WO1996041992A1 - Katalytische gasturbinenbrennkammer - Google Patents

Katalytische gasturbinenbrennkammer Download PDF

Info

Publication number
WO1996041992A1
WO1996041992A1 PCT/DE1996/001020 DE9601020W WO9641992A1 WO 1996041992 A1 WO1996041992 A1 WO 1996041992A1 DE 9601020 W DE9601020 W DE 9601020W WO 9641992 A1 WO9641992 A1 WO 9641992A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
combustion chamber
burner
burner according
gas turbine
Prior art date
Application number
PCT/DE1996/001020
Other languages
English (en)
French (fr)
Inventor
Erich Hums
Nicolas Vortmeyer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE59604179T priority Critical patent/DE59604179D1/de
Priority to EP96915991A priority patent/EP0832398B1/de
Priority to RU98100472A priority patent/RU2143643C1/ru
Priority to JP9502491A priority patent/JPH11507433A/ja
Publication of WO1996041992A1 publication Critical patent/WO1996041992A1/de
Priority to US08/990,034 priority patent/US5946917A/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means

Definitions

  • the invention relates to a burner, in particular for a gas turbine, with a catalytic combustion chamber.
  • a hydrocarbon and / or hydrogen-containing energy carrier is provided as a fuel both in liquid and in gaseous form.
  • a fuel is, for example, natural gas, petroleum or methane.
  • Such a burner can preferably be used in a gas turbine.
  • a gas turbine usually consists of a compressor part, a burner part and a turbine part.
  • the compressor part and the turbine part are usually located on a common shaft which at the same time drives a generator for generating electricity.
  • preheated fresh air is burned with a fuel of the type mentioned.
  • the hot burner exhaust gas is fed to the turbine section and expanded there.
  • Siemens AG May 1994, Order No. A 96001-U 124-V 1-7600, provides detailed information on the construction and use of a gas turbine.
  • nitrogen oxides NO x also arise as particularly undesirable combustion products.
  • these nitrogen oxides are the main cause of the environmental problem of acid rain. It is therefore - also due to strict legal limit values for NO x emissions - willing to keep the NO x emissions from a gas turbine particularly low and at the same time largely unaffected by the performance of the gas turbine.
  • reducing the flame temperature in the burner reduces nitrogen oxide.
  • water vapor is added to the fuel or the compressed and preheated fresh air or water is injected into the combustion chamber. Measures that reduce nitrogen oxide emissions per se are referred to as primary measures for nitrogen oxide reduction.
  • GB 2 268 694 A provides a catalytic combustion chamber, the ignition temperature of a fuel being lowered by a partial catalytic oxidation.
  • the catalysts provided for this purpose are installed transversely to the flow direction of the fuel and extend over the entire flow cross section. This gives a high flow resistance.
  • any nitrogen oxide reduction, primary or secondary, provided there results in a loss of performance or a loss in the overall efficiency of the gas turbine system.
  • the invention is therefore based on the object of specifying a burner, in particular for a gas turbine, which is distinguished by particularly low nitrogen oxide emissions and, at the same time, a particularly high efficiency.
  • This object is achieved according to the invention with a burner in which a catalytic combustion chamber is provided, the combustion chamber having an essentially cylindrical expansion in the direction of flow of a fuel and the wall facing the fuel having a catalytically active coating for oxidizing the fuel.
  • a particularly low nitrogen oxide content of the burner exhaust gas is achieved by the catalytically induced combustion of the fuel.
  • the coating of the wall of the combustion chamber does not increase the flow resistance, so that particularly high efficiencies can be achieved in a gas turbine with such a catalytic combustion chamber.
  • the essentially cylindrical shape of the catalytic combustion chamber and the catalytically active coating of the wall contribute to the fuel igniting starting from the wall and a spreading of the flame front from the catalytically active surface of the wall into the free Flow of the fuel gas is possible.
  • the cylindrical shape in particular contributes to an essentially concentric and thus homogeneous distribution of the flame front, which results in complete and uniform combustion of the fuel.
  • the process of forming a largely rotationally symmetrical flame front in the combustion chamber is further supported if the ring or rings are arranged exclusively in the outer region of the essentially circular cross section of the combustion chamber.
  • a fuel comprising a main fuel stream, a preformed partial fuel stream and air can be fed to the combustion chamber.
  • the main fuel flow consists mostly of natural gas and / or coal gas and / or hydrogen.
  • the preformed partial fuel stream is a partial stream which is separated from the main fuel stream and passed through a preforming stage.
  • natural gas ignites catalytically easier than natural gas, such as e.g. Alcohols, aldehydes and hydrogen.
  • a fuel gas mixed with such a preformed partial fuel flow therefore has excellent catalytic ignitability.
  • the ignitability of the fuel introduced into the catalytic combustion chamber can provide that a preformed partial fuel stream, optionally premixed with air, enters the combustion chamber through bores in the wall.
  • a preformed partial fuel stream optionally premixed with air
  • the wall can be cooled.
  • the wall can be cooled, for example, with air, at the same time preheating the air. This preheated air can, for example, be subsequently compressed in the compressor part to the combustion chamber inlet pressure.
  • the catalytic effect of the catalytically active coating occurs particularly advantageously when the catalytically active coating titanium dioxide, which is preferably flame and plasma sprayed, and a noble metal component selected from platinum, rhodium, palladium, iridium, rhenium and / or a metal oxide component , consisting of one or more transition metal oxides.
