WO1996039028A1 - Multilayered biocidal film compositions - Google Patents

Multilayered biocidal film compositions Download PDF

Info

Publication number
WO1996039028A1
WO1996039028A1 PCT/US1996/009199 US9609199W WO9639028A1 WO 1996039028 A1 WO1996039028 A1 WO 1996039028A1 US 9609199 W US9609199 W US 9609199W WO 9639028 A1 WO9639028 A1 WO 9639028A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
composite
chlorine dioxide
hydrophilic
hydrophobic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US1996/009199
Other languages
English (en)
French (fr)
Inventor
Stephen T. Wellinghoff
Joel J. Kampa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Research Institute SwRI
Original Assignee
Southwest Research Institute SwRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Research Institute SwRI filed Critical Southwest Research Institute SwRI
Priority to HK98114502.5A priority Critical patent/HK1013212B/en
Priority to MX9700956A priority patent/MX9700956A/es
Priority to NZ311875A priority patent/NZ311875A/en
Priority to AU63280/96A priority patent/AU700406B2/en
Priority to JP50157897A priority patent/JP3987108B2/ja
Priority to DE69629891T priority patent/DE69629891T2/de
Priority to CA002196781A priority patent/CA2196781C/en
Priority to EP96922397A priority patent/EP0774897B1/en
Priority to BR9606419A priority patent/BR9606419A/pt
Publication of WO1996039028A1 publication Critical patent/WO1996039028A1/en
Anticipated expiration legal-status Critical
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/02Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing liquids as carriers, diluents or solvents
    • A01N25/04Dispersions, emulsions, suspoemulsions, suspension concentrates or gels
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)
    • C01B11/023Preparation from chlorites or chlorates
    • C01B11/024Preparation from chlorites or chlorates from chlorites
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
    • A23B2/00Preservation of foods or foodstuffs, in general
    • A23B2/70Preservation of foods or foodstuffs, in general by treatment with chemicals
    • A23B2/704Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
    • A23B2/00Preservation of foods or foodstuffs, in general
    • A23B2/70Preservation of foods or foodstuffs, in general by treatment with chemicals
    • A23B2/725Preservation of foods or foodstuffs, in general by treatment with chemicals in the form of liquids or solids
    • A23B2/788Inorganic compounds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/14Coating with a protective layer; Compositions or apparatus therefor
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVATION OF FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES; CHEMICAL RIPENING OF FRUIT OR VEGETABLES
    • A23B9/00Preservation of edible seeds, e.g. cereals
    • A23B9/16Preserving with chemicals
    • A23B9/24Preserving with chemicals in the form of liquids or solids
    • A23B9/30Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B11/00Oxides or oxyacids of halogens; Salts thereof
    • C01B11/02Oxides of chlorine
    • C01B11/022Chlorine dioxide (ClO2)

Definitions

  • the present invention relates generally to a
  • the invention particularly relates to a composite including separate hydrophobic and hydrophilic layers that form a chlorine dioxide releasing film when in contact.
  • Chlorine dioxide (ClO 2 ) is a superior oxidizing agent widely used as a bleach, disinfectant, fumigant or deodorizer. It can penetrate the cell wall or membrane and cytoplasm of mold spores, bacteria and other
  • microbiological contaminants at concentrations below one part per million and destroy them.
  • Japanese Kokai Nos. 63/296,758, 63/274,434, and 57/168,977 describe deodorants containing chlorine dioxide incorporated in a polymer, ceramic beads, or calcium silicate wrapped in nonwoven cloth, respectively.
  • Gels that generate chlorine dioxide for use as topical applications for disinfection are disclosed by Kenyon et al., Am. J. Vet. Res., 45(5), 1101 (1986).
  • Chlorine dioxide generating gels are generally formed by mixing a gel containing suspended sodium chlorite with a gel containing lactic acid immediately prior to use to avoid premature chlorine dioxide release. Chlorine dioxide releasing gels have also been used in food preservation.
  • Encapsulation processes have also been used in preparing sources of chlorine dioxide.
  • Canadian Patent No. 959,238 describes generation of chlorine dioxide by separately encapsulating sodium chlorite and lactic acid in polyvinyl alcohol and mixing the capsules with water to produce chlorine dioxide.
  • the capsules can be coated onto surfaces to release chlorine dioxide. Although the capsules are said to provide biocidal action for several days to months, chlorine dioxide release begins
  • the present invention is directed to a multilayered composite for providing sustained release of chlorine dioxide includes a hydrophobic layer containing an acid releasing agent, and a hydrophilic layer containing chlorite anions.
  • the hydrophilic and hydrophobic layers are adjacent and substantially free of water, and the hydrophilic layer is capable of releasing chlorine dioxide upon hydrolysis of the acid releasing agent.
  • Another embodiment of the present invention is directed to a multilayered composite for providing sustained release of chlorine dioxide which includes a layer having a hydrophobic phase containing an acid releasing agent and a hydrophilic phase containing chlorite anions, the hydrophilic and hydrophobic phases being interdispersed and substantially free of water.
  • a moisture regulating layer is in contact with a surface of the layer, such that moisture permeating the moisture regulating layer hydrolyzes the acid releasing agent to initiate release of chlorine dioxide from the
  • multilayered composite for providing time pulsed release of chlorine dioxide including at least one hydrophobic layer containing an acid releasing agent, at least one hydrophilic layer containing chlorite anions, and at least three barrier layers to control the diffusion of water into the hydrophobic layer or the diffusion of hydronium ions produced by hydrolysis of the acid
  • C is a barrier layer
  • A is a hydrophobic layer
  • B is a hydrophilic layer
  • n is an integer ranging from 1 to 10.
  • FIG. 1 is a schematic that illustrates conversion of an amine precursor to an iminium chlorite
  • FIG. 2 illustrates hydrolysis of an acid anhydride in a hydrophobic phase and migration of hydronium ion to the iminium chlorite to release chlorine dioxide gas;
  • FIGS. 3a, 3b and 3c are schematics of multilayered composites for providing sustained release of chlorine dioxide;
  • FIG. 4 is a plot of chlorine dioxide release rates for several powder compositions;
  • FIG. 5 is a plot of chlorine dioxide release rates for a layered composite
  • FIG. 6 is a plot of chlorine dioxide release rates in relation to atmospheric temperature and humidity
  • FIG. 7 is a plot of chlorine dioxide release rates for a layered composite
  • FIGS. 8 and 9 are plots of chlorine dioxide release rates in relation to atmospheric temperature
  • FIG. 10 is a plot of maximum chlorine dioxide concentration as a function of leakage from a container.
  • FIG. 11 is a plot of chlorine dioxide concentration as a function of time.
  • sustained release of chlorine dioxide can be generated from a composite containing chlorite anions when the composite is exposed to
  • the composite comprises a hydrophilic material and a hydrophobic material.
  • the composite may be, for example, a dispersion composed of hydrophilic and
  • hydrophobic phases or a mechanical combination of the hydrophilic and hydrophobic materials, such as powders and adjacent films.
  • the powder has a hydrophobic core embedded with chlorite containing particles.
  • Adjacent films comprise separate layers of the hydrophilic or hydrophobic materials.
  • the composite comprises between about 5.0 wt.% and about 95 wt.% hydrophilic material and between about 5.0 wt.% and about 95 wt.% hydrophobic material, more preferably between about 15 wt.% and about 95 wt.% hydrophilic material and between about 15 wt.% and about 95 wt.% hydrophobic material.
  • the composite is a dispersion, either material can form the continuous phase.
  • the continuous phase constitutes between about 15 wt.% and about 95 wt.% of the dispersion and the
  • dispersed phase constitutes between about 5 wt.% and about 85 wt.% of the dispersion, and preferably, the continuous phase constitutes between about 50 wt.% and about 95 wt.% of the dispersion and the dispersed phase constitutes between about 5 wt.% and about 50 wt.% of the dispersion.
  • the hydrophobic material of the composite can be composed entirely of an acid releasing agent or can comprise the acid releasing agent in combination with a diluent and/or a plasticizer. Any acid releasing agent that is capable of being hydrolyzed by ambient moisture is acceptable for purposes of the present invention.
  • the acid releasing agent does not react with the hydrophilic material, and does not exude or extract into the environment.
  • the hydrophobic material comprises between about 10 wt.% and about 100 wt.% of the acid releasing agent, up to about 80 wt.% diluent, and up to about 60 wt.% plasticizer, and preferably, between about 40 wt.% and about 100 wt.% of the acid releasing agent, between about 20 wt.% and about 80 wt.% diluent, and up to about 20 wt.% plasticizer.
  • the hydrophilic material of the composite can be composed entirely of a source of chlorite anions or can comprise the chlorite anion source in combination with another hydrophilic material.
  • the hydrophilic material preferably contains an amine, amide or an alcohol, or a compound containing amino, amido or hydroxyl moieties and having a high hydrogen bonding density.
  • a source of chlorite anions is incorporated in the hydrophilic material and preferably constitutes between about 2 wt.% and about 40 wt.% of the hydrophilic material in the form of chlorite anions and counterions, and more preferably, between about 8 wt.% and about 10 wt.% of the hydrophilic material.
  • the salt dissociates in the hydrophilic material such that the hydrophilic material in the composite will include chlorite anions and counterions.
  • the hydrophilic material is an amine and the chlorite source is chlorine dioxide gas, the chlorine dioxide reacts with the amine to form iminium chlorite in situ, if the oxidation potential of the amine is sufficiently low for the amine to be oxidized.
  • the acid releasing agent within the hydrophobic material is hydrolyzed by adsorbed moisture, releasing acid and hydronium ions that diffuse from the hydrophobic material to the hydrophilic material containing chlorite anion .
  • the hydronium ions react with the chlorite anions in the hydrophilic material, releasing chlorine dioxide gas that diffuses out of the composite into the surrounding atmosphere for a period of up to about six months in order to prevent the growth of bacteria, molds, fungi and viruses on a treated surface.
  • hydrophobic and hydrophilic materials are substantially free of water to avoid significant release of chlorine dioxide prior to use of the composite.
  • each of the hydrophilic and hydrophobic materials can include up to about 0.1 wt.% water without providing such a pathway for
  • each material contains less than about 1.0 X 10 -3 wt.% water, and, more preferably, between about 1 X 10 -2 wt.% and about 1 X 10 -3 wt.% water.
  • substantially amounts of water can hydrolyze a portion of the acid releasing agent to produce acid and hydronium ions within the composite. The hydronium ions, however, do not diffuse into the hydrophilic material until enough free water is present for transport of hydronium ions.
  • the chlorite anions generally do not react with the hydrophilic material, but are surrounded by hydrogen bonds contributed by the nitrogen or hydroxide within the hydrophilic material. Suitable chlorite sources that can be incorporated into the composite of the present
  • alkali metal chlorites such as sodium chlorite or potassium chlorite
  • alkaline-earth metal chlorites such as calcium chlorite
  • chlorite salts of a transition metal ion or a protonated primary such as sodium chlorite or potassium chlorite
  • chlorite sources such as sodium chlorite, are stable at
  • processing temperatures in excess of about 100 °C, allowing for processing at relatively high temperatures.
  • FIG. 1 illustrates preparation of a composite containing iminium chlorite.
  • the amine hydrophilic material is in contact with a hydrophobic acid releasing agent (both hydrolyzed P-O-Si and maleic anhydride are shown in FIG. 1).
  • Chlorine dioxide (ClO 2 ) is reduced by extracting an electron from the amine, forming an aminium radical cation (not. shown) and a chlorite counterion (ClO 2 -).
  • the aminium cation quickly converts to an iminium cation by loss of a proton from an adjacent carbon atom and oxidation by another chlorine dioxide molecule.
  • Rosenbatt et al. J. Org. Chem., 28, 2790 (1963); J. Amer. Chem. Soc. 89(5), 1158, 1163 (1967).
  • uncomplexed chlorite anion may be depleted by subsequent reactions with the iminium counterion at temperatures above about 60 °C.
  • Chlorites are also subject to disproportionation into chloride and chlorate.
  • An amine with a high pK a is preferred because it reacts more rapidly with chlorine dioxide and acts as a more effective proton sink,
  • FIG. 2 illustrates the mechanism for release of chlorine dioxide from iminium chlorite when moisture contacts the composite.
  • Hydrolysis of the acid releasing agent provides hydronium cations (H 3 O + ) that react with iminium chlorite to release chlorine dioxide gas.
  • the decomposition products of the reaction are an aminium cation (shown as in FIG. 2), a carboxylate
  • iminium chlorite may decompose if the composite is exposed to temperatures exceeding about 60 °C, reducing the
  • chlorite source can be omitted from the composite until the composite is applied to a surface when the hydrophilic material in the composite is an amine. After application, the composite is exposed to chlorine dioxide gas that either reacts with the amine to form iminium chlorite in situ or dissolves in the amine to provide chlorite anions. The composite is then activated in the presence of moisture to release chlorine dioxide.
  • This method enables the composite to be exposed to elevated temperatures during processing, storage and application as compared to the temperatures at which the iminium chlorite decomposes, because the hydrophilic material does not contain iminium chlorite or any chlorite anions. The method also precludes premature release of chlorine dioxide from the composite. Chlorine dioxide can be provided on site by passing the composite through a chlorine dioxide generator.
  • Chlorine dioxide that comes into contact with the composite of the invention must first be dissolved into a material that does not absorb water such as a low melting hydrocarbon wax or chlorohydrocarbon wax. Alternatively, chlorine dioxide is dried with a desiccant. Chlorine dioxide is thus delivered from a wet industrial process into the composite without exposing the composite to water.
  • the amine In order for an amine to form iminium chlorite in neat form or in the presence of a plasticizer, the amine must be sufficiently electron rich and the amine nitrogen must be locally mobile. Electron withdrawing groups should be separated from the amine center by at least two methylene groups in order for the chlorine dioxide to extract an electron from the amine. Movement of the bonds about the nitrogen center of the amine is required for aminium formation. If the amine is frozen into a glassy matrix, the amine nitrogen will not be mobile and the amine will not convert to iminium chlorite.
  • a glassy amine can be softened to increase mobility by adding at least about 10 wt.% of a plasticizer, such as a low molecular weight amide, to the amine to lower glass transition temperature below the reaction temperature.
  • plasticizers are well known in the polymer art.
  • composite can be altered by changing the viscosity of the hydrophilic and hydrophobic materials, changing the dispersibility of the hydrophilic and hydrophobic materials, changing the temperature of the composite, changing the concentration of acid releasing agent in the composite, adding a desiccant or humectant to the
  • R' 2 and R 2 are groups that correspond to those of the selected amine and R" is an alkyl or hydrogen group.
  • the iminium ion In the absence of water, the iminium ion is immediately decomposed into an ⁇ -amino ether and a more stable sodium chlorite salt. If water is present during the oxidation of the tertiary amine, an unstable ⁇ -amino alcohol is formed that can attack the chlorite anion unless the chlorite anion has been effectively complexed by the hydrophilic solvent. Addition of water after solvation of the chlorite ion is not as deleterious.
  • Acceptable strong bases for use in stabilizing the chlorite include metal alkoxides such as sodium,
  • potassium or calcium methoxides ethoxides, propoxides or butoxides, metal oxides such as aluminum oxide, or sodium oxide, metal ions such as Na + , trialkyl ammonium salts of alkoxides, ammonium salts of alkoxides, acetates such as sodium acetate, substituted acetates, or other materials that would generate a strong basic reaction to attack the nitrogen center of iminium chlorite.
  • an ⁇ -amino ether and chlorite salt is formed when the iminium chlorite is stabilized.
  • succinamide, formamide, or N-methyl formamide can be substituted for N-methylacetamide in order to soften the amine.
  • Formamide and N-methyl formamide are toxic and would not be preferred in applications involving human contact. If the amine center is sufficiently mobile, the addition of a plasticizer is unnecessary. Urea improves the chlorine dioxide uptake and release efficiency of the hydrophilic material because it has a high hydrogen bonding density and will not react with the acid
  • the composite comprises between about 5 wt.% and about 95 wt.% of the hydrophilic material and between about 5 wt.% and about 95 wt.% of the hydrophobic material.
  • the hydrophilic material comprises between about 5 to about 30 wt.% of an amine and between about 70 and about 95 wt.% of a hydrophilic solvent including between about 35 and about 55 wt.% urea, between about 35 wt.% and about 55 wt.% plasticizer and about 10 wt.% base. It has been found that not more than about 0.5 moles of chlorine dioxide per mole of amine should be added to the hydrophilic material or the stability of the material could be compromised.
  • Preferred amides for use as the hydrophilic material include formamide, acrylamide-isopropylacrylamide, copolymers of formamide and acrylamide- isopropylacrylamide, and copolymers of acrylamide, isopropylacrylamide or N,N-methylene bisacrylamide and a primary amine or a secondary amine.
  • Such amides can be useful vehicles for film casting prior to exposure to chlorine dioxide, which does not react with
  • Suitable amines for use as the hydrophilic material include primary amines, secondary amines, and tertiary amines having pendant hydrogen bonding groups.
  • An amine substituted with electron donating groups that donate electrons to convert chlorine dioxide to chlorite is preferred.
  • Electron withdrawing groups concentrate electron density at such groups such that it is difficult for the chlorine dioxide to extract an electron from the amine.
  • Tertiary amines having non-hydrogen bonding pendant groups that are dissolved in a hydrophilic solvent are also acceptable.
