WO1996036086A1 - Brennstoffzellenanordnung - Google Patents

Brennstoffzellenanordnung Download PDF

Info

Publication number
WO1996036086A1
WO1996036086A1 PCT/EP1996/001801 EP9601801W WO9636086A1 WO 1996036086 A1 WO1996036086 A1 WO 1996036086A1 EP 9601801 W EP9601801 W EP 9601801W WO 9636086 A1 WO9636086 A1 WO 9636086A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel cell
cell stack
fuel
arrangement according
cell arrangement
Prior art date
Application number
PCT/EP1996/001801
Other languages
English (en)
French (fr)
Inventor
Josef Gröber
Thomas Ruff
Original Assignee
Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh filed Critical Mtu Motoren- Und Turbinen-Union Friedrichshafen Gmbh
Publication of WO1996036086A1 publication Critical patent/WO1996036086A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2484Details of groupings of fuel cells characterised by external manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0048Molten electrolytes used at high temperature
    • H01M2300/0051Carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • H01M2300/0074Ion conductive at high temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell arrangement with a number of fuel cells arranged in a fuel cell stack, each comprising an anode, a cathode and an electrolyte matrix and electrically contacted and separated from one another by bipolar plates, the fuel cells at their anodes from a fuel gas inlet side to a fuel gas outlet side from are flowed through by a fuel gas and are flowed through at their cathodes from a cathode gas inlet side to a cathode gas outlet side by a cathode gas.
  • a number of individual fuel cells each comprising a cathode, an electrolyte matrix and an anode and a bipolar plate for separating and electrically contacting the anode and cathode of adjacent fuel cells, are arranged one above the other.
  • the fuel cells of the fuel cell stack are electrically connected in series.
  • the fuel cells are connected in parallel since the fuel gas flows through them from a fuel gas inlet side to a fuel gas outlet side in a first direction, whereas the cathode gas flows through them from a cathode inlet side to a cathode gas outlet side in a second direction, which is usually perpendicular to the first direction .
  • the bipolar plates In addition to the electrical contact and the gas-technical separation of adjacent fuel cells, the bipolar plates also serve to provide the gas space required for the fuel gas or cathode gas to flow past the respective anode and cathode of the adjacent fuel cells separated from the bipolar plate.
  • the cathode gas and the fuel gas are distributed to the gas inlet sides and the gas outlet sides of the individual fuel cells via respective gas distributors on the outside of the fuel cell stack.
  • FIG. 8 shows a perspective exploded view of a fuel cell stack constructed in a conventional manner, only three fuel cells 1 being shown for the sake of clarity, namely the top and bottom fuel cell of the fuel cell stack and an intermediate fuel cell.
  • an electrolyte matrix 12 between a porous anode 13, which consists of a nickel alloy, and a porous cathode 11, which is made of lithium doped nickel oxide is inserted.
  • the electrolyte matrix 12 itself consists of a lithium and potassium carbonate melt electrolyte embedded in a matrix material.
  • a bipolar plate 19 is arranged between the anode 13 of a cell and the cathode 11 of the cell above it, which is shown in greater detail in FIG.
  • the bipolar plate 19 contains an essentially flat bipolar plate 14 which separates the gas spaces of the adjacent fuel cells from one another.
  • respective corrugated current collectors 15 'and 16' designed as three-dimensional structures are provided, namely a cathode-side current collector 15 'and an anode-side current collector 16'.
  • These current collectors 15 'and 16' serve on the one hand to collect the current flowing at the anodes and cathodes and on the other hand to provide a space on the anode and cathode through which the fuel gas at the anode and the cathode gas, respectively can flow past the cathode, as shown by the arrows in FIG. 8 or in FIG. 12.
  • a perforated plate 17 'and 18' is provided on each of the two current collectors 15 'and 16', which serves as a direct contact surface for the respective electrode lying against the bipolar plate.
  • the sides of the bipolar plate 19 that run parallel to the gas flow direction of the gas, fuel gas or cathode gas flowing along the relevant side of the bipolar plate 14 are sealed to the outside with a rigid rail 14 ′, which is bent around the rail by multiple bending of the bipolar plate 14 are attached to it.
  • the bipolar plate 19 is a structure which is rigid in the longitudinal direction of the fuel cell stack and does not yield to a pressure in the longitudinal direction of the fuel cell stack.
  • FIG. 9 shows a perspective view of the exterior of a fuel cell stack constructed in this way.
  • the fuel cell stack is clamped so rigidly that it cannot yield to the stress caused by the different thermal expansions on the sides of the fuel cell stack, this leads to a deformation of one side of the fuel cell stack, as shown in FIG. 11 a .
  • the consequence of this can be considerable leakage problems between the gas distributor (here the fuel gas outlet distributor 21 ') and the fuel cell stack, which can lead to leakage and local burns within the fuel cells.
  • Further disadvantages of the conventional design are a deterioration in the contact within the fuel cells by the unit formed by the anode, electrolyte matrix and cathode during the operating time. In order to compensate for this, the four tie rods 40 have to be retensioned after a certain operating time.
  • the mechanical effort of the construction is considerable; a shear edge forms on the unit consisting of anode, electrolyte matrix and cathode; the internal cell seal allows electrolyte to leak out and migrate along the fuel cell stack; There may be a dimensional difference between the bipolar plate and the anode-electrolyte matrix-cathode unit; a high bending load occurs at the edge of the anode-electrolyte matrix-cathode unit; the design of the edges of the bipolar plates due to the double bevel on their edge around the sealing rails is complex.
  • the object of the present invention is to design a fuel cell arrangement of the type initially assumed so that the fuel cell stack can be operated largely free of thermal stresses.
  • This object is achieved in a fuel cell arrangement of the type assumed in that the fuel cell stack is surrounded by a gas-tight envelope, devices for sealing the spaces on the inlet and outlet sides of the anodes and cathodes being provided between the envelope and the fuel cell stack in such a way that the fuel cell stack is supported on its top and bottom against the top and bottom of the casing, and that the sealing devices are designed to compensate for thermal expansions between the fuel cell stack and the casing.
  • Figure 1 is a plan view of a section through a fuel cell arrangement according to the invention.
  • FIG. 2 shows a side view of a section through the fuel cell stack of the fuel cell arrangement from FIG. 1;
  • Figure 3 is a perspective view of the structure of some fuel cells from the fuel cell stack consisting of anode, electrolyte matrix, cathode and bipolar plate;
  • FIGS. 4 and 5 are top and side views of sections through a practical exemplary embodiment of a fuel cell arrangement according to the invention.
  • FIGS. 6a and 6b show perspective detailed views of the fuel cell arrangement, which illustrate the lateral mounting between the fuel cell stack and the casing;
  • FIG. 7 shows a perspective view of an exemplary embodiment of a compensating arrangement in order to compensate for the longitudinal expansion of the fuel cell stack during operation due to thermal expansions;
  • FIG. 8 shows a perspective exploded view of a fuel cell stack in a conventional design according to the prior art
  • Figure 9 is a perspective view of the exterior of a conventional fuel cell stack
  • Figure 12 is a perspective view of a conventionally constructed bipolar plate according to the prior art in detail.
  • a fuel cell stack 2 which is formed from a number of fuel cells 1 arranged one above the other, is encased surrounded, which consists of a tubular jacket 3, an upper closure plate 4 and a lower closure plate 5.
  • the upper and lower closure plates 4, 5 are not braced against each other by any tie rods.
  • the fuel cell stack 2 is supported in the casing 3, 4, 5 by corner bearings 7, 8, which are effective between the sealing corner strips 6 and corresponding, opposite areas of the casing 3, 4, 5.
  • the sealing corner strips 6 and the corner bearings 7, 8 form units which act both as storage and as sealing devices.
  • These sealing devices 6, 7, 8 form a seal between the spaces formed on the respective inlet and outlet sides of the cathodes and anodes within the casing 3, 4, 5, namely the fuel gas inlet space 20, the fuel gas outlet space 21, the cathode gas inlet space 22 and the cathode gas outlet space 23
  • the outlet side of which is located on the left side are traversed with the fuel gas from the fuel gas inlet space 20 to the fuel gas outlet space 21. Accordingly, the cathode gas flows through the cathode gas inlet space 22 to the cathode gas outlet space 23, the inlet side of which is located at the bottom in the illustration of FIG. 1 and the outlet side of which is located at the top.
  • FIG. 3 shows a detail of a few fuel cells arranged one above the other in greater detail.
  • the cathode 11, the electrolyte matrix 12 and anode 13 of a fuel cell are arranged between two bipolar plates, which are formed by a bipolar plate 14, an anode-side current collector 15, a cathode-side current collector 16 and an anode-side perforated plate 17 and a cathode-side perforated plate 18.
  • the gas spaces of two adjacent fuel cells are separated from one another in terms of gas technology by the bipolar plates 14.
  • the anode 13 is supported by the anode-side perforated plate 17 and contacted by the anode-side current collector 15, while correspondingly the cathode 11 is supported by the cathode-side perforated plate 18 and contacted by the cathode-side current collector 16.
  • the current collectors 15 and 16 designed as three-dimensional structures simultaneously provide the space required for the respective gas to flow past the cathode or the anode.
  • the bipolar plates 14 of the bipolar plates 19 have no rigid sealing rails on their long sides, but rather the sealing of the respective gas space is accomplished in that the bipolar plates 14 are bent on the two opposite long sides in such a way that the entry into the anode-side gas space simultaneously the cathode-side Gas space blocked and vice versa.
  • FIGS. 4 and 5 show an exemplary embodiment of a fuel cell arrangement according to the present invention in its practical embodiment.
  • the fuel cell stack 2 is supported by means of the bearing and sealing devices consisting of corner bearings 7, 8 and sealing corner strips 6 in the casing 3, 4, 5, which comprises a cylindrical tube made of steel.
  • the top and bottom of the casing is formed by upper and lower sealing plates 4, 5, which are screwed to the casing tube 3 by means of bolts 41.
  • the bearing and sealing devices 6, 7, 8 are shown in greater detail in FIGS. 6a and 6b.
  • the bearing device shown in FIG. 6a is designed as a fixed bearing, which fixes the distance between the fuel cell stack 2 and the cladding tube.
  • a bearing strip 72 is provided on its two opposite longitudinal sides with ridges, which are received in prismatic longitudinal grooves by an outer abutment 71, which is fastened to the sheathing tube 3, and an inner abutment 73, which is attached to the sealing corner strip 6.
  • the 6b is a floating bearing, in which the bearing ledge 82, which is also provided with a bead on its two longitudinal sides, also on the inside in a prismatic groove in an inner abutment fastened to the sealing corner ledge 6 83 engages, whereas the outside of the bearing ledge 82 engages a pressure ledge 84 which is radially displaceable in the radial direction with respect to the center of the casing tube 3.
  • the pressure bar 84 can be acted upon by means of adjusting devices 85 in a resiliently elastic manner with a presettable pressure force.
  • the adjusting devices 85 can work pneumatically, hydraulically or mechanically by means of spring force.
  • the fuel cell stack 2 is supported by a fixed bearing 7 and three floating bearings 8, so that sufficient degrees of freedom are available to allow thermal expansion of the fuel cell stack to be absorbed and thus thermal stresses to be reduced.
  • a compensating device in the form of a compensating bellows 30 is provided on the upper side of the fuel cell arrangement 2, as a result of which a compressive force can be applied to the fuel cell stack 2 in its longitudinal direction.
  • the Compensation bellows 30 as a seal between the various gas spaces 20, 21, 22, 23 on the top of the fuel cell stack 2.
  • the compensation bellows 30 is also provided at its corners with cutouts which correspond to the cutouts of the fuel cells, so that the sealing corner strips 6 can also pass the compensation bellows 30 from the upper cover plate 4 to the base plate 5.
  • the compensating bellows 30 compensates for any expansion and deformation of the fuel cell stack 2 due to the temperature differences occurring during operation or during commissioning or decommissioning, while at the same time ensuring complete sealing of the individual gas inlet and outlet spaces from one another.
  • the compensation device contains a displacement transducer 37 provided on the upper side of the fuel cell arrangement, which in the present case is designed as an inductive displacement transducer in order to measure the location and the changes in the location of the upper end of the fuel cell stack 2 and, in dependence thereon, one that acts on the fuel cell stack 2 in the longitudinal direction To generate compressive force in the bellows 30. This pressure force is caused by a compressed gas supplied to the compensating bellows 30 at a pressure connection 38.
  • the casing 3, 4, 5 of the fuel cell arrangement is surrounded on all sides by thermal insulation 9.
  • Flat heating devices 91, 92 for preheating the fuel cell arrangement are provided on the upper side of the upper closing plate 4 and on the underside of the lower closing plate 5.
  • the supply lines and discharge lines to the inlet spaces and outlet spaces 20, 21, 22 and 23 of fuel gas and cathode gas take place through a fuel gas inlet 24, a fuel gas outlet 25, a cathode gas inlet 26 and a cathode gas outlet 27, each from the underside through the lower closure plate 5 in the inside of the casing 3, 4, 5 are guided.
  • the current draw from the fuel cell stack takes place by means of two current connections 10, which are each electrically connected to the upper and lower bipolar plates of the fuel cell stack.
  • the compensating bellows 30 is formed by two individual bellows arranged one above the other and rotated by 90 °, the upper individual bellows being delimited by an upper pressure plate 31 and an intermediate plate 34 and a lateral surface 35, and similarly the lower individual bellows is limited by an intermediate plate 33 and a lower pressure plate 32 and a jacket 39.
  • the compressed gas is supplied to the compensating bellows 30 through a connecting tube 36, through which the inductive displacement sensor 37 is guided at the same time.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

Es wird eine Brennstoffzellenanordnung mit einer Anzahl von in einem Brennstoffzellenstapel (2) angeordneten Brennstoffzellen (1) beschrieben, die anodenseitig von einem Brenngaseinlaßraum (20) zu einem Brenngasauslaßraum (21) von einem Brenngas und kathodenseitig von einem Kathodengaseinlaßraum (22) zu einem Kathodengasauslaßraum (23) von einem Kathodengas durchströmt werden, wobei der Brennstoffzellenstapel (2) von einer gasdichten Umhüllung (3, 4, 5) umgeben und gegen die Oberseite und die Unterseite der Umhüllung (3, 4, 5) abgestützt ist, und zwischen der Umhüllung (3, 4, 5) und dem Brennstoffzellenstapel (2) Vorrichtungen (6, 7, 8) zur gegenseitigen Abdichtung der Einlaß- und Auslaßräume (20-23) vorgesehen sind, und wobei die Dichtungsvorrichtungen (6, 7, 8) zum Ausgleich thermischer Dehnungen zwischen dem Brennstoffzellenstapel (2) und der Umhüllung (3, 4, 5) ausgebildet sind.

Description

B E S C H R E I B U N G
BRENNSTOFFZELLENANORDNUNG
Die vorliegende Erfindung betrifft eine Brennstoffzellenanordnung mit einer Anzahl von in einem Brennstoffzellenstapel angeordneten Brennstoffzellen, die jeweils eine Anode, eine Kathode und eine Elektrolytmatrix umfassen und durch Bipolarplatten elektrisch kontaktiert und voneinander getrennt sind, wobei die Brennstoffzellen an ihren Anoden von einer Brenngaseinlaßseite zu einer Brenngasauslaßseite von einem Brenngas durchströmt werden und an ihren Kathoden von einer Kathodengaseinlaßseite zu einer Kathodengasauslaßseite von einem Kathodengas durchströmt werden.
Beim herkömmlichen Aufbau eines Brennstoffzellenstapels sind eine Anzahl von einzelnen Brennstoffzellen, die jeweils eine Kathode, eine Elektrolytmatrix und eine Anode sowie eine Bipolarplatte zur Trennung und elektrischen Kontaktierung von Anode und Kathode benachbarter Brennstoffzellen umfassen, übereinander angeordnet. Auf diese Weise sind die Brennstoffzellen des Brennstoffzellenstapels elektrisch seriell verschaltet. Gastechnisch gesehen sind die Brennstoffzellen parallel verschaltet, da sie von dem Brenngas von einer Brenngaseinlaßseite zu einer Brenngasauslaßseite in einer ersten Richtung durchströmt werden, wogegen sie von dem Kathodengas von einer Kathodeneinlaßseite zu einer Kathodengasauslaßseite in einer zweiten, üblicherweise zu der ersten Richtung senkrechten Richtung durchströmt werden. Die Bipolarplatten dienen neben der elektrischen Kontaktierung und der gastechnischen Trennung benachbarter Brennstoffzellen darüber hinaus noch der Aufgabe an der jeweiligen Anode und Kathode der benachbarten, von der Bipolarplatte getrennten Brennstoffzellen den für das Vorbeiströmen des Brenngases bzw. des Kathodengases benötigten Gasraum zur Verfügung zu stellen. Das Kathodengas und das Brenngas werden über jeweilige Gasverteiler an den Außenseiten des Brennstoffzellenstapels auf die Gaseinlaßseiten und die Gasauslaßseiten der einzelnen Brennstoffzellen verteilt.
Figur 8 zeigt in perspektivischer Explosionsansicht einen in konventioneller Weise aufgebauten Brennstoffzellenstapel, wobei zum Zwecke der besseren Übersichtlichkeit lediglich drei Brennstoffzellen 1 dargestellt sind, nämlich die oberste und unterste Brennstoffzelle des Brennstoffzellenstapels, sowie eine dazwischenliegende Brennstoffzelle. Wie aus Figur 8 zu sehen ist, ist eine Elektrolytmatrix 12 zwischen eine porösen Anode 13, die aus einer Nickellegierung besteht, und einer porösen Kathode 1 1, die aus mit Lithium dotiertem Nickeloxid besteht, eingefugt. Die Elektrolytmatrix 12 selbst besteht aus einem in einem Matrixmaterial eingelagerten Lithium- und Kaliumkarbonatschmelzelektrolyten. Zwischen der Anode 13 einer Zelle und der Kathode 11 der darüberliegenden Zelle ist jeweils eine Bipolarplatte 19 angeordnet, die in Figur 12 in größerer Detailliertheit dargestellt ist. Die Bipolarplatte 19 enthält ein im wesentlichen ebenes Bipolarblech 14, welches die Gasräume der benachbarten Brennstoffzellen voneinander trennt. Oberhalb und unterhalb des Bipolarblechs 14 sind jeweilige, als dreidimensionale Strukturen ausgebildete gewellte Stromkollektoren 15' und 16' vorgesehen, nämlich ein kathodenseitiger Stromkollektor 15' und ein anodenseitiger Stromkollektor 16'. Diese Stromkollektoren 15' und 16' dienen zum einen dazu, den an den Anoden und Kathoden fließenden Strom zu sammeln und zum anderen dazu, an Anode und Kathode jeweils einen Raum zur Verfugung zu stellen, durch welchen das Brenngas an der Anode bzw. das Kathodengas an der Kathode vorbeiströmen kann, wie dies durch die Pfeile in Figur 8 bzw. in Figur 12 gezeigt ist. Weiterhin ist an jedem der beiden Stromkollektoren 15' und 16' eine perforierte Platte 17' bzw. 18' vorgesehen, welche als unmittelbare Anlagefläche für die jeweilige an der Bipolarplatte anliegende Elektrode dient. Die jeweils parallel zur Gasströmungsrichtung des an der betreffenden Seite des Bipolarblechs 14 entlangströmenden Gases, Brenngases bzw. Kathodengases, parallel verlaufenden Seiten der Bipolarplatte 19 sind mit einer starren Schiene 14' nach außen abgedichtet, welche durch ein mehrfaches Abkanten des Bipolarblechs 14 um die Schiene herum daran fixiert sind. Durch diese Schienen 14' ist die Bipolarplatte 19 ein in Längsrichtung des Brennstoffzellenstapels starres Gebilde, welches einem Druck in Längsrichtung des Brennstoffzellenstapels nicht nachgibt.
Wieder bezugnehmend auf Figur 8 ist zu sehen, daß der Brennstoffzellenstapel zwischen einer oberen Endplatte 4' und einer unteren Endplatte 5' unter Zwischenschaltung von isolierenden Platten 9 eingespannt ist. Das Einspannen erfolgt durch an den Ecken der Endplatten 4', 5' angreifende Zuganker 40. Figur 9 zeigt in perspektivischer Darstellung das Äußere eines in dieser Weise aufgebauten Brennstoffzellenstapels.
Bei einem solchermaßen in konventioneller Weise aufgebauten Brennstoffzellenstapel ergeben sich eine Anzahl von Problemen. So haben die Unterschiede von Einlaßtemperatur und Auslaßtemperatur an den Brennstoffzellen eine unterschiedliche thermische Dehnung an den Außenseiten der Brennstoffzellen zur Folge, die zu einer Verformung oder Deformierung des Brennstoffzellenstapels fuhren kann. Bei dem in Figuren 10a und 1 Ob dargestellten Fall addieren sich die thermischen Dehnungen der einzelnen Brennstoffzellen im Brennstoffzellenstapel zu einem beträchtlichen Längenunterschied in der Gesamtlänge des Stapels, was zu einer Krümmung desselben führt ("Bananeneffekt"), vergleiche Figur 10a. Dies hat zur Folge, daß die obere Endplatte 4' gegenüber der unteren Endplatte 5' seitlich verschoben wird, wie aus der Draufsicht in Figur 10b zu sehen ist. Wenn dagegen der Brennstoffzellenstapel so starr eingespannt wird, daß er der durch die unterschiedlichen thermischen Dehnungen an den Seiten des Brennstoffzellenstapels verursachten Spannung nicht durch eine Krümmung nachzugeben vermag, so fuhrt das zu einer Deformierung einer Seite des Brennstoffzellenstapels, wie es in Figur 11 a gezeigt ist. Die Folge hiervon können beträchtliche Dichtigkeitsprobleme zwischen dem Gasverteiler (hier der Brenngasauslaß Verteiler 21') und dem Brennstoffzellenstapel sein, was zu einer Leckage und lokalen Verbrennungen innerhalb der Brennstoffzellen fuhren kann. Weitere Nachteile des konventionellen Aufbaus sind eine Verschlechterung des Kontakts innerhalb der Brennstoffzellen durch Setzen der durch Anode, Elektrolytmatrix und Kathode gebildeten Einheit während der Betriebszeit. Um dies auszugleichen ist ein Nachspannen der vier Zuganker 40 nach einer gewissen Betriebsdauer erforderlich. Der mechanische Aufwand des Aufbaus ist beträchtlich; an der Einheit aus Anode, Elektrolytmatrix und Kathode bildet sich eine Scherkante; durch die interne Zellabdichtung kann Elektrolyt nach außen dringen und am Brennstoffzellenstapel entlangwandern; zwischen Bipolarplatte und der aus Anoden- Elektrolytmatrix-Kathoden-Einheit kann eine Dimensionsdifferenz bestehen; am Rand der Anoden-Elektrolytmatrix-Kathoden-Einheit tritt eine hohe Biegelast auf; die Randgestaltung der Bipolarbleche durch die doppelte Abkantung an deren Rand um die Dichtungsschienen herum ist aufwendig.
Die Aufgabe der vorliegenden Erfindung ist es eine Brennstoffzellenanordnung der eingangs vorausgesetzten Art so zu gestalten, daß der Brennstoffzellenstapel weitestgehend frei von thermischen Spannungen betrieben werden kann.
Diese Aufgabe wird bei einer Brennstoffzellenanordnung der vorausgesetzten Art dadurch gelöst, daß der Brennstoffzellenstapel von einer gasdichten Umhüllung umgeben ist, wobei zwischen der Umhüllung und dem Brennstoffzellenstapel Vorrichtungen zur Abdichtung der Räume an den Einlaßseiten und Auslaßseiten der Anoden und Kathoden gegeneinander vorgesehen sind, daß der Brennstoffzellenstapel an seiner Oberseite und seiner Unterseite gegen die Oberseite und die Unterseite der Umhüllung abgestützt ist, und daß die Dichtungsvorrichtungen zum Ausgleich thermischer Dehnungen zwischen Brennstoffzellenstapel und Umhüllung ausgebildet sind.
Vorteilhafte Weiterbildungen der erfindungsgemäßen Brennstoffzellenanordnung sind in den Unteransprüchen gekennzeichnet.
Im Folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung erläutert. Es zeigen:
Figur 1 in der Draufsicht einen Schnitt durch eine erfindungsgemäße Brennstoffzellenanordnung;
Figur 2 in der Seitenansicht einen Schnitt durch den Brennstoffzellenstapel der Brennstoffzellenanordnung von Figur 1 ;
Figur 3 in perspektivischer Ansicht den Aufbau einiger Brennstoffzellen aus dem Brennstoffzellenstapel bestehend aus Anode, Elektrolytmatrix, Kathode und Bipolarplatte;
Figuren 4 und 5 in der Draufsicht bzw. in der Seitenansicht Schnitte durch ein praktisches Ausfuhrungsbeispiel einer erfindungsgemäßen Brennstoffzellenanordnung;
Figuren 6a und 6b perspektivische Detailansichten der Brennstoffzellenanordnung, welche die seitliche Lagerung zwischen Brennstoffzellenstapel und Umhüllung veranschaulichen;
Figur 7 in perspektivischer Ansicht ein Ausfiihrungsbeispiel einer Ausgleichsanordnung, um die Längsausdehnung des Brennstoffzellenstapels beim Betrieb aufgrund thermischer Dehnungen zu kompensieren;
Figur 8 in perspektivischer Explosionsansicht einen Brennstoffzellenstapel in konventionellem Aufbau nach dem Stand der Technik;
Figur 9 in perspektivischer Ansicht das Äußere eines konventionell aufgebauten Brennstoffzellenstapels;
Figuren 10a, 10b, 11a, 1 lb in der Seitenansicht bzw. in der Draufsicht schematisierte Schnittansichten durch einen konventionell aufgebauten Brennstoffzellenstapel nach dem Stand der Technik zur Erläuterung der sich aufgrund thermischer Spannungen ergebenden Verformungen beim Betrieb eines solchen;
Figur 12 in perspektivischer Ansicht eine herkömmlich aufgebaute Bipolarplatte nach dem Stand der Technik im Detail.
Bei der in Figur 1 in der Draufsicht und in Figur 2 in der Seitenansicht schematisch dargestellten Brennstoffzellenanordnung ist ein Brennstoffzellenstapel 2, der aus einer Anzahl von übereinander angeordneten Brennstoffzellen 1 gebildet ist, von einer Umhüllung umgeben, die aus einem rohrformigen Mantel 3, einer oberen Verschlußplatte 4 und einer unteren Verschlußplatte 5 besteht. Die oberen und unteren Verschlußplatten 4, 5 sind nicht durch irgendwelche Zuganker gegeneinander verspannt. An den Ecken der Brennstoffzellen befinden sich jeweils Aussparungen, die durch ein Ausklinken von 2x90° gebildet sind. In die Aussparungen sind Dichtungseckleisten 6 eingesetzt, die aus einem elektrisch isolierenden Keramikmaterial bestehen. Der Brennstoffzellenstapel 2 ist in der Umhüllung 3, 4, 5 durch Ecklager 7, 8 gelagert, die zwischen den Dichtungseckleisten 6 und entsprechenden, gegenüberliegenden Bereichen der Umhüllung 3, 4, 5 wirksam sind. Durch die Dichtungseckleisten 6 und die Ecklager 7, 8 werden Einheiten gebildet, die gleichermaßen als Lagerung wie auch als Dichtungsvorrichtungen wirken. Diese Dichtungsvorrichtungen 6, 7, 8 bilden eine Abdichtung zwischen den an den jeweiligen Einlaßseiten und Auslaßseiten der Kathoden und Anoden innerhalb der Umhüllung 3, 4, 5 gebildeten Räume gegeneinander, nämlich dem Brenngaseinlaßraum 20, dem Brenngasauslaßraum 21, dem Kathodengaseinlaßraum 22 und dem Kathodengasauslaßraum 23. So werden die Anoden, deren Einlaßseite sich bei der Darstellung in Figur 1 auf der rechten Seite befindet und deren Auslaßseite sich auf der linken Seite befindet, mit dem Brenngas vom dem Brenngaseinlaßraum 20 zu dem Brenngasauslaßraum 21 durchströmt. Entsprechend werden die Kathoden, deren Einlaßseite sich bei der Darstellung von Figur 1 unten befindet und deren Auslaßseite sich oben befindet, mit dem Kathodengas von dem Kathodengaseinlaßraum 22 zu dem Kathodengasauslaßraum 23 durchströmt.
In Figur 3 ist in größerer Detailliertheit ein Ausschnitt von einigen übereinander angeordneten Brennstoffzellen dargestellt. Zwischen jeweils zwei Bipolarplatten, die durch ein Bipolarblech 14, einen anodenseitigen Stromkollektor 15, einen kathodenseitigen Stromkollektor 16 sowie ein anodenseitiges Lochblech 17 und ein kathodenseitiges Lochblech 18 gebildet sind, sind die Kathode 1 1, die Elektrolytmatrix 12 und Anode 13 einer Brennstoffzelle angeordnet. Die Gasräume zweier benachbarter Brennstoffzellen sind durch die Bipolarbleche 14 gastechnisch voneinander getrennt. Die Anode 13 wird durch das anodenseitige Lochblech 17 gestützt und durch den anodenseitigen Stromkollektor 15 kontaktiert, während entsprechend die Kathode 11 durch das kathodenseitige Lochblech 18 gestützt und durch den kathodenseitigen Stromkollektor 16 kontaktiert wird. Die als dreidimensionale Strukturen ausgebildeten Stromkollektoren 15 und 16 stellen gleichzeitig den zum Vorbeiströmen des jeweiligen Gases an der Kathode bzw. der Anode erforderlichen Raum zur Verfügung. Die Bipolarbleche 14 der Bipolarplatten 19 verfugen an ihren Längsseiten über keinerlei starren Dichtungsschienen, sondern die Abdichtung des jeweiligen Gasraums wird vielmehr dadurch bewerkstelligt, daß die Bipolarblech 14 an jeweils den beiden gegenüberliegenden Längsseiten so abgekantet sind, daß der Eintritt in den anodenseitigen Gasraum gleichzeitig den kathodenseitigen Gasraum versperrt und umgekehrt. Durch diese einfache Abkantung der Bipolarbleche an den Längsseiten erhalten die Bipolarplatten 19 gleichzeitig eine federnd elastische Eigenschaft, durch welche der Brennstoffzellenstapel 2 insgesamt in seiner Längsrichtung federnd elastisch ist, wodurch thermische Dehnungen aufgefangen und Spannungen abgebaut werden können.
In den Figuren 4 und 5 ist ein Ausfυhrungsbeispiel einer Brennstoffzellenanordnung gemäß der vorliegenden Erfindung in seiner praktischen Ausfuhrung dargestellt. Der Brennstoffzellenstapel 2 ist mittels der aus Ecklagern 7, 8 und Dichtungseckleisten 6 bestehenden Lager- und Dichtungsvorrichtungen in der Umhüllung 3, 4, 5 gelagert, die ein zylindrisches Rohr aus einem Stahl umfasst. Die Oberseite und die Unterseite der Umhüllung ist durch obere und untere Verschlußplatten 4, 5 gebildet, welche mittels Bolzen 41 mit dem Umhüllungsrohr 3 verschraubt ist.
Die Lager- und Dichtungsvorrichtungen 6, 7, 8 sind in den Figuren 6a und 6b in größerer Detailliertheit dargestellt. Die in Figur 6a gezeigte Lagervorrichtung ist als Festlager ausgeführt, welches den Abstand zwischen dem Brennstoffzellenstapel 2 und dem Umhüllungsrohr fixiert. Eine Lagerleiste 72 ist an ihren beiden gegenüberliegenden Längsseiten mit Wülsten versehen, welche in prismatische Längsnuten von einem Äußeren Widerlager 71, das an dem Umhüllungsrohr 3 befestigt ist, und einem inneren Widerlager 73, das an der Dichtungseckleiste 6 angebracht ist, aufgenommen. Bei dem in Figur 6b gezeigten Lager handelt es sich dagegen um ein Loslager, bei welchem die Lagerleiste 82, die an ihren beiden Längsseiten ebenfalls mit einem Wulst versehen ist, an ihrer Innenseite ebenfalls in eine prismatische Nut in einem an der Dichtungseckleiste 6 befestigten inneren Widerlager 83 eingreift, wogegen die Außenseite der Lagerleiste 82 an eine in Radialrichtung bezüglich des Zentrums des Umhüllungsrohrs 3 radial verschiebliche Druckleiste 84 angreift. Die Druckleiste 84 ist mittels VerStelleinrichtungen 85 in federnd elastischer Weise mit einer voreinstellbaren Druckkraft beaufschlagbar. Die VerStelleinrichtungen 85 können pneumatisch, hydraulisch oder mechanisch mittels Federkraft arbeiten.
Wie aus der Draufsicht in Figur 4 ersichtlich, ist der Brennstoffzellenstapel 2 durch ein Festlager 7 und drei Loslager 8 gelagert, so daß ausreichend Freiheitsgrade zur Verfügung stehen, um eine Aufnahme von thermisch hervorgerufenen Dehnungen des Brennstoffzellenstapels und damit einen Abbau von thermischen Spannungen zu gestatten.
An der Oberseite der Brennstoffzellenanordnung 2 ist eine Ausgleichsvorrichtung in Form eines Ausgleichsbalgens 30 vorgesehen, wodurch der Brennstoffzellenstapel 2 in seiner Längsrichtung mit einer Druckkraft beaufschlagbar ist. Gleichzeitig dient der Ausgleichsbalgen 30 als Abdichtung der verschiedenen Gasräume 20, 21, 22, 23 an der Oberseite des Brennstoffzellenstapels 2 gegeneinander. Bei dem vorliegenden Ausfuhrungsbeispiel ist der Ausgleichsbalgen 30 an seinen Ecken ebenfalls mit Aussparungen versehen, die den Aussparungen der Brennstoffzellen entsprechen, sodaß die Dichtungseckleisten 6 auch an dem Ausgleichsbalgen 30 vorbei von der oberen Deckplatte 4 zu der Bodenplatte 5 durchlaufen können. Auf diese Weise kompensiert der Ausgleichsbalgen 30 jedwede Dehnung und Verformung des Brennstoffzellenstapels 2 aufgrund der beim Betrieb bzw. bei der Inbetriebnahme oder Außerbetriebsetztung auftretenden Temperaturunterschiede, wobei gleichzeitig eine vollständige Abdichtung der einzelnen Gaseinlaß- und -auslaßräume voneinander gewährleistet ist. Die Ausgleichsvorrichtung enthält einen an der Oberseite der Brennstoffzellenanordnung vorgesehenen Wegaufnehmer 37, der im vorliegenden Falle als induktiver Wegaufnehmer ausgebildet ist, um den Ort und die Veränderungen des Orts des oberen Endes des Brennstoffzellenstapels 2 zu messen und in Abhängigkeit davon eine den Brennstoffzellenstapel 2 in Längsrichtung beaufschlagende Druckkraft im Ausgleichsbalgen 30 zu erzeugen. Diese Druckkraft wird durch ein an einem Druckanschluß 38 zu dem Ausgleichsbalgen 30 zugeführtes Druckgas hervorgerufen.
Die Umhüllung 3, 4, 5 der Brennstoffzellenanordnung ist allseitig von einer thermischen Isolierung 9 umgeben. An der Oberseite der oberen Verschlußplatte 4 und an der Unterseite der unteren Verschlußplatte 5 sind flächige Heizvorrichtungen 91, 92 zum Vorheizen der Brennstoffzellenanordnung vorgesehen. Die Zuleitungen und Ableitungen zu den Einlaßräumen und Auslaßräumen 20, 21, 22 und 23 von Brenngas und Kathodengas erfolgen durch einen Brenngaseinlaß 24, einen Brenngasauslaß 25, einen Kathodengaseinlaß 26 und einen Kathodengasauslaß 27, die jeweils von der Unterseite her durch die untere Verschlußplatte 5 in das Innere der Umhüllung 3, 4, 5 gefuhrt sind. Die Stromabnahme von dem Brennstoffzellenstapel erfolgt mittels zweier Stromanschlüsse 10, die jeweils mit der oberen bzw. unteren Bipolarplatte des Brennstoffzellenstapels elektrisch verbunden sind.
Wie aus Figur 7 ersichtlich ist, ist der Ausgleichsbalgen 30 durch zwei übereinander angeordnete, um 90° gegeneinander verdrehte Einzelbalgen gebildet, von denen der obere Einzelbalgen durch eine obere Druckplatte 31 und eine Zwischenplatte 34 und eine Mantelfläche 35 begrenzt ist, und ähnlich der untere Einzelbalgen durch eine Zwischenplatte 33 und eine untere Druckplatte 32 sowie einen Mantel 39 begrenzt ist. Das Druckgas wird dem Ausgleichsbalgen 30 durch eine Anschlußröhre 36 zugeführt, durch welche gleichzeitig der induktive Wegaufnehmer 37 geführt ist.

Claims

P A T E N T A N S P R Ü C H E
5 1. Brennstoffzellenanordnung mit einer Anzahl von in einem Brennstoffzellenstapel (2) angeordneten Brennstoffzellen (1), die jeweils eine Anode (13), eine Kathode (1 1) und eine Elektrolytmatrix (12) umfassen und durch Bipolarplatten (19) elektrisch kontaktiert und voneinander getrennt sind, wobei die Brennstoffzellen (1) an ihren Anoden (13) von einer Brenngaseinlaßseite zu einer Brenngasauslaßseite von einem Brenngas durchströmt werden
1 ° und an ihren Kathoden (11) von einer Kathodengaseinlaßseite zu einer
Kathodengasauslaßseite von einem Kathodengas durchströmt werden, dadurch gekennzeichnet, daß der Brennstoffzellenstapel (2) von einer gasdichten Umhüllung (3, 4, 5) umgeben ist, wobei zwischen der Umhüllung (3, 4, 5) und dem Brennstoffzellenstapel (2) Vorrichtungen (6, 7, 8) zur Abdichtung der Räume (20, 21, 22, 23) vor den Einlaßseiten
1 5 und Auslaßseiten der Anoden (13) und Kathoden (1 1) gegeneinander vorgesehen sind, daß der Brennstoffzellenstapel (2) an seiner Oberseite und seiner Unterseite gegen die Oberseite und die Unterseite der Umhüllung (3, 4, 5) abgestützt sind, und daß die Dichtungsvorrichtungen (6, 7, 8) zum Ausgleichen thermischer Dehnungen zwischen
Brennstoffzellenstapel (2) und Umhüllung (3, 4, 5) ausgebildet sind.
20
2. Brennstoffzellenanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Brennstoffzellen (1) in Längsrichtung des Brennstoffzellenstapels (2) elastisch ausgebildet sind.
°
3. Brennstoffzellenanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß an der Oberseite oder/und der Unterseite des Brennstoffzellenstapels (2) eine
Ausgleichsvorrichtung vorgesehen ist, durch die der Brennstoffzellenstapel (2) zum
Abstützen gegen die Oberseite oder/und die Unterseite der Umhüllung (3, 4, 5) in seiner
Längsrichtung mit einer Druckkraft beaufschlagbar ist. 0
4. Brennstoffzellenanordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Ausgleichsvorrichtung einen Ausgleichsbalgen (30) umfaßt, der mit einem Gas unter Druck gesetzt werden kann.
5
5. Brennstoffzellenanordnung nach einem Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Brennstoffzellen (1) an ihren Ecken Aussparungen aufweisen, in welche parallel zur
_ Längsrichtung des Brennstoffzellenstapels (2) verlaufende und gegen die Brennstoffzellen elastisch isolierte Dichtungseckleisten (6) der Dichtungsvorrichtungen (6, 7, 8) eingesetzt sind, wobei die Dichtungseckleisten (6) zum Ausgleich thermischer Dehnungen gegenüber dem Brennstoffzellenstapel (2) in dessen Längsrichtung gleitend ausgebildet sind.
6. Brennstoffzellenanordnung nach Anspruch 5, dadurch gekennzeichnet, daß die Dichtungseckleisten (6) aus elektrisch isolierendem Keramikmaterial bestehen.
7. Brennstoffzellenanordnung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß die Bipolarplatten (19) in Längsrichtung des Brennstoffzellenstapels (2) elastisch ausgebildet sind.
8. Brennstoffzellenanordnung nach Anspruch 7, dadurch gekennzeichnet, daß die Bipolarplatten (19) der Brennstoffzellen jeweils allseitig nur einfach abgekantete Bipolarbleche (14) ohne Dichtungsschienen aufweisen, wobei die abgekanteten Bereiche der Bipolarbleche (14) gegeneinander federnd elastisch abgestützt sind.
9. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß die Dichtungsvorrichtungen (6, 7, 8) Lagervorrichtungen (7, 8) enthalten, welche eine Lagerung des Brennstoffzellenstapels (2) gegenüber der Umhüllung (3, 4, 5) bewirken, wobei die Lagervorrichtungen (7, 8) zum Ausgleich der thermischen Dehnungen teilweise als Festlager (7) und teilweise als Loslager (8) ausgebildet sind.
10 Brennstoffzellenanordnung nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, daß die Ausgleichseinrichtung an ihren Ecken Aussparungen zur Aufnahme der Dichtungseckleisten (6) entsprechend den Aussparungen der Brennstoffzellen (1 ) aufweist.
1 1 Brennstoffzellenanordnung nach einem der Ansprüche 3 bis 10, dadurch gekennzeichnet, daß die Ausgleichsvorrichtung einen Wegaufnehmer zum Messen der thermischen Längsdehnung des Brennstoffzellenstapels (2) enthält, wobei die den Brennstoffzellenstapel (2) in Längsrichtung beaufschlagende Druckkraft in Abhängigkeit von der Meßgröße des Wegaufnehmers einstellbar ist.
12. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 1 1, dadurch gekennzeichnet, daß die Umhüllung (3, 4, 5) zylindrisch in Form eines Rohrs (3) ausgebildet ist und an ihrer Oberseite und Unterseite Verschlußplatten (4, 5) aufweist. t 0
13. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Zuleitungen und Ableitungen für das Brenngas und Kathodengas von der Unterseite oder/und der Oberseite durch die Umhüllung (3, 4, 5) gefuhrt sind.
14. Brennstoffzellenanordnung nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, daß die Stromabnahme von der obersten und untersten Bipolarplatte (19) erfolgt.
PCT/EP1996/001801 1995-05-10 1996-04-30 Brennstoffzellenanordnung WO1996036086A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19517042.3 1995-05-10
DE19517042A DE19517042C1 (de) 1995-05-10 1995-05-10 Brennstoffzellenanordnung

Publications (1)

Publication Number Publication Date
WO1996036086A1 true WO1996036086A1 (de) 1996-11-14

Family

ID=7761498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/001801 WO1996036086A1 (de) 1995-05-10 1996-04-30 Brennstoffzellenanordnung

Country Status (2)

Country Link
DE (1) DE19517042C1 (de)
WO (1) WO1996036086A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104286A1 (en) * 2004-04-20 2005-11-03 Nissan Motor Co., Ltd. Fuel cell stack and related method
FR3066201A1 (fr) * 2017-05-15 2018-11-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reacteur d'electrolyse ou de co-electrolyse de l'eau (soec) ou pile a combustible (sofc) a fonctionnement sous pression et a systeme de serrage adapte a un tel fonctionnement
DE102018125788A1 (de) * 2018-09-10 2020-03-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Elektrochemische Energieumwandlungsvorrichtung
WO2022184828A1 (de) * 2021-03-05 2022-09-09 Ekpo Fuel Cell Technologies Gmbh Brennstoffzellenvorrichtung

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645111C2 (de) * 1996-11-01 1998-09-03 Aeg Energietechnik Gmbh Raumsparende Zellstapelanordnung aus Festoxidbrennstoffzellen
DE19650903C2 (de) * 1996-12-07 1999-03-18 Forschungszentrum Juelich Gmbh Brennstoffzellenmodul mit einer Gasversorgungseinrichtung
DE19724428C2 (de) * 1997-06-10 1999-09-16 Ballard Power Systems Gehäuse für einen Niedertemperatur-Brennstoffzellenstapel
DE19852146C2 (de) * 1998-11-12 2001-10-11 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung mit korrosionsgeschützten Reformiereinheiten
DE19852363C1 (de) * 1998-11-13 2000-05-18 Mtu Friedrichshafen Gmbh Brennstoffzellenanordnung
DE19853911A1 (de) * 1998-11-23 2000-05-25 Forschungszentrum Juelich Gmbh Brennstoffzelle mit Zuführung eines Betriebsmittels über eine gelochte Platte
DE10124853A1 (de) * 2001-05-22 2002-11-28 Bayerische Motoren Werke Ag Brennstoffzelle
DE102004037678A1 (de) * 2004-08-02 2006-03-16 Webasto Ag Brennstoffzellenstapel
JP5045880B2 (ja) 2006-06-20 2012-10-10 トヨタ自動車株式会社 燃料電池
DE102006060809A1 (de) * 2006-12-21 2008-06-26 Enerday Gmbh Isolier- und Verspannvorrichtung für eine Hochtemperatur-Brennstoffzellensystemkomponente
DE102009017779A1 (de) * 2009-04-20 2010-10-28 Fachhochschule Gelsenkirchen Energie Institut Modulares Brennstoffzellensystem
DE102010006705B3 (de) * 2010-02-02 2011-04-14 Mtu Onsite Energy Gmbh Brennstoffzellenanordnung
DE102010011206A1 (de) * 2010-03-09 2011-09-15 Kai Klinder Brennstoffzellenstapel und Verfahren zu seiner Herstellung
US8968956B2 (en) 2010-09-20 2015-03-03 Nextech Materials, Ltd Fuel cell repeat unit and fuel cell stack
DE102010051753A1 (de) * 2010-11-17 2012-05-24 Mtu Onsite Energy Gmbh Brennstoffzellenanordnung mit einem im Betrieb verformbaren Brennstoffzellenstapel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119170A (ja) * 1982-01-08 1983-07-15 Toshiba Corp 燃料電池
JPS58165276A (ja) * 1982-03-26 1983-09-30 Fuji Electric Co Ltd 燃料電池のマニホ−ルド構造体
EP0098495A1 (de) * 1982-06-28 1984-01-18 Energy Research Corporation Brennstoffzellensystem
JPS59219866A (ja) * 1983-05-28 1984-12-11 Hokuriku Electric Power Co Inc:The 燃料電池
JPS59219865A (ja) * 1983-05-28 1984-12-11 Hokuriku Electric Power Co Inc:The 燃料電池
US4514475A (en) * 1984-03-30 1985-04-30 The United States Of America As Represented By The United States Department Of Energy Fuel cell separator with compressible sealing flanges
JPH01209671A (ja) * 1988-02-16 1989-08-23 Toshiba Corp 溶融炭酸塩型燃料電池
JPH02160372A (ja) * 1988-12-13 1990-06-20 Toshiba Corp 燃料電池のセパレータ
DE4339405C1 (de) * 1993-11-18 1995-01-12 Mtu Friedrichshafen Gmbh Gasdichtes Gehäuse für Brennstoffzellenstapel mit Montage des Brennstoffzellenstapels
DE4336850A1 (de) * 1993-10-28 1995-05-04 Solentec Ges Fuer Solare Und E Verfahren und Vorrichtung zum Verpressen eines Stapels von Hochtemperatur-Brennstoffzellen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3269866A (en) * 1962-02-28 1966-08-30 United Aircraft Corp Low loss heat mounting system
US4342816A (en) * 1981-04-22 1982-08-03 The United States Of America As Represented By The United States Department Of Energy Fuel cell stack arrangements
GB2128013A (en) * 1982-09-30 1984-04-18 United Technologies Corp Leaking manifold seal
US4973531A (en) * 1988-02-19 1990-11-27 Ishikawajima-Harima Heavy Industries Co., Ltd. Arrangement for tightening stack of fuel cell elements
DE4308780C1 (de) * 1993-03-19 1994-11-17 Daimler Benz Ag Anordnung zum Anschließen von Stapeln von Hochtemperaturbrennstoffzellen

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58119170A (ja) * 1982-01-08 1983-07-15 Toshiba Corp 燃料電池
JPS58165276A (ja) * 1982-03-26 1983-09-30 Fuji Electric Co Ltd 燃料電池のマニホ−ルド構造体
EP0098495A1 (de) * 1982-06-28 1984-01-18 Energy Research Corporation Brennstoffzellensystem
JPS59219866A (ja) * 1983-05-28 1984-12-11 Hokuriku Electric Power Co Inc:The 燃料電池
JPS59219865A (ja) * 1983-05-28 1984-12-11 Hokuriku Electric Power Co Inc:The 燃料電池
US4514475A (en) * 1984-03-30 1985-04-30 The United States Of America As Represented By The United States Department Of Energy Fuel cell separator with compressible sealing flanges
JPH01209671A (ja) * 1988-02-16 1989-08-23 Toshiba Corp 溶融炭酸塩型燃料電池
JPH02160372A (ja) * 1988-12-13 1990-06-20 Toshiba Corp 燃料電池のセパレータ
DE4336850A1 (de) * 1993-10-28 1995-05-04 Solentec Ges Fuer Solare Und E Verfahren und Vorrichtung zum Verpressen eines Stapels von Hochtemperatur-Brennstoffzellen
DE4339405C1 (de) * 1993-11-18 1995-01-12 Mtu Friedrichshafen Gmbh Gasdichtes Gehäuse für Brennstoffzellenstapel mit Montage des Brennstoffzellenstapels

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 229 (E - 203) 12 October 1983 (1983-10-12) *
PATENT ABSTRACTS OF JAPAN vol. 007, no. 288 (E - 218) 22 December 1983 (1983-12-22) *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 089 (E - 309) 18 April 1985 (1985-04-18) *
PATENT ABSTRACTS OF JAPAN vol. 013, no. 518 (E - 848) 20 November 1989 (1989-11-20) *
PATENT ABSTRACTS OF JAPAN vol. 014, no. 421 (E - 0976) 11 September 1990 (1990-09-11) *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005104286A1 (en) * 2004-04-20 2005-11-03 Nissan Motor Co., Ltd. Fuel cell stack and related method
FR3066201A1 (fr) * 2017-05-15 2018-11-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reacteur d'electrolyse ou de co-electrolyse de l'eau (soec) ou pile a combustible (sofc) a fonctionnement sous pression et a systeme de serrage adapte a un tel fonctionnement
WO2018210683A1 (fr) * 2017-05-15 2018-11-22 Commissariat A L'energie Atomique Et Aux Energies Alternatives Reacteur d'electrolyse ou de co-electrolyse de l'eau (soec) ou pile a combustible (sofc) a fonctionnement sous pression et a systeme de serrage adapte a un tel fonctionnement
US11108061B2 (en) 2017-05-15 2021-08-31 Commissariat A L'energie Atomique Et Aux Energies Alternatives Water electrolysis or co-electrolysis reactor (SOEC) or fuel cell (SOFC) for pressurized operation and with a clamping system suitable for such operation
DE102018125788A1 (de) * 2018-09-10 2020-03-12 Deutsches Zentrum für Luft- und Raumfahrt e.V. Elektrochemische Energieumwandlungsvorrichtung
WO2022184828A1 (de) * 2021-03-05 2022-09-09 Ekpo Fuel Cell Technologies Gmbh Brennstoffzellenvorrichtung

Also Published As

Publication number Publication date
DE19517042C1 (de) 1996-12-05

Similar Documents

Publication Publication Date Title
DE19517042C1 (de) Brennstoffzellenanordnung
DE69837848T2 (de) Eine brennstofzellenanordnung
DE112005002126B4 (de) Ausrichtungssystem und -verfahren für sich wiederholende und nicht wiederholende Einheiten in einem Brennstoffzellenstapel
EP0749171B1 (de) Hochtemperatur-Brennstoffzelle
EP0591800A1 (de) Bauelement zum Einbau in eine verfahrenstechnische Einrichtung
DE10040792C2 (de) Polymerelektrolytmembran-Brennstoffzellensystem mit Kühlmedium-Verteilungsraum und-Sammelraum und mit Kühlung durch fluide Medien
DE2828397C2 (de)
EP1086502B1 (de) Stapel aus brennstoffzellen mit flüssigkeitskühlung und verfahren zur kühlung eines bz-stapels
DE3733734A1 (de) Elektrischer akkumulator
EP1371104B1 (de) Brennstoffzelle mit integriertem wärmetauscher
DE112014006238T5 (de) Brennstoffzellenstapel, der einen Endplattenaufbau mit einer sich verjüngenden Federplatte besitzt
EP0064655A1 (de) Überbrückungselement
EP1589602B1 (de) Kontaktfederblech und elektrochemische Batterie mit einem derartigen Kontaktfederblech
DE102020003882A1 (de) Batterie sowie Montagevorrichtung und Verfahren zur Montage der Batterie
DE102005014077B4 (de) Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
DE19645111C2 (de) Raumsparende Zellstapelanordnung aus Festoxidbrennstoffzellen
DE4011079A1 (de) Hochtemperaturbrennstoffzelle
EP1596454A2 (de) Kontaktelement für einen Brennstoffzellenstapel
EP2005505B1 (de) Polarplatte, insbesondere endplatte oder bipolarplatte für eine brennstoffzelle
DE102007012098A1 (de) Kondensatormodul
DE19649456C2 (de) Hochtemperatur-Brennstoffzelle
WO2002071524A1 (de) Brennstoffzellenstapel
DE102022109188B3 (de) Brennstoffzellenstapel und Verfahren zur Montage eines Brennstoffzellenstapels
EP0947026A1 (de) Brennstoffzellenmodul mit einer gasversorgungseinrichtung
EP2850687B1 (de) Elektrischer energiespeicher

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase