un filtrage par rétroaction de type numérique.
Dans le cas d'un filtrage par rétroaction de type analogique (figure 12), il est prévu un réseau de connexions dans lequel s'enfichent des modules de filtrage par rétroaction entre les couples de transducteurs 8,10 choisis.
Dans la description ci-avant, nous avons décrit une applica¬ tion liée aux vibrations sonores. Toutefois, l'invention s'applique à l'atténuation active de toute vibration.
Ainsi, l'ossature sujette à des vibrations peut être aussi une poutre de type métallique, une plaque, un treillis, un siège, une gaine de ventilation ou analogue. Dans ces condi¬ tions, les moyens capteurs peuvent être des moyens capteurs de sons, mais aussi d'accélération, de contrainte, de force, de déplacement, de vitesse ou analogue. De même, les moyens actionneurs peuvent être non seulement un actionneur de sons tel qu'un haut-parleur, mais aussi un corps d'épreuve, un élément piézo-électrique, ou analogue. Par ailleurs, les moyens capteurs proches peuvent comprendre deux éléments capteurs, l'un étant associé aux moyens de filtrage par anticipation, l'autre étant associé aux moyens de filtrage par rétroaction.

Claims

Revendications
1. Dispositif d'atténuation active de vibrations, du type comprenant:
- une ossature susceptible d'être sujette à des vibrations à atténuer;
- des premiers moyens capteurs de vibrations (8), disposés sur l'ossature selon une première relation géométrique prédéterminée par rapport à ladite ossature;
- des moyens actionneurs de vibrations (10), disposés sur l'ossature à proximité des premiers moyens capteurs (8); et
- des moyens de filtrage comprenant au moins une entrée reliée aux premiers moyens capteurs et une sortie reliée aux moyens actionneurs, les moyens de filtrage étant agencés pour engendrer une atténuation active des vibrations sur l'ossatu- re;
- des seconds moyens capteurs de vibrations (100), disposés sur l'ossature selon une seconde relation géométrique prédéterminée par rapport à ladite ossature;
- des moyens sommateurs (110) possédant une première entrée (112), une seconde entrée (114), et une sortie reliée aux moyens actionneurs (10);
caractérisé en ce que les moyens de filtrage comprennent:
- des moyens de filtrage par rétroaction (12) de type non adaptatif possédant une entrée reliée aux premiers moyens capteurs (8) et une sortie (16) reliée à la première entrée (112) des moyens sommateurs, et propres à engendrer une atténuation active de type non adaptatif des vibrations sur l'ossature, sans engendrer d'instabilité dans une première bande de fréquences; - des moyens propres à mesurer au préalable, et en présence des moyens de filtrage par rétroaction, la fonction de transfert entre les moyens actionneurs (10) et les premiers moyens capteurs (8) ;
- des moyens de filtrage par anticipation (130) de type adaptatif comprenant une première entrée (132) reliée aux seconds moyens capteurs (100), une seconde entrée (134) reliée aux premiers moyens capteurs (8), et une sortie reliée à la seconde entrée (114) des moyens sommateurs (110);
les coefficients de filtrage (140) des moyens de filtrage par anticipation (130) étant adaptés en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par les premiers moyens capteurs (8) en fonction de l'énergie des vibrations captées par les seconds moyens capteurs (100) et de la fonction de transfert ainsi préala¬ blement mesurée, ce qui permet de linéariser l'atténuation rétroactive dans toute une seconde bande de fréquences plus large que la première bande de fréquences, d'accélérer la convergence de l'algorithme de minimisation, et d'améliorer la robustesse des moyens de filtrage par anticipation.
2. Dispositif selon la revendication 1, caractérisé en ce que l'ossature comprend au moins une cavité (2) délimitée par une oreille (4) et des moyens d'atténuation passif (6), les premiers moyens capteurs (8) et les moyens actionneurs (10) étant logés dans ladite cavité (2) tandis que les seconds moyens capteurs (100) étant disposés hors de la cavité.
3. Dispositif selon la revendication 1, caractérisé en ce que l'ossature comprend une poutre de type métallique, une plaque, un treillis, un siège, une gaine de ventilation ou analogue.
4. Dispositif selon la revendication 1, caractérisé en ce que les premiers moyens capteurs (8) comprennent au moins: un élément capteur de sons de type microphone, un élément capteur d'accélération de type accéléromètre, un élément capteur de déplacement, un élément capteur de vitesse, un élément capteur de contrainte, un élément capteur de force, ou analogue.
5. Dispositif selon la revendication 4, caractérisé en ce que les premiers moyens capteurs (8) comprennent deux éléments capteurs, l'un étant associé aux moyens de filtrage par anticipation, l'autre étant associé aux moyens de filtrage par rétroaction.
6. Dispositif selon la revendication 1, caractérisé en ce que les seconds moyens capteurs (100) comprennent au moins: un élément capteur de sons de type microphone, un élément capteur d'accélération de type accéléromètre, un élément capteur de déplacement, un élément capteur de vitesse, un élément capteur de contrainte, un élément capteur de force, ou analogue.
7. Dispositif selon la revendication 1, caractérisé en ce que les moyens actionneurs (10) comprennent une source de sons de type haut-parleur, un corps d'épreuve, un pot vibrant, ou analogue.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que les moyens de filtrage par rétroaction
(12) comprennent une pluralité de filtres analogiques et/ou numériques actifs d'ordre supérieur ou égal à 1, agencés pour engendrer une fonction de transfert permettant d'éviter des instabilités dans la première bande de fréquences au sens de Nyquist et en ce que la fonction de transfert des moyens de filtrage par rétroaction est déterminée de telle sorte que la phase de ladite fonction de transfert ne passe pas par la valeur zéro dans la première bande.
9. Dispositif selon l'une quelconque des précédentes revendi¬ cations, caractérisé en ce que les moyens de filtrage par rétroaction (12) sont à réponse impulsionnelle infinie.
10. Dispositif selon l'une quelconque des précédentes revendications, caractérisé en ce que les moyens de filtrage par anticipation (130) comprennent:
- un premier module d'acquisition (A8) possédant une entrée reliée à la sortie des premiers moyens capteurs (8) , et une sortie;
- un second module d'acquisition (AlOO) possédant une entrée reliée à la sortie des seconds moyens capteurs (100), et une sortie;
- des moyens de traitement numérique possédant une première entrée reliée à la sortie du premier module d'acquisition (A8), une seconde entrée reliée à la sortie du second module d'acquisition (AlOO), et une sortie, lesdits moyens de traitement numérique étant propres à commander l'algorithme - de minimisation de l'énergie des vibrations captées par les premiers moyens capteurs (8) en fonction de l'énergie des vibrations captées par les seconds moyens capteurs (100); et
- un module de restitution (R) possédant une entrée reliée à la sortie des moyens de traitement numérique et une sortie reliée à la seconde entrée (114) des moyens sommateurs.
11. Dispositif selon la revendication 10, caractérisé en ce que les premier et second modules d'acquisition (A8 et AlOO) comprennent:
- un élément pré-amplificateur d'entrée (PE) possédant une entrée recevant les signaux issus des premiers moyens capteurs (8) ou des seconds moyens capteurs (100), et une sortie;
- un filtre de conditionnement (FAT) adapté à l'application choisie et possédant une entrée reliée à la sortie de l'élément pré-amplificateur d'entrée, et une sortie; et - un convertisseur analogique/numérique (CAN) possédant une entrée reliée à la sortie du filtre de conditionnement et une sortie reliée à une entrée des moyens de traitement numéri¬ que.
12. Dispositif selon la revendication 10, caractérisé en ce que le module de restitution (R) comprend:
- un convertisseur numérique/analogique (CNA) possédant une entrée reliée à la sortie des moyens de traitement numérique et une sortie; et
- un filtre de lissage (FLR) possédant une entrée reliée à la sortie du convertisseur numérique/analogique et une sortie reliée à la seconde entrée (114) des moyens sommateurs (110).
13. Dispositif selon la revendication 10, caractérisé en ce que les moyens de filtrage par anticipation (130) sont à réponse impulsionnelle finie et en ce que l'algorithme de minimisation est du type des moindres carrés moyens.
14. Dispositif selon la revendication 10, caractérisé en ce que les moyens de traitement numérique sont du type proces¬ seur de signal numérique.
15. Dispositif selon l'une quelconque des précédentes revendications, caractérisé en ce qu'il comprend une plura¬ lité de premiers moyens capteurs (8-1,8-2,8-3,...), et de moyens actionneurs (10-1,10-2,...) et en ce que le dispositif est articulé autour d'une structure à multiprocesseurs maître/esclaves, chaque processeur esclave (DSPE-1) étant chargé de piloter un seul moyen actionneur (10-1).
16. Procédé d'atténuation vibratoire active, notamment acoustique, du type comprenant les étapes suivantes:
- a) prévoir une ossature susceptible d'être sujette à des vibrations à atténuer, - b) prévoir des premiers moyens capteurs de vibrations (8), disposés sur l'ossature selon une première relation géométri¬ que prédéterminée par rapport à ladite ossature,
- c) prévoir des moyens actionneurs de vibrations (10), disposés sur l'ossature à proximité des premiers moyens capteurs,
- d) prévoir des moyens de filtrage comprenant au moins une entrée reliée aux premiers moyens capteurs (8) et une sortie
(16),
- e) agencer les moyens de filtrage pour engendrer une atténuation active des vibrations sur l'ossature,
- f) prévoir des seconds moyens capteurs de vibrations (100), disposés sur l'ossature selon une seconde relation géométri¬ que prédéterminée,
- g) prévoir des moyens sommateurs (110) possédant une première entrée (112), une seconde entrée (114), et une sortie reliée aux moyens d'actionneurs (10),
caractérisé en ce qu'il comprend en outre les étapes suivan- tes:
- h) prévoir des moyens de filtrage par rétroaction (12) de type non adaptatif, possédant une entrée reliée aux premiers moyens capteurs (8) et une sortie (16) reliée à la première entrée (112) des moyens sommateurs, et agencer lesdits moyens de filtrage par rétroaction pour engendrer une atténuation active de type non adaptatif des vibrations sur l'ossature, sans engendrer d'instabilité dans une première bande de fréquences;
- i) mesurer au préalable, et en présence des moyens de filtrage par rétroaction, la fonction de transfert entre les moyens actionneurs (10) et les premiers moyens capteurs (8); - j) prévoir des moyens de filtrage par anticipation (130) de type non adaptatif comprenant une première entrée (132) reliée aux seconds moyens capteurs (100), une seconde entrée (134) reliée aux premiers moyens capteurs (8), et une sortie reliée à la seconde entrée (114) des moyens sommateurs (110);
- k) adapter les coefficients de filtrage (140) des moyens de filtrage par anticipation (130) en temps réel selon un algorithme choisi pour minimiser l'énergie des vibrations captées par les premiers moyens capteurs (8) en fonction de l'énergie des vibrations captées par les seconds moyens capteurs (100), et la fonction de transfert préalablement mesurée;
ce qui permet de linéariser l'atténuation rétroactive dans toute une seconde bande de fréquences plus large que la première bande de fréquence, d'accélérer la convergence de l'algorithme de minimisation, et d'améliorer la robustesse des moyens de filtrage par anticipation.
17. Procédé selon la revendication 16, caractérisé en ce qu'il est mis en oeuvre par un dispositif selon l'une quelconque des revendications 1 à 15.
PCT/FR1996/001512 1995-09-27 1996-09-27 Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues WO1997012359A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/043,822 US6449369B1 (en) 1995-09-27 1996-09-27 Method and device for hybrid active attenuation of vibration, particularly of mechanical, acoustic or similar vibration
AU71360/96A AU719457B2 (en) 1995-09-27 1996-09-27 Method and device for hybrid active attenuation of vibration, particularly of mechanical, acoustic or similar vibration
EP96932664A EP0852793B1 (fr) 1995-09-27 1996-09-27 Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
AT96932664T ATE209813T1 (de) 1995-09-27 1996-09-27 Verfahren und vorrichtung für aktive hybride schwingungsdämpfung, insbesondere von mechanischen, schall- und dergleichen schwingungen
CA002231071A CA2231071C (fr) 1995-09-27 1996-09-27 Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
DE69617449T DE69617449T2 (de) 1995-09-27 1996-09-27 Verfahren und vorrichtung für aktive hybride schwingungsdämpfung, insbesondere von mechanischen, schall- und dergleichen schwingungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9511327A FR2739214B1 (fr) 1995-09-27 1995-09-27 Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
FR95/11327 1995-09-27

Publications (1)

Publication Number Publication Date
WO1997012359A1 true WO1997012359A1 (fr) 1997-04-03

Family

ID=9482962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1996/001512 WO1997012359A1 (fr) 1995-09-27 1996-09-27 Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues

Country Status (8)

Country Link
US (1) US6449369B1 (fr)
EP (1) EP0852793B1 (fr)
AT (1) ATE209813T1 (fr)
AU (1) AU719457B2 (fr)
CA (1) CA2231071C (fr)
DE (1) DE69617449T2 (fr)
FR (1) FR2739214B1 (fr)
WO (1) WO1997012359A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921603A3 (fr) * 2006-11-13 2016-10-05 Sony Corporation Circuit de filtre pour suppression sonore, procédé de production de signal de réduction sonore et système de suppression sonore
FR3063173A1 (fr) * 2017-02-22 2018-08-24 Smartinstruments Instrument de musique acoustique, perfectionne
WO2019025700A1 (fr) * 2017-08-01 2019-02-07 Hyvibe Restitution sonore perfectionnée à partir d'un dispositif à actionneur mécanique vibrant

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6078672A (en) 1997-05-06 2000-06-20 Virginia Tech Intellectual Properties, Inc. Adaptive personal active noise system
FR2774796B1 (fr) * 1998-02-06 2001-10-05 Sagem Dispositif anti-bruit a detection de seuil
US20040013273A1 (en) * 2002-07-22 2004-01-22 Siemens Vdo Automotive, Inc. Calibration for an active noise control system
US20040086135A1 (en) * 2002-11-01 2004-05-06 Siemens Vdo Automotive Inc. Active noise control system using pure feedforward method with order-based offline calibration
GB2401278B (en) * 2003-04-30 2007-06-06 Sennheiser Electronic A device for picking up/reproducing audio signals
GB2401744B (en) * 2003-05-14 2006-02-15 Ultra Electronics Ltd An adaptive control unit with feedback compensation
US7181296B2 (en) * 2003-08-06 2007-02-20 Asml Netherlands B.V. Method of adaptive interactive learning control and a lithographic manufacturing process and apparatus employing such a method
US7308106B2 (en) * 2004-05-17 2007-12-11 Adaptive Technologies, Inc. System and method for optimized active controller design in an ANR system
DE102005016204A1 (de) * 2005-04-07 2006-10-12 Sennheiser Electronic Gmbh & Co. Kg Kopfhörer zum Anschluss an eine externe aktive Lärmkompensationsvorrichtung
EP1912468B1 (fr) * 2005-07-29 2013-08-14 Panasonic Corporation Dispositif de haut-parleur
GB2446966B (en) 2006-04-12 2010-07-07 Wolfson Microelectronics Plc Digital circuit arrangements for ambient noise-reduction
JP2008122729A (ja) * 2006-11-14 2008-05-29 Sony Corp ノイズ低減装置、ノイズ低減方法、ノイズ低減プログラムおよびノイズ低減音声出力装置
JP4506873B2 (ja) * 2008-05-08 2010-07-21 ソニー株式会社 信号処理装置、信号処理方法
US8718291B2 (en) 2011-01-05 2014-05-06 Cambridge Silicon Radio Limited ANC for BT headphones
US8693700B2 (en) * 2011-03-31 2014-04-08 Bose Corporation Adaptive feed-forward noise reduction
US9495952B2 (en) 2011-08-08 2016-11-15 Qualcomm Incorporated Electronic devices for controlling noise
FR2983026A1 (fr) 2011-11-22 2013-05-24 Parrot Casque audio a controle actif de bruit de type non-adaptatif, pour l'ecoute d'une source musicale audio et/ou pour des fonctions de telephonie "mains-libres"
EP2677765B1 (fr) * 2012-06-20 2018-11-28 AKG Acoustics GmbH Casque à suppression active de bruit
FR3022954A1 (fr) 2014-06-30 2016-01-01 Christian Carme Installation pour la recuperation de l'energie d'une houle et/ou pour l'attenuation active de ladite houle
CN104602163B (zh) * 2014-12-31 2017-12-01 歌尔股份有限公司 主动降噪耳机及应用于该耳机的降噪控制方法和系统
WO2018089345A1 (fr) 2016-11-08 2018-05-17 Andersen Corporation Systèmes et procédés actifs d'annulation du bruit
EP3788619A1 (fr) 2018-05-04 2021-03-10 Andersen Corporation Ciblage de fréquence multibande pour atténuation de bruit
CN114706432B (zh) * 2022-05-20 2023-04-28 哈尔滨理工大学 一种基于跨介质时延的随机微振动主动隔振控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005430A1 (fr) * 1986-03-07 1987-09-11 Centre National De La Recherche Scientifique (Cnrs Procedes et dispositifs pour ameliorer l'intelligibilite des communications electro-acoustiques
EP0385713A2 (fr) * 1989-03-01 1990-09-05 Sony Corporation Dispositif de réception à réduction de bruit
WO1994017512A1 (fr) * 1993-01-28 1994-08-04 The Secretary Of State For Defence Casque anti-bruit equipe d'un systeme de regulation du bruit active
EP0612058A1 (fr) * 1993-02-18 1994-08-24 Matra Cap Systemes Procédé et dispositif d'amortissement actif de vibrations
EP0622779A2 (fr) * 1993-04-27 1994-11-02 Hughes Aircraft Company Dispositif d'atténuation actif du bruit muni d'un filtre adaptif multiple
WO1995020841A1 (fr) * 1994-01-31 1995-08-03 Noise Cancellation Technologies, Inc. Systeme adaptatif de precompensation et d'asservissement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4025724A (en) * 1975-08-12 1977-05-24 Westinghouse Electric Corporation Noise cancellation apparatus
US5337366A (en) * 1992-07-07 1994-08-09 Sharp Kabushiki Kaisha Active control apparatus using adaptive digital filter
US5613009A (en) * 1992-12-16 1997-03-18 Bridgestone Corporation Method and apparatus for controlling vibration
US5481615A (en) * 1993-04-01 1996-01-02 Noise Cancellation Technologies, Inc. Audio reproduction system
US5452361A (en) * 1993-06-22 1995-09-19 Noise Cancellation Technologies, Inc. Reduced VLF overload susceptibility active noise cancellation headset
US5745580A (en) * 1994-11-04 1998-04-28 Lord Corporation Reduction of computational burden of adaptively updating control filter(s) in active systems
US6085307A (en) * 1996-11-27 2000-07-04 Vlsi Technology, Inc. Multiple native instruction set master/slave processor arrangement and method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987005430A1 (fr) * 1986-03-07 1987-09-11 Centre National De La Recherche Scientifique (Cnrs Procedes et dispositifs pour ameliorer l'intelligibilite des communications electro-acoustiques
EP0385713A2 (fr) * 1989-03-01 1990-09-05 Sony Corporation Dispositif de réception à réduction de bruit
WO1994017512A1 (fr) * 1993-01-28 1994-08-04 The Secretary Of State For Defence Casque anti-bruit equipe d'un systeme de regulation du bruit active
EP0612058A1 (fr) * 1993-02-18 1994-08-24 Matra Cap Systemes Procédé et dispositif d'amortissement actif de vibrations
EP0622779A2 (fr) * 1993-04-27 1994-11-02 Hughes Aircraft Company Dispositif d'atténuation actif du bruit muni d'un filtre adaptif multiple
WO1995020841A1 (fr) * 1994-01-31 1995-08-03 Noise Cancellation Technologies, Inc. Systeme adaptatif de precompensation et d'asservissement

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHR. CARME: "Absorption acoustique active dans les cavités auditives", ACUSTICA, vol. 66, no. 5, October 1988 (1988-10-01), STUTTGART, pages 233 - 246, XP000574129 *
SNYDER S D ET AL: "ON FEEDFORWARD ACTIVE CONTROL OF SOUND AND VIBRATION USING VIBRATION ERROR SIGNALS", JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, vol. 94, no. 4, 1 October 1993 (1993-10-01), pages 2181 - 2193, XP000412914 *
WEEKS ET AL.: "A real-time, multichannel system with parallel digital signal processors", ICASSP 90, vol. 3, 3 April 1990 (1990-04-03) - 6 April 1990 (1990-04-06), ALBUQUERQUE, NEW MEXICO, USA, pages 1788 - 1790, XP000461056 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921603A3 (fr) * 2006-11-13 2016-10-05 Sony Corporation Circuit de filtre pour suppression sonore, procédé de production de signal de réduction sonore et système de suppression sonore
US10297246B2 (en) 2006-11-13 2019-05-21 Sony Corporation Filter circuit for noise cancellation, noise reduction signal production method and noise canceling system
FR3063173A1 (fr) * 2017-02-22 2018-08-24 Smartinstruments Instrument de musique acoustique, perfectionne
WO2018154188A1 (fr) * 2017-02-22 2018-08-30 Hyvibe Instrument de musique acoustique augmenté avec actionneurs de rétroaction et d'injection
US20200058278A1 (en) * 2017-02-22 2020-02-20 Hyvibe Acoustic musical instrument enhanced with feedback and injection actuators
CN111108547A (zh) * 2017-02-22 2020-05-05 海维贝公司 采用反馈和输入驱动器增强的原声乐器
US10783864B2 (en) 2017-02-22 2020-09-22 Hyvibe Acoustic musical instrument enhanced with feedback and injection actuators
WO2019025700A1 (fr) * 2017-08-01 2019-02-07 Hyvibe Restitution sonore perfectionnée à partir d'un dispositif à actionneur mécanique vibrant
FR3069932A1 (fr) * 2017-08-01 2019-02-08 Hyvibe Restitution sonore perfectionnee a partir d'un dispositif a actionneur mecanique vibrant
US10841696B2 (en) 2017-08-01 2020-11-17 Hyvibe Sound playback from a device with a vibrating mechanical actuator

Also Published As

Publication number Publication date
FR2739214B1 (fr) 1997-12-19
AU719457B2 (en) 2000-05-11
ATE209813T1 (de) 2001-12-15
DE69617449D1 (de) 2002-01-10
EP0852793B1 (fr) 2001-11-28
EP0852793A1 (fr) 1998-07-15
AU7136096A (en) 1997-04-17
CA2231071C (fr) 2009-01-27
US6449369B1 (en) 2002-09-10
FR2739214A1 (fr) 1997-03-28
CA2231071A1 (fr) 1997-04-03
DE69617449T2 (de) 2002-08-01

Similar Documents

Publication Publication Date Title
CA2231071C (fr) Procede et dispositif d'attenuation active hybride de vibrations, notamment de vibrations mecaniques, sonores ou analogues
EP0237454B1 (fr) Procédés et dispositifs pour atténuer les bruits d'origine externe parvenant au tympan et améliorer l'intelligibilité des communications électro-acoustiques
FR2636189A1 (fr) Systeme d'attenuation electronique de bruit
EP2597889B1 (fr) Casque audio a controle actif de bruit de type non-adaptatif
EP2518724B1 (fr) Combiné audio micro/casque comprenant des moyens de débruitage d'un signal de parole proche, notamment pour un système de téléphonie "mains libres"
US9183827B2 (en) PID controller
FR2682251A1 (fr) Procede et systeme de prise de son, et appareil de prise et de restitution de son.
FR2704969A1 (fr) Dispositif d'atténuation acoustique à double paroi active.
FR2913521A1 (fr) Procede de reduction active d'une nuisance sonore.
EP0829079B1 (fr) Procede et dispositif personnels d'attenuation acoustique active a reponse impulsionelle invariante
WO2017077234A1 (fr) Fenetre multi-vitrage integrant un dispositif de reduction active du bruit
EP0861486B1 (fr) Procede et dispositif d'extraction d'un signal acoustique utile a partir d'un signal acoustique composite comprenant des composantes parasites
FR2607344A1 (fr) Dispositif de traitement d'un signal electrique audiofrequence
EP0413633A1 (fr) Emetteur large-bande sous-marin
FR2967848A1 (fr) Systeme de correction de spectre destine notamment a une salle de spectacle
EP3979663A1 (fr) Casque audio à réducteur de bruit
FR2831763A1 (fr) Dispositif de saisie et restitution du son utilisant plusieurs capteurs
WO2001038700A1 (fr) Dispositif actif d'attenuation de bruit d'un moteur comportant au moins deux sorties d'echappement
WO2015097412A1 (fr) Banc d'essais, en particulier pour accéléromètres
FR3138750A1 (fr) Procédé de calibrage d’un dispositif audio nomade, système de calibrage d’un dispositif audio nomade et produit programme d’ordinateur associés
JP2024042581A (ja) 騒音低減システム、騒音低減方法、及び騒音低減プログラム
EP2599287B1 (fr) Terminal de communication mains libres a acoustique amelioree
FR3131972A1 (fr) Procédé de gestion des basses fréquences d’un haut-parleur et dispositif pour la mise en œuvre dudit procédé
FR2772472A1 (fr) Procede et dispositif de detection acoustique en presence de source de bruit parasite a faible rapport signal sur bruit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA CZ JP NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2231071

Country of ref document: CA

Ref country code: CA

Ref document number: 2231071

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1996932664

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09043822

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996932664

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996932664

Country of ref document: EP

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)