  • Representative amines include: alkanolamines; copolymers of aminoalkanes and alkene bisacrylamides; alkylaminopyridine; alkene
  • R 1 , R 2 , R 5 , and R 6 are alkyl; R 3 is straight chain C 6 to C 12 alkyl; R 4 is
  • cycloalkyl or benzyl m is 1-100; n is 2 or 3; x is 0, 1 or 2; y is 1 or 2; and z is 1-6.
  • the above compounds can be solubilized in formamide,
  • Preferred amines include monoethanolamine
  • diethanolamine triethanolamine, a copolymer of 1,3- diaminopropane or 1,2-diaminoethane and N,N-methylene bisacrylamide, 4-dimethylaminopyridine, tetramethylene ethylene diamine, N,N-dimethylamino cyclohexane, solubilized 1-(N-dipropylamino)-2-carboxyamido ethane or 1-(N-dimethylamino)-2-carboxyamido ethane, a primary amine having the formula R 1 NH 2 , a secondary amine having the formula R 2 R 3 NH , N (CH 2 CH 2 OH) 3 ,
  • R 1 is -CH 2 CH 2 OCH 2 CH 2 OH, -C(CH 3 ) 2 CH 2 OH, -CH 2 CH 2 NHCH 2 CH 2 OH, -CH(CH 3 ) 2 , -CH 2 CH 2 OH,
  • R 2 and R 3 are, independently, hexyl
  • R 4 is cyclohexyl or benzyl;
  • R 5 and R 6 are methyl;
  • R 7 is cyclohexyl or 4-pyridyl;
  • R 8 and R 9 are,
  • Suitable diluents include
  • Hydroxylic compounds including ethylene glycol, glycerin, methanol, ethanol, methoxyethanol,
  • ethoxyethanol or other alcohols can be used as the hydrophilic material.
  • chlorine dioxide release can occur very rapidly when a hydroxylic compound is incorporated in the composite and can limit the
  • Suitable acid releasing agents include carboxylic acids, esters, anhydrides, acyl halides, phosphoric acid, phosphate esters, trimethylsilyl phosphate esters, dialkyl phosphates, sulfonic acid, a sulfonic acid esters, sulfonic acid chlorides, and phosphosilanes of glycerol based esters.
  • acid releasing agents include an anhydride or phosphate ester blended with or grafted to polypropylene, polyethylene or
  • Linear or star like oligomers e.g., a micelle like molecule with a lipid wall and a P-O-Si core
  • a phosphosilane of a glycerol based ester are preferred acid releasing agents because they can be melt- or solvent- processed with the option of being crosslinked after processing to provide film stability.
  • a preferred phosphosilane of a glycerol based ester is known as LPOSI and has the formula
  • a free radical polymerizable alkene or condensible group on the terminal end of a lipid is a representative oligomer.
  • Acid anhydrides are also preferred acid releasing agents and include organic acid anhydrides, mixed organic acid anhydrides, homopolymers of an organic acid
  • anhydride or a mixed inorganic acid anhydride and copolymers of an organic acid anhydride or a mixed inorganic acid anhydride with a monomer containing a double bond.
  • Preferred mixed inorganic acid anhydrides contain a phosphorus-oxygen-silicon bond.
  • Preferred anhydrides include copolymers of maleic anhydride, methacrylic anhydride, acetic anhydride, propionic anhydride, or succinic anhydride, and vinyl, styrene or an alkene, such as maleic anhydride-styrene copolymers, or grafts thereof with olefins such as polypropylenes, polyethylenes, or polystyrenes.
  • Copolymers of acid anhydrides and esters of lactic or glycolic acids can provide a rapid initial chlorine dioxide release rate followed by a slow release rate.
  • the hydrophobic material can further include a diluent such as atactic polypropylene, hydrocarbon wax, chlorinated wax, polyethylene wax, low molecular weight polyolefins, polyesters, derivatized polyolefin
  • a diluent such as atactic polypropylene, hydrocarbon wax, chlorinated wax, polyethylene wax, low molecular weight polyolefins, polyesters, derivatized polyolefin
  • Plasticizers can also be incorporated in either the hydrophobic or hydrophilic materials as is known in the art. Generally, formamide and isopropylacrylamide- acrylamide are acceptable plasticizers.
  • a moisture scavenger such as sodium sulfate, calcium sulfate, silica gel, alumina, zeolites, and calcium chloride can be added to the composite to prevent premature hydrolysis of the acid releasing agent.
  • additives can be added to the hydrophobic and hydrophilic materials as needed.
  • Such additives include crosslinking agents, flame retardants, emulsifiers and compatibilizers.
  • the composites of the present invention can be formulated in various ways to accommodate a wide range of end use applications.
  • the composite can be formulated as an extrudate, such as a film or pellets, or as a powder using conventional extrusion and spray drying methods, respectively.
  • chlorite containing particles are formed by dissolving a chlorite source in a hydrophilic solvent and extruding the solution through nozzles of a spray dryer. Once the solution is transformed into spray dried
  • the particles can be routed to a cyclone separator to isolate small particles preferably having a diameter of between about 5 and about 150 microns.
  • the particles can then be stored in a dry atmosphere.
  • the hydrophobic material containing the acid releasing agent is aerosolized by passing the material through small diameter nozzles into the chamber of the fluidized bed where it can impinge upon the fluidized chlorite containing particles.
  • the chlorine dioxide releasing powder is formed as the hydrophobic material solidifies to form a hydrophobic core having a layer of chlorite particles embedded in the outer surface thereof. Aggregation is minimized because the chlorite particles are hard inorganic materials.
  • the particles can then be packaged in a dry sealed container.
  • anhydrous particles such as anhydrous sodium sulfate, calcium sulfate, magnesium sulfate, or a moisture
  • depleted silica gel can be included in the fluidized bed to form a mixture of chlorite particles and anhydrous particles.
  • the anhydrous particles delay release of chlorine dioxide that is catalyzed by atmospheric
  • the anhydrous particles can also be post-mixed with the chlorine dioxide releasing powder to delay chlorine dioxide release.
  • the chlorite powder contains an alkali or alkaline-earth chlorite.
  • the hydrophobic material preferably contains a low melting hydrocarbon wax, chlorohydrocarbon wax, atactic polypropylene, polyethylene wax, a low molecular weight polyolefin, derivatized polyolefin copolymer, or mixtures thereof.
  • An acid releasing wax such as a hydrocarbon solution of a phosphorylated lipoglycerol reacted with silicon alkoxides to produce mixed anhydride P-O-Si bonds, is preferred as the hydrophobic material.
  • LPOSI is a particularly suitable acid releasing wax for use in preparing the chlorine dioxide releasing powder.
  • the acid releasing wax is extruded at a viscosity between about 10 and about 1000 cP through nozzles of between about 1 and about 10 mil diameter, a fine spray of molten wax between about 5 and about 400 microns in diameter is generated.
  • the composites of the present invention can be formulated in solvents to allow for film casting or other application methods.
  • the composite can be applied as a film by using well known hot melt, dip coat, spray coat, curtain coat, dry wax, wet wax, and lamination processes.
  • the composites can also be provided as a layer 12 composed of a microdispersed hydrophobic and hydrophilic material as shown in FIG. 3b, or as a multilayered composite 14 including a separate hydrophobic layer 16 and a separate hydrophilic layer 18 as shown in FIG. 3a.
  • the hydrophobic and hydrophilic layers can be applied by casting the hydrophilic layer onto a substrate 20 and then casting the hydrophobic layer onto the hydrophilic layer, as illustrated in FIG. 3a.
  • the multilayered composite or single layer can be applied in conjunction with moisture regulating layers 22 to control the rate of moisture ingress into the hydrophilic material or
  • hydrophobic material to control chlorine dioxide release from the multilayered composite when activated by
  • hydrophobic and hydrophilic materials 16, 18 as separate layers with an intermediate boundary layer 24 that regulates hydronium ion transport between the materials as shown in FIG 3c.
  • the layered composites of the present invention are intended to maintain a desired rate of chlorine dioxide release (moles/sec/cm 2 of film) in the presence of atmospheric moisture at a surface for a length of time required for chlorine dioxide to absorb onto the surface and kill bacteria or other microbiological contaminants.
  • a desired rate of chlorine dioxide release molecular oxygen deposition
  • leakage from a container or exposed surface reduces the chlorine dioxide concentrations at the surface because of chlorine dioxide diffusion into the atmosphere.
  • the chlorine dioxide concentration released from the film for a chosen time period can be calculated given the leakage rate and the rate of absorbance at a surface.
  • the composite is formulated so that it contains a large enough reservoir of chlorite reacting at a speed
  • design of a chlorine dioxide releasing composite suitable for controlled release and biocidal action within a container must take into account several aspects, namely, the chlorine dioxide production rate from the controlled release film, the partitioning of chlorine dioxide between the phases within the container (e.g. gas, liquid and solid phases) in a reversible
  • a preferred extended release system of the present invention conserves the chlorite reservoir by emitting a series of periodic pulsed releases timed to coincide with the suspected times of bacterial, viral or fungal contamination or the typical incubation time for the biological of interest.
  • the system design can be optimized to maintain the desired kill concentration for the requisite time at the atmospheric chlorine dioxide leakage rates imposed by the specific application.
  • a typical controlled release multilayered composite includes water swellable films A and B of a thickness of about 5 mil with a hydrophobic layer A and a hydrophilic layer B as described above for the composite.
  • the hydrophobic layer A contains an acid releasing agent such as an anhydride and hydronium ions generated by anhydride hydrolysis.
  • the hydrophilic layer B contains chlorite anions as provided, for example, by dissolving sodium chlorite or another chlorite source in a hydrophilic solvent.
  • the hydrophobic and hydrophilic layers are separated by a water swellable intermediate layer C having a thickness 1 (typically about 5 mil) and
  • the intermediate layer C can be composed of a wide variety of materials since chlorine dioxide can diffuse equally well in both hydrophobic and hydrogen bonded matrices.
  • materials include polyionomers such as protonated and neutralized, sulfonated, or phosphorylated oligo- or poly-alkenes such as polyethylene,
  • anhydrous salts or desiccants may be added to any of the layers to retard the reaction to chlorine dioxide that is catalyzed by water.
  • Structures of type CDC can also be made where D is a mixture or emulsion of A and B of a phase size of between about 0.2 and about 100 microns.
  • the materials of construction for the CDC composites can be the same as those used in making the C(ACB) n C composites.
  • a multilayered composite C(DCD) n C can be made in order to provide pulsed release as described above.
  • Pulsed releases of chlorine dioxide that vary from about one day to over about 200 days can be achieved for
  • the pulsed release capabilities of a multiple layered film can be calculated as provided in Example 16.
  • the composites can be used in most any environment where exposure to moisture will occur.
  • the composites can be used to prevent the growth of molds, fungi, viruses and bacteria on the surface of a material and/or deodorize the material by treating the surface with a composite that does not release chlorine dioxide in the absence of moisture, and exposing the treated surface to moisture to release chlorine dioxide from the composite into the atmosphere surrounding the material.
  • the treated surface is generally a portion of a container or is part of a substrate placed within the container.
  • container can be used in storing food products including blueberries, raspberries, strawberries, and other
  • biological waste can also be sterilized to kill
  • Odors from athletic shoes, disposable footwear, and refuse can also be minimized when they are contained within a treated container.
  • the treated surface can be a reusable or disposable mat or sheet including a dental tray covering, a surgical tray covering, a shower mat, nonwoven bandage material, a meat cutting board, a liner for drawers or shelves, an insert for athletic bags or gym lockers, a food wrapper, a paper sheet for separating hamburger patties, a meat packaging tray, an overpouch such as those used in packaging intravenous bags, a fresh fruit separator or box liner, an absorbent pad for poultry, meat, seafood or produce, or an absorbent layer for use in diapers.
  • Such mats or sheets are typically made from paper, cellulosic, polymeric, woven fabric or nonwoven materials.
  • Such a method can also be used to coat the surface of a seed to protect the seed from molds and fungi during storage and to protect against mycotic growth when the seed is planted. The coating, when activated by
  • Seeds in storage do not have to be physically coated to be protected but rather can be in a closed container containing the active material as a packet, "tea bag” or coating on the container. Paper impregnated with the composite generates sufficient chlorine dioxide to protect the seeds. Although any seeds can be protected by the coating, edible seeds such as corn kernels, sunflower seeds, or soybeans, remain fit for human consumption once they are coated. Thus, the coated seeds can be provided for planting or for human consumption after they have been coated.
  • the surface can be treated with any of the
  • composites of the present invention by conventional coating, extrusion, lamination and impregnation methods well known in the art.
  • Another embodiment of the invention is a method of preventing the growth of fungi, bacteria or molds on a surface and/or deodorizing the surface by treating the surface with a composite that does not release chlorine dioxide in the absence of moisture, and exposing the treated surface to moisture to release chlorine dioxide from the composite into the atmosphere surrounding the surface.
  • a preferred application includes a foot powder for preventing athlete's foot and other fungi.
  • the powder can be applied directly on the surface of the foot or can be incorporated into a shoe insert.
  • the composite can be applied between the cloth covering and foam pad of the shoe insert, impregnated within the foamed pad, or impregnated or coated on a shoe counter or upper lining. Chlorine dioxide generated from moisture within the shoe diffuses from the composite into the atmosphere to kill fungus and deodorize the shoe.
  • the powder can be blended with conventional ingredients such as talc, cornstarch, fragrance, miconazole nitrate, tolnastate silica, boric acid, aluminum chlorhydrate, salicylic acid, and
  • the powder can also be blended with other ingredients and used in bath powders or powders used in treating jock itch.
  • the powder can also be applied to carpeting to remove odors from the carpet.
  • Ingredients commonly incorporated in powdered carpet deodorizers or cleaners can be blended with the powder of the present invention.
  • the composite can also be formulated in microcapsules that break after being stepped on and are then activated by moisture. Such microcapsules can be impregnated in floor, shower or bath mats or can be used in carpet deodorization.
  • the composites can be coated onto tubing, connectors, fitments or other components as separate layers of the hydrophobic or hydrophilic
  • Tubing fitments used with intravenous bags can be treated such that a surface of one tube fitment is coated with a hydrophobic film containing acid releasing agent, a surface of another tube fitment is coated with a
  • hydrophilic film containing chlorite and the treated surfaces of the fitments are interconnected in the presence of moisture to initiate the release of chlorine dioxide from the treated surfaces into the atmosphere surrounding the material.
  • Fitments for in-dwelling catheters, needles, peritoneal dialysis, percutaneous devices, percutaneous access, colostomy bags and other medical devices can also be treated in accordance with this method. Additionally, closures on a package can be so treated to provide self sterilizing packaging for medical devices, instruments and supplies.
