WO1996031897A1 - Electron microscope - Google Patents

Electron microscope Download PDF

Info

Publication number
WO1996031897A1
WO1996031897A1 PCT/JP1995/000689 JP9500689W WO9631897A1 WO 1996031897 A1 WO1996031897 A1 WO 1996031897A1 JP 9500689 W JP9500689 W JP 9500689W WO 9631897 A1 WO9631897 A1 WO 9631897A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
electron
electron beam
electron microscope
irradiation area
Prior art date
Application number
PCT/JP1995/000689
Other languages
French (fr)
Japanese (ja)
Inventor
Takafumi Yotsuji
Hiroyuki Kobayashi
Original Assignee
Hitachi, Ltd.
Hitachi Instruments Engineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd., Hitachi Instruments Engineering Co., Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000689 priority Critical patent/WO1996031897A1/en
Publication of WO1996031897A1 publication Critical patent/WO1996031897A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/261Details
    • H01J37/265Controlling the tube; circuit arrangements adapted to a particular application not otherwise provided, e.g. bright-field-dark-field illumination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/22Optical or photographic arrangements associated with the tube

Definitions

  • the present invention relates to an electron microscope, and more particularly to an electron microscope suitable for observing the appearance, shape, and the like of a sample in a wide field of view.
  • the sample When observing a sample with an electron microscope, for example, in a transmission electron microscope, the sample is set on a sample mesh, and the sample mesh is mounted on a sample stage. For this purpose, the sample stage is moved in advance to determine where the desired sample is located on the sample mesh, and is searched on a fluorescent screen for observation or on a CRT monitor with an expensive TV camera attached, and then the desired sample is observed. Perform a new analysis.
  • a method disclosed in Japanese Patent Application Laid-Open No. 1-21844 for example, which has improved the efficiency of sample retrieval.
  • a fluorescent plate for observation, or a CRT monitor is used. It could not be confirmed without constant monitoring.
  • An object of the present invention is to provide an electron microscope capable of easily observing the appearance and shape of a sample with a wide field of view.
  • the above-mentioned object can be achieved without the need for an expensive TV camera, and a transmission image can be created and stored, and a position search using the image can be performed. Where you do it.
  • the present invention provides a method that enables the electron beam irradiation area on the sample to be switched over a wide range by moving or deflecting the sample table, and also to adjust the electron beam irradiation area of the sample caused by the electron beam irradiation. Measure electrons from the area, for example transmitted or secondary electrons. By converting the brightness or color tone according to the amount of electrons in each area measured in this way and displaying the converted brightness or color tone corresponding to the irradiation area of the sample, a wide range of The appearance and shape of the sample can be displayed on one screen.
  • Such features of the present invention use a CRT monitor for the display device, a sample fine movement device for moving the sample stage, and an electron dosimeter for measuring the electron dose transmitted through the sample.
  • An example of searching the sample shape and sample position at an arbitrary magnification is as follows. First, the magnification of the electron microscope image is determined, and a sample shape search execution instruction is issued. The sample stage automatically moves to the sample shape search start position, and the electron microscope image of the sample mounted on the sample stage is displayed on the fluorescent screen. Form an image.
  • the intensity of the electron dose on the fluorescent screen detected by the electron dosimeter is taken in, converted into arbitrary brightness and color tone data, and corresponded to the coordinate position of the sample table obtained from the sample fine movement device, and the CRT monitor is used. It is displayed in an arbitrary number of pixels. Subsequently, the sample stage is moved by a movement amount that is linked to the magnification of the electron microscope so that the next field of view is imaged on the fluorescent screen, and the converted electron dose data is similarly displayed on the CRT monitor. The image showing the shape of the sample is displayed on the CRT monitor by sequentially repeating the display on the CRT monitor.
  • the intensity of the electron dose obtained from the electron dosimeter is inversely proportional to the thickness of the sample.
  • the brightness or color tone of the sample image displayed on the CRT monitor is the thickness of the sample. It indicates the relative value of the height.
  • FIG. 1 is a configuration diagram of a transmission electron microscope showing one embodiment of the present invention.
  • FIG. 2 is a flowchart showing an example of a sample shape automatic search program built in the CPU of FIG.
  • Fig. 3 is a configuration diagram showing a specific example of the electron beam transmission area and brightness data conversion in Fig. 1.
  • Figure 4 is a three-dimensional display showing the shape of the sample.
  • FIG. 5 is a configuration diagram of a transmission electron microscope showing an embodiment using an electric visual field moving means.
  • FIG. 6 is a configuration diagram of a scanning electron microscope according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • the electron beam irradiation area switching device is configured by a sample table and a sample fine movement device
  • the electron measurement device is configured by an electron dosimetry device using a fluorescent plate.
  • the electron beam irradiation area switching device is configured by a sample table and a sample fine movement device
  • the electron measurement device is configured by an electron dosimetry device using a fluorescent plate.
  • FIG. 1 is a configuration diagram of a transmission electron microscope showing one embodiment of the present invention.
  • the electron microscope 1 emits the electron beam 2 from the electron gun 1, converges on the irradiation lens 3, and irradiates the sample 5 mounted on the sample stage 4.
  • the electron beam 2 transmitted through the sample 5 is enlarged by the imaging lens 6 and forms an electron microscope image on the fluorescent screen 7.
  • the sample stage 4 is driven by a sample fine movement device 8, and the magnification of the electron microscope image is controlled by a magnification control device 9.
  • the intensity of the electron dose from the fluorescent screen 7 is obtained from the electron dosimeter 10.
  • the CPU 11 is connected to a sample fine movement device 8, a magnification control device 9, an electron dosimeter 10 and a CRT monitor 12.
  • the sample fine-movement device 8 drives the sample stage 4 by combining two axes of the X-axis direction and the Y-axis direction, and sets the movement coordinates in the X-axis direction and the Y-axis direction according to CPI 11 to move the sample stage 4 It can be moved, and when the movement of the sample stage 4 is completed, the CPU 11 is instructed to complete the movement.
  • the CPU 11 takes in the intensity of the electron dose on the fluorescent screen 7 detected by the electron dosimeter 10 and converts it into brightness or color tone data to convert it into a CRT monitor 1 2 To be displayed.
  • the shape of the sample 5 can be displayed on the CRT monitor 12 by sequentially repeating the movement of the sample table 4, the capture of the electron dose intensity, the brightness conversion, and the display. These series of sample shape searches are executed via the CPU 11 based on the flowchart of the sample shape automatic search program shown in FIG.
  • sample shape automatic search program When the sample shape automatic search program starts, the sample shape search range specification A 2, sample shape search magnification specification A 3, brightness or color tone specification A 4, CRT display pixel number specification A 5 are requested, and the operator follows the request message. Make the settings in order.
  • Sample shape search range specification A2 is a search range specification for sample 5 in the X and Y directions, and two coordinates are specified by diagonal coordinates within a range of ⁇ 100.0 0.0 ⁇ .
  • Sample shape search magnification specification A3 is electron microscope for shape search Specify the magnification of the mirror.
  • the specified magnification can be obtained by setting the excitation conditions of the irradiation lens 3 and the imaging lens 6 from the magnification controller 9 via the CPU 11. Since the designated magnification is the magnification of the electron microscope image on the fluorescent screen 7, the amount of movement with respect to the sample 5 must be calculated. That is, by moving the sample stage 4 by a moving amount linked to the magnification, the electron dose transmitted through the entire sample 5 is received on the fluorescent screen 7 and can be obtained as the intensity of the electron dose via the electron dosimeter 10. .
  • FIG. 3 is a configuration diagram showing the correspondence between the electron beam transmission area of the sample 5a and the data converted into the luminance to be displayed on the CRT monitor 12a.
  • P 0 (X 0, Y 0) is the coordinate of the sample shape search start point
  • P n (Xn, Y ⁇ ) is the coordinate of the sample shape search end point, which coincides with the diagonal coordinates of the sample shape search range.
  • ⁇ and Ay are the amounts of movement of the sample 5a in the X and Y axis directions linked to the magnification. In the present example, the amount of movement corresponding to 15 cm on the fluorescent plate was set in consideration of the overlap of the electron microscope images. Also, a case will be described in which the luminance of the CRT monitor 12a in units of pixels is displayed in 256 gradations (gray scale), but the present invention is not limited to 256 gradations. As for the color tone specification, a gradation is provided for each of R (red), G (green), and B (blue). When the sample shape search magnification is Mag, ⁇ and ⁇ y are obtained by the following equations.
  • Sample 5a moves to PO (X 0, YO), PI (XI, Y l), P 2 (X 2, Y 2) in order of sample shape search end point P n (Xn, ⁇ ) .
  • the route of the movement is not particularly limited.
  • Brightness or hue designation A4 is read via the electron dosimeter 10 Specifies the level for converting the intensity of the electron dose into luminance information. Normally, when pixels are displayed in gray scale, black points are displayed when the luminance data is zero, and white points when the luminance data is 256.
  • the minimum value of the electron dose transmitted through sample 5a is specified by the luminance data near 256 of 256 gradations, and the maximum value of the electron dose is similarly calculated by the luminance data of 256 gradations near 256. By specifying, the brightness data proportional to the transmitted electron dose can be easily calculated.
  • the intensity distribution of 256 gradations can be displayed by associating the intensity of an arbitrary electron dose with zero or 256 in the luminance data.
  • CRT display pixel number specification A5 specifies that the sample shape search coordinates of sample 5a correspond to the number of CRT pixels, and arbitrarily specifies from 1 X 1 pixel to the unit of 10 X ⁇ 0 pixel.
  • the magnification for performing the sample shape search while keeping the sample shape search range constant, the lower the magnification, the smaller the number of sample shape searches, and the higher the magnification, the greater the number of sample shape searches. Therefore, when the magnification is low, the unit of the number of pixels is increased, and the unit of the number of pixels is displayed with the same luminance data, so that the enlarged display can be performed on the CRT monitor 12a.
  • the unit of the number of pixels is reduced, the intensity of the electron dose obtained from the corresponding sample shape search coordinates is averaged, and the unit of the number of pixels is displayed, thereby reducing the display on the CRT monitor 12a. It can be performed.
  • the accuracy of the sample shape display is improved by searching the sample shape at a high magnification and performing a reduced display on the CRT monitor 12a.
  • a specific example of a 3 ⁇ 3 pixel unit is shown.
  • a means 15 for averaging the electron dose intensity obtained from the corresponding sample shape search coordinates is required, but the enlarged display is performed. In this case, the averaging means 15 is unnecessary.
  • the sample shape automatic search program 8 is moved to move the sample 5a to the shape search start position coordinate P 0 (X 0, Y 0) (corresponding to the processing of A 6 in the flow chart).
  • a movement completion instruction is issued from the sample fine movement device 8 to the CPU 11, and the intensity of the electron dose from the fluorescent screen 7a is measured via the electron dosimeter 10a. And converts it into the luminance data described above. Further, the same number of pixels as the pixel number unit 14 specified by the CRT display pixel number specification A 5 are set to the same luminance data, and the display is performed from the upper left of the CRT monitor 12 a.
  • the sample fine movement device 8 is driven, and the sample 5a is moved to the next shape search position coordinate P1 (XI, Y1). Execute the process repeatedly.
  • the sample shape automatic search program ends and the CR ⁇ monitor 1 2a displays the sample 5 within the search range.
  • the shape of a is displayed in gray scale. It is extremely easy to store the displayed grayscale on the hard disk or the floppy disk via the CPU 11 or to redisplay the stored image.
  • the intensity of the electron dose transmitted through the sample is inversely proportional to the thickness of the sample. In other words, the electron dose intensity decreases as the sample thickness increases. Therefore, by executing the sample shape automatic search program, it is possible to confirm the difference in sample thickness with the grayscale image displayed on the CRT 12a. Further, by setting the luminance data of the image displayed on the CRT 12a as the relative thickness of the sample, the thickness of the sample can be relatively measured.
  • three-dimensional display can be performed by displaying the electron dose intensity in the vertical direction, the sample shape search coordinate X in the horizontal direction, and the sample shape search coordinate Y in the depth direction on the CRT monitor 12 (Fig. 4). ).
  • the driving means of the sample stage on which the sample is mounted can be replaced with the electric visual field moving means 8a using the deflection coil 16 shown in FIG.
  • the shape of a sample can be searched by an unmanned state with a simple operation, which is extremely suitable for automating sample shape search and improving the work efficiency of an electron microscope.
  • FIG. 6 shows an example of the configuration when the present invention is applied to a scanning electron microscope.
  • the electron beam 2 converged by the converging lens 17 is deflected and scanned by the deflection coil 18 and is scanned on the sample 5 via the objective lens 19.
  • One scan image is obtained by setting and scanning the set area once. Therefore, as in the embodiment shown in FIG. 1, the sample stage 4 is driven by the sample fine movement device 8 every time one area is scanned, and the sample irradiation area is switched by repeating this operation sequentially.
  • the amount of secondary electrons in each area is detected by the secondary electron detector 21 and converted into brightness or color tone data corresponding to the amount of electrons in each area by the CPU 11 as in the embodiment of FIG.
  • Each scanning area of the sample 5 is displayed on the display device 12 in a form represented by one luminance or color tone. Therefore, a wide visual field image of the whole or part of the appearance and shape of the sample 5 can be easily observed.
  • the present invention it is possible to propose a new microscope image capable of observing the external appearance and shape of a sample in a wide field of view without being restricted by a conventional fluorescent plate for observation and without requiring a TV camera or the like.
  • the working efficiency of a transmission electron microscope can be dramatically improved.

Abstract

Images related to the appearance and shape of a sample (5) are displayed by automatically moving a sample stage (4) mounted with a sample (5) by an amount of movement determined in accordance with the magnification of an electron microscope, inputting the intensity of electron beam impinging on the fluorescent screen (7), converting the intensity into arbitrary luminance or color tone data, and, displaying the luminance or color tone data on a CRT monitor in units of an arbitrary number of picture elements. The image of the sample (5) can be observed in a wide visual field without requiring any special device, and therefore, the working efficiency of the electron microscope is remarkably improved.

Description

明 細 書  Specification
電子顕微鏡 技術分野  Electron microscope technology
本発明は電子顕微鏡に係り、 特に試料の外観, 形状等を広視野で観察 するに適した電子顕微鏡に関する。 背景技術  The present invention relates to an electron microscope, and more particularly to an electron microscope suitable for observing the appearance, shape, and the like of a sample in a wide field of view. Background art
電子顕微鏡で試料観察を行う場合、 例えば透過電子顕微鏡では、 試料 を試料メッシュに設定し、 さらに試料メッシュを試料台に装着する。 こ のため所望の試料が試料メッシュの何処に存在するかを予め試料台を移 動し、 観察用蛍光板上または高価な T Vカメラを付属して C R Tモニタ 上で検索した後、 所望の試料の観察, 分析をあらためて行う。 近年試料 検索の高効率化を図った特開平 1— 21 1844 号等に開示される手法はある が、 試料メッシュの何処に、 如何なる形状で試料が存在するのか、 観察 用蛍光板、 または C R Tモニタ を常に監視していなければ確認すること ができなかった。  When observing a sample with an electron microscope, for example, in a transmission electron microscope, the sample is set on a sample mesh, and the sample mesh is mounted on a sample stage. For this purpose, the sample stage is moved in advance to determine where the desired sample is located on the sample mesh, and is searched on a fluorescent screen for observation or on a CRT monitor with an expensive TV camera attached, and then the desired sample is observed. Perform a new analysis. In recent years, there has been a method disclosed in Japanese Patent Application Laid-Open No. 1-21844, for example, which has improved the efficiency of sample retrieval. However, where the sample mesh is, in what shape the sample exists, a fluorescent plate for observation, or a CRT monitor is used. It could not be confirmed without constant monitoring.
他方、 走査電子顕微鏡は、 二次電子像を表示する C R Tモニタを常設 しておリ、 像観察が比較的容易であるが、 大きな試料の形状、 更にはそ の中の観察箇所を特定することは容易でない。 このため、 例えば特公平 4— 74824号公報では、 複数枚の二次電子像を合成することで、 広視野の 像を得る方法が提案されている。 しかしながら、 このためには複雑な処 理を必要としていた。 発明の開示 本発明の目的は、 試料の外観 · 形状を広視野でもって簡単に観察する ことのできる電子顕微鏡を提供するにある。 特に、 透過電子顕微鏡であ つても、 高価な T Vカメラを必要とせずに上記目的を実現し、 透過像の 画像を作成 · 保持することができ、 当該画像を利用した位置検索等をも 可能にするところにある。 Scanning electron microscopes, on the other hand, have a permanent CRT monitor that displays secondary electron images, making image observation relatively easy.However, it is necessary to specify the shape of a large sample and the observation points within it. Is not easy. For this reason, for example, Japanese Patent Publication No. 4-74824 proposes a method of obtaining a wide-field image by combining a plurality of secondary electron images. However, this required complicated processing. Disclosure of the invention An object of the present invention is to provide an electron microscope capable of easily observing the appearance and shape of a sample with a wide field of view. In particular, even with a transmission electron microscope, the above-mentioned object can be achieved without the need for an expensive TV camera, and a transmission image can be created and stored, and a position search using the image can be performed. Where you do it.
このような目的を達成するため、 本発明は、 試料への電子線照射領域 を、 試料台の移動又は偏向装置によって、 広範囲に切換えできるように すると共に、 この電子線照射によって生ずる上記試料の各領域からの電 子、 例えば透過電子又は二次電子を測定する。 このようにして測定され た各領域ごとの電子の量に応じた輝度又は色調に変換し、 上記試料の照 射領域に対応させて、 上記変換された輝度又は色調を表示することで、 広範囲の試料の外観 · 形状を一画面上に表示できるようにしたところに ある。  In order to achieve such an object, the present invention provides a method that enables the electron beam irradiation area on the sample to be switched over a wide range by moving or deflecting the sample table, and also to adjust the electron beam irradiation area of the sample caused by the electron beam irradiation. Measure electrons from the area, for example transmitted or secondary electrons. By converting the brightness or color tone according to the amount of electrons in each area measured in this way and displaying the converted brightness or color tone corresponding to the irradiation area of the sample, a wide range of The appearance and shape of the sample can be displayed on one screen.
このような本発明の特徵を、 特に透過電子顕微鏡との関係において、 表示装置は C R Tモニタ、 試料台の移動は試料微動装置、 試料を透過し た電子線量の測定は電子線量測定装置を用い、 任意の倍率における試料 の形状、 および試料の位置検索を行う例について言えば、 次の通りであ る。 まず電子顕微鏡像の倍率を決定し、 試料形状検索の実行指示を行う ことで、 自動的に試料台が試料形状検索開始位置に移動し、 試料台に装 着した試料の電子顕微鏡像が蛍光板に結像する。 この時電子線量測定装 置によって検出された蛍光板上の電子線量の強度を取り込み、 任意の輝 度および色調データに変換し、 試料微動装置より得られる試料台の座標 位置と対応させ、 C R Tモニタに任意の画素数単位で表示する。 引き続 き蛍光板上に次の視野が結像されるように電子顕微鏡の倍率に連動した 移動量で試料台を移動し、 同様に電子線量の変換データを C R Tモニタ に表示することを逐次繰り返すことで、 C R Tモニタ上に試料の形状を 示す画像が表示される。 ところで、 試料の組成が均一な場合、 電子線量 測定装置より得られる電子線量の強度は、 試料の厚さに反比例するため, C R Tモニタに表示される試料の画像における輝度または色調は、 試料 の厚さの相対値を示すことになる。 これらの動作, 手段を C P U制御で 自動化することで、 試料の形状検索の効率が飛躍的に向上する。 図面の簡単な説明 Such features of the present invention, particularly in relation to a transmission electron microscope, use a CRT monitor for the display device, a sample fine movement device for moving the sample stage, and an electron dosimeter for measuring the electron dose transmitted through the sample. An example of searching the sample shape and sample position at an arbitrary magnification is as follows. First, the magnification of the electron microscope image is determined, and a sample shape search execution instruction is issued.The sample stage automatically moves to the sample shape search start position, and the electron microscope image of the sample mounted on the sample stage is displayed on the fluorescent screen. Form an image. At this time, the intensity of the electron dose on the fluorescent screen detected by the electron dosimeter is taken in, converted into arbitrary brightness and color tone data, and corresponded to the coordinate position of the sample table obtained from the sample fine movement device, and the CRT monitor is used. It is displayed in an arbitrary number of pixels. Subsequently, the sample stage is moved by a movement amount that is linked to the magnification of the electron microscope so that the next field of view is imaged on the fluorescent screen, and the converted electron dose data is similarly displayed on the CRT monitor. The image showing the shape of the sample is displayed on the CRT monitor by sequentially repeating the display on the CRT monitor. By the way, when the composition of the sample is uniform, the intensity of the electron dose obtained from the electron dosimeter is inversely proportional to the thickness of the sample.Therefore, the brightness or color tone of the sample image displayed on the CRT monitor is the thickness of the sample. It indicates the relative value of the height. By automating these operations and means under CPU control, the efficiency of sample shape search is dramatically improved. BRIEF DESCRIPTION OF THE FIGURES
第 1 図は本発明の一実施例を示す透過電子顕微鏡の構成図。  FIG. 1 is a configuration diagram of a transmission electron microscope showing one embodiment of the present invention.
第 2図は第 1 図の C P Uに内蔵される試料形状自動検索プログラム例 を示すフローチヤ一ト図。  FIG. 2 is a flowchart showing an example of a sample shape automatic search program built in the CPU of FIG.
第 3図は第 1 図の電子線透過領域, 輝度データ変換の具体例を示す構 成図。  Fig. 3 is a configuration diagram showing a specific example of the electron beam transmission area and brightness data conversion in Fig. 1.
第 4図は試料の形状を示す 3次元表示図。  Figure 4 is a three-dimensional display showing the shape of the sample.
第 5図は電気的な視野移動手段を用いた実施例を示す透過電子顕微鏡 の構成図。  FIG. 5 is a configuration diagram of a transmission electron microscope showing an embodiment using an electric visual field moving means.
第 6図は本発明の他の実施例に係る走査電子顕微鏡の構成図。 発明を実施するための最良の形態  FIG. 6 is a configuration diagram of a scanning electron microscope according to another embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の一実施例を、 特に有効な透過電子顕微鏡に適用した場 合を例に挙げて詳述する。 尚、 この実施例では、 電子線照射領域切換装 置を試料台及び試料微動装置で構成し、 電子測定装置を蛍光板利用の電 子線量測定装置で構成した場合を例に挙げて説明するが、 これらに限ら れるべきものでないことは勿論である。  Hereinafter, an embodiment of the present invention will be described in detail with reference to an example in which the present invention is applied to a particularly effective transmission electron microscope. Note that, in this embodiment, an example will be described in which the electron beam irradiation area switching device is configured by a sample table and a sample fine movement device, and the electron measurement device is configured by an electron dosimetry device using a fluorescent plate. Of course, it is not limited to these.
第 1 図は本発明の一実施例を示す透過電子顕微鏡の構成図である。 透 過電子顕微鏡は電子銃 1 よリ電子線 2を放出し、 照射系レンズ 3で収束 し、 試料台 4に装着した試料 5に照射する。 試料 5を透過した電子線 2 は、 結像系レンズ 6により拡大され、 蛍光板 7上に電子顕微鏡像を結像 する。 試料台 4は試料微動装置 8で駆動し、 電子顕微鏡像の倍率は倍率 制御装置 9で制御する。 蛍光板 7からの電子線量の強度は電子線量測定 装置 1 0より得られる。 C PU 1 1 は試料微動装置 8, 倍率制御装置 9 , 電子線量測定装置 1 0, C R Tモニタ 1 2に接続されている。 試料微動 装置 8は試料台 4 を X軸方向と Y軸方向の 2軸の合成で駆動し、 CPI」11 よリ X軸方向と Y軸方向の移動座標を設定することで、 試料台 4 を移動 することができ、 更に試料台 4の移動が完了した場合、 C P U 1 1 に移 動完了を指示する。 C P U 1 1は試料微動装置 8からの移動完了指示を 受けると、 電子線量測定装置 1 0によって検出された蛍光板 7上の電子 線量の強度を取り込み、 輝度または色調データに変換して C R Tモニタ 1 2に表示する。 試料台 4の移動、 電子線量強度の取り込み、 輝度変換 および表示を逐次繰り返すことで、 試料 5の形状を C R Tモニタ 1 2に 表示することができる。 これら一連の試料形状検索は C P U 1 1 を介し て、 第 2図に示す試料形状自動検索プログラムのフローチヤ一卜に基づ き実行される。 FIG. 1 is a configuration diagram of a transmission electron microscope showing one embodiment of the present invention. Transparent The electron microscope 1 emits the electron beam 2 from the electron gun 1, converges on the irradiation lens 3, and irradiates the sample 5 mounted on the sample stage 4. The electron beam 2 transmitted through the sample 5 is enlarged by the imaging lens 6 and forms an electron microscope image on the fluorescent screen 7. The sample stage 4 is driven by a sample fine movement device 8, and the magnification of the electron microscope image is controlled by a magnification control device 9. The intensity of the electron dose from the fluorescent screen 7 is obtained from the electron dosimeter 10. The CPU 11 is connected to a sample fine movement device 8, a magnification control device 9, an electron dosimeter 10 and a CRT monitor 12. The sample fine-movement device 8 drives the sample stage 4 by combining two axes of the X-axis direction and the Y-axis direction, and sets the movement coordinates in the X-axis direction and the Y-axis direction according to CPI 11 to move the sample stage 4 It can be moved, and when the movement of the sample stage 4 is completed, the CPU 11 is instructed to complete the movement. When receiving the movement completion instruction from the sample fine movement device 8, the CPU 11 takes in the intensity of the electron dose on the fluorescent screen 7 detected by the electron dosimeter 10 and converts it into brightness or color tone data to convert it into a CRT monitor 1 2 To be displayed. The shape of the sample 5 can be displayed on the CRT monitor 12 by sequentially repeating the movement of the sample table 4, the capture of the electron dose intensity, the brightness conversion, and the display. These series of sample shape searches are executed via the CPU 11 based on the flowchart of the sample shape automatic search program shown in FIG.
次に第 2図, 第 3図を用いて試料形状自動検索プログラムを詳述する。 試料形状自動検索プログラムを開始すると、 試料形状検索範囲指定 A 2 , 試料形状検索倍率指定 A 3, 輝度または色調指定 A 4 , C R T表 示画素数指定 A 5が要求され、 オペレータ一は要求メッセージに従い順 次設定を行う。 試料形状検索範囲指定 A 2は、 試料 5に対する X, Y方 向の検索範囲の指定であり、 ± 1 0 0 0.0 μ πι の範囲で対角線座標で 2座標指定する。 試料形状検索倍率指定 A 3は形状検索を行う電子顕微 鏡の倍率を指定する。 指定した倍率は C P U 1 1 を介して倍率制御装置 9より、 照射系レンズ 3および結像系レンズ 6の励磁条件を設定するこ とで得られる。 また指定した倍率は蛍光板 7上での電子顕微鏡像の倍率 となるため、 試料 5上に対する移動量を算出しなければならない。 即ち 試料台 4 を倍率に連動した移動量で移動することで、 試料 5全てを透過 する電子線量を蛍光板 7上で受け取り、 電子線量測定装置 1 0を介して 電子線量の強度として得ることができる。 第 3図は試料 5 aにおける電 子線透過領域および C R Tモニタ 1 2 aに表示する輝度に変換したデー タとの対応を示す構成図である。 P 0 (X 0 , Y 0 ) は試料形状検索開 始点座標、 P n (Xn, Y η) は試料形状検索終了点座標であり、 試料 形状検索範囲の対角線座標に一致する。 また Δ χ, A yは倍率に連動し た X, Y軸方向の試料 5 aの移動量である。 本実施例では電子顕微鏡像 の重なりを考慮し、 蛍光板上で 1 5cmに相当する移動量とした。 また C RTモニタ 1 2 aの画素数単位の輝度を 2 5 6階調(グレースケール) で表示した場合について述べるが、 2 5 6階調に限定されるものではな い。 色調指定に関しても、 R (赤) , G (緑) , B (青) 毎にそれぞれ 階調を設けることでグレースケールと同様に容易に指定することができ るので省略する。 試料形状検索倍率を M a gとした場合、 Δ χおよび Δ yは次式で求める。 Next, the sample shape automatic search program will be described in detail with reference to Figs. When the sample shape automatic search program starts, the sample shape search range specification A 2, sample shape search magnification specification A 3, brightness or color tone specification A 4, CRT display pixel number specification A 5 are requested, and the operator follows the request message. Make the settings in order. Sample shape search range specification A2 is a search range specification for sample 5 in the X and Y directions, and two coordinates are specified by diagonal coordinates within a range of ± 100.0 0.0 μππι. Sample shape search magnification specification A3 is electron microscope for shape search Specify the magnification of the mirror. The specified magnification can be obtained by setting the excitation conditions of the irradiation lens 3 and the imaging lens 6 from the magnification controller 9 via the CPU 11. Since the designated magnification is the magnification of the electron microscope image on the fluorescent screen 7, the amount of movement with respect to the sample 5 must be calculated. That is, by moving the sample stage 4 by a moving amount linked to the magnification, the electron dose transmitted through the entire sample 5 is received on the fluorescent screen 7 and can be obtained as the intensity of the electron dose via the electron dosimeter 10. . FIG. 3 is a configuration diagram showing the correspondence between the electron beam transmission area of the sample 5a and the data converted into the luminance to be displayed on the CRT monitor 12a. P 0 (X 0, Y 0) is the coordinate of the sample shape search start point, and P n (Xn, Y η) is the coordinate of the sample shape search end point, which coincides with the diagonal coordinates of the sample shape search range. Δχ and Ay are the amounts of movement of the sample 5a in the X and Y axis directions linked to the magnification. In the present example, the amount of movement corresponding to 15 cm on the fluorescent plate was set in consideration of the overlap of the electron microscope images. Also, a case will be described in which the luminance of the CRT monitor 12a in units of pixels is displayed in 256 gradations (gray scale), but the present invention is not limited to 256 gradations. As for the color tone specification, a gradation is provided for each of R (red), G (green), and B (blue). When the sample shape search magnification is Mag, Δχ and Δy are obtained by the following equations.
Δ X = 0. 1 5 /Mag  Δ X = 0.15 / Mag
… (数 1 ) … (Number 1)
Δ y = 0. 1 5 /Mag Δ y = 0.15 / Mag
試料 5 aは P O (X 0 , Y O) , P I (X I , Y l ) , P 2 (X 2 , Y 2 ) の順に、 試料形状検索終了点座標 P n (Xn, Υ η) まで移動を 行う。 移動の経路に関しては特に限定されるものではない。  Sample 5a moves to PO (X 0, YO), PI (XI, Y l), P 2 (X 2, Y 2) in order of sample shape search end point P n (Xn, Υη) . The route of the movement is not particularly limited.
輝度または色調指定 A 4は、 電子線量測定装置 1 0を介して読み込ん だ電子線量の強度を輝度情報に変換するためのレベルを指定する。 通常 グレースケールで画素を表示すると、 輝度データが零の場合は黒色、 輝 度データが 2 5 6の場合は白色の輝点が表示される。 試料 5 a を透過し た電子線量の最小値を 2 5 6階調の零近くの輝度データで指定し、 同様 に電子線量の最大値を 2 5 6階調の 2 5 6近くの輝度データで指定する ことで、 透過した電子線量に比例した輝度データを容易に算出すること ができる。 また詳細に試料の形状を検索するには、 任意の電子線量の強 度を、 輝度データの零または 2 5 6に対応させることで、 2 5 6階調の 強度分布を表示することができる。 Brightness or hue designation A4 is read via the electron dosimeter 10 Specifies the level for converting the intensity of the electron dose into luminance information. Normally, when pixels are displayed in gray scale, black points are displayed when the luminance data is zero, and white points when the luminance data is 256. The minimum value of the electron dose transmitted through sample 5a is specified by the luminance data near 256 of 256 gradations, and the maximum value of the electron dose is similarly calculated by the luminance data of 256 gradations near 256. By specifying, the brightness data proportional to the transmitted electron dose can be easily calculated. To search the sample shape in detail, the intensity distribution of 256 gradations can be displayed by associating the intensity of an arbitrary electron dose with zero or 256 in the luminance data.
C R T表示画素数指定 A 5は試料 5 aの試料形状検索座標を、 C R T の画素数に対応させる指定で、 1 X 1 画素より 1 0 X 〗 0画素の単位ま で任意に指定する。 試料形状検索範囲を一定にして、 試料形状検索を行 う倍率を変更する場合、 倍率を低くすると試料形状検索数が少なくなリ、 倍率を高くすると試料形状検索数が多くなる。 このため低倍率時には画 素数の単位を大きく し、 同一の輝度データで画素数の単位を表示するこ とで、 C R Tモニタ 1 2 a上で拡大表示を行うことができる。 また高倍 率時には画素数の単位を小さく し、 対応する試料形状検索座標よリ得ら れる電子線量の強度を平均化し、 画素数の単位を表示することで、 CRT モニタ 1 2 a上で縮小表示を行うことができる。 高倍率で試料形状検索 を行い C R Tモニタ 1 2 a上で縮小表示を行うことで試料形状表示の精 度は向上する。 本実施例では 3 X 3画素単位の具体例を示すが、 縮小表 示の場合対応する試料形状検索座標よリ得られる電子線量の強度を平均 化する手段 1 5が必要であるが、 拡大表示の場合には平均化する手段 1 5は不要である。  CRT display pixel number specification A5 specifies that the sample shape search coordinates of sample 5a correspond to the number of CRT pixels, and arbitrarily specifies from 1 X 1 pixel to the unit of 10 X〗 0 pixel. When changing the magnification for performing the sample shape search while keeping the sample shape search range constant, the lower the magnification, the smaller the number of sample shape searches, and the higher the magnification, the greater the number of sample shape searches. Therefore, when the magnification is low, the unit of the number of pixels is increased, and the unit of the number of pixels is displayed with the same luminance data, so that the enlarged display can be performed on the CRT monitor 12a. When the magnification is high, the unit of the number of pixels is reduced, the intensity of the electron dose obtained from the corresponding sample shape search coordinates is averaged, and the unit of the number of pixels is displayed, thereby reducing the display on the CRT monitor 12a. It can be performed. The accuracy of the sample shape display is improved by searching the sample shape at a high magnification and performing a reduced display on the CRT monitor 12a. In this embodiment, a specific example of a 3 × 3 pixel unit is shown. In the case of a reduced display, a means 15 for averaging the electron dose intensity obtained from the corresponding sample shape search coordinates is required, but the enlarged display is performed. In this case, the averaging means 15 is unnecessary.
上記指定が終了すると、 試料形状自動検索プログラムは試料微動装置 8を駆動し、 試料 5 aを形状検索開始位置座標 P 0 (X 0, Y 0) へ移 動する (フローチヤ一 卜図では A 6の処理に対応。 ) 。 試料 5 aが形状 検索位置座標に移動が完了すると、 C P U 1 1に試料微動装置 8から移 動完了指示が発生し、 蛍光板 7 aからの電子線量の強度を電子線量測定 装置 1 0 aを介して取り込み、 前述した輝度データに変換する。 更に C RT表示画素数指定 A 5で指定した画素数単位 1 4を同一の輝度デー タに設定し、 C R Tモニタ 1 2 aの左上部より表示する。 (フローチヤ ー ト図では A 7 , A 8の処理に対応。 ) 引続き試料微動装置 8を駆動し、 試料 5 aを次の形状検索位置座標 P 1 (X I , Y 1 ) へ移動し、 同様な 処理を繰返し実行する。 C R Tモニタ 1 2 aへ表示した試料の輝度デー タが P n (Xn, Y η) になった場合、 試料形状自動検索プログラムは 終了となり、 C R Τモニタ 1 2 aには検索範囲内の試料 5 aの形状がグ レースケールで表示される。 表示されたグレースケールを C P U 1 1 を 介して、 ハー ドディスクまたはフロッピーディスクに格納または格納し た画像を再表示することは至極容易なことである。 When the above specification is completed, the sample shape automatic search program 8 is moved to move the sample 5a to the shape search start position coordinate P 0 (X 0, Y 0) (corresponding to the processing of A 6 in the flow chart). When the movement of the sample 5a to the shape search position coordinates is completed, a movement completion instruction is issued from the sample fine movement device 8 to the CPU 11, and the intensity of the electron dose from the fluorescent screen 7a is measured via the electron dosimeter 10a. And converts it into the luminance data described above. Further, the same number of pixels as the pixel number unit 14 specified by the CRT display pixel number specification A 5 are set to the same luminance data, and the display is performed from the upper left of the CRT monitor 12 a. (Corresponds to the processing of A7 and A8 in the flow chart.) Then, the sample fine movement device 8 is driven, and the sample 5a is moved to the next shape search position coordinate P1 (XI, Y1). Execute the process repeatedly. When the brightness data of the sample displayed on the CRT monitor 1 2a becomes P n (Xn, Y η), the sample shape automatic search program ends and the CR Τ monitor 1 2a displays the sample 5 within the search range. The shape of a is displayed in gray scale. It is extremely easy to store the displayed grayscale on the hard disk or the floppy disk via the CPU 11 or to redisplay the stored image.
また、 形状検索を行う試料の組成が均一であれば、 試料を透過する電 子線量の強度は、 試料の厚さに反比例する。 即ち試料の厚さが厚い程電 子線量の強度は小さくなる。 よって試料形状自動検索プログラムを実行 することで、 試料の厚さの違いを CRT12aに表示されるグレースケールの 画像で確認することが可能となる。 更に CRT12aに表示される画像の輝度 データを、 相対的な試料の厚さ量とすることで、 試料の厚さを相対的に 測定することができる。  In addition, if the composition of the sample to be searched is uniform, the intensity of the electron dose transmitted through the sample is inversely proportional to the thickness of the sample. In other words, the electron dose intensity decreases as the sample thickness increases. Therefore, by executing the sample shape automatic search program, it is possible to confirm the difference in sample thickness with the grayscale image displayed on the CRT 12a. Further, by setting the luminance data of the image displayed on the CRT 12a as the relative thickness of the sample, the thickness of the sample can be relatively measured.
また、 C RTモニタ 1 2上で電子線量の強度を縦方向、 試料形状検索 座標 Xを横方向、 試料形状検索座標 Yを奥行き方向で示すことで 3次元 表示を行うことができる (第 4図) 。 上記の説明において、 試料を装着した試料台の駆動手段を、 第 5図に 示す偏向コイル 1 6 を用いた電気的な視野移動手段 8 aに代替する構成 としても、 同様に可能である。 In addition, three-dimensional display can be performed by displaying the electron dose intensity in the vertical direction, the sample shape search coordinate X in the horizontal direction, and the sample shape search coordinate Y in the depth direction on the CRT monitor 12 (Fig. 4). ). In the above description, the driving means of the sample stage on which the sample is mounted can be replaced with the electric visual field moving means 8a using the deflection coil 16 shown in FIG.
本実施例によれば、 容易な操作で無人状態で試料の形状検索を行うこ とができ、 試料形状検索の自動化と電子顕微鏡の作業効率向上を図る上 で極めて好適なものである。  According to the present embodiment, the shape of a sample can be searched by an unmanned state with a simple operation, which is extremely suitable for automating sample shape search and improving the work efficiency of an electron microscope.
第 6図は本発明を走査電子顕微鏡に適用した場合の一構成例を示す。 図において、 収束レンズ 1 7で収束された電子線 2は、 偏向コイル 1 8 によって偏向走査され、 対物レンズ 1 9 を介して試料 5上に走査される この時の走査領域を倍率制御装置 9で設定し、 この設定された領域を一 回走査することにより、 一枚の走査像が得られる。 そこで、 第 1 図実施 例と同様に、 一領域走査ごとに試料台 4 を試料微動装置 8で駆動し、 こ の動作を順次繰り返すことで試料照射領域の切換えを行う。 各領域ごと の 2次電子量は、 2次電子検出器 2 1 で検出され、 第 1 図実施例と同様 に、 C P U 1 1 で各領域の電子量に応じた輝度又は色調データに変換さ れ、 試料 5の各走査領域が一つの輝度又は色調に代表された形で表示装 置 1 2に表示される。 したがって、 試料 5の外観 · 形状の全体又は一部 の広い視野像を簡単に観察することができる。 産業上の利用可能性  FIG. 6 shows an example of the configuration when the present invention is applied to a scanning electron microscope. In the figure, the electron beam 2 converged by the converging lens 17 is deflected and scanned by the deflection coil 18 and is scanned on the sample 5 via the objective lens 19. One scan image is obtained by setting and scanning the set area once. Therefore, as in the embodiment shown in FIG. 1, the sample stage 4 is driven by the sample fine movement device 8 every time one area is scanned, and the sample irradiation area is switched by repeating this operation sequentially. The amount of secondary electrons in each area is detected by the secondary electron detector 21 and converted into brightness or color tone data corresponding to the amount of electrons in each area by the CPU 11 as in the embodiment of FIG. Each scanning area of the sample 5 is displayed on the display device 12 in a form represented by one luminance or color tone. Therefore, a wide visual field image of the whole or part of the appearance and shape of the sample 5 can be easily observed. Industrial applicability
本発明によれば、 従来の観察用蛍光板に制約されず、 また T Vカメラ 等を必要とせずに、 試料の外観 · 形状を広視野で観察できるという新し い顕微鏡像を提案することができるので、 特に透過電子顕微鏡の作業効 率を飛躍的に向上することができる。  According to the present invention, it is possible to propose a new microscope image capable of observing the external appearance and shape of a sample in a wide field of view without being restricted by a conventional fluorescent plate for observation and without requiring a TV camera or the like. In particular, the working efficiency of a transmission electron microscope can be dramatically improved.

Claims

請 求 の 範 囲 The scope of the claims
1 . 電子銃と、 試料を装着する試料台と、 上記電子銃からの電子線を上 記試料に向けて照射する電子レンズとを備えた電子顕微鏡において、 上 記試料への電子線照射領域を順次切換える電子線照射領域切換装置と、 上記電子線照射によって生ずる上記試料の各領域からの電子を測定する 電子測定装置と、 上記測定された電子の量に応じた輝度又は色調に変換 する装置と、 上記試料への照射領域に対応づけて、 上記変換された輝度 又は色調を表示する表示装置とを備えたことを特徴とする