WO1996037537A1 - Kohlenmonoxid/olefin-copolymere - Google Patents

Kohlenmonoxid/olefin-copolymere Download PDF

Info

Publication number
WO1996037537A1
WO1996037537A1 PCT/EP1996/001974 EP9601974W WO9637537A1 WO 1996037537 A1 WO1996037537 A1 WO 1996037537A1 EP 9601974 W EP9601974 W EP 9601974W WO 9637537 A1 WO9637537 A1 WO 9637537A1
Authority
WO
WIPO (PCT)
Prior art keywords
elements
group
copolymers
periodic table
organic
Prior art date
Application number
PCT/EP1996/001974
Other languages
English (en)
French (fr)
Inventor
Ferdinand Lippert
Arthur Höhn
Peter Hofmann
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US08/952,203 priority Critical patent/US5891989A/en
Priority to EP96914190A priority patent/EP0827519A1/de
Priority to JP8535313A priority patent/JPH11505865A/ja
Publication of WO1996037537A1 publication Critical patent/WO1996037537A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G67/00Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
    • C08G67/02Copolymers of carbon monoxide and aliphatic unsaturated compounds

Definitions

  • the present invention relates to copolymers of carbon monoxide with olefinically unsaturated compounds, obtainable by polymerizing the monomers in the presence of a metal complex of the general formula (I)
  • M is a metal from Group VIIIB of the Periodic Table of the Elements
  • E 1 , E 2 an element from group VA of the periodic table of the elements
  • R 1 to R 4 substituents selected from the group consisting of C 1 to C 2 o carbon organic and C 3 to C 3 o organic silicon radicals, at least one of the four radicals being a non-aromatic radical.
  • the present invention relates to a process for the production of such copolymers, the use of the copolymers for the production of fibers, films and moldings, and the fibers, films and moldings from the copolymers. 5
  • Carbon monoxide / olefin copolymers also called polyketones, which are alternately composed of the structural element of an olefin and carbon monoxide, are e.g. from the Journal of Organometallic Chemistry, 417 (1991) 235, and Adv. Polym. Sci., 73/74 (1986) 10 125ff.
  • the polymers are produced by reacting the monomers in the presence of a catalyst system composed of several components.
  • the components essentially consist of a transition metal compound of subgroup VIII of the Periodic Table of the Elements, phosphine ligands and acids, as described for example in EP-A 121 965.
  • the constituents of the catalyst system are generally mixed with one another before the polymerization or directly in the polymerization reactor by metering in the individual components, the active catalyst being formed.
  • No. 5,338,825 describes a process for the preparation of carbon monoxide / olefin copolymers using simply positively charged metal complexes which, inter alia, must have a ligand that stabilizes the complex.
  • the copolymers according to the invention are composed of units which are based on the monomers carbon monoxide and one or more olefinically unsaturated compounds.
  • the monomers are generally incorporated alternately in the copolymer. In principle, all monomers of this class of compounds can be considered as olefinically unsaturated compounds.
  • ethylene and C 3 - to C ⁇ ⁇ alkenes such as 1-butene, 2-butene, 1-pentene, 1-hexene, 1-octene, 1-nonene, 1-decene and mainly propene, butadiene, and also cy - Cloolefins such as cyclopentene, cyclohexene, norbornene and norbornadiene and their derivatives.
  • styrene and ⁇ -methylstyrene are primarily mentioned.
  • acrylic and methacrylic acid and derivatives thereof including in particular, the nitriles, amides and Ci-C ß alkyl esters, such as ethyl acrylate, n-butyl acrylate, tert-butyl acrylate, methyl methacrylate.
  • Suitable monomers are vinyl chloride, vinyl acetate, vinyl propionate, maleic anhydride and N-vinyl pyrrolidone. Mixtures of different monomers can of course also be used, the mixing ratio generally not being critical.
  • the molar ratio of the olefinically unsaturated compound to carbon monoxide can largely be chosen freely; it is preferably between 0.1: 1 to 10: 1, particularly preferably in the vicinity of 1: 1.
  • copolymers according to the invention are notable for a low residual palladium content in the polymer.
  • the molecular weights Mw (weight average) of the copolymers are generally in the range from 1000 to 1,000,000, preferably 1,000 to 100,000.
  • the molecular weight distribution Mw / Mn (weight average / number average), measured using the method of gel permeation chromatography (GPC) analogous to the description above, the copolymers according to the invention are generally 2 to 50, preferably 2 to 20.
  • the K value of the copolymers measured in accordance with DIN 51562 parts 1 to 3 at 25 ° C. in hexafluoroisopropanol, is 20 to 500, preferably 50 to 400.
  • the carbon monoxide copolymers according to the invention can be modified with the usual chemical reactions, such as described for example in EP-A 372 602, or a combination of both methods.
  • Suitable metals M for the catalyst complexes of the general formula (I) used to prepare the carbon monoxide copolymers according to the invention are the metals from group VIIIB of the Periodic Table of the Elements, that is, in addition to iron, cobalt and nickel, primarily the platinum metals such as ruthenium, rhodium, Osmium, iridium and platinum as well as especially palladium.
  • the metals can be present in the complexes formally uncharged, formally single positively charged, or formally double positively charged.
  • the elements E 1 and E 2 of the chelating ligand are the elements of the 5th main group of the Periodic Table of the Elements (group VA), that is to say nitrogen, phosphorus, arsenic, antimony or bismuth.
  • the chelating ligand can contain different elements E 1 and E 2 , for example nitrogen and phosphorus.
  • the bridging structural unit Z is an atomic grouping that connects the two elements E 1 and E to one another.
  • An atom from group IVA, VA or VIA of the Periodic Table of the Elements forms the connecting bridge between E 1 and E 2 .
  • Possible free valences of these bridge atoms can be saturated in a variety of ways, for example by substitution with hydrogen, elements from the groups IVA, VA, VIA or VIIA of the periodic table of the elements. These substituents can form ring structures with one another or with the bridge atom.
  • Particularly suitable bridging structural units are those with only one bridging atom from group IVA of the periodic table of the elements, such as -CR 5 R 6 - or -SiR 5 R 6 - in which R 5 and R 6 are hydrogen and C 1 ⁇ until Cio-carbon organic residue is.
  • R 5 and R 6 can also form a 3- to 10-membered ring together with the bridge atom.
  • Suitable organic carbon radicals R 1 to R 4 are aliphatic and cycloaliphatic and aromatic radicals having 1 to 20 carbon atoms, for example the methyl, ethyl, 1-propyl,
  • Linear arylalkyl groups each having 1 to 10 carbon atoms in the alkyl radical and 6 to 20 carbon atoms in the aryl radical are also suitable, such as benzyl and aryl radicals such as phenyl, tolyl and other substituted phenyl groups, at least one of the four Re ⁇ ste R 1 to R 4 is a non-aromatic radical.
  • the radicals R 1 to R 4 should preferably be sufficiently space-filling that the central atom, for example the palladium atom, with which the atoms E 1 and E 2 form the active complex, is largely shielded. Residues which meet this requirement are, for example, cycloaliphatic radicals and branched aliphatic radicals, including in particular those with branching in the ⁇ position.
  • Suitable cycloaliphatic radicals are C 3 - to Cio-monocyclic radicals such as, for example, the cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl groups and menthyl groups, and bicyclic radicals such as the norbornyl, pinanyl, bornyl group and bicyclononyl group in any combination of the ring structure with the atoms E 1 and E 2 into consideration.
  • the cycloaliphatic radicals preferably contain a total of 5 to 20 carbon atoms; cyclohexyl and menthyl are very particularly preferred.
  • Suitable branched aliphatic radicals are C 3 - to C 20 - / preferably C 3 - to C 2 -alkyl radicals, such as the isopropyl, isobutyl, sec-butyl, neopentyl, and tert-butyl group, furthermore alkylaryl each having 1 to 10 carbon atoms in the alkyl radical and 6 to 20 carbon atoms in the aryl radical.
  • Particularly suitable branched aliphatic radicals are the tert-butyl group, the iso-propyl group and the see-butyl group.
  • Alkyl groups with branching located further outside are also suitable as substituents R 1 to R 4 , such as the isobutyl, 3-methyl-but-2-yl and 4-methylpentyl group.
  • radicals R 1 to R 4 are not critical, ie the radicals can also contain atoms from the group IVA, VA, VIA or VIIA of the periodic system of the elements, such as for example halogen, oxygen, sulfur, nitrogen, silicon, here for example the bis (trimethylsilyl) methyl group.
  • Functional groups such as, for example, hydroxy, alkoxy and cyan, which are inert under the polymerization conditions, can also be considered in this context.
  • Preferred hetero substituents R 1 to R 4 are C 3 - to
  • C 3 o-organosilicon radicals that is to say tetravalent silicon atoms which are bonded to E 1 or E 2 and whose remaining valences are saturated with three carbon-organic radicals, the sum of the carbon atoms of these three silicon-bonded radicals in the range from three to thirty lies.
  • Examples include trimethylsilyl, tert-butyldimethylsi- O 96/37537 PC17EP96 / 01974
  • Diphosphines bridged with a methylene group are preferably used as the chelating ligand, such as, for example, [(di-tert.-butylphosphino) (diphenylphosphino)] methane, particularly preferably using C 3 - to Cio-cycloaliphatic or branched C 3 - to C 20 ⁇ aliphatic radicals R 1 to R 4 substituted methylene-bridged diphosphines, such as, for example, bis (di-tert-butyl-phosphino) methane, [(di-tert-butyl-phosphino) (di-cyclohexylphosphino)] methane, bis ( di-cyclohexylphosphino) methane or [(di-tert-butylphosphino) (dimenthylphosphino)] methane whose suitability for the process according to the invention is currently attributed to the m
  • Very particularly preferred compounds as the chelating ligand are bis (di-tert-butylphosphino) methane, [(di-tert-butylphosphino) (di-cyclohexylphosphino)] methane, bis (di-cyclohexylphosphino) methane, [(Di -tert.-butylphosphino) (diphenylphosphine)] methane or [(di-tert-butylphosphino) (dimenthylphosphine)] methane.
  • the ligands L 1 , L 2 carry one or two formally negative charges, or if the metal is formally uncharged, the ligands L 1 , L 2 are also formally uncharged.
  • the chemical nature of the ligands is not critical. According to the current state of knowledge, they have the function of stabilizing the rest of the metal complex against decomposition, for example deposition of the metal or non-specific reactions, for example aggregation of the complex fragments.
  • Suitable formally charged inorganic ligands L 1 , L 2 are hydride, halides, sulfates, phosphates or nitrates.
  • Halides such as chlorides, bromides, iodides and in particular chlorides are preferably used.
  • Suitable formally charged organic ligands L 1 , L 2 are C 1 ⁇ to C 2 o _ aliphatic, C 3 - to C 3 o-cycloaliphatic, C 7 - to C 20 aralkyl radicals with C ⁇ - to Cirj-aryl radical and C ⁇ ⁇ to Cio Alkyl radical, C ⁇ to C 2 aromatic radicals, such as, for example, methyl, ethyl propyl, isopropyl, tert-butyl, neopentyl, cyclohexyl, O 96/37537 PC17EP96 / 01974
  • organic ligands L 1 , L 2 -C ⁇ to C 2 o-carboxylates such as acetate, propionate, oxalate, benzoate, citrate and salts of organic sulfonic acids such as methyl sulfonate, trifluoromethyl sulfonate, p-toluenesulfonate.
  • C 1 -C 7 -carboxylates, sulfonic acid derivatives and in particular acetate and p-toluenesulfonate are preferably used.
  • Lewis bases that is to say compounds with a free pair of electrons, are generally suitable as formally uncharged ligands L 1 , L 2 .
  • Lewis bases whose free electron pair or whose free electron pairs are located on a nitrogen or oxygen atom ie, for example, nitriles, R-CN, ketones, ethers, alcohols, are particularly suitable.
  • acetonitrile or tetrahydrofuran is used.
  • the metal complex (I) contains anions X. If the M-containing complex fragment is formally uncharged, the complex according to the invention does not contain any anion X.
  • the chemical nature of the anions X is not critical. According to the current state of knowledge, however, it is advantageous if they are as little nucleophilic as possible, i.e. have as little tendency as possible to form a chemical bond with the central metal M.
  • Suitable anions X are, for example, perchlorate, sulfate, phosphate, nitrate and carboxylates, such as, for example, acetate, trifluoroacetate, trichloroacetate, propionate, oxalate, citrate, benzoate, and conjugated anions of organosulfonic acids, such as, for example, methyl sulfonate, trifluoromethyl sulfonate and para-toluenesulfonate Tetrafluoroborate, tetraphenylborate, tetrakis (pentafluorophenyDborat, hexafluorophosphate, hexafluoroarsenate or hexafluoroantimonate.
  • organosulfonic acids such as, for example, methyl sulfonate, trifluoromethyl sulfonate and para-toluenesulfonate Tetrafluoroborate,
  • perchlorate trifluoroacetate, sulfonates such as methylsulfonate, trifluoromethylsulfonate or ponifluorofluoronate
  • p-toluifluoronate p-toluifluoronate
  • p-toluifluoronate p-toluifluoronate
  • p-toluifluoronate p-toluifluoronate
  • p-toluifluoronate p-toluifluoronate
  • p-toluifluoronate p-toluifluoronate
  • p-toluifluoronate p-tolifluorofluoronate
  • p-toluifluoronate p-tolifluorofluoronate
  • p-tolifluorofluoronate p-tolifluorofluoronate
  • p-toluifluoronate p-tolifluorofluoronate
  • the metal complexes of the general formula (I) are generally prepared by exchanging weakly coordinating ligands, such as, for example, 1,5-cyclooctadiene, benzonitrile or tetramethylethylenediamine to the corresponding transition metal compounds, for example transition metal halides, transition metal (alkyl) (halides), transition metal diorganyls, against the chelate ligands according to the invention [R 1 R 2 E 1 ] -Z- [R 3 R 4 E 2 ] according to claims 1 to 5.
  • the reaction is generally carried out in a solvent such as dichloromethane at temperatures in the range from (-) 78 to 40 ° C.
  • a further synthesis method is the reaction of the chelate complexes of the general formula (I) with organometallic compounds from groups IA, IIA, IVA and IIB, for example ci- to C ⁇ -alkyls of the metals lithium, aluminum, magnesium, zinc, with formally charged ones inorganic ligands L 1 , L 2 as previously defined, against formally charged aliphatic, cycloaliphatic or aromatic ligands L 1 , L 2 as also previously defined,. be replaced.
  • the reaction is generally carried out in a solvent such as, for example, diethyl ether or tetrahydrofuran at temperatures in the range from (-) 78 to 65 ° C.
  • Monocationic complexes of the general formula (I) are converted by reaction of (chelate ligand) metal (halogeno) (organo) complexes of the general formula (I) in which L 1 halogen and L 2 the previously defined formally charged organic ligands (to the exclusion of the anions of organic acids) mean formed with metal salts M'X.
  • the reaction is generally carried out in coordinating solvents such as, for example, acetonitrile or tetrahydrofuran at temperatures in the range from (-) 78 to 65 ° C.
  • metal salts M'X meet the following criteria.
  • the metal M ' should preferably form poorly soluble metal chlorides, such as silver.
  • the salt anion should preferably be a non-nucleophilic anion X, as previously defined.
  • Well-suited salts for the formation of cationic complexes are silver tetrafluoroborate, silver hexafluorophosphate, silver trifluoromethanesulfonate, silver perchlorate, silver paratoluenesulfonate.
  • the dicationic complexes (II) are prepared analogously to the monocationic complexes, except that now instead of the (chelate ligand) metal (halogeno) (organo) complexes, the (chelate ligand) metal (di-halogeno) complexes of the general Formula (I) (L 1 and L 2 means halogen) can be used as a precursor.
  • a further process for the preparation of the dicationic complexes (I) is the reaction of [Y 4 M] X 2 with the initially defined chelate ligands [R 1 R 2 E 1 ] -Z- [R 3 R 4 E 2 ] in question.
  • Y means the same or different weak ligands, such as, for example, acetonitrile, benzonitrile or 1,5-cyclooctadiene, M and X have the previously defined meaning.
  • a preferred method for producing the metal complexes of the general formula (I) is the reaction of the dihalometal precursor complexes with silver salts with non-coordinating anions.
  • the polymerizations for the production of the carbon monoxide copolymers according to the invention can be carried out either batchwise or continuously.
  • Polymerization reactions using the metal complexes (I) defined at the outset can be carried out in the gas phase, in suspension, in liquid and in supercritical monomers and in solvents which are inert under the polymerization conditions.
  • Suitable inert solvents are alcohols such as methanol, ethanol, propanol, i-propanol, 1-butanol and tert-butanol, sulfoxides and sulfones, for example dimethyl sulfoxide, esters such as ethyl acetate and butyrolactone, ethers such as tetrahydrofuran, dimethyl ethylene glycol and
  • Diisopropyl ether and aromatic solvents such as benzene, toluene, ethylbenzene or chlorobenzene or mixtures thereof.
  • the molecular weight of the polymers according to the invention can be influenced by varying the polymerization temperature, by protic compounds such as alcohols, for example methanol, ethanol, tert-butanol, preferably methanol, and by adding hydrogen in a manner known to those skilled in the art.
  • protic compounds such as alcohols, for example methanol, ethanol, tert-butanol, preferably methanol
  • hydrogen in a manner known to those skilled in the art.
  • a high concentration of regulating substances and / or a high polymerization temperature results in a relatively low molecular weight and vice versa.
  • the polymers produced using the process according to the invention are generally distinguished by a low palladium content and a narrow molecular weight distribution Mw / Mn.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyethers (AREA)

Abstract

Copolymere des Kohlenmonoxids mit olefinisch ungesättigten Verbindungen, erhältlich durch Polymerisation der Monomeren in Gegenwart eines Metallkomplexes der allgemeinen Formel (I), in der die Substituenten und Indizes folgende Bedeutung haben: M ein Metall aus der Gruppe VIIIB des Periodensystems der Elemente, E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente, Z eine Struktureinheit mit einem verbrückenden Atom ausgewählt aus den Elementen der Gruppe IVA, VA oder VIA des Periodensystems der Elemente, R?1 bis R4¿ Substituenten, ausgewählt aus der Gruppe bestehend aus C¿1?- bis C20-kohlenstofforganischen und C3- bis C30-siliciumorganischen Resten, wobei mindestens einer der vier Reste ein nicht-aromatischer Rest ist, L?1, L2¿ formal geladene oder neutrale Liganden, X formal ein- oder mehrwertige Anionen, p 0, 1 oder 2, m, n 0, 1 oder 2, wobei p = m x n.

Description

Kohlenmonoxid/Olefin-Copolymere
Beschreibung
Die vorliegende Erfindung betrifft Copolymere des Kohlenmonoxids mit olefinisch ungesättigten Verbindungen, erhältlich durch Poly¬ merisation der Monomeren in Gegenwart eines Metallkomplexes der allgemeinen Formel (I)
Figure imgf000003_0001
in der die Substituenten und Indizes folgende Bedeutung haben:
M ein Metall aus der Gruppe VIIIB des Periodensystems der Elemente
E1, E2 ein Element aus der Gruppe VA des Periodensystems der Elemente,
eine Struktureinheit mit einem verbrückenden Atom ausgewählt aus den Elementen der Gruppe IVA, VA oder VIA des Periodensystems der Elemente,
R1 bis R4 Substituenten, ausgewählt aus der Gruppe bestehend aus Cι~ bis C2o~Kohlenstofforganischen und C3- bis C3o_Siliciumorganischen Resten, wobei mindestens einer der vier Reste ein nicht-aromatischer Rest ist.
l , L2 formal geladene oder neutrale Liganden
X formal ein- oder mehrwertige Anionen
P 0, 1 oder 2
m, n 0, 1 oder 2
wobei p = m x n Außerdem betrifft die vorliegende Erfindung ein Verfahren zur Herstellung derartiger Copolymerer, die Verwendung der Copolymeren zur Herstellung von Fasern, Folien und Formkörpern, sowie die Fasern, Folien und Formkörper aus den Copolymeren. 5
Kohlenmonoxid/Olefin-Copolymere, auch Polyketone genannt, die al¬ ternierend aus dem Strukturelement eines Olefins und Kohlenmon- oxid aufgebaut sind, sind z.B. aus dem Journal of Organometallic Chemistry, 417 (1991) 235, sowie Adv. Polym. Sei., 73/74 (1986) 10 125ff bekannt.
Die Polymere werden hergestellt indem man die Monomere in Gegen¬ wart eines aus mehreren Komponenten zusammengesetzten Katalysatorsystems umsetzt.
15
Die Komponenten bestehen im wesentlichen aus einer Übergangsme- tallverbindung der VIII. Nebengruppe des Periodensystems der Ele¬ mente, Phosphanliganden und Säuren, wie beispielsweise in der EP-A 121 965 beschrieben.
20
Die Bestandteile des Katalysatorsystems werden im allgemeinen vor der Polymerisation oder direkt im Polymerisationsreaktor durch Dosieren der Einzelkomponenten miteinander gemischt, wobei der aktive Katalysator entsteht.
25
Es ist jedoch aufwendig, die einzelnen Komponenten reproduzier¬ bar, in optimalen Mengenverhältnissen zu dosieren. Der Dosiervor¬ gang mit unterschiedlichen Dosiereinrichtungen, sowie die Bevor¬ ratung der verschiedenen Katalysatorkomponenten ist ferner wirt- 30 schaftlich von Nachteil.
Die US 5,338,825 beschreibt ein Verfahren zur Herstellung von Kohlenmonoxid/Olefin-Copolymeren unter Verwendung von einfach po¬ sitiv geladenen Metallkomplexen die unter anderem einen, den Kom- 35 plex stabilisierenden, Liganden aufweisen müssen.
Die präparative Zugänglichkeit sowie die Polymerisationsaktivität der Katalysatoren läßt jedoch zu wünschen übrig.
40 In der US 5,352,767 werden alternierende, elastomere Copolymeri- säte aus Kohlenmonoxid und α-Olefinen beschrieben die mit einem Katalysatorsystem welches kationische Metallkomplexe der Gruppe Villa des Periodensystenms der Elemente und Aktivatoren enthält, hergestellt wurden.
45 Zur Herstellung derartiger Copolymere sind aber nur α-Olefine als Comonomere beschrieben und die Polymerisationsaktivität der Katalysatoren ist noch verbesserungsbedürftig.
Aufgabe der vorliegenden Erfindung war es daher Copolymere aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen zur Ver¬ fügung zu stellen, die die genannten Nachteile nicht, oder nur in untergeordnetem Maße aufweisen. Der vorliegenden Erfindung lag ferner die Aufgabe zugrunde ein Verfahren zur Herstellung dieser Polymeren zur Verfügung zu stellen in welchem ein Katalysator mitverwendet wird, welcher aus möglichst wenigen Komponenten be¬ steht und der die Copolymeren in guter Ausbeute liefert.
Demgemäß wurden die eingangs definierten Copolymeren gefunden.
Außerdem wurde ein Verfahren zur Herstellung der eingangs defi¬ nierten Copolymeren, die Verwendung der definierten Copolymeren zur Herstellung von Fasern, Folien und Formkörpern, sowie die Fa¬ sern, Folien und Formkörper aus den eingangs definierten Copolymeren gefunden.
Die erfindungsgemäßen Copolymere sind aus Einheiten aufgebaut die auf die Monomeren Kohlenmonoxid und einem oder mehreren olefinisch ungesättigten Verbindungen zurückgehen. Die Monomere werden im allgemeinen alternierend in das Copolymer eingebaut. Als olefinisch ungesättigte Verbindungen kommen grundsätzlich alle Monomere dieser Verbindungsklasse in Betracht.
Bevorzugt sind Ethylen und C3- bis Cιo~Alkene wie beispielsweise 1-Buten, 2-Buten, 1-Penten, 1-Hexen, 1-Octen, 1-Nonen, 1-Decen und hauptsächlich Propen, außerdem Butadien, sowie daneben Cy- cloolefine wie Cyclopenten, Cyclohexen, Norbornen und Norborna- dien und seine Derivate.
Unter den olefinisch ungesättigten aromatischen Monomeren seien in erster Linie Styrol und α-Methylstyrol genannt.
Besondere Bedeutung haben ferner Acrylsäure und Methacrylsäure sowie deren Derivate, darunter insbesondere die Nitrile, die Amide und die Ci-Cß-Alkylester, wie beispielsweise Ethylacrylat, n-Butylacrylat, tert.-Butylacrylat, Methylmethacrylat.
Weitere geeignete Monomere sind Vinylchlorid, Vinylacetat, Vinyl- propionat, Maleinsäureanhydrid und N-Vinylpyrrolidon. Selbstverständlich können auch Mischungen verschiedener Monomerer eingesetzt werden, wobei das Mischungsverhältnis im allgemeinen nicht kritisch ist.
Das molare Verhältnis der olefinisch ungesättigten Verbindung zum Kohlenmonoxid kann weitgehend frei gewählt werden; es liegt vor¬ zugsweise zwischen 0,1 : 1 bis 10 : 1, besonders bevorzugt in der Nähe von 1:1.
Die erfindungsgemäßen Copolymeren zeichen sich durch einen gerin¬ gen Rest-Palladiumgehalt im Polymeren aus.
Die Molekulargewichte Mw (Gewichtsmittelwert) der Copolymeren (gemessen mit der Methode der Gelpermeationschromatographie (GPC) bei 25 °C mit Shodex® HFIP 803 bzw. 805 als Säulenmaterial und Hexafluorisopropanol als Lösungsmittel gegen Polymethylmethacry- lat-Standard) liegen im allgemeinen im Bereich von 1000 bis 1000000, bevorzugt 1000 bis 100000.
Die Molekulargewichtsverteilung Mw/Mn (Gewichtsmittelwert/Zahlen¬ mittelwert) , gemessen mit der Methode der Gelpermeationschromato¬ graphie (GPC) analog vorangegangener Beschreibung, der erfindungsgemäßen Copolymere beträgt im allgemeinen 2 bis 50 vor¬ zugsweise 2 bis 20.
Der K-Wert der Copolymeren, gemessen nach DIN 51562 Teil 1 bis 3 bei 25°C in Hexafluorisopropanol, beträgt 20 bis 500, vorzugsweise 50 bis 400.
Art und Anzahl der Endgruppen, sowie auch die mittlere Molmasse der Kohlenmonoxid-Copolymerisate wurde mit der Methode der 13C- NMR-Spektroskopie nach J. Orgamometal. Chem. 417 (1991), Seite 235 ff. bestimmt.
Die erfindungsgemäßen Kohlenmonoxid-Copolymerisate lassen sich aufgrund ihrer zahlreichen funktionellen Gruppen mit den übli¬ chen chemischen Reaktionen, wie zum Beispiel EP-A 372 602 besch¬ rieben, oder einer Kombination beider Methoden modifizieren.
Als Metalle M der zur Herstellung der erfindungsgemäßen Kohlen- monoxid-Copolymeren verwendeten Katalysatorkomplexe der allgemei¬ nen Formel (I) eignen sich die Metalle der Gruppe VIIIB des Periodensystems der Elemente, also neben Eisen, Cobalt und Nickel vornehmlich die Platinmetalle wie Ruthenium, Rhodium, Osmium, Iridium und Platin sowie ganz besonders Palladium. Die Metalle können in den Komplexen formal ungeladen, formal einfach positiv geladen, oder formal zweifach positiv geladen vorliegen.
Als Elemente E1 und E2 des Chelatliganden kommen die Elemente der V. Hauptgruppe des Periodensystems der Elemente (Gruppe VA) , also Stickstoff, Phosphor, Arsen, Antimon oder Bismut in Betracht.
Besonders geeignet sind Stickstoff oder Phosphor, insbesondere Phosphor. Der Chelatligand kann unterschiedliche Elemte E1 und E2 enthalten, so zum Beispiel Stickstoff und Phosphor.
Die verbrückende Struktureinheit Z ist eine Atomgruppierung, die die beiden Elemente E1 und E miteinander verbindet. Ein Atom aus der Gruppe IVA, VA oder VIA des Periodensystems der Elemente bil- det die verbindende Brücke zwischen E1 und E2. Mögliche freie Valenzen dieser Brückenatome können mannigfaltig abgesättigt sein, so zum Beispiel durch Substitution mit Wasserstoff, Elemen¬ ten aus der Gruppe IVA, VA, VIA oder VIIA des Periodensystems der Elemente. Diese Substituenten können untereinander oder mit dem Brückenatom Ringstrukturen bilden.
Als besonders geeignete verbrückende Struktureinheiten seien sol¬ che mit nur einem verbrückenden Atom aus der Gruppe IVA des Pe¬ riodensystems der Elemente genannt wie -CR5R6- oder -SiR5R6- worin R5 und R6 für Wasserstoff und Cι~ bis Cio-Kohlenstofforganischer Rest steht. R5 und R6 können auch zusammen mit dem Brückenatom einen 3- bis 10-gliedrigen Ring bilden. Beispielhaft seien als einatomig verbrückende Struktureinheiten genannt Methylen (-CH2-) , Ethyliden (CH3(H)C=), 2-Propyliden ((CH3)2C=), Diphenylmethylen ((C6H5)2C=), Dialkylsilylen, wie Dimethylsilylen ((CH3)2Si=), Di- phenylsilylen ( (C6H5)2Si=) ; weiterhin als cyclische Brückenglieder Cyclopropyliden, Cyclobutyliden, Cyclopentyliden, Cyclohexyliden.
Bevorzugte verbrückende Struktureinheiten sind Methylen (-CH2-) , Ethyliden (CH3(H)C=), 2-Propyliden ((CH3)2C=), Dimethylsilylen, Diphenylsilylen, insbesondere Methylen.
Als Kohlenstofforganische Reste R1 bis R4 kommen aliphatische so¬ wie cycloaliphatische und aromatische mit 1 bis 20 C-Atomen in Betracht, beispielsweise die Methyl-, Ethyl-, 1-Propyl-,
1-Butyl-, 1-Pentyl, 1-Hexyl- und 1-Octylgruppe. Ferner sind li¬ neare Arylalkylgruppen mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest geeignet, wie beispielsweise Benzyl- sowie Arylreste wie zum Beispiel Phenyl, Tolyl und andere substituierte Phenylgruppen, wobei mindestens einer der vier Re¬ ste R1 bis R4 ein nicht-aromatischer Rest ist. Die Reste R1 bis R4 sollen vorzugsweise soweit raumerfüllend sein, daß das Zentralatom, z.B. das Palladiumatom, mit dem die Atome E1 und E2 den aktiven Komplex bilden, weithin abgeschirmt wird. Re¬ ste, welche dieser Forderung genügen, sind beispielsweise cyclo- aliphatische Reste sowie verzweigte aliphatische Reste, darunter besonders solche mit Verzweigung in α-Position.
Als cycloaliphatische Reste kommen C3- bis Cio-monocyclische wie beispielsweise die Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexylgruppen und Menthylgruppen sowie bicyclische Reste wie die Norbornyl-, Pinanyl-, Bornylgruppe und Bicyclononylgruppe in beliebiger Verknüpfung des Ringgerüstes mit den Atomen E1 und E2 in Betracht. Vorzugsweise enthalten die cycloaliphatischen Reste insgesamt 5 bis 20 C-Atome, ganz besonders bevorzugt sind Cyclo- hexyl und Menthyl.
Als verzweigte aliphatische Reste eignen sich C3- bis C20-/ vor¬ zugsweise C3- bis Cι2-Alkylreste, wie zum Beispiel die iso-Pro- pyl-, iso-Butyl-, sec.-Butyl-, Neopentyl- und tert.-Butylgruppe, weiterhin Alkylaryl mit jeweils 1 bis 10 C-Atomen im Alkylrest und 6 bis 20 C-Atomen im Arylrest.
Besonders geeignete verzweigte aliphatische Reste sind die tert.- Butylgruppe, die iso-Propylgruppe und die see.-Butylgruppe.
Auch Alkylgruppen mit weiter außen liegender Verzweigung sind als Substituenten R1 bis R4 gut geeignet, wie die iso-Butyl-, die 3-Methyl-but-2-yl- und 4-Methylpentylgruppe.
Auf die chemische Natur der Reste R1 bis R4 kommt es nach den bis¬ herigen Beobachtungen nicht entscheidend an, d.h. die Reste kön¬ nen auch Atome aus der Gruppe IVA, VA, VIA oder VIIA des Perio¬ densystems der Elemente enthalten, wie zum Beispiel Halogen, Sau¬ erstoff, Schwefel, Stickstoff, Silicium, hier beispielsweise die Bis (trimethylsilyl)methylgruppe. Auch funktionelle Gruppen wie zum Beispiel Hydroxy, Alkoxy und Cyan, die sich unter den Polyme¬ risationsbedingungen inert verhalten, kommen in diesem Zusammen¬ hang in Betracht.
Bevorzugte Heterosubstituenten R1 bis R4 sind C3- bis
C3o-Siliciumorganische Reste, das heißt tetravalente Siliciumatome die einerseits an E1 oder E2 gebunden sind und deren übrige Valenzen mit drei Kohlenstofforganischen Resten abgesättigt sind, wobei die Summe der Kohlenstoffatome dieser drei an Silicium ge- bundenen Reste im Bereich von drei bis dreißig liegt. Beispiels¬ weise seien genannt die Trimethylsilyl-, tert.-Butyldimethylsi- O 96/37537 PC17EP96/01974
7 lyl- oder Triphenylsilylgruppe, insbesondere die Trimethylsilyl- gruppe.
Vorzugsweise verwendet man mit einer Methylengruppe verbrückte Diphosphane als Chelatligand, wie beispielsweise [ (Di-tert.-bu¬ tylphosphino) (Diphenylphosphino) ]methan, besonders bevorzugt verwendet man mit C3- bis Cio-cycloaliphatischen oder verzweigten C3- bis C20~aliphatischen Resten R1 bis R4 substituierte methylen- verbrückte Diphosphane, wie beispielsweise Bis (di-tert.-butyl- phosphino)methan, [ (Di-tert.-butylphosphino) (Di-cyclohexylphosp- hino) ]methan, Bis (di-cyclohexylphosphino)methan oder [ (Di-tert.- butylphosphino) (Dimenthylphosphino) ]methan deren gute Eignung für das erfindungsgemäße Verfahren derzeit der Methylenverknüpfung der beiden Phosphoratome und der großen Raum beanspruchenden Struktur der Reste R1 bis R4 zugeschrieben wird.
Ganz besonders bevorzugte Verbindungen als Chelatligand sind Bis (di-tert.-butylphosphino)methan, [ (Di-tert.-butyl¬ phosphino) (Di-cyclohexylphosphino) ]methan, Bis (di-cyclohexyl- phosphino)methan, [ (Di-tert.-butylphosphino) (Diphenylphos¬ phino) ]methan oder [ (Di-tert.-butylphosphino) (Dimenthylphos¬ phino) ]methan.
Die Liganden L1, L2 tragen je nach formaler Oxidationsstufe des Zentralmetalls M eine oder zwei formal negative Ladungen, oder aber wenn das Metall formal ungeladen ist, sind die Liganden L1, L2 ebenfalls formal ungeladen.
Die chemische Natur der Liganden ist nicht kritisch. Nach dem derzeitigen Kenntnisstand haben sie die Funktion den Rest des Me¬ tallkomplexes gegen Zersetzung, beispielsweise Abscheiden des Me¬ talls oder unspezifische Reaktionen, beispielsweise Aggregierung der Komplexfragmente, zu stabilisieren.
Geeignete formal geladene anorganische Liganden L1, L2 sind Hy¬ drid, Halogenide, Sulfate, Phosphate oder Nitrate.
Vorzugsweise verwendet man Halogenide wie Chloride, Bromide, Io- dide und insbesondere Chloride.
Geeignete formal geladene organische Liganden L1, L2 sind Cι~ bis C2o_aliphatische, C3- bis C3o-cycloaliphatische, C7- bis C20-Aralkylreste mit Cξ- bis Cirj-Arylrest und Cι~ bis Cio-Alkyl- rest, Cε- bis C2o~aromatische Reste, wie beispielsweise Methyl, Ethyl Propyl, iso-Propyl, tert.-Butyl, neo-Pentyl, Cyclohexyl, O 96/37537 PC17EP96/01974
8
Benzyl, Neophyl, Phenyl und aliphatisch oder aromatisch substi¬ tuierte Phenylreste.
Weiterhin eignen sich als formal geladene organische Liganden L1, L2 Cι~ bis C2o-Carboxylate wie beispielsweise Acetat, Propionat, Oxalat, Benzoat, Citrat sowie Salze von organischen Sulfonsäuren wie Methylsulfonat, Trifluormethylsulfonat, p-Toluolsulfonat. Vorzugsweise verwendet man Cι~ bis C7-Carboxylate, Sulfonsäurede- rivate und insbesondere Acetat und p-Toluolsulfonat.
Als formal ungeladene Liganden L1, L2 sind generell Lewisbasen ge¬ eignet, also Verbindungen mit einem freien Elektronenpaar. Beson¬ ders gut geeignet sind Lewisbasen deren freies Elektronenpaar oder deren freie Elektronenpaare sich an einem Stickstoff- oder Sauerstoffatom befinden, also beispielsweise Nitrile, R-CN, Ke- tone, Ether, Alkohole. Vorzugsweise verwendet man Cι~ bis Cirj-Ni- trile wie Acetonitril, Propionitril, Benzonitril oder C2- bis Cio-Ketone wie Aceton, Acetylaceton oder aber C2- bis Cirj-Ether, wie Dimethylether, Diethylether, Tetrahydrofuran. Insbesondere verwendet man Acetonitril oder Tetrahydrofuran.
Je nach formaler Ladung des, das Metall M enthaltenden, Komplex- fragments, enthält der Metallkomplex (I) Anionen X. Ist das M- enthaltende Komplexfragment formal ungeladen, so enthält der erfindungsgemäße Komplex jedoch kein Anion X.
Die chemische Natur der Anionen X ist nicht kritisch. Nach dem derzeitigen Kenntnisstand ist es jedoch von Vorteil wenn sie mög¬ lichst wenig nucleophil sind, d.h. eine möglichst geringe Tendenz haben mit dem Zentralmetall M eine chemische Bindung einzugehen.
Geignete Anionen X sind beispielsweise Perchlorat, Sulfat, Phosphat, Nitrat und Carboxylate, wie beispielsweise Acetat, Tri- fluoracetat, Trichloracetat, Propionat, Oxalat, Citrat, Benzoat, sowie konjugierte Anionen von Organosulfonsauren wie zum Beispiel Methylsulfonat, Trifluormethylsulfonat und para-Toluolsulfonat, weiterhin Tetrafluoroborat, Tetraphenylborat, Tetrakis (pentafluo- rophenyDborat, Hexafluorophosphat, Hexafluoroarsenat oder Hexa- fluoroantimonat. Vorzugsweise verwendet man Perchlorat, Trifluor- acetat, Sulfonate wie Methylsulfonat, Trifluormethylsulfonat, p- Toluolsulfonat, Tetrafluoroborat oder Hexafluorophosphat und ins¬ besondere Trifluoracetat, Perchlorat oder p-Toluolsulfonat.
Die Herstellung der Metallkomplexe der allgemeinen Formel (I) er- folgt für die neutralen Chelatkomplexe im allgemeinen durch Aus¬ tausch von schwach koordinierenden Liganden, wie zum Beispiel 1,5-Cyclooctadien, Benzonitril oder Tetramethylethylendiamin, die an die entsprechenden ÜbergangsmetallVerbindungen, beispielsweise Übergangsmetall-Halogenide, Übergangsmetall- (Alkyl) (Halogenide) , Übergangsmetall-Diorganyle, gebunden sind, gegen die erfindungs- gemäßen Chelatliganden [R1R2E1] -Z- [R3R4E2] gemäß der Ansprüche 1 bis 5. Die Reaktion wird im allgemeinen in einem Lösungsmittel, wie beispielsweise Dichlormethan bei Temperaturen im Bereich von (-)78 bis 40 °C durchgeführt.
Als weitere Synthesemethode kommt die Umsetzung der Chelat- komplexe der allgemeinen Formel (I) mit Organometallverbindungen der Gruppen IA, IIA, IVA und IIB in Frage, beispielsweise Ci- bis Cς-Alkyle der Metalle Lithium, Aluminium, Magnesium, Zink, wobei formal geladene anorganische Liganden L1, L2 wie vorher definiert, gegen formal geladene aliphatische, cycloaliphatische oder aroma- tische Liganden L1, L2 wie ebenfall vorher definiert, . ausgetauscht werden. Die Reaktion wird im allgemeinen in einem Lösungsmittel, wie beispielsweise Diethylether oder Tetrahydrofuran bei Tempera¬ turen im Bereich von (-)78 bis 65 °C durchgeführt.
Monokationische Komplexe der allgemeien Formel (I) werden durch Umsetzung von (Chelatligand)Metall (Halogeno) (Organo)-Komplexen der allgemeien Formel (I) in der L1 Halogen und L2 die vorher de¬ finierten formal geladenen organischen Liganden (unter Ausschluß der Anionen organischer Säuren) bedeuten, mit Metallsalzen M'X gebildet. Die Umsetzung wird im allgemeinen in koordinierenden Lösungsmitteln wie beispielsweise Acetonitril oder Tetrahydro¬ furan bei Temperaturen im Bereich von (-)78 bis 65 °C durchge¬ führt.
Es ist vorteilhaft, wenn die Metallsalze M'X folgende Kriterien erfüllen. Das Metall M' soll vorzugsweise schwer lösliche Me¬ tallchloride bilden, wie zum Beispiel Silber. Das Salz-Anion soll vorzugsweise ein nicht-nucleophiles Anion X, wie vorher defi¬ niert, sein.
Gut geeignete Salze für die Bildung von kationischer Komplexen sind Silbertetrafluoroborat, Silberhexafluorophosphat, Silbertri- fluormethansulfonat, Silberperchlorat, Silberparatoluolsulfonat.
Die Dikationischen Komplexe (II) werden analog den monokationi- schen Komplexen hergestellt, nur daß jetzt anstatt der (Chelat¬ ligand)Metall (Halogeno) (Organo)-Komplexe die (Chelatligand)Me¬ tall (Di-Halogeno)-Komplexe der allgemeinen Formel (I) (L1 und L2 bedeutet Halogen) als Vorstufe eingesetzt werden. Als weiteres Verfahren zur Herstellung der dikationischen Kom¬ plexe (I) kommt die Umsetzung von [Y4M]X2 mit den eingangs defi¬ nierten Chelatliganden [R1R2E1] -Z- [R3R4E2] in Frage. Hierbei bedeu¬ tet Y gleiche oder unterschiedliche schwache Liganden wie bei- spielsweise Acetonitril, Benzonitril oder 1,5-Cyclooctadien, M und X haben die vorher definierte Bedeutung.
Ein bevorzugtes Verfahren zur Herstellung der Metallkomplexe der allgemeinen Formel (I) ist die Umsetzung der Dihalogenmetallvor- laufer-Komplexe mit Silbersalzen mit nicht-koordinierenden Anionen.
Die Polymerisationen zur Herstellung der erfindungsgemäßen Koh- lenmonoxid-Copolymeren können sowohl absatzweise als auch konti- nuierlich durchgeführt werden.
Drücke von 100 bis 500000 kPa, vorzugsweise 200 bis 350000 kPa und insbesondere 500 bis 30000 kPa, Temperaturen von (-50) bis 400 °C, bevorzugt 20 bis 250 °C und insbesondere 40 bis 150 °C ha- ben sich als geeignet erwiesen.
Polymerisationsreaktionen mit Hilfe der eingangs definierten Metallkomplexe (I) lassen sich in der Gasphase, in Suspension, in flüssigen und in überkritischen Monomeren und in, unter den Poly- merisationsbedingungen inerten, Lösungsmitteln durchführen.
Geeignete inerte Lösungsmittel sind Alkohole wie Methanol, Ethanol, Propanol, i-Propanol, 1-Butanol und tert.-Butanol, Sulfoxide und Sulfone, beispielsweise Dimethylsulfoxid, Ester wie Essigester und Butyrolacton, Ether wie Tetrahydrofuran, Dimethy- lethylenglycol und
Diisopropylether sowie aromatische Lösungsmittel wie Benzol, Toluol, Ethylbenzol oder Chlorbenzol oder Gemische derselben.
Das Molekulargewicht der erfindungsgemäßen Polymere läßt sich durch die Variation der Polymerisationstemperatur, durch protische Verbindungen wie Alkohole, beispielsweise Methanol, Ethanol, tert.-Butanol, vorzugsweise Methanol und durch den Zu- satz von Wasserstoff in dem Fachmann bekannter Weise beinflussen. Im allgemeinen bewirkt eine hohe Konzentration regelnder Substan¬ zen und/oder eine hohe Polymerisationstemperatur ein relativ ge¬ ringes Molekulargewicht und vice versa. 11
Die unter Verwendung des erfindungsgemäßen Verfahrens hergestell¬ ten Polymere zeichnen sich im allgemeinen durch einen geringen Palladiumgehalt und eine enge Molekulargewichtsverteilung Mw/Mn aus.
Beispiele
Abkürzungen bcpm [ (Di-tert.-butylphosphino) (Di-cyclohexylphosphino) ]methan dtbpm Bis- (di-tert.-butyl-phosphino)methan tbppm [ (Di-tert.-butylphosphino) (Diphenylphosphino) ]methan dchpm Bis-(di-cyclohexyl-phosphino)methan MeCN Acetonitril, CH3-CN
Allgemeine Polymerisationsbedingungen
In einem 0,3 1-Autoklaven wurden 100 ml Methanol und die entspre¬ chende Palladiumverbindung vorgelegt. Danach wurde bei der ge¬ wählten Reaktionstemperatur ein gemisch aus Ethylen und Kohlenm- monoxid im Molverhältnis 1 : 1 zu dem gewünschetn Gesamtdruck aufgepresst. Es wurde 5 Stunden polymerisiert. Die Temperatur und die Partialdrücke der Monomeren wurden während der gesamten Reak¬ tionsdauer konstant gehalten. Die Polymerisation wurde durch Druckverminderung auf Umgebungsdruck abgebrochen, das Reaktions- gemisch filtriert und der Rückstand getrocknet. Die Versuchspara¬ meter sind der Tabelle 1, die Polymereigenschaften der Tabelle 2 zu entnehmen.
Tabelle 1: Versuchsparameter
Nr. Komplex, mg, mmol Druck Temp. Ausbeute [kPa] [°C] [g]
1 [ (dtbpm) Pd(MeCN)2] (P-Tos)2, 33, 0.05 20000 80 22,0
2 [ (tbppm) Pd(MeCN)2] (CF3S03) 2, 18, 0,03 20000 50 50,2
3 [ (dchpm) Pd(MeCN)2] (C104)2 40, 0,05 20000 50 41,3
4 [ (bcpm) Pd(MeCN)2] (C104) , 19, 0,03 20000 50 65,3
5 [ (tbppm) Pd(CH3) (MeCN)] (C104),15, 0,03 20000 50 2,1
6 [ (tbppm) PdCl2,] 52, 0,1 20000 50 2,1
7 [ (bcpm) Pd(MeCN)2] (CF3S03)2, 60, 0,07 6000 85 40,1 Tabelle 2: Polymereigenschaften
Nr. Schmelzpunkt [°C] K-Wert
1 236 87
2 258 > 300
3 260 > 300
4 238 198
5 261 182
6 255 57
7 238 76

Claims

Patentansprüche
Copolymere des Kohlenmonoxids mit olefinisch ungesättigten Verbindungen, erhältlich durch Polymerisation der Monomeren in Gegenwart eines Metallkomplexes der allgemeinen Formel (I)
Figure imgf000015_0001
in der die Substituenten und Indizes folgende Bedeutung ha¬ ben:
M ein Metall aus der Gruppe VIIIB des Periodensy¬ stems der Elemente
El, E2 ein Element aus der Gruppe VA des Periodensy¬ stems der Elemente,
eine Struktureinheit mit einem verbrückenden Atom ausgewählt aus den Elementen der Gruppe IVA, VA oder VIA des Periodensystems der Ele¬ mente,
Rl bis R4 Substituenten, ausgewählt aus der Gruppe beste¬ hend aus Cι~ bis C2o-Kohlenstofforganischen und C3- bis C3o-Siliciumorganischen Resten, wobei mindestens einer der vier Reste ein nicht-aroma¬ tischer Rest ist,
Ll, L2 formal geladene oder neutrale Liganden
X formal ein- oder mehrwertige Anionen
0, 1 oder 2
m, n 0, 1 oder 2
wobei p = m x n.
2. Copolymere nach Anspruch 1 wobei Z eine Struktureinheit mit einem verbrückenden Atom ausgewählt aus den Elementen der Gruppe IVA des Periodensystems der Elemente bedeutet.
3. Copolymere nach den Ansprüchen 1 bis 2, wobei Z -CR5R6- oder -SiR5R6- bedeutet und R5 und R6 für Wasserstoff, Cι~ bis Cio-Kohlenstofforganischer Rest steht.
Copolymere nach den Ansprüchen 1 bis 3, wobei E1 und E2 Phosphor bedeutet.
5. Copolymere nach den Ansprüchen 1 bis 4, wobei R1 bis R4 Cι~ bis C2o~aliphatischer oder C3- bis C2o~cycloaliphatischer Rest bedeutet.
6. Verfahren zur Herstellung von Copolymeren aus Kohlenmonoxid und olefinisch ungesättigten Monomeren durch Polymerisation der Monomeren in Gegenwart eines Metallkomplexes der allge¬ meinen Formel (I)
Figure imgf000016_0001
in der die Substituenten und Indizes folgende Bedeutung ha¬ ben:
M ein Metall aus der Gruppe VIIIB des Periodensy¬ stems der Elemente
E , E2 ein Element aus der Gruppe VA des Periodensy¬ stems der Elemente,
eine Struktureinheit mit einem verbrückenden Atom ausgewählt aus den Elementen der Gruppe IVA, VA oder VIA des Periodensystems der Ele¬ mente,
R1 bis R4 Substituenten, ausgewählt aus der Gruppe beste¬ hend aus Cι~ bis C2o~Kohlenstofforganischen und C3- bis C3o_Siliciumorganischen Resten, wobei mindestens einer der vier Reste ein nicht-aroma¬ tischer Rest ist,
L1, L2 formal geladene oder neutrale Liganden
X formal ein- oder mehrwertige Anionen
p 0, 1 oder 2
m, n 0, 1 oder 2
wobei p = m x n.
7. Verfahren nach Anspruch 6, in welchem man als olefinisch un- gesättigte Verbindungen Olefine, Diolefine oder mit funktio¬ neilen Gruppen substituierte Olefine sowie Vinylaromaten ein¬ setzt.
8. Verfahren nach den Ansprüchen 6 bis 7, in welchem als olefinisch ungesättigte Verbindungen C2- bis C2Q-Alk-l-ene, interne C4- bis C2o~A.lkene, C4- bis C2o~Diolefine oder α-ß-ungesättigte Carbonsäuren oder deren Derivate eingesetzt werden.
9. Verwendung der Copolymeren gemäß der Ansprüche 1 bis 5 als Folien, Fasern oder Formkörper.
10. Folien, Fasern und Formkörper aus den Copolymeren gemäß der Ansprüche 1 bis 5.
PCT/EP1996/001974 1995-05-22 1996-05-09 Kohlenmonoxid/olefin-copolymere WO1996037537A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US08/952,203 US5891989A (en) 1995-05-22 1996-05-09 Carbon monoxide/olefin-copolymers
EP96914190A EP0827519A1 (de) 1995-05-22 1996-05-09 Kohlenmonoxid/olefin-copolymere
JP8535313A JPH11505865A (ja) 1995-05-22 1996-05-09 一酸化炭素−オレフィン共重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19518737A DE19518737A1 (de) 1995-05-22 1995-05-22 Kohlenmonoxid/Olefin-Copolymere
DE19518737.7 1995-05-22

Publications (1)

Publication Number Publication Date
WO1996037537A1 true WO1996037537A1 (de) 1996-11-28

Family

ID=7762558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001974 WO1996037537A1 (de) 1995-05-22 1996-05-09 Kohlenmonoxid/olefin-copolymere

Country Status (5)

Country Link
US (1) US5891989A (de)
EP (1) EP0827519A1 (de)
JP (1) JPH11505865A (de)
DE (1) DE19518737A1 (de)
WO (1) WO1996037537A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6812184B1 (en) * 1996-06-17 2004-11-02 Exxonmobil Chemical Patents Inc. Supported late transition metal catalyst systems
DE19651786C2 (de) * 1996-12-12 1998-10-22 Basf Ag Katalysatorsysteme für die Herstellung von Copolymerisaten aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen
DE19654961C2 (de) * 1996-12-12 1999-04-29 Basf Ag Verfahren für die Herstellung von Copolymerisaten aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen
DE19714031A1 (de) * 1997-04-04 1998-10-08 Basf Ag Lineare alternierende funktionalisierte alpha-Olefin/CO-Copolymere und deren Verwendung für die Herstellung von ionenselektiven Membranen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305012A2 (de) * 1987-08-27 1989-03-01 Shell Internationale Researchmaatschappij B.V. Katalytische Zusammensetzungen für die Polymerisation von Kohlenmonoxid mit einem Olefin
EP0369528A1 (de) * 1988-11-11 1990-05-23 Shell Internationale Researchmaatschappij B.V. Katalytische Zusammenstellungen
DE4324773A1 (de) * 1993-07-23 1995-01-26 Basf Ag Verfahren zur Herstellung von Polyketonen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE49010T1 (de) * 1983-04-06 1990-01-15 Shell Int Research Verfahren zur herstellung von polyketonen.
ATE136563T1 (de) * 1988-11-10 1996-04-15 Shell Int Research Hitzehärtbare harze
US5247064A (en) * 1991-08-06 1993-09-21 Shell Oil Company Polymerization of co/olefin with p bidentate ligand
US5352767A (en) * 1992-01-08 1994-10-04 University Of Massachusetts - Amherst Alpha-olefin/carbon monoxide attenuating copolymers and improved catalyst and method for copolymerizing the same
MX9303038A (es) * 1992-05-27 1994-05-31 Shell Int Research Proceso para la preparacion de copolimeros de monoxido de carbono y compuestos etilenicamente insaturados.

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0305012A2 (de) * 1987-08-27 1989-03-01 Shell Internationale Researchmaatschappij B.V. Katalytische Zusammensetzungen für die Polymerisation von Kohlenmonoxid mit einem Olefin
EP0369528A1 (de) * 1988-11-11 1990-05-23 Shell Internationale Researchmaatschappij B.V. Katalytische Zusammenstellungen
DE4324773A1 (de) * 1993-07-23 1995-01-26 Basf Ag Verfahren zur Herstellung von Polyketonen

Also Published As

Publication number Publication date
DE19518737A1 (de) 1996-11-28
JPH11505865A (ja) 1999-05-25
US5891989A (en) 1999-04-06
EP0827519A1 (de) 1998-03-11

Similar Documents

Publication Publication Date Title
EP0827516B1 (de) Verfahren zur herstellung von polymeren aus olefinisch ungesättigten monomeren
EP0827515B1 (de) Verfahren zur herstellung von polymeren aus olefinisch ungesättigten monomeren
DE19727271A1 (de) Funktionalisierte Kohlenmonoxidcopolymere
EP0827519A1 (de) Kohlenmonoxid/olefin-copolymere
EP1196475B1 (de) Verfahren zur herstellung von olefin/kohlenmonoxid-copolymeren
WO2000063277A1 (de) Verfahren zur herstellung von kohlenmonoxidcopolymeren in wässrigem medium unter verwendung wasserlöslicher metallkomplexe und lösungsvermittlern
EP0944666B1 (de) Katalysatorsysteme für die herstellung von copolymerisaten aus kohlenmonoxid und olefinisch ungesättigten verbindungen
WO2000001756A1 (de) Katalysatorsysteme auf der basis von übergangsmetallkomplexen für die kohlenmonoxidcopolymerisation in einem wässrigen medium
EP0886662B1 (de) Thermoplastische elastomere kohlenmonoxid/olefin-copolymere
EP1345983A1 (de) Verfahren zur herstellung wässriger copolymerisatdispersionen von copolymerisaten aus kohlenmonoxid und wenigstens einer olefinisch ungesättigten verbindung
EP1071689B1 (de) Cis-verbrückte metallkomplexe und diese enthaltende katalysatorsysteme
EP0710260B1 (de) Verfahren zur herstellung von polyketonen
WO1996037536A1 (de) Einatomig verbrückte chelat-metallkomplexe
DE19649072A1 (de) Thermoplastische, elastomere Kohlenmonoxid/Olefin-Copolymere
WO2001016212A2 (de) Verfahren zur herstellung von kohlenmonoxidcopolymeren in überkritischen lösungs- oder suspensionsmitteln
DE19846053A1 (de) Verfahren zur Herstellung von linearen, alternierenden Kohlenmonoxidcopolymeren
WO2000001708A1 (de) Wasserlösliche übergangsmetallkomplexe
DE19651786C2 (de) Katalysatorsysteme für die Herstellung von Copolymerisaten aus Kohlenmonoxid und olefinisch ungesättigten Verbindungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996914190

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 08952203

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 1996 535313

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1996914190

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1996914190

Country of ref document: EP