  • the composite of the present invention was expected to kill bacteria on the surface of meats. However, it was not expected to penetrate a ground beef patty. It has been discovered that chlorine dioxide evolved from paper treated with the composite can effectively
  • E. coli 0157 :H7 in tainted meat has caused death and severe illness and appears to be especially resistant to cooking, fermenting and drying.
  • meat patties In a typical operation producing meat patties for commercial consumption, meat is ground, extruded and formed into patties that are separated by sheets of coated paper that prevent adhesion of the individual patties. After packaging, the ground meat can be exposed to chlorine dioxide over a period of time when in
  • a hydrophilic material was made that contained a 7 wt.% solution of sodium chlorite in an amide mixture composed of 33 wt.% formamide, 33 wt.% acrylamide, and 33 wt.% isopropylacrylamide.
  • a hydrophobic material was made that contained a 7 wt.% solution of sodium chlorite in an amide mixture composed of 33 wt.% formamide, 33 wt.% acrylamide, and 33 wt.% isopropylacrylamide.
  • Hydronium ions formed during hydrolysis reacted with chlorite anions to release chlorine dioxide.
  • the release rate could be slowed by cooling the mixture to 0°C or by increasing the viscosity of the materials.
  • DMACAE 1-(N-Dimethylamino)-2-carboxyamidoethane
  • the amine-chlorine dioxide reaction was studied by layering the requisite amount of 6.0X10 -5 molar solution of chlorine dioxide in pentane onto about 3.0X10 -4 mole of amine, either in neat form or dissolved 10-30 wt.% in formamide or isopropyl acrylamide-acrylamide melt.
  • the chlorine dioxide-pentane solution was prepared by
  • Chlorite was also formed by neat secondary amines having the formula R 2 R 3 NH wherein R 2 and R 3 are,
  • the isopropylacrylamide-acrylamide and amine were also prepolymerized and film formed by heating to 60-70° C in the presence of about 0.01% azobisisobutyronitrile initiator, providing chlorite so long as the film
  • R 8 and R 9 were isopropyl groups, the neat amine did not yield chlorite.
  • a neat hydrogen bonded amine of the formula N(CH 2 CH 2 OH) 3 yielded chlorite, which was also formed when the amine was in formamide or isopropylacrylamide-acrylamide solvent.
  • hydrophilic material or substituted by hydrogen bonding groups such as hydroxylic, amide, primary amine or secondary amine substituents, forms chlorite by reaction with chlorine dioxide.
  • chlorite suspended or dissolved in a hydrophobic material, as a dilute solution in toluene or benzene, and exposed to chlorine dioxide reacted with chlorine dioxide but only released a minor amount of chlorine dioxide when acidified.
  • solvents such as ethanol, will not retain chlorite counterion for long term storage unless iminium chlorite is stabilized with a strong base to retain the chlorite counterion.
  • Amines that are monosubstituted with short apolar groups such as (CH 3 ) 2 NCH 2 CH 2 C( O )NH 2 , (n-C 3 H 7 ) 2 NCH 2 CH 2 C (O)NH 2 , and (i-C 3 H 7 ) 2 NCH 2 CH 2 C ( O )NH 2 , formed stable chlorite in formamide.
  • the last polymer has the most flexible amine containing side group and exhibited the most efficient uptake and release of chlorine dioxide in formamide that is a substantial improvement over that demonstrated with in-chain amines.
  • the polymer was also soluble in molten urea.
  • DMAA dimethylaminoacrylamide
  • NMA n- methylacetamide
  • APP atactic polypropylene
  • tetraethylorthosilicate was added and the immediate evolution of ethanol was detected. Stirring was continued for an additional four hours while slowly raising the temperature to 100°C and purging the mixture of ethanol with a 10cc/minutes flow of nitrogen. The reaction flask was subsequently evacuated at 100°C to remove any
  • Chlorite powder was prepared by first dissolving commercial sodium chlorite in dry methanol at 3% by weight and filtering the resultant solution to remove sodium carbonate impurity. The chlorite solution was then extruded into an anhydro spray drier in dry nitrogen at 100°C through a self siphoning extrusion head with coaxial fluid and nitrogen flow. After routing to a cyclone separator to isolate small sodium chlorite particles of about 5 microns in diameter, the powder was stored in a dry atmosphere.
  • Neat sodium chlorite powder or mixtures of sodium chlorite powder and anhydrous sodium sulfate in a ratio of 1:1 and 1:2 by weight was fluidized in the bottom of a nitrogen filled container.
  • a stream of acid releasing wax was then directed into the fluidized bed through a nozzle of 7 mil in diameter with a nitrogen back pressure of 30-80 lbs/in 2 to produce wax particles encapsulated with chlorite and sulfate particles (indicated as 1:1 pre and 2:1 pre in FIG. 4).
  • the freely flowing powders were then stored in a dry atmosphere.
  • anhydrous sodium sulfate was postmixed with the chlorite-wax particles (i.e., 1:1 post and 2:1 post in FIG. 4).
  • FIG. 4 shows the chlorine dioxide release rate from 200mg of several powder composites placed in a Petri dish of approximately 62cc volume with a leakage of 2X10 -9 moles/sec. Controlled release over several days is accomplished at about 75°F and 40% relative humidity.
  • a hydrophobic acid releasing wax was made as
  • the acid releasing layer was placed in direct contact with the chlorite containing phase and immediate release of chlorine dioxide was observed as soon as the film was placed in the Petri dish.
  • the chlorine dioxide gas concentration dropped from a high of 13 ppm to 1 ppm at 5-6 days in an
  • Aspergillus terreus AT
  • Aspergillus niger AN
  • All growth studies were carried out in accord with TAPPI standard method T 487 pm-85 entitled "Fungus Resistance of Paper and Paperboard.”
  • Six samples were tested for fungus resistance over two weeks at room temperature in duplicate. Photographic comparisons showed considerable growth after two weeks on the control samples, while no growth showed on the controlled release films. The effectiveness of chlorine dioxide in killing these three molds was evident from the two week study.
  • a delayed release system one side of a piece of paperboard was coated with an acid releasing layer separated from a chlorite layer by an intermediate wax layer.
  • the 5 mil thick hydrophilic phase in the chlorite layer was a transparent blend containing 10 wt.% sodium chlorite, 50 wt.% (NH 2 C( O )CH 2 CH 2 OCH 2 CH 2 ) 2 O and 40 wt.% formamide.
  • the chlorite layer was separated from the acid releasing LPOSI wax of about 5 mil thickness by an unmodified wax layer of about 5 mil thickness.
  • the total volume of controlled release material was about 0.25 cc.
  • Example 9 The three mold species tested for in Example 9 were grown in mineral loaded, but nutrient free agar slants using paperboard as a nutrient in accord with TAPPI standard method T 487 pm-85.
  • the porous paper used throughout these examples had one untreated side and one side that appeared glossy.
  • the chlorine dioxide release coatings were applied to the untreated side of the paper with the chlorine dioxide releasing composite sheets assembled with the glossy side out. Consequently, only the glossy side of the paper had contact with the meat. Sheets approximately 3 ft. x 8 in. were cut to facilitate handling during the coating process.
  • the original paper weight was 5 mg/cm 2 .
  • LPOSI acid releasing wax was applied to the porous substrate paper in a nitrogen filled dry box containing a large dish of stirred phosphorus pentoxide using a wax coater operating at approximately 190 °F. If multiple coatings were used, the paper was allowed to cool prior to applying subsequent layers. Once the paper was coated, it was sealed in a dry atmosphere suitable for storage.
  • the chlorite containing paper was applied from methanol solution using a coater operating at room temperature.
  • a typical coating solution was prepared by first dissolving 25 grams of poly N-vinyl pyrrolidinone (PVNP, 1.7x10 6 M.W.) in 500 ml of methanol followed by 15 grams of sodium chlorite (technical grade).
  • PVNP poly N-vinyl pyrrolidinone
  • the chlorite containing film was compression molded at room temperature with the LPOSI containing film to form a chlorine dioxide
  • FIG. 9 shows a typical plot generated from data acquired from a sample composed of sheets with two coats of each phase (2:2). Samples were monitored at several different loading levels. All samples showed an immediate maximum release of 10-20 ppm chlorine dioxide within the first 2- 3 hours followed by a very gradual reduction in release over the next several days. Higher loadings served to increase the maximum initial concentration and prolong the release.
  • #26 was grown in Tryptic Soy Broth (Difco 0370-17-3) to a log phase activity with an optical density of 0.8 at 600nm containing one billion colony forming units per ml of culture. The concentration was verified using plate counts on three separate dilutions.
  • the meat was then reground to a fine texture on a bench-mounted, hand-cranked sausage grinder and formed into patties by replacing the meat in the pan and cutting patties out with a piece of tubing to form positive control (i.e., added E. coli bacteria) patties.
  • positive control i.e., added E. coli bacteria
  • negative control i.e., no added bacteria
  • patties were prepared in duplicate and consisted of negative controls tested at 0 and 60 hours, positive controls tested at 0, 4, 24 and 60 hours, and test samples (i.e., patties exposed to a chlorine dioxide releasing film of the present invention) at 0, 4, 24 and 60 hours.
  • the patties were placed between either unmodified paper or the papers coated with a 2:2 chlorine dioxide releasing film (as described in Example 11) in 10 cm diameter plastic Petri dishes with covers. Two Petri dishes containing duplicate samples were then put in recloseable plastic bags and stored for the required time at 4°C in a common refrigerator.
  • Two samples were taken from each patty, one from the upper surface, T, contacted either by the unmodified paper or by the test paper with the chlorine dioxide releasing film, or from the middle one third of the patty, M. Samples were obtained with angle tipped forceps by either pinching across the surface to obtain a small scraping of the meat, or by digging down and exposing the middle third thickness region. The forceps were sterilized between samples by dipping in isopropanol and flaming.
  • 0.1 ml of the supernatant was plated onto Tryptic Soy Agar (Difco 0369-17-6) in duplicate and spread with a glass triangle on a turntable.
  • the glass spreader was sterilized between platings with isopropanol and flamed.
  • the viable bacterial content of the samples was
  • test plate counts were compared to the confirmed inoculum titer instead.
  • RTI ratio to inoculum
  • the average RTI for the top samples of the plates for the patties that were exposed to chlorine dioxide and tested for 60 hours was roughly 170, which would represent a 170 fold decrease in viability.
  • the average RTI for the interior of these patties was roughly 50.
  • the patties then were placed between either 2:4 or 3:6 chlorine dioxide releasing papers as described in Example 11, and covered with a Petri dish cover that was enclosed in a recloseable plastic bag. The samples were then stored at 4°C for 3.5 days. After this exposure time the meat in contact with the 3:6 papers showed no bacterial growth from either a surface or interior sample when plated as described in Example 13. The interior of the patty exposed to the lower chlorine dioxide
  • D g Diffusion constant of chlorine dioxide (cm 2 /sec) in gas phase
  • the total thickness of the gas layer s inverse of the time of maximum release rate of chlorine dioxide from the controlled release film C(x,t) is evaluated for a given set of diffusion constants, leakage rate, h, phase partitioning and dimensional constant, k' chlorine dioxide release rate, Q, and inverse relaxation time for release, s, by
  • the leakage flux constant, D g /l is evaluated by injecting a small quantity (about 10 ppm) of chlorine dioxide into the Petri dish containing no Agar and measuring the chlorine dioxide concentration as a
  • Q is thus calculated as 7.23 x 10 -16 mole/cm 2 /sec 2 over a 62 cm 2 base area Petri dish where the area release rate is assumed to have no lateral dependence over the entire surface of the dish. This is a valid assumption since, even though the controlled release patch occupies a smaller area than the total cross-sectional area of the dish, both the gas and Agar diffusion rates of the chlorine dioxide are large in comparison to the time scale of the release rate.
  • the concentration in the gel phase C(l,t) as a function of time is then calculated for a range of leakage rates, h as shown in Fig. 10.
  • the concentration at any time significantly greater than the half time for leakage is simply some constant factor multiplied times the source generation rate.
  • the leakage rate decreases 10 -1 ⁇ h ⁇ 10 -5 , the maximum concentration is generated only at
  • C s ' is the number of moles of gas absorbed/cm 2 of surface and C g is the gas phase concentration in mole/cm 3
  • the particles are considered to be small enough so that the concentration of chlorine dioxide throughout the particles' thickness is equilibrated with the gas
  • the entire particle concentration is concentrated in the particle surface.
  • the diffusion constant for flow through the absorbing porous media would be reduced by a factor of 0.0244. This substantial reduction of apparent gas phase diffusion constant proportionally reduces the leakage rate, h, resulting in a proportional increase in the concentration expected at any time.
  • concentrations are below the human olfactory detection limit of about 10 ppm.
  • a maximum concentration of 10.4 ppm is reached after 10 days and at least 1 ppm is generated for 0.4 day ⁇ t ⁇ 46 days. Approximately 0.31 cm 3 of controlled release material is needed for this purpose. At a materials cost of $1.00/lb, the controlled release material cost
  • the pulsed release capabilities of a multiple layered composite can be calculated as follows to
  • the time required for complete cation exchange can be predicted from the mobile ion concentration in each layer, C i , wherein i is A, B, or C. In order to determine such a time period, hydronium ion transport across the intermediate layer C is considered to be the rate
  • Chlorite ion is considered to be relatively immobile and the reaction of chlorite to chlorine dioxide is considered to occur instantaneously once a hydrogen ion enters the
  • hydrophilic layer B is hydrophilic layer B.
  • Hydronium ion mobility in intermediate layer C can be estimated by using experimental data reported by J.L. Crowley et al., J. Poly. Sc, Poly. Phys. Ed., 14, 1769 (1976). Crowley et al. studied the ionic mobility in a graft copolymer of low density polyethylene (79 wt.%) and sulfonated polystyrene (21 wt.%) as a function of ion type, water content and temperature. Sodium, potassium and silver ions travel along polymer bound sulfonate groups by exchange with hydronium cations. At high water contents of 3-6 wt.% phase separation of ion clusters in a hydrophobic matrix is likely.
  • the calculated ion diffusion constants are 1.21X10 -8 cm 2 /sec and 2.58X10 -8 cm 2 /sec for a dry and wet (6 wt.% water) silver counterion loaded film, respectively.
  • the morphology of such a copolymer would be very similar to the two material system of the present
  • both include partially connected ion clusters localized at spherulite boundaries within the hydrophobic layer.
  • a multiple layered composite providing from about one day to about 247 days of chlorine dioxide release can be formulated using the two layered composites of the present
  • the chlorine dioxide release rate is generally rapid when chlorine dioxide release is initiated in a composite containing an intermediate layer because chlorine
  • concentration and diffusion constant supported by the A, B and C layers can affect hydronium ion transport.
  • polyethylene film of 1 cm 2 face area would be 6.89X10 -6 mole/day/cm 2 /5mil (90% RH, 38 °C) as reported by Wessling et al., Encycl. Poly. Sci. Eng., 17 , 510 (1989). This permeation rate is significantly less than that seen for polyethylene ionomers that typically contain 3.35x10 -4 mole/cc ionic groups at a minimum (4.08x10 -5

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Dentistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Dispersion Chemistry (AREA)
  • Toxicology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Medicinal Preparation (AREA)
  • Laminated Bodies (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Materials For Medical Uses (AREA)
PCT/US1996/009199 1995-06-05 1996-06-04 Multilayered biocidal film compositions Ceased WO1996039028A1 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
HK98114502.5A HK1013212B (en) 1995-06-05 1996-06-04 Multilayered biocidal film compositions
MX9700956A MX9700956A (es) 1995-06-05 1996-06-04 Composiciones biocidas de pelicula en capas multiples.
NZ311875A NZ311875A (en) 1995-06-05 1996-06-04 Sustained release multilayered biocidal composite comprising a hydrophobic layer and a chlorite-containing hydrophilic layer that releases chlorine dioxide
AU63280/96A AU700406B2 (en) 1995-06-05 1996-06-04 Multilayered biocidal film compositions
JP50157897A JP3987108B2 (ja) 1995-06-05 1996-06-04 多層殺菌フィルム組成物
DE69629891T DE69629891T2 (de) 1995-06-05 1996-06-04 Vielschichtige biozide filmzusammensetzungen
CA002196781A CA2196781C (en) 1995-06-05 1996-06-04 Multilayered biocidal film compositions
EP96922397A EP0774897B1 (en) 1995-06-05 1996-06-04 Multilayered biocidal film compositions
BR9606419A BR9606419A (pt) 1995-06-05 1996-06-04 Composições de filme biocidas de múltiplas camadas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/461,304 1995-06-05
US08/461,304 US5705092A (en) 1995-06-05 1995-06-05 Multilayered biocidal film compositions

Publications (1)

Publication Number Publication Date
WO1996039028A1 true WO1996039028A1 (en) 1996-12-12

Family

ID=23832035

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1996/009199 Ceased WO1996039028A1 (en) 1995-06-05 1996-06-04 Multilayered biocidal film compositions

Country Status (14)

Country Link
US (1) US5705092A (enExample)
EP (1) EP0774897B1 (enExample)
JP (1) JP3987108B2 (enExample)
KR (1) KR100428229B1 (enExample)
AR (1) AR003684A1 (enExample)
AU (1) AU700406B2 (enExample)
BR (1) BR9606419A (enExample)
CA (1) CA2196781C (enExample)
DE (1) DE69629891T2 (enExample)
MX (1) MX9700956A (enExample)
MY (1) MY115463A (enExample)
NZ (1) NZ311875A (enExample)
TW (1) TW371257B (enExample)
WO (1) WO1996039028A1 (enExample)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965264A (en) * 1996-09-18 1999-10-12 Bernard Technologies, Inc. Powders providing controlled sustained release of a gas
EP0982986A4 (en) * 1997-05-19 2003-08-13 Bernard Technologies Inc COMPOSITIONS FOR THE DELAYED RELEASE OF A GAS
CN108690625A (zh) * 2018-04-28 2018-10-23 上海市环境科学研究院 一种用于处理土壤中持久性卤代烃的缓释复合修复药剂及其制备方法

Families Citing this family (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6585843B2 (en) * 1992-01-10 2003-07-01 Super Sack Mfg. Corp. Anti-static, anti-corrosion, and/or anti-microbial films, fabrics, and articles
AU713284B2 (en) * 1995-06-12 1999-11-25 Bernard Technologies, Inc. Sustained release, transparent biocidal compositions
US6174508B1 (en) 1997-02-11 2001-01-16 Fred Klatte Method of producing chlorine dioxide using sodium chlorite and a water-retaining substance impregnated in zeolite or in aqueous solution
EP1027280B1 (en) 1997-11-07 2003-04-23 Engelhard Corporation Method and device for the production of an aqueous solution containing chlorine dioxide
US6277408B1 (en) 1998-02-09 2001-08-21 Southwest Research Institute Silicate-containing powders providing controlled, sustained gas release
US6605304B1 (en) 1998-02-09 2003-08-12 Bernard Technologies, Inc. Silicate-containing powders providing controlled, sustained gas release
WO2000021879A1 (en) * 1998-10-09 2000-04-20 Dennis Charles Clemes Chlorine dioxide generators
AU1745500A (en) * 1998-11-25 2000-06-19 Engelhard Corporation Methods and systems for reducing microbial populations
US6039979A (en) * 1999-01-13 2000-03-21 Laboratoires Prographarm Multiparticulate pharmaceutical form with programmed and pulsed release and process for its preparation
CA2373333C (en) * 1999-05-18 2009-09-29 Southwest Research Institute Energy-activated compositions for controlled sustained release of a gas
US7273567B1 (en) 1999-11-24 2007-09-25 Microactive Corp. Energy-activated compositions for controlled sustained release of a gas
US6767509B1 (en) 1999-06-16 2004-07-27 Kimberly-Clark Worldwide, Inc. Self-sterilizing packaging
MXPA02007993A (es) * 2000-02-18 2004-04-05 Selective Micro Technologies L Aparato y metodo para entrega controlada de un gas.
US6607696B1 (en) * 2000-02-18 2003-08-19 Selective Micro Technologies, Llc Apparatus and method for controlled delivery of a gas
US7922984B2 (en) * 2000-02-18 2011-04-12 Selective Micro Technologies, Llc Apparatus and method for controlled delivery of a gas
US6764661B1 (en) 2000-06-27 2004-07-20 Avantec Technologies, Inc. Device for producing an aqueous chlorine dioxide solution
WO2002058748A1 (en) * 2001-01-26 2002-08-01 Camelot Technologies Limited Absorbent pad for rendering hazardous liquids non-hazardous
US6589591B1 (en) 2001-07-10 2003-07-08 Baylor College Of Medicine Method for treating medical devices using glycerol and an antimicrobial agent
US7195744B2 (en) * 2001-08-28 2007-03-27 Ecolab, Inc. Device for holding a container for a composition that produces an antimicrobially active gas
US6620380B2 (en) 2001-09-14 2003-09-16 Ecolab, Inc. Method, device and composition for the sustained release of an antimicrobial gas
WO2003051407A1 (en) * 2001-12-17 2003-06-26 Selective Micro Technologies, Llc Apparatus and methods for delivery of a gas
AU2003205058A1 (en) * 2002-01-08 2003-07-24 Bernard Techologies, Inc. Antimicrobial body covering articles
US7150854B2 (en) * 2002-03-19 2006-12-19 Engelhard Corporation Device for generating aqueous chlorine dioxide solutions
US20030190273A1 (en) * 2002-04-09 2003-10-09 Bernard Technologies, Inc. Container liner for inhibiting decay of perishable items
AU2003235188A1 (en) * 2002-04-29 2003-11-17 Sk Aquatech Co., Ltd. Simple apparatus for producing chlorine dioxide gas
US6619051B1 (en) 2002-07-12 2003-09-16 Ecolab Inc. Integrated cleaning and sanitizing system and method for ice machines
US20040137039A1 (en) * 2002-07-22 2004-07-15 Trustees Of Stevens Institute Of Technology Methods for controlled release of molecules from layered polymer films
US7922992B2 (en) * 2002-09-13 2011-04-12 Ica Trinova, Llc Composition and method for producing carbon dioxide
GB0228870D0 (en) * 2002-12-10 2003-01-15 Ace Three Uk Ltd Sulphur dioxide release coastings
US7285255B2 (en) * 2002-12-10 2007-10-23 Ecolab Inc. Deodorizing and sanitizing employing a wicking device
US20040170671A1 (en) * 2003-03-05 2004-09-02 Jian Tao Thin wall gloves that release chlorine dioxide
US20040256561A1 (en) * 2003-06-17 2004-12-23 Allyson Beuhler Wide band light sensing pixel array
US7243788B2 (en) * 2003-10-22 2007-07-17 Kimberly-Clark Worldwide, Inc. Package for segregating and mixing substances
US20060216496A2 (en) * 2003-11-13 2006-09-28 Bernard Technologies, Inc. Gas Generating Polymers
EP1737378A2 (en) * 2004-04-02 2007-01-03 Baylor College of Medicine Novel modification of medical prostheses
US8900610B2 (en) * 2004-08-30 2014-12-02 Southwest Research Institute Biocidal fibrous and film materials comprising silver and chlorite ions
WO2006026573A2 (en) * 2004-08-30 2006-03-09 Southwest Research Institute Biocidal fibrous and film materials utilizing silver ion
US20060178445A1 (en) * 2004-12-16 2006-08-10 Mcintyre Patrick F Composition for controlled sustained release of a gas
US20100062220A1 (en) * 2005-05-30 2010-03-11 Yasushi Nishikawa Process for producing graphite film and graphite film produced thereby
US8673297B2 (en) * 2006-02-28 2014-03-18 Basf Corporation Chlorine dioxide based cleaner/sanitizer
JP2010511097A (ja) * 2006-11-27 2010-04-08 マイクロアクティブ・コーポレイション 気体を徐放するための溶融加工可能な相溶性ポリマーブレンド
US8129327B2 (en) 2006-12-01 2012-03-06 The Procter & Gamble Company Packaging for high moisture bar soap
US8383549B2 (en) * 2007-07-20 2013-02-26 Bayer Cropscience Lp Methods of increasing crop yield and controlling the growth of weeds using a polymer composite film
PT2170602E (pt) 2007-07-20 2012-01-16 Bayer Innovation Gmbh Película de polímero compósito com funcionalidade de barreira
PT2170044E (pt) 2007-07-20 2014-04-02 Bayer Innovation Gmbh Material compósito polimérico com uma funcionalidade biocida
US8741325B2 (en) * 2008-12-18 2014-06-03 The Hong Kong University Of Science And Technology Material for forming a multi-level antimicrobial surface coating and its preparation
US20100183785A1 (en) * 2009-01-21 2010-07-22 Manuel Ii Zuniga Method for doing business to retard bacterial, fungal, and viral contamination and mold growth in fruits
US9382116B2 (en) 2013-01-10 2016-07-05 Ica Trinova, Llc Mixtures for producing chlorine dioxide gas in enclosures and methods of making the same
US9517934B2 (en) 2013-03-14 2016-12-13 The United States Of America As Represented By The Secretary Of The Army Process for the generation of chlorine dioxide
WO2015130992A1 (en) * 2014-02-28 2015-09-03 Biovation Ii, Llc Biocidal sachet for food safety
CN112389060B (zh) * 2015-08-18 2023-04-18 威斯康星校友研究基金会 ClO2气体从医疗器械包装膜的释放
WO2017192717A1 (en) 2016-05-05 2017-11-09 Southwest Research Institute Three-dimensional bioreactor for cell expansion and related applications
US11149244B2 (en) 2018-04-04 2021-10-19 Southwest Research Institute Three-dimensional bioreactor for T-cell activation and expansion for immunotherapy
WO2020068840A1 (en) 2018-09-24 2020-04-02 Southwest Research Institute Three-dimensional bioreactors
US11492580B2 (en) 2020-05-12 2022-11-08 Southwest Research Institute Method using a three-dimensional bioprocessor
US12036525B2 (en) 2020-10-27 2024-07-16 Selective Micro Technologies, Llc Gas micro reactor utilizing membrane packaging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585482A (en) * 1984-05-25 1986-04-29 Southern Research Institute Long-acting biocidal compositions and method therefor
US5078908A (en) * 1989-10-02 1992-01-07 Allergan, Inc. Methods for generating chlorine dioxide and compositions for disinfecting
US5126070A (en) * 1989-10-20 1992-06-30 The Drackett Company Chlorine dioxide generator
US5360609A (en) * 1993-02-12 1994-11-01 Southwest Research Institute Chlorine dioxide generating polymer packaging films

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2071625A (en) * 1931-06-03 1937-02-23 W E Long Co Preservation of packaged food products
US2546568A (en) * 1945-01-11 1951-03-27 Olin Mathieson Process for the preservation of comestible materials
US2482891A (en) * 1945-03-16 1949-09-27 Olin Mathieson Solid, stable chlorine dioxide generating compositions
US2558942A (en) * 1947-02-03 1951-07-03 Eagleson Craig Sanitizing composition
US3183057A (en) * 1958-11-03 1965-05-11 Wallace & Tiernan Inc Products and procedures for effecting treatiment with chlorinous gas
US3591515A (en) * 1968-04-16 1971-07-06 Int Dioxide Inc Pulverulent chlorine dioxide compositions
US3585147A (en) * 1969-10-01 1971-06-15 Int Dioxcide Inc Stabilized chlorine dioxide solutions containing a chloride and processes of making and using same
US3767787A (en) * 1971-10-07 1973-10-23 H Segal Retarded vaporization compositions and method for making
GB1579431A (en) * 1976-03-23 1980-11-19 Minnesota Mining & Mfg Disinfecting and/or sterilising
US4330531A (en) * 1976-03-26 1982-05-18 Howard Alliger Germ-killing materials
US4499077A (en) * 1981-02-03 1985-02-12 Stockel Richard F Anti-microbial compositions and associated methods for preparing the same and for the disinfecting of various objects
JPS57198775A (en) * 1981-06-01 1982-12-06 Nasa:Kk Molding material having deodorizing function, etc.
US4728498A (en) * 1981-11-02 1988-03-01 Alza Corporation Process for disinfecting article with device dispensing chlorine donor and chlorine acceptor
US4504442A (en) * 1982-10-19 1985-03-12 Scopas Technology Corporation Use of chlorine dioxide gas as a chemosterilizing agent
US4681739A (en) * 1982-10-19 1987-07-21 The Scopas Technology Co., Inc. Use of chlorine dioxide gas as a chemosterilizing agent
JPS6092759A (ja) * 1983-10-26 1985-05-24 土倉 満 合成樹脂素材の成型に係る物品に消臭浄化剤の含浸装置
US4547381A (en) * 1983-11-10 1985-10-15 Rio Linda Chemical Co., Inc. Dry compositions for the production of chlorine dioxide
US4689169A (en) * 1983-11-10 1987-08-25 Rio Linda Chemical Company, Inc. Dry compositions for the production of chlorine dioxide
US4533691A (en) * 1983-12-12 1985-08-06 Polysar Limited Chlorine dioxide antimicrobial agent for latex
IN160430B (enExample) * 1984-03-18 1987-07-11 Alcide Corp
US4986990A (en) * 1984-03-21 1991-01-22 Alcide Corporation Disinfection method and composition therefor
US4889654A (en) * 1984-07-31 1989-12-26 Rio Linda Chemical Company, Inc. Aqueous foam disinfectant containing chlorine dixoide and preparation and use thereof
US4748904A (en) * 1986-07-01 1988-06-07 Razeto Andres V R Chlorine generator for preservation of fruits and vegetables
US4891216A (en) * 1987-04-14 1990-01-02 Alcide Corporation Disinfecting compositions and methods therefor
US4829129A (en) * 1987-05-29 1989-05-09 International Dioxcide, Inc. Reaction product of polymer with chlorine dioxide
US4975109A (en) * 1988-05-02 1990-12-04 Lester Technologies Corp. Microbiocidal combinations of materials and their use
US4956184A (en) * 1988-05-06 1990-09-11 Alcide Corporation Topical treatment of genital herpes lesions
US4880638A (en) * 1988-08-23 1989-11-14 Bioxy International, Ltd. Biocidal composition and method for disinfecting articles
US4925645A (en) * 1988-10-05 1990-05-15 Mason James A Method of preparing a mixture of chlorine containing substances including chlorine dioxide
CN1023205C (zh) * 1989-06-23 1993-12-22 栾和林 二氧化氯的制备方法及控制盒
US5387350A (en) * 1989-11-20 1995-02-07 George L. Williamson Method and apparatus for treating and disinfecting infectious wastes
US5104660A (en) * 1989-11-21 1992-04-14 Bruce A. Barber Method of preparing an antimicrobial wound dressing
JPH04164005A (ja) * 1990-10-26 1992-06-09 Takasugi Seiyaku Kk 環境浄化組成物
AU640053B2 (en) * 1991-06-17 1993-08-12 Rio Linda Chemical Co., Inc. Generation of chlorine dioxide in a non-aqueous medium
US5252343A (en) * 1992-03-20 1993-10-12 Alcide Corporation Method and composition for prevention and treatment of bacterial infections
IL102627A (en) * 1992-07-23 1996-05-14 Abic Ltd Solid composition releasing chlorine dioxide
JPH06107971A (ja) * 1992-09-25 1994-04-19 Honny Chem Ind Co Ltd 被覆用組成物
US5631300A (en) * 1993-02-12 1997-05-20 Southwest Research Institute Method of making a sustained release biocidal composition
PT611163E (pt) * 1993-02-12 2000-04-28 Southwest Res Inst Composicao biocida polimerica e metodo para a sua preparacao
ES2138764T3 (es) * 1994-12-14 2000-01-16 Alcide Corp Composiciones desinfectantes adherentes y metodos relacionados.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4585482A (en) * 1984-05-25 1986-04-29 Southern Research Institute Long-acting biocidal compositions and method therefor
US5078908A (en) * 1989-10-02 1992-01-07 Allergan, Inc. Methods for generating chlorine dioxide and compositions for disinfecting
US5126070A (en) * 1989-10-20 1992-06-30 The Drackett Company Chlorine dioxide generator
US5360609A (en) * 1993-02-12 1994-11-01 Southwest Research Institute Chlorine dioxide generating polymer packaging films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0774897A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965264A (en) * 1996-09-18 1999-10-12 Bernard Technologies, Inc. Powders providing controlled sustained release of a gas
EP0933991A4 (en) * 1996-09-18 2003-08-06 Bernard Technologies Inc POWDER FOR CONTROLLED RELEASE OF A GAS
EP0982986A4 (en) * 1997-05-19 2003-08-13 Bernard Technologies Inc COMPOSITIONS FOR THE DELAYED RELEASE OF A GAS
CN108690625A (zh) * 2018-04-28 2018-10-23 上海市环境科学研究院 一种用于处理土壤中持久性卤代烃的缓释复合修复药剂及其制备方法
CN108690625B (zh) * 2018-04-28 2020-12-15 上海市环境科学研究院 一种用于处理土壤中持久性卤代烃的缓释复合修复药剂及其制备方法

Also Published As

Publication number Publication date
BR9606419A (pt) 1997-09-30
EP0774897A4 (en) 2000-08-09
KR970704338A (ko) 1997-09-06
US5705092A (en) 1998-01-06
JP3987108B2 (ja) 2007-10-03
MY115463A (en) 2003-06-30
MX9700956A (es) 1998-01-31
NZ311875A (en) 1998-11-25
HK1013212A1 (en) 1999-08-20
AU700406B2 (en) 1999-01-07
TW371257B (en) 1999-10-01
JPH11501938A (ja) 1999-02-16
DE69629891D1 (de) 2003-10-16
EP0774897B1 (en) 2003-09-10
AU6328096A (en) 1996-12-24
DE69629891T2 (de) 2004-07-15
CA2196781A1 (en) 1996-12-12
KR100428229B1 (ko) 2004-06-16
EP0774897A1 (en) 1997-05-28
CA2196781C (en) 2005-11-29
AR003684A1 (es) 1998-09-09

Similar Documents

Publication Publication Date Title
AU697974B2 (en) Powdered biocidal compositions
EP0774897B1 (en) Multilayered biocidal film compositions
US5650446A (en) Sustained release biocidal composition
US5631300A (en) Method of making a sustained release biocidal composition
US5639295A (en) Method of making a composition containing a stable chlorite source
US5980826A (en) Methods of deodorizing and retarding contamination or mold growth using chlorine dioxide
AU717604B2 (en) Composition for sustained release of a gas
US5668185A (en) Method of making an amine containing biocidal composition
US5914120A (en) Amine-containing biocidal compositions containing a stabilized chlorite source
AU720019B2 (en) Sustained release biocidal compositions and their uses
AU698032B2 (en) Methods of making sustained release biocidal compositions
EP0774900B1 (en) Sustained release biocidal compositions
HK1013212B (en) Multilayered biocidal film compositions
HK1013214B (en) Sustained release biocidal compositions
HK1013215B (en) Methods of making sustained release biocidal compositions

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: PA/a/1997/000956

Country of ref document: MX

AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BB BG BR BY CA CH CN CZ DE DK EE ES FI GB GE HU IL IS JP KE KG KP KR KZ LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG UZ VN AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE LS MW SD SZ UG AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN

WWE Wipo information: entry into national phase

Ref document number: 2196781

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1997 501578

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019970700792

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 311875

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 1996922397

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1996922397

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 1019970700792

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996922397

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019970700792

Country of ref document: KR