  • Suitable transition metal oxides are those oxides which have a strongly oxidizing catalytic effect, e.g. Copper oxide, chromium oxide, iron oxide, molybdenum oxide, tungsten oxide, vanadium oxide, manganese oxide, cerium oxide and other oxides of lanthanides.
  • FIG. 1 shows a schematic representation of the burner of a gas turbine with a catalytic combustion chamber
  • FIG. 2 shows a schematic representation of the burner of a gas turbine according to FIG. 1 with a slight difference
  • Figure 1 modified catalytic combustion chamber
  • FIG. 3 shows a catalytic combustion chamber in cross section.
  • FIGS. 1 to 3 the same parts have the same reference numbers.
  • 1 shows a gas turbine 2 which comprises a compressor part 4, a burner part 6 and a turbine part 7.
  • the burner part 6 comprises a catalytic combustion chamber 8, the wall 10 of which has a catalytically active coating 12.
  • the catalytic combustion chamber 8 has a circular cross section.
  • a fuel gas flows into the catalytic combustion chamber 8 as fuel 14, which in the exemplary embodiment consists of air 16 compressed in the compressor part 4, a main fuel stream 18 and a preformed partial fuel stream 20.
  • This preformed partial fuel stream 20 is separated from an original fuel stream 22 and passed through a preforming stage 24.
  • the fuel stream 22 consists of natural gas, from which in the preforming stage 24 substances which ignite catalytically more easily than natural gas, such as e.g. Alko ⁇ hole, aldehydes and hydrogen are formed.
  • the preforming stage 24 comprises a ceramic honeycomb catalyst based on titanium dioxide, which is not shown any further and which additionally comprises a noble metal component consisting of platinum and palladium applied superficially to the honeycomb catalyst.
  • the catalytically active coating 12 on the wall 10 of the catalytic combustion chamber 8 consists of a flame-sprayed titanium dioxide layer with a thickness of approximately 500 ⁇ m, on which are additionally deposited noble metal particles of platinum, rhodium and palladium as well as particles of transition metal oxides, such as cerium oxide. Vanadium oxide and chromium oxide are applied.
  • a flame-sprayed titanium dioxide a plasma-sprayed titanium dioxide layer can also be provided. Both layers are distinguished by their great strength on the wall 10 of the catalytic combustion chamber 8, which is usually made of an austenitic steel.
  • the upstream flame front 26 formed in this way is largely rotationally symmetrical, so that the temperature distribution in the catalytic combustion chamber 8 along the main flow direction has approximately circular isotherms with respect to the cross section. This is advantageous for a uniform and low-pollutant combustion of the fuel 14.
  • the fuel 14 catalytically burned in this way enters the turbine part 7 of the gas turbine 2 at a temperature of approximately 1100 ° C. and is expanded there.
  • the thermal energy transmitted in the turbine part is used to drive a generator for generating electricity, which is not shown here.
  • This generator is arranged on the same shaft (not shown further here) as the gas turbine 2.
  • the burner exhaust gas 30 leaving the turbine part 7 is particularly low in nitrogen oxide due to the catalytic combustion of the fuel gas 14 and has a nitrogen oxide content of approximately 70 ppm.
  • the burner exhaust gas 30 can be used in a waste heat steam generator (not shown here) for steam generation.
  • FIG. 2 shows a schematic representation of a gas turbine 2 'slightly modified compared to FIG. 1. The modifications are limited to the design of the catalytic combustion chamber 8.
  • the catalytic combustion chamber 8 'shown in FIG. 2 differs from FIG. 1 in that 10 bores 32 are provided in the wall through which the preformed fuel - partial flow 20 and air 16 enter the combustion chamber 8 '.
  • the first advantage is that the fuel mixture with the lowest catalytic ignition temperature temperature enters the combustion chamber 8 'directly at the catalytically active coating 12 and therefore ignites comparatively spontaneously. This measure therefore contributes particularly to the stabilization of the upstream flame front 26.
  • the second advantage is that the walls 10 are cooled by the flowing mixture of preformed partial fuel flow 20 and air 16. This cooling also reduces the thermal load on the catalytically active coating 12, which has a favorable effect on the durability of this coating 12. Cooling of the wall 10 can alternatively also be achieved in a manner not shown here by means of a flow of air 16 which enters the compressor part 4.
  • FIG. 3 shows a schematic representation of the cross section of a catalytic combustion chamber 34 modified compared to FIGS. 1 and 2.
  • the wall 10 and the catalytically active coating 12 for the oxidation of the fuel 14 can again be seen.
  • the oxidation of the fuel is understood to mean, of course, that the fuel 14, 22 is oxidized and the oxygen which is brought in via the air 16 and is required for combustion is reduced.
  • the catalytically active coating 12 for the oxidation of the fuel gas 14 therefore means the coating which induces the entire combustion process with oxidized and reduced combustion products.
  • the combustion chamber 34 has three rings 36 arranged concentrically. These concentric rings 36 are thin strips of sheet metal, consisting of the material of the wall 10.
  • the rings 36 have the same catalytically active coating 12 with which the wall 10 of the combustion chamber 34 is also coated. For the sake of clarity of the illustration, the catalytically active coating 12 is only shown in a selected quadrant.
  • the webs 38 holding the rings 36 also have this catalytically active coating 12.
  • the rings 36 are exclusively in the outer Region of the substantially circular cross-section of the combustion chamber 34 is arranged to restrict the initial ignition of the fuel 14 to the outer region of the cross-section of the combustion chamber 34. The flame front then extends automatically into the free flow of the fuel gas 14.
  • the rings 36 with the catalytically active coating 12 thus contribute to stabilizing the flame front and ensuring complete and therefore particularly low-emission combustion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Abstract

Erfindungsgemäß ist ein Brenner mit einer katalytischen Brennkammer vorgesehen. Die Brennkammer hat in Strömungsrichtung eines Brennstoffs eine im wesentlichen zylindrische Ausdehnung und weist auf der dem Brennstoff zugewandten Wandung eine katalytisch aktive Beschichtung zur Oxidation des Brennstoffes auf. Durch die katalytisch induzierte Verbrennung eines Brennstoffes wird ein besonders niedriger Stickoxidgehalt des Brennerabgases erreicht. Gleichzeitig wird durch die Beschichtung der Wandung der Strömungswiderstand im Brenner im Unterschied zu bekannten Primärmaßnahmen zur Stickoxidminderung nicht erhöht. Bei Einsatz des Brenners in einer Gasturbine kann daher ein besonders hoher Wirkungsgrad bei gleichzeitig niedriger Stickoxidemission erzielt werden. Die Erfindung ist insbesondere bei allen Gasturbinen einsetzbar.

Description

Be s ehre ibung
KATALYTISCHE GASTURBINENBRENNKAMMER
Die Erfindung bezieht sich auf einen Brenner, insbesondere für eine Gasturbine, mit einer katalytischen Brennkammer. Als ein Brennstoff ist dabei ein Kohlenwasserstoff und/oder was- serstoffhaltiger Energieträger sowohl in flüsssiger als auch in gasförmiger Form vorgesehen. Ein derartiger Brennstoff ist beispielsweise Erdgas, Erdöl oder Methan. Ein solcher Brenner kann bevorzugt eingesetzt werden in einer Gasturbine.
Eine Gasturbine besteht üblicherweise aus einem Kompressor¬ teil, einem Brennerteil und einem Turbinenteil. Der Kompres- sorteil und der Turbinenteil befinden sich üblicherweise auf einer gemeinsamen Welle, die gleichzeitig einen Generator zur Elektrizitätserzeugung antreibt. Im Kompressorteil wird vor¬ gewärmte Frischluft mit einem Brennstoff der genannten Art verbrannt. Das heiße Brennerabgas wird dem Turbinenteil zuge- führt und dort entspannt.
Eine detaillierte Information über den Aufbau und die Verwen¬ dung einer Gasturbine gibt die Firmenschrift „Gasturbines and Gasturbine Power Plants" der Siemens AG, Mai 1994, Bestellnr. A 96001-U 124-V 1-7600.
Bei der Verbrennung eines Brennstoffs der genannten Art ent¬ stehen als besonders unerwünschte Verbrennungsprodukte auch Stickoxide NOx. Diese Stickoxide gelten neben Schwefeldioxid als Hauptverursacher für das Umweltproblem des sauren Regens. Man ist daher - auch aufgrund strenger gesetzlicher Grenz¬ wertvorgaben für den NOx-Ausstoß - gewillt, den NOx-Ausstoß von einer Gasturbine besonders gering zu halten und dabei gleichzeitig die Leistung der Gasturbine weitgehend nicht zu beeinflussen. So wirkt beispielsweise eine Flammtemperatur-Absenkung im Brenner als stickoxidmindernd. Hierbei wird dem Brennstoff oder der komprimierten und vorgewärmten Frischluft Wasser¬ dampf zugefügt oder Wasser in den Brennraum eingespritzt. Solche Maßnahmen, die den Stickoxidausstoß per se verringern, werden als Primärmaßnahmen zur Stickoxidminderung bezeichnet.
Dementsprechend werden als Sekundärmaßnahmen alle Maßnahmen bezeichnet, bei denen einmal im Abgas z.B. einer Gasturbine oder auch grundsätzlich eines Verbrennungsprozesses enthal¬ tene Stickoxide durch nachträgliche Maßnahmen verringert wer¬ den.
Hierzu hat sich weltweit das Verfahren der selektiven kataly- tischen Reduktion (SCR) durchgesetzt, bei dem die Stickoxide zusammen mit einem Reduktionsmittel, meist Ammoniak, an einem Katalysator kontaktiert werden und dabei Stickstoff und Was¬ ser bilden. Mit dem Einsatz dieser Technologie ist daher zwangsläufig der Verbrauch von Reduktionsmittel verbunden. Die im Abgaskanal angeordneten Katalysatoren zur Stickoxid¬ minderung verursachen naturgemäß einen Druckabfall, der bei Einsatz des Brenners in einer Turbine einen Leistungsabfall nach sich zieht. Selbst ein Leistungsabfall in Höhe von eini¬ gen Promille wirkt sich bei einer Leistung der Gasturbine von beispielsweise 150 MW und einem Stromverkaufspreis von etwa 0,15 DM/kWh Strom gravierend auf das mit einer solchen Ein¬ richtung erzielbare Ergebnis aus.
Als eine Primärmaßnahme zum Abbau von Stickoxiden ist aus der GB 2 268 694 A eine katalytische Brennkammer vorgesehen, wo¬ bei die Zündtemperatur eines Brennstoffes durch eine teil¬ weise katalytische Oxidation abgesenkt wird. Die hierfür vor¬ gesehenen Katalysatoren sind quer zur Strömungsrichtung des Brennstoffs eingebaut und erstrecken sich über den gesamten Stromungsguerschnitt. Damit ist ein hoher Strömungswiderstand gegeben. Bei den vorstehend beschriebenen Brennern besteht daher grundsätzlich das Problem, daß jede dort vorgesehene Stick¬ oxidminderung, primärer oder sekundärer Art, eine Leistungs¬ einbuße oder eine Einbuße im Gesamtwirkungsgrad der Gasturbi- nenanlage zur Konsequenz hat.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Bren¬ ner, insbesondere für eine Gasturbine, anzugeben, welcher sich durch besonders niedrige Stickoxidemissionen und gleich- zeitig einen besonders hohen Wirkungsgrad auszeichnet.
Diese Aufgabe wird erfindungsgemäß mit einem Brenner gelöst, bei dem eine katalytische Brennkammer vorgesehen ist, wobei die Brennkammer in Strömungsrichtung eines Brennstoffes eine im wesentlichen zylindrische Ausdehnung hat und die dem Brennstoff zugewandte Wandung eine katalytisch aktive Be¬ schichtung zur Oxidation des Brennstoffes aufweist. Auf diese Weise wird durch die katalytisch induzierte Ver¬ brennung des Brennstoffes ein besonders niedriger Stickoxid- gehalt des Brennerabgases erreicht. Gleichzeitig ist durch die Beschichtung der Wandung der Brennkammer keine Erhöhung des Strömungswiderstands verbunden, so daß mit einer derarti¬ gen katalytischen Brennkammer besonders hohe Wirkungsgrade in einer Gasturbine erreichbar sind. Die im wesentlichen zylin- drische Form der katalytischen Brennkammer und die kataly¬ tisch aktive Beschichtung der Wandung tragen dazu bei, daß der Brennstoff ausgehend von der Wandung zündet und ein Aus¬ breiten der Flammenfront von der katalytisch aktiven Oberflä¬ che der Wandung in die freie Strömung des Brenngases ermög- licht ist. Insbesondere die zylindrische Form trägt hierbei zu einer im wesentlichen konzentrischen und damit homogenen Verteilung der Flammenfront bei, wodurch eine vollständige und gleichmäßige Verbrennung des Brennstoffes resultiert.
Zur Erzielung einer besonders gut rotationssymmetrisch ausge¬ bildeten Flammenfront ist es vorteilhaft, wenn eine Anzahl zur Zylinderlängsachse der Brennkammer konzentrischer kataly¬ tisch aktiv beschichteter Ringe vorgesehen ist.
Der Vorgang der Bildung einer weitgehend rotationssymmetri- sehen Flammenfront in der Brennkammer wird weiter unter¬ stützt, wenn der oder die Ringe ausschließlich im äußeren Be¬ reich des im wesentlichen kreisförmigen Querschnitts der Brennkammer angeordnet sind.
Zur Absenkung der katalytischen Zündtemperatur des Brennstof¬ fes in der Brennkammer ist es besonders vorteilhaft, wenn der Brennkammer ein Brennstoff, umfassend einen Brennstoff-Haupt¬ strom, einen präformierten Brennstoff-Teilstrom und Luft, zu¬ führbar ist. Hierbei besteht der Brennstoff-Hauptstrom meist aus Erdgas und/oder Kohlegas und/oder Wasserstoff. Der prä¬ formierte Brennstoff-Teilstrom ist ein Teilstrom der vom Brennstoff-Hauptstrom abgetrennt und über eine Präformie¬ rungsstufe geleitet wird. In dieser auf Katalysatorbasis ar¬ beitenden Präformierungsstufe werden beispielsweise aus Erd- gas katalytisch leichter als Erdgas zündende Stoffe, wie z.B. Alkohole, Aldehyde und Wasserstoff, gebildet. Ein mit einem solchen präformierten Brennstoff-Teilstrom versetztes Brenn¬ gas hat daher eine ausgezeichnete katalytische Zündfähigkeit.
Eine besonders vorteilhafte Ausführungsform bezüglich der
Zündfähigkeit des in die katalytische Brennkammer eingeleite¬ ten Brennstoffes kann es vorsehen, daß ein präformierter Brennstoff-Teilstrom, gegebenenfalls vorgemischt mit Luft, durch Bohrungen in der Wandung in die Brennkammer eintritt. Auf diese Weise wird das vergleichsweise leicht zündende Gas¬ gemisch des präformierten Brennstoff-Teilstroms direkt mit der katalytisch aktiven Beschichtung in Berührung gebracht und zündet spontan, so daß eine betriebssichere räumlich ste¬ hende Zündung von der Gestalt eines Hohlzylinders in der ka- talytischen Brennkammer gebildet ist. Zum Schutz der katalytisch aktiven Beschichtung, die sich auf der dem Brenngas zuwendbaren Wandung der katalytischen Brenn¬ kammer befindet, kann es vorgesehen sein, die Wandung zu küh¬ len. Hierbei kann die Wandung beispielsweise mit Luft gekühlt werden, wobei gleichzeitig eine Vorwärmung der Luft erzielt wird. Diese vorgewärmte Luft kann beispielsweise nachfolgend in den Verdichterteil auf den Brennkammer-Eintrittsdruck ver¬ dichtet werden.
Die katalytische Wirkung der katalytisch aktiven Beschichtung tritt besonders vorteilhaft dann ein, wenn die katalytisch aktive Beschichtung Titandioxid, welches vorzugsweise flamm- und plasmagespritzt ist, und einen Edelmetallanteil, ausge¬ wählt aus Platin, Rhodium, Palladium, Iridium, Rhenium und/oder einen Metalloxidanteil, bestehend aus einem oder mehreren Übergangsmetalloxiden, aufweist. Als Übergangsmetal¬ loxide kommen solche Oxide in Frage, welche eine stark oxi- dierende katalytische Wirkung haben, wie z.B. Kupferoxid, Chromoxid, Eisenoxid, Molybdänoxid, Wolframoxid, Vanadium- oxid, Manganoxid, Ceroxid sowie weitere Oxide der Lanthanoi- den.
Ausführungsbeispiele der Erfindung werden anhand einer Zeich¬ nung näher erläutert. Dabei zeigen:
FIG 1 in schematischer Darstellung den Brenner einer Gas¬ turbine mit katalytischer Brennkammer;
FIG 2 in schematischer Darstellung den Brenner einer Gasturbine gemäß Figur 1 mit geringfügig gegenüber
Figur 1 modifizierter katalytischer Brennkammer; und
FIG 3 eine katalytische Brennkammer im Querschnitt.
In den Figuren 1 bis 3 haben gleiche Teile die gleichen Be¬ zugszeichen. In der schematischen Darstellung gemäß Figur 1 erkennt man eine Gasturbine 2, welche einen Verdichterteil 4, einen Bren¬ nerteil 6 und einen Turbinenteil 7 umfaßt. Der Brennerteil 6 umfaßt eine katalytische Brennkammer 8, deren Wandung 10 eine katalytisch aktive Beschichtung 12 aufweist.
Die katalytische Brennkammer 8 hat im Ausführungsbeispiel ei¬ nen kreisrunden Querschnitt. In die katalytische Brennkammer 8 strömt als Brennstoff 14 ein Brenngas ein, welches im Aus- führungsbeispiel aus im Verdichterteil 4 verdichteter Luft 16, einem Brennstoff-Hauptström 18 und einem präformierten Brennstoff-Teilstrom 20 besteht. Dieser präformierte Brenn¬ stoff-Teilstrom 20 wird von einem ursprünglichen Brennstoff- Strom 22 abgetrennt und über eine Präformierungsstufe 24 ge- leitet. Der Brennstoff-Strom 22 besteht im Ausführungsbei¬ spiel aus Erdgas, woraus in der Präformierungsstufe 24 kata¬ lytisch leichter als Erdgas zündende Stoffe, wie z.B. Alko¬ hole, Aldehyde und Wasserstoff, gebildet werden. Die Präfor¬ mierungsstufe 24 umfaßt zur Ausübung ihrer Funktion einen nicht weiter dargestellten keramischen Wabenkatalysator auf Titandioxid-Basis, welcher zusätzlich einen Edelmetallanteil, bestehend aus oberflächlich auf den Wabenkatalysator aufge¬ brachtem Platin und Palladium umfaßt.
Die katalytisch aktive Beschichtung 12 auf der Wandung 10 der katalytischen Brennkammer 8 besteht aus einer flammgespritz¬ ten Titandioxid-Schicht mit einer Dicke von etwa 500 μm, auf die zusätzlich Edelmetallpartikel von Platin, Rhodium und Palladium sowie Partikel von Übergangsmetalloxiden, wie Cer- oxid, Vanadiumoxid und Chromoxid, aufgebracht sind. Alterna¬ tiv zu einer flammgespritzten Titandioxid kann ebenso eine plasmagespritzte Titandioxid-Schicht vorgesehen sein. Beide Schichten zeichnen sich durch ihre große Festigkeit auf der meist aus einem austenitischem Stahl bestehenden Wandung 10 der katalytischen Brennkammer 8 aus. Beim Betrieb der Gasturbine 2 strömt nun der Brennstoff 14 in die katalytische Brennkammer 8 ein und entzündet sich an der katalytisch aktiven Beschichtung 12 der Wandung 10. Die auf diese Weise gebildete stromaufwärts gelegene Flammenfront 26 ist ebenso wie die stromabwärts gelegene Flammenfront 28 weitgehend rotationssymmetrisch, so daß die Temperaturvertei¬ lung in der katalytischen Brennkammer 8 entlang der Haupt- strömungsrichtung im Bezug auf den Querschnitt etwa kreisför¬ mige Isothermen aufweist. Dies ist für eine gleichmäßige und Schadstoffarme Verbrennung des Brennstoffes 14 von Vorteil.
Der auf diese Weise katalytisch verbrannte Brennstoff 14 tritt mit einer Temperatur von etwa 1100 °C in den Turbinen¬ teil 7 der Gasturbine 2 ein und wird dort entspannt. Die im Turbinenteil übertragene thermische Energie wird zum Antrieb eines hier nicht weiter dargestellten Generators zur Elektri¬ zitätserzeugung genutzt. Dieser Generator ist auf der selben hier nicht weiter dargestellten Welle angeordnet wie die Gas¬ turbine 2. Das den Turbinenteil 7 verlassende Brennerabgas 30 ist aufgrund der katalytischen Verbrennung des Brenngases 14 besonders stickoxidarm und weist einen Stickoxidgehalt von etwa 70 ppm auf. Das Brennerabgas 30 kann in einem hier nicht weiter dargestellten Abhitzedampferzeuger zur Dampferzeugung genutzt werden.
Figur 2 zeigt in schematischer Darstellung eine gegenüber Fi¬ gur 1 geringfügig modifizierte Gasturbine 2'. Hierbei be¬ schränken sich die Modifikationen auf die Ausgestaltung der katalytischen Brennkammer 8. Die in Figur 2 vorliegende kata- lytische Brennkammer 8' unterscheidet sich von Figur 1 da¬ durch, daß in der Wandung 10 Bohrungen 32 vorgesehen sind, durch die der präformierte Brennstoff-Teilstrom 20 und Luft 16 in die Brennkammer 8' eintreten.
Diese Maßnahme hat gegenüber der Ausgestaltung gemäß Figur 1 zwei Vorteile. Der erste Vorteil besteht darin, daß das Brennstoffgemisch mit der niedrigsten katalytischen Zündtem- peratur unmittelbar an der katalytisch aktiven Beschichtung 12 in die Brennkammer 8' eintritt und sich deshalb ver¬ gleichsweise spontan entzündet. Diese Maßnahme trägt daher ganz besonders zur Stabilisierung der stromaufwärts gelegenen Flammenfront 26 bei. Der zweite Vorteil besteht darin, daß die Wandungen 10 durch das entlangströmende Gemisch aus präformiertem Brennstoff-Teilstrom 20 und Luft 16 gekühlt werden. Durch diese Kühlung wird auch die thermische Bela¬ stung der katalytisch aktiven Beschichtung 12 herabgesetzt, was sich günstig auf die Haltbarkeit dieser Beschichtung 12 auswirkt. Eine Kühlung der Wandung 10 kann in hier nicht dar¬ gestellter Weise alternativ auch durch eine Strömung von Luft 16 erzielt werden, welche in den Verdichterteil 4 eintritt.
Figur 3 zeigt in schematischer Darstellung den Querschnitt einer gegenüber den Figuren 1 und 2 modifizierten katalyti¬ schen Brennkammer 34. Man erkennt wieder die Wandung 10 und die katalytisch aktive Beschichtung 12 zur Oxidation des Brennstoffes 14. Unter der Oxidation des Brennstoffes wird selbstverständlich verstanden, daß der Brennstoff 14, 22 oxi- diert und der über die Luft 16 herangeführte und zur Verbren¬ nung erforderliche Sauerstoff reduziert wird. Unter der kata¬ lytisch aktiven Beschichtung 12 zur Oxidation des Brenngases 14 ist daher die Beschichtung gemeint, welche den gesamten Verbrennungsvorgang mit oxidierten und reduzierten Verbren¬ nungsprodukten induziert.
Die Brennkammer 34 weist drei konzentrisch angeordnete Ringe 36 auf. Diese konzentrischen Ringe 36 sind dünne Blechstrei- fen, bestehend aus dem Material der Wandung 10. Die Ringe 36 verfügen über dieselbe katalytisch aktive Beschichtung 12, mit welcher auch die Wandung 10 der Brennkammer 34 beschich¬ tet ist. Aus Gründen der Übersichtlichkeit der Darstellung ist die katalytisch aktive Beschichtung 12 nur in einem aus- gewählten Quadranten eingezeichnet. Auch die die Ringe 36 haltenden Stege 38 verfügen über diese katalytisch aktive Be¬ schichtung 12. Die Ringe 36 sind ausschließlich im äußeren Bereich des im wesentlichen kreisförmigen Querschnitts der Brennkammer 34 angeordnet, um die anfängliche Zündung des Brennstoffes 14 auf den äußeren Bereich des Querschnitts der Brennkammer 34 zu beschränken. Ein Ausweiten der Flammenfront in die freie Strömung des Brenngases 14 hinein erfolgt dann selbsttätig. Die Ringe 36 mit der katalytisch aktiven Be¬ schichtung 12 tragen so zur Stabilisierung der Flammenfront und zur Sicherung einer vollständigen und deshalb besonders Schadstoffarmen Verbrennung bei.

Claims

Patentansprüche
1. Brenner mit einer katalytischen Brennkammer (8, 8', 34), wobei die Brennkammer (8, 8', 34) in Strömungsrichtung eines Brennstoffes (14) eine im wesentlichen zylindrische Ausdeh- nung hat, und wobei die dem Brennstoff (14) zugewandte Wan¬ dung (10) der Brennkammer eine katalytisch aktive Beschich¬ tung (12) zur Oxidation des Brennstoffes (14) aufweist.
2. Brenner nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß eine An¬ zahl von zur Zylinderlängsachse der Brennkammer (8, 8', 34) konzentrisch angeordneter und katalytisch aktiv beschichteter Ringe (36) vorgesehen ist.
3. Brenner nach Anspruch 2, d a d u r c h g e k e n n z e i c h n e t, daß der oder die Ringe (36) ausschließlich im äußeren Bereich des im we¬ sentlichen kreisförmigen Querschnitts der Brennkammer (8, 8', 34) angeordnet sind.
4. Brenner nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der Brenn¬ kammer (8, 8', 34) ein Brennstoff (14), umfassend einen Brennstoff-Hauptstrom (18) , einen präformierten Brennstoff- Teilstrom (20) und Luft (16), zuführbar ist.
5. Brenner nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß ein präformierter Brennstoff-Teilstrom (20) , gegebenenfalls vor- gemischt mit Luft (16) , durch Bohrungen (32) in der Wandung (10) in die Brennkammer (8') einbringbar ist.
6. Brenner nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß die Wan¬ dung (10) kühlbar ist.
7. Brenner nach einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß die kata¬ lytisch aktive Beschichtung (12) Titandioxid, vorzugsweise flamm- oder plasmagespritzt, und einen Edelmetallanteil, aus¬ gewählt aus einem oder mehreren der Edelmetalle Platin, Rho¬ dium, Palladium, Iridium, Rhenium, und/oder einen Metalloxid- anteil, ausgewählt aus einem oder mehreren Übergangsmetall- oxiden, aufweist.
8. Gasturbine, umfassend einen Brenner gemäß einem der Ansprüche 1 bis 7.
PCT/DE1996/001020 1995-06-12 1996-06-11 Katalytische gasturbinenbrennkammer WO1996041992A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59604179T DE59604179D1 (de) 1995-06-12 1996-06-11 Katalytische gasturbinenbrennkammer
EP96915991A EP0832398B1 (de) 1995-06-12 1996-06-11 Katalytische gasturbinenbrennkammer
RU98100472A RU2143643C1 (ru) 1995-06-12 1996-06-11 Горелка, в частности для газовой турбины
JP9502491A JPH11507433A (ja) 1995-06-12 1996-06-11 特にガスタービン用のバーナ
US08/990,034 US5946917A (en) 1995-06-12 1997-12-12 Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1995121356 DE19521356C2 (de) 1995-06-12 1995-06-12 Gasturbine, umfassend einen Verdichterteil, einen Brennerteil und einen Turbinenteil
DE19521356.4 1995-06-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/990,034 Continuation US5946917A (en) 1995-06-12 1997-12-12 Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine

Publications (1)

Publication Number Publication Date
WO1996041992A1 true WO1996041992A1 (de) 1996-12-27

Family

ID=7764194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE1996/001020 WO1996041992A1 (de) 1995-06-12 1996-06-11 Katalytische gasturbinenbrennkammer

Country Status (6)

Country Link
EP (1) EP0832398B1 (de)
JP (1) JPH11507433A (de)
DE (2) DE19521356C2 (de)
ES (1) ES2142587T3 (de)
RU (1) RU2143643C1 (de)
WO (1) WO1996041992A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357628A (zh) * 2021-05-25 2021-09-07 江苏大学 一种折流式自动点火微型催化燃烧器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19654022A1 (de) * 1996-12-21 1998-06-25 Abb Research Ltd Verfahren zum Betrieb einer Gasturbogruppe
DE10061527A1 (de) 2000-12-11 2002-06-13 Alstom Switzerland Ltd Vormischbrenneranordnung mit katalytischer Verbrennung sowie Verfahren zum Betrieb hierzu
DE10061526A1 (de) * 2000-12-11 2002-06-20 Alstom Switzerland Ltd Vormischbrenneranordnung zum Betrieb einer Brennkammer
JP4538077B2 (ja) * 2008-06-13 2010-09-08 川崎重工業株式会社 希薄燃料吸入ガスタービン
DE102008056741A1 (de) * 2008-11-11 2010-05-12 Mtu Aero Engines Gmbh Verschleissschutzschicht für Tial
JP5380488B2 (ja) 2011-05-20 2014-01-08 株式会社日立製作所 燃焼器
WO2016056941A1 (ru) * 2014-10-09 2016-04-14 Дмитрий Александрович ЛЕБЕДЕВ Поршень двигателя внутреннего сгорания

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941361A (en) * 1952-10-15 1960-06-21 Nat Res Dev Combustion apparatus having a flame stabilizing baffle
US3032991A (en) * 1959-10-01 1962-05-08 Gen Electric Combustion sustaining means for continuous flow combustion systems
US4432207A (en) * 1981-08-06 1984-02-21 General Electric Company Modular catalytic combustion bed support system
JPS6153425A (ja) * 1984-08-24 1986-03-17 Hitachi Ltd ガスタ−ビン用の燃焼器並びにその燃焼方法
US4603547A (en) * 1980-10-10 1986-08-05 Williams Research Corporation Catalytic relight coating for gas turbine combustion chamber and method of application
JPS61178402A (ja) * 1985-02-04 1986-08-11 Tsutomu Kagitani オゾンの分解処理法
GB2196392A (en) * 1986-10-14 1988-04-27 Gen Electric Multiple-propellant propulsion apparatus & method
DE3809226A1 (de) * 1987-03-20 1988-09-29 Toshiba Kawasaki Kk Hochtemperatur-verbrennungskatalysator und verfahren zur herstellung desselben
DE3723603A1 (de) * 1987-07-17 1989-01-26 Helmut Prof Dr Rer Nat Krauch Waermetauscher
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
DE4210543A1 (de) * 1992-03-31 1993-10-07 Asea Brown Boveri Druckwellenmaschine
US5368475A (en) * 1989-09-07 1994-11-29 Atomic Energy Of Canada Limited Catalyst structures and burners for heat producing devices

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4133337A1 (de) * 1990-10-08 1992-04-09 Riken Kk Abgasreiniger und verfahren zum reinigen von abgasen
GB2268694A (en) * 1992-07-14 1994-01-19 Rolls Royce Plc A catalytic combustion chamber

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2941361A (en) * 1952-10-15 1960-06-21 Nat Res Dev Combustion apparatus having a flame stabilizing baffle
US3032991A (en) * 1959-10-01 1962-05-08 Gen Electric Combustion sustaining means for continuous flow combustion systems
US4603547A (en) * 1980-10-10 1986-08-05 Williams Research Corporation Catalytic relight coating for gas turbine combustion chamber and method of application
US4432207A (en) * 1981-08-06 1984-02-21 General Electric Company Modular catalytic combustion bed support system
JPS6153425A (ja) * 1984-08-24 1986-03-17 Hitachi Ltd ガスタ−ビン用の燃焼器並びにその燃焼方法
JPS61178402A (ja) * 1985-02-04 1986-08-11 Tsutomu Kagitani オゾンの分解処理法
US5048284A (en) * 1986-05-27 1991-09-17 Imperial Chemical Industries Plc Method of operating gas turbines with reformed fuel
GB2196392A (en) * 1986-10-14 1988-04-27 Gen Electric Multiple-propellant propulsion apparatus & method
DE3809226A1 (de) * 1987-03-20 1988-09-29 Toshiba Kawasaki Kk Hochtemperatur-verbrennungskatalysator und verfahren zur herstellung desselben
DE3723603A1 (de) * 1987-07-17 1989-01-26 Helmut Prof Dr Rer Nat Krauch Waermetauscher
US5368475A (en) * 1989-09-07 1994-11-29 Atomic Energy Of Canada Limited Catalyst structures and burners for heat producing devices
DE4210543A1 (de) * 1992-03-31 1993-10-07 Asea Brown Boveri Druckwellenmaschine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 010, no. 216 (M - 502) 29 July 1986 (1986-07-29) *
PATENT ABSTRACTS OF JAPAN vol. 010, no. 390 (C - 394) 26 December 1986 (1986-12-26) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113357628A (zh) * 2021-05-25 2021-09-07 江苏大学 一种折流式自动点火微型催化燃烧器
CN113357628B (zh) * 2021-05-25 2024-03-19 江苏大学 一种折流式自动点火微型催化燃烧器

Also Published As

Publication number Publication date
EP0832398A1 (de) 1998-04-01
EP0832398B1 (de) 2000-01-12
DE19521356A1 (de) 1996-12-19
DE19521356C2 (de) 1999-04-01
JPH11507433A (ja) 1999-06-29
ES2142587T3 (es) 2000-04-16
RU2143643C1 (ru) 1999-12-27
DE59604179D1 (de) 2000-02-17

Similar Documents

Publication Publication Date Title
US5946917A (en) Catalytic combustion chamber operating on preformed fuel, preferably for a gas turbine
EP1800062B1 (de) Brenner zur verbrennung eines niederkalorischen brenngases und verfahren zum betrieb eines brenners
EP1279898B1 (de) Vormischbrenner mit hoher Flammenstabilität
DE10119035A1 (de) Katalytisch arbeitender Brenner
EP0995066B1 (de) Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer
US20070128093A1 (en) Catalyzer
EP0832398B1 (de) Katalytische gasturbinenbrennkammer
EP0832397B1 (de) Katalytische gasturbinenbrenner
DE3809240A1 (de) Verfahren zur verringerung der no(pfeil abwaerts)x(pfeil abwaerts)-emission von brennkraftturbinen
EP1754937A2 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
US5950434A (en) Burner, particularly for a gas turbine, with catalytically induced combustion
EP0832399B1 (de) Katalytische zündbrenner einer gasturbine
EP0484777B1 (de) Verfahren zur Stabilisierung eines Verbrennungsvorganges
DE4202018C1 (en) Combustion chamber for gas turbine plant - has two catalyst holders consisting of honeycomb segments with flame holder downstream of them.
EP1654497B1 (de) Verfahren zur verbrennung eines fluidischen brennstoffs sowie brenner, insbesondere für eine gasturbine, zur durchführung des verfahrens
DE2708940A1 (de) Verfahren zum betreiben einer gasturbine sowie verbesserte gasturbinen- verbrennungskammer
DE4415916A1 (de) Verfahren und Vorrichtung zur Verbrennung eines fließfähigen Brennstoffs
DE102014104317A1 (de) Lufterhitzungssystem mit katalytischer Verbrennung
WO2000012933A1 (de) Hybridbrenner und verfahren zum betrieb eines hybridbrenners
WO2000049337A1 (de) Brenneranordnung und verfahren zum betrieb einer brenneranordnung
DE19637727A1 (de) Verfahren zur katalytischen Verbrennung eines fossilen Brennstoffs in einer Verbrennungsanlage und Anordnung zur Durchführung dieses Verfahrens
DE10164097A1 (de) Vormischbrenner mit hoher Flammenstabilität
DE19516829A1 (de) Gasturbine
DE19853162C2 (de) Verfahren zum Verbrennen eines stickstoffhaltigen Brennstoffs
DE19635930A1 (de) Turbine zur Entspannung eines Rauchgases sowie Verfahren zu ihrem Betrieb

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN CZ JP KR RU UA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996915991

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1997 502491

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 08990034

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1996915991

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1996915991

Country of ref document: EP