WO1997001745A1 - Leer-erkennung eines vorratsbehälters bei dosiersystemen - Google Patents

Leer-erkennung eines vorratsbehälters bei dosiersystemen Download PDF

Info

Publication number
WO1997001745A1
WO1997001745A1 PCT/DE1996/001147 DE9601147W WO9701745A1 WO 1997001745 A1 WO1997001745 A1 WO 1997001745A1 DE 9601147 W DE9601147 W DE 9601147W WO 9701745 A1 WO9701745 A1 WO 9701745A1
Authority
WO
WIPO (PCT)
Prior art keywords
light beam
moved
diaphragm
movement
light
Prior art date
Application number
PCT/DE1996/001147
Other languages
English (en)
French (fr)
Inventor
Willem Van Zijverden
Original Assignee
Deutsche Automaten- Und Getränkemaschinen (Dagma) Zweigniederlassung Der Wittenborg Automaten Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deutsche Automaten- Und Getränkemaschinen (Dagma) Zweigniederlassung Der Wittenborg Automaten Gmbh filed Critical Deutsche Automaten- Und Getränkemaschinen (Dagma) Zweigniederlassung Der Wittenborg Automaten Gmbh
Publication of WO1997001745A1 publication Critical patent/WO1997001745A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B67OPENING, CLOSING OR CLEANING BOTTLES, JARS OR SIMILAR CONTAINERS; LIQUID HANDLING
    • B67DDISPENSING, DELIVERING OR TRANSFERRING LIQUIDS, NOT OTHERWISE PROVIDED FOR
    • B67D1/00Apparatus or devices for dispensing beverages on draught
    • B67D1/08Details
    • B67D1/12Flow or pressure control devices or systems, e.g. valves, gas pressure control, level control in storage containers
    • B67D1/1247Means for detecting the presence or absence of liquid
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F11/00Apparatus requiring external operation adapted at each repeated and identical operation to measure and separate a predetermined volume of fluid or fluent solid material from a supply or container, without regard to weight, and to deliver it
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • G01F23/292Light, e.g. infrared or ultraviolet
    • G01F23/2921Light, e.g. infrared or ultraviolet for discrete levels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level

Definitions

  • the invention relates to a measuring method for dosing systems with an optical device that responds to the emptying of the storage container that can be connected to the dosing system, and to a device for executing this measuring method.
  • a light barrier which is arranged between the storage container and the metering device, is used to measure the idling.
  • a light transmitter sends a light beam through a transparent area of the dosing housing and strikes a light receiver on the other side.
  • air collects in the area of the light barrier so that less light is absorbed.
  • the measuring and display device assigned to the light barrier must have a very high sensitivity.
  • an opaque (black) plastic float has been arranged above the actual metering pump in the flow path of the fluid.
  • the swimmer can get stuck when idling and suggest a still full state; in addition, it forms an undesirable disposable product per se, which must be compatible with food, since it remains permanently in the fluid concentrate to be metered.
  • the object of the invention is to ensure a reliable measurement regardless of the viscosity or the absorbency of the concentrate with high sensitivity. A swimmer is said to be dispensable. This object is achieved by the method according to claim 1 or the device according to claim 7.
  • an orifice that is movable in the flow path of the concentrate is attached to the
  • the diaphragm Since the diaphragm is repeatedly moved into the light beam L or out of the light beam, the diaphragm can neither stick nor be carried away hydraulically, so that the use of a float is not necessary.
  • Through the controlled Movement of the diaphragm determines two measured values with each measuring process, which must be different per se and correspond to the deflection of the light beam (dark) and the release of the light beam attenuated by the concentrate (brighter than dark).
  • the display Since the display is dependent on a comparison of the two measured values, it is a differential measurement that is free of offsets, as is specified by the type and viscosity of the fluid F, which remains the same for a container filling, but is the same with each filling can change.
  • the absorption difference is checked repeatedly, which ensures a high degree of independence from changes in temperature and humidity.
  • FIGS. 1 and 2 each showing a longitudinal section through the area containing the metering device 3, 27 and the measuring device 12, 13. One end position is shown on the left, the other end position of the two positions (pumping, suction) is shown on the right.
  • an electromagnetic actuating device 1 with an air gap 2 and armature 4 is provided for a metering device 3, which is arranged in an opening of the actuating device.
  • the metering device 3 has a housing which (not shown) with a
  • a Storage container for the viscosity variable fluid F to be metered is connected. The lower end is determined by an outlet 15 for the metered fluid F2.
  • a pump chamber 5 is provided in the metering housing 3, which is delimited in the axial direction by an upper inlet check valve 8 and a lower outlet check valve 9 and in the circumferential direction by an elastic bellows 5a.
  • the pump element is formed by the inlet check valve 8, which is coupled to the cyclically moved armature 4 by corresponding coupling elements 6.
  • the inlet state of the fluid F1 is shown in the right half of FIG. 1.
  • an upwardly projecting lip seal 10 is provided, which is moved up and down with the check valve 8.
  • the arrangement is such that the seal 10 is pushed into a light beam 14 during the cyclical movements of the check valve 8 and thus interrupts the light beam L, while in the lowered state of the seal 10 the light beam 14 is released.
  • the associated transmitter and receiver of the light barrier can be arranged at 12 and 13 and connected to a sensitive measuring system.
  • the sealing element 10 bears against the inner surface 11 of the housing of the metering device, so that with each cycle the area of the inner surface which is penetrated by the light beam 14 is wiped or scraped free. Even with a highly absorbent concentrate, no disturbing layers remain in the empty state in the light path L or 14. In this case, it is not even necessary that the surface-cleaning lip seal is opaque, it can also be more or less transparent.
  • the measurement and display need not take place every pump cycle.
  • the frequency of measurement must, however, be selected so that the emptying of the storage container is recognized in good time and reliably.
  • the lip seal 10 can - if it is opaque can also be viewed as an aperture.
  • Other drive means can also be provided separately for the diaphragm, which can be a separate part moved into the light beam L.
  • the use of the cyclical movement of the pump element 8 for the movement of the diaphragm 10 is particularly advantageous and simple.
  • the movement of the diaphragm 10 can also only be derived from the movement of the pump element.
  • an orifice that is cyclically moved directly with the pump element is preferred.
  • the cover panel does not necessarily have to have a cleaning effect, as has been described with reference to FIG. 1, if it is instead opaque.
  • FIG. 2 shows an exemplary embodiment in which the diaphragm 31, which covers or releases the light beam 14, is assigned to another device which is moved along with the pump element.
  • the metering device with the armature 20 is shown, which is mechanically and directly coupled to the housing part 23 and the outlet housing 21.
  • the lower outlet check valve 27 is also coupled to the housing part 23, so that this check valve serves as a pump element.
  • the housing part 23 is connected via a flexible fold 25 sealingly to the upper housing part 24, in which the fixed inlet check valve 28 is mounted.
  • a restoring spring element is supported on this, which strives to push the upper bridge part 30a of a central pin 30 upwards and at the same time seals the pin against the flow paths of the fluid.
  • Stops 30b are also provided on the bridge part 30a, which cooperate with counter-stops 29 of the upper check valve to limit the stroke.
  • the diaphragm 31 is arranged so that the pump stroke
  • Light beam 14 covers and releases the light beam during the suction stroke, as is readily apparent from Figure 2.
  • the arrangement described can - irrespective of the selected embodiment - also be used to monitor that the pump element reliably runs through the entire length of the stroke paths provided by the stops during each pump cycle. If this is not the case, the diaphragm is no longer able to properly interrupt the light beam L, so that the absence of a measured value which corresponds to the interrupted light beam can be used as an indication that the metering device is no longer working properly and therefore with volume accuracy.
  • An AC voltage correlated with the pump stroke should therefore be measurable with a static light beam. With regard to its difference proportion, it is Detection evaluated. With regard to its correlation with the pump stroke, it can be used to detect errors in the metering pump system.
  • a measuring method for dosing systems with a storage container is proposed, with an optical device (12, 13, 14, L), which is assigned a light barrier (L) penetrating the flow path through the dosing system and a measuring and display device (13) which responds to changes in the light beam are.
  • a cover plate is placed into the light beam (L) of the light barrier at every measuring cycle - preferably within the flow path through the metering device (10, 31) moves and a measured value is determined both when the light beam is dimmed and when the light beam is released, the empty detection of the storage container taking place as a function of the difference between the two measured values.

Abstract

Vorgeschlagen wird ein Meßverfahren für Dosiersysteme mit Vorratsbehälter, mit einer optischen Einrichtung (12, 13, 14, L), der eine den Strömungsweg durch das Dosiersystem durchdringende Lichtschranke (L) und eine auf Änderungen des Lichtstrahls ansprechende Meß- und Anzeigeeinrichtung (13) zugeordnet sind. Um bei hoher Empfindlichkeit eine zuverlässige Messung unabhängig von der Viskosität oder dem Absorptionsvermögen des Konzentrats zu gewährleisten, und um einen Schwimmer entbehrlich zu machen, wird bei jedem Meßzyklus in den Lichtstrahl (L) der Lichtschranke - bevorzugt innerhalb des Strömungsweges des Fluides durch die Dosiervorrichtung - eine Abdeckblende (10, 31) bewegt und sowohl bei abgeblendetem Lichstrahl als auch bei freigegebenem Lichtstrahl gemessen, wobei die Leer-Erkennung des Vorratsbehälters abhängig von dem Differenzwert beider Messungen erfolgt.

Description

Leer-Erkennung eines Vorratsbehälters bei Dosiersystemen
Die Erfindung betrifft ein Meßverfahren für Dosiersysteme mit einer auf die Entleerung des mit dem Dosiersystem verbindbaren Vorratsbehälters ansprechenden optischen Einrichtung, sowie eine Vorrichtung zum Ausführen dieses Meßverfahrens.
Bei vielen Anwendungsfällen, bei denen ein Fluid (F) aus einem Vorratsbehälter in dosierten Mengen über eine Dosiervorrichtung abgegeben wird, ist es notwendig, rechtzeitig zu erkennen, daß der Vorratsbehälter leer ist. Zum Messen des Leerlaufens wird eine Lichtschranke verwendet, die zwischen dem Vorratsbehälter und der Dosiereinrichtung angeordnet ist. Ein Lichtgeber sendet einen Lichtstrahl durch einen transparenten Bereich des Dosiergehäuses und trifft jenseits auf einen Lichtempfänger. Geht der Inhalt des Vorratsbehälters zu Ende, so sammelt sich im Bereich der Lichtschranke Luft an, so daß weniger Licht absorbiert wird. Da jedoch das Fluid von unterschiedlicher Art und sehr unterschiedlichem Absorptionsvermögen ist, muß die der Lichtschranke zugeordnete Meß- und Anzeigeeinrichtung eine sehr hohe Empfindlichkeit besitzen. Dies gilt umso mehr bei Fiuiden hoher Viskosität, bei denen auch bei Entleerung des Vorratsbehälters eine relativ dicke Schicht an der Innenwand des Dosiergehäuses anhaftet und die Messung beeinflußt. Die hohe Empfindlichkeit der Anordnung führt bei Fiuiden mit geringerer Absorption (hoher Lichtdurchlässigkeit) zu "Leer"-Meldungen und zu einer relativ hohen Abhängigkeit von Änderungen der Temperatur und der Feuchtigkeit.
Um die Empfindlichkeit zu vergrößern und trotzdem Fehlmeldungen zu vermeiden, hat man oberhalb der eigentlichen Dosierpumpe in dem Strömungsweg des Fluides einen lichtundurchlässigen (schwarzen) Kunststoff-Schwimmer angeordnet. Der Schwimmer kann jedoch bei Leerlaufen hängenbleiben und einen noch vollen Zustand suggerieren; außerdem bildet er ein an sich unerwünschtes Wegwerfprodukt, das lebensmittel-verträglich sein muß, da er dauerhaft in dem zu dosierenden Fluid-Konzentrat verbleibt.
Aufgabe der Erfindung ist es, bei hoher Empfindlichkeit eine zuverlässige Messung unabhängig von der Viskosität oder dem Absorptionsvermögen des Konzentrats zu gewährleisten. Ein Schwimmer soll entbehrlich werden. Diese Aufgabe wird durch das Verfahren nach Anspruch 1 oder die Vorrichtung nach Anspruch 7 gelöst.
Dabei wird eine im Strömungsweg des Konzentrats bewegliche Blende mit der
Pumpbewegung synchronisiert. Da die Blende wiederholt in den Lichtstrahl L bzw. aus dem Lichtstrahl bewegt wird, kann die Blende weder klebenbleiben noch hydraulisch mitgerissen werden, so daß die Verwendung eines Schwimmers entbehrlich ist. Durch die gesteuerte Bewegung der Blende werden bei jedem Meßvorgang zwei Meßwerte ermittelt, die per se unterschiedlich sein müssen und einmal der Abbiendung des Lichtstrahls (Dunkel) und zum anderen der Freigabe des vom Konzentrat gedämpften Lichtstrahls (heller als Dunkel) entsprechen.
Dadurch kann eine hohe Empfindlichkeit der Meßanordnung eingesetzt werden, ohne daß Fehlanzeigen auftreten.
Da die Anzeige in Abhängigkeit von einem Vergleich der beiden Meßwerte erfolgt, ist sie eine Differenzmessung, die frei von Offsets ist, wie er von der Art und Viskosität des Fluids F vorgegeben wird, das eine Behälter-Füllung lang gleichbleibt, sich aber mit jeder Füllung ändern kann.
Die Absorptionsdifferenz wird wiederholt überprüft, wodurch eine hohe Unabhängigkeit von Temperatur- und Feuchtigkeitsänderungen erreicht wird.
Die Erfindung wird nachfolgend anhand zweier Ausführungsbeispiele näher erläutert, wobei die beiden Figuren 1 und 2 jeweils einen Längsschnitt durch den die Dosiereinrichtung 3,27 und die Meßeinrichtung 12, 13 enthaltenden Bereich widergeben. Links ist jeweils die eine Endlage, rechts die andere Endlage der beiden Stellungen (Pumpen, Saugen), eingezeichnet.
Bei der Ausführungsform nach Figur 1 ist eine elektromagnetische Betätigungseinrichtung 1 mit Luftspalt 2 und Anker 4 für eine Dosiereinrichtung 3 vorgesehen, die in einer Öffnung der Betätigungseinrichtung angeordnet ist.
Die Dosiereinrichtung 3 weist ein Gehäuse auf, das oben (nicht dargestellt) mit einem
Vorratsbehälter für das zu dosierende viskositätsvariable Fluid F verbunden ist. Das untere Ende wird durch einen Auslauf 15 für das dosierte Fluid F2 bestimmt. In dem Dosiergehäuse 3 ist eine Pumpkammer 5 vorgesehen, die in axialer Richtung durch ein oberes Einlaß-Rückschlagventil 8 und ein unteres Auslaß-Rückschlagventil 9 und in Umfangsrichtung durch einen elastischen Balg 5a begrenzt ist. Das Pumpelement wird durch das Einlaß-Rückschlagventil 8 gebildet, das durch entsprechende Kupplungselemente 6 mit dem zyklisch bewegten Anker 4 gekuppelt ist. Der Einlaß-Zustand des Fluids Fl ist in der rechten Hälfte der Figur 1 gezeigt.
An dem Rückschlagventil 8 ist eine nach oben ragende Lippendichtung 10 vorgesehen, die mit dem Rückschlagventil 8 auf- und abbewegt wird. Die Anordnung ist so getroffen, daß sich die Dichtung 10 bei den zyklischen Bewegungen des Rückschlagventils 8 in einen Lichtstrahl 14 schiebt und damit den Lichtstrahl L unterbricht, während im abgesenkten Zustand der Dichtung 10 der Lichtstrahl 14 freigegeben ist. Die zugehörigen Sender und Empfänger der Lichtschranke können bei 12 und 13 angeordnet und mit einem empfindlichen Meßsystem verbunden sein.
Im dargestellten Beispiel liegt das Dichtelement 10 an der Innenfläche 11 des Gehäuses der Dosiereinrichtung an, so daß bei jedem Zyklus der Bereich der Innenfläche, der von dem Lichtstrahl 14 durchdrungen wird, freigewischt oder freigeschabt wird. Selbst bei stark absorbierendem Konzentrat verbleiben keine störenden Schichten im Leer-Zustand im Lichtweg L oder 14. Es ist in diesem Fall noch nicht einmal erforderlich, daß die oberflächen-reinigende Lippendichtung opak ist, sie kann auch mehr oder weniger durchsichtig sein.
Die Messung und Anzeige muß nicht bei jedem Pumpzyklus erfolgen. Die Meßhäufigkeit muß jedoch so gewählt werden, daß rechtzeitig und zuverlässig die Entleerung des Vorratsbehälters erkannt wird. Die Lippendichtung 10 kann - wenn sie undurchsichtig ist auch als Blende angesehen werden.
Es können auch andere Antriebsmittel gesondert für die Blende vorgesehen sein, die ein gesonderter in den Lichtstrahl L bewegter Teil sein kann. Die Ausnutzung der zyklischen Bewegung des Pumpelementes 8 für die Bewegung der Blende 10 ist jedoch besonders vorteilhaft und einfach. Die Bewegung der Blende 10 kann auch von der Bewegung des Pumpelementes lediglich abgeleitet sein. Bevorzugt ist jedoch eine Blende, die direkt mit dem Pumpenelement zyklisch mitbewegt wird. Die Abdeckblende muß auch nicht unbedingt eine Reinigungswirkung haben, wie dies anhand der Figur 1 beschrieben worden ist, wenn sie stattdessen undurchsichtig ist.
So zeigt Figur 2 ein Ausführungsbeispiel, bei dem die Blende 31, die den Lichtstrahl 14 abdeckt bzw. freigibt, einer anderen mit dem Pumpelement mitbewegten Einrichtung zugeordnet ist. In Figur 2 ist nur die Dosiereinrichtung mit dem Anker 20 gezeigt, der mit dem Gehäuseteil 23 und dem Auslaufgehäuse 21 mechanisch und direkt gekuppelt ist. Mit dem Gehäuseteil 23 ist auch das untere Auslaß-Rückschlagventil 27 gekuppelt, so daß dieses Rückschlagventil als Pumpelement dient. Der Gehäuseteil 23 ist über eine flexible Falte 25 abdichtend mit dem oberen Gehäuseteil 24 verbunden, in dem das fest angeordnete Einlaß- Rückschlagventil 28 montiert ist. An diesem stützt sich ein Rückstellfederelement ab, das bestrebt ist, den oberen Brückenteil 30a eines zentralen Stiftes 30 nach oben zu drücken und gleichzeitig den Stift gegen die Durchströmwege des Fluides abdichtet. An dem Brückenteil 30a sind außerdem Anschläge 30b vorgesehen, die mit Gegenanschlägen 29 des oberen Rückschlagventils zur Hubbegrenzung zusammenwirken.
Auf dem Brückenteil 30a ist die Blende 31 so angeordnet, daß sie beim Pumphub den
Lichtstrahl 14 abdeckt und beim Saughub den Lichtstrahl freigibt, wie dies ohne weiteres aus der Figur 2 ersichtlich ist.
Die beschriebene Anordnung kann - unabhängig von der gewählten Ausführung - zusätzlich dazu benutzt werden, um zu überwachen, daß das Pumpelement bei jedem Pumpzyklus auch zuverlässig die ganze Länge der durch die Anschläge vorgesehenen Hubwege durchläuft. Ist dies nicht der Fall, vermag die Blende den Lichtstrahl L nicht mehr ordnungsgemäß zu unterbrechen, so daß das Fehlen eines Meßwertes, der dem unterbrochenen Lichtstrahl entspricht, als Anzeige verwendet werden kann, daß die Dosiervorrichtung nicht mehr ordnungsgemäß und damit volumengenau arbeitet.
Eine mit dem Pumphub korrelierte Wechselspannung sollte also bei einem statischen Lichtstrahl zu messen sein. Sie wird hinsichtlich ihres Differenzanteils hin auf die Leer- Erkennung ausgewertet. Flinsichtlich ihrer Korrelation mit dem Pumphub kann sie zur Fehlererfassung des dosierenden Pumpsystems dienen.
Vorgeschlagen wird ein Meßverfahren für Dosiersysteme mit Vorratsbehälter, mit einer optischen Einrichtung (12, 13, 14, L), der eine den Strömungsweg durch das Dosiersystem durchdringende Lichtschranke (L) und eine auf Änderungen des Lichtstrahls ansprechende Meß- und Anzeigeeinrichtung (13) zugeordnet sind. Um bei hoher Empfindlichkeit eine zuverlässige Messung unabhängig von der Viskosität oder dem Absorptionsvermögen des Konzentrats zu gewährleisten, und um einen Schwimmer entbehrlich zu machen, wird bei jedem Meßzyklus in den Lichtstrahl (L) der Lichtschranke - bevorzugt innerhalb des Strömungsweges durch die Dosiervorrichtung - eine Abdeckblende (10, 31) bewegt und sowohl bei abgeblendetem Lichtstrahl als auch bei freigegebenem Lichtstrahl ein Meßwert ermittelt, wobei die Leer-Erkennung des Vorratsbehälters abhängig von der Differenz beider Messwerte erfolgt.

Claims

Ansprüche:
1. Meßverfahren für Dosiersysteme (3) mit Vorratsbehälter für viskose Fiuide (F), mit einer optischen Einrichtung (12, 13, 14, L), der eine den Strömungsweg durch das Dosiersystem (3) durchdringende Lichtschranke (L) und eine auf Änderungen des
Lichtstrahls der Lichtschranke ansprechende Meß- und Anzeigeeinrichtung (13) zugeordnet sind, dadurch gekennzeichnet, daß bei jedem Meßzyklus in den Lichtstrahl der Lichtschranke (L) - bevorzugt innerhalb des Strömungsweges des Fluides (F) durch die Dosiervorrichtung - eine Abdeckblende (10, 31) bewegt wird und sowohl bei abgeblendetem Lichtstrahl als auch bei nicht abgeblendetem Lichtstrahl, die
Intensität des Lichtstrahls gemessen wird und eine Leer-Erkennung des Vorratsbehälters abhängig von der Höhe der Differenz beider Messwerte erfolgt.
2. Meßverfahren nach Anspruch 1, dadurch gekennzeichnet, daß bei der Überwachung auf Entleerung die Abdeckblende (10 31) zyklisch in den Lichtstrahl (L) der Lichtschranke
(12, 13) hinein und heraus bewegt wird.
3. Meßverfahren für Dosiersysteme mit zur Dosierung jeweils zyklisch bewegten Dosierpumpenelemen (8, 9, 30, 30a), dadurch gekennzeichnet, daß die Abdeckblende (10, 31) in Abhängigkeit von der Bewegung des Dosier-Pumpenelementes in den Weg
(14) des Lichtstrahls (L) der Lichtschranke bewegt wird.
4. Meßverfahren nach Anspruch 3, dadurch gekennzeichnet, daß
(a) mit der zyklischen Bewegung des Dosier-Pumpenelements auch die Abdeckblende (10,31) direkt bewegt wird; und/oder
(b) mit der Bewegung der Blende (10, 31) die Innenfläche (11) eines Durchtrittsfensters für den Lichtstrahl (L) freigewischt oder geschabt wird.
5. Meßverfahren nach einem der voranstehenden Ansprüche, dadurch gekennzeichnet, daß über die Bewegung der Abdeckblende (10,31) die ordnungsgemäße und vollständige
Ausführung der vorgeschriebenen Hubbewegung(en) der Dosierpumpe überwacht wird.
6. Vorrichtung zum Ausführen des Verfahrens nach einem der voranstehenden
Ansprüche in einem Dosiersystem, wobei eine den Strömungsweg des aus dem Vorratsbehälter zu dosierenden Fluides (F) durchdringende Lichtschranke und eine auf Änderungen des Lichtstrahls (L) der Lichtschranke ansprechende Meß- und Anzeigeeinrichtung vorgesehen sind, dadurch gekennzeichnet, daß
(a) eine den Lichtstrahl (L) verändernde Blende (10, 31) zyklisch in bzw. aus dem Weg (14) des Lichtstrahls bewegbar ist;
(b) eine Meßeinrichtung (13) in Abhängigkeit von dem Bewegungszyklus der Blende (10, 31) so steuerbar ist, daß sie bei jedem oder nur bei bestimmten Zyklen einer Zyklenfolge von Blendenbewegungen einen ersten Meßwert und einen zweiten Meßwert für unterschiedliche Blendenpositionen erfaßt;
(c) ein Komparator vorgesehen ist, um beide Meßwerte zu vergleichen und eine Anzeigeeinrichtung anzusteuern.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Blende (10) ein mit dem Pumpelement (8) eine Bewegungseinheit bildendes Dichtelement ist.
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß die Blende (31) einem mit dem Pumpelement (27) mitbewegten und mit einem
Hubbegrenzungsanschlag (29) zusammenwirkenden Brückenteil (30a) zugeordnet ist.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, bei der eine sich selbst einstellende Abgleichvorrichtung vorgesehen ist, die den für einen vollen Vorratsbehälter erkennbaren Differenzwert zwischen erstem und zweitem Meßwert der
Lichtstrahlintensität als Referenzwert für "nicht leer" speichert.
10. Vorrichtung nach Anspruch 9, bei der die Meßeinrichtung in ihrer Verstärkung verändert wird, abhängig von dem anfänglich gespeicherten Differenz-Referenzwert.
PCT/DE1996/001147 1995-06-29 1996-06-27 Leer-erkennung eines vorratsbehälters bei dosiersystemen WO1997001745A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19523780.3 1995-06-29
DE19523780A DE19523780A1 (de) 1995-06-29 1995-06-29 Leer-Erkennung eines Vorratsbehälters bei Dosiersystemen

Publications (1)

Publication Number Publication Date
WO1997001745A1 true WO1997001745A1 (de) 1997-01-16

Family

ID=7765627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001147 WO1997001745A1 (de) 1995-06-29 1996-06-27 Leer-erkennung eines vorratsbehälters bei dosiersystemen

Country Status (2)

Country Link
DE (1) DE19523780A1 (de)
WO (1) WO1997001745A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338558A (en) * 1998-06-17 1999-12-22 Isoworth Uk Ltd Drink dispenser, concentrate detector and concentrate container

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2039847A (en) * 1978-10-25 1980-08-20 Vgl Ind Ltd Dispensing Device
US4292530A (en) * 1980-03-03 1981-09-29 Minnesota Mining And Manufacturing Company Developer material level sensor
JPS61270683A (ja) * 1985-05-25 1986-11-29 Toshiba Corp 光応用測定器
US4665808A (en) * 1985-12-13 1987-05-19 Wuerttembergische Metallwarenfabrik Ag. Coffee percolator
US5277337A (en) * 1992-03-16 1994-01-11 Bunn-O-Matic Corporation Hopper agitator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2039847A (en) * 1978-10-25 1980-08-20 Vgl Ind Ltd Dispensing Device
US4292530A (en) * 1980-03-03 1981-09-29 Minnesota Mining And Manufacturing Company Developer material level sensor
JPS61270683A (ja) * 1985-05-25 1986-11-29 Toshiba Corp 光応用測定器
US4665808A (en) * 1985-12-13 1987-05-19 Wuerttembergische Metallwarenfabrik Ag. Coffee percolator
US5277337A (en) * 1992-03-16 1994-01-11 Bunn-O-Matic Corporation Hopper agitator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 126 (P - 569) 21 April 1987 (1987-04-21) *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2338558A (en) * 1998-06-17 1999-12-22 Isoworth Uk Ltd Drink dispenser, concentrate detector and concentrate container

Also Published As

Publication number Publication date
DE19523780A1 (de) 1997-01-02

Similar Documents

Publication Publication Date Title
DE69913424T2 (de) Inkrementaler Absorptionsabtastung von Flüssigkeit in einer Abgabespitze
WO2019149512A1 (de) Füllstandsmessgerät
DE10201769A1 (de) Füllstandssensor zur Ermittlung eines Füllstandes eines Stoffes in einem Behälter
CH707857A1 (de) Vorrichtung mit einem Durchflusskanal.
EP1338237B1 (de) Verfahren und Vorrichtung zum Überprüfen der Durchgängigkeit von Endoskopkanälen
WO1997001745A1 (de) Leer-erkennung eines vorratsbehälters bei dosiersystemen
WO1992015249A1 (de) Verfahren und vorrichtung zur messung eines flüssigkeitsstromes
DE4002255A1 (de) Vorrichtung zum dosieren von fluessigkeiten
DE4110231C2 (de) Meßeinrichtung zum Bestimmen des Schmutzpartikelanteils von Flüssigkeiten
DE69532920T2 (de) Vorrichtung zur volumetrischen Abgabe von Flüssigkeiten
DE3239920A1 (de) Verfahren zum messen der menge von am boden von muelldeponien abfliessender verunreinigter fluessigkeit sowie einrichtung zu seiner durchfuehrung
DE10215270B4 (de) Verfahren zur Messung eines Meniskusvolumens oder einer Meniskushöhe eines Flüssigkeitströpfchens
DE2624758A1 (de) Vorrichtung zur ueberwachung eines fluessigkeitsstromes
DE3609190C2 (de)
EP0288588B1 (de) Strömungsmessgerät
DE3319861C2 (de) Gasmengendurchfluß-Meßgerät
AT526065B1 (de) Verfahren zum Kalibrieren eines Fördergeräts, Verfahren zum Dosieren und Dosiervorrichtung
DE19839954C1 (de) Durchflußmesser
DE19832862C2 (de) Dosierverfahren für Flüssigkeiten
EP1625375B1 (de) Überwachungseinrichtung für flüssigkeitsführende systeme
DE4400385A1 (de) Verfahren und Vorrichtung zum kontinuierlichen Messen des Gasgehalts in Flüssigkeiten, insbesondere in in Schmiermittelkreisläufen befindlichen Mineralölen
EP1136795B1 (de) Verfahren und Vorrichtung zur Füllstandsbestimmung für die Ermittlung des Siedeverlaufes von Mineralölerzeugnissen
DE69919472T2 (de) Ventilkupplung mit Schwimmer
DE19525895C2 (de) Eichverfahren für Niveausensoren mit Druckaufnehmer
EP4257937A1 (de) Dosiervorrichtung zum dosieren eines flüssigen mediums für mindestens ein zielgerät mit einer anordnung zum kalibrieren mindestens einer pumpe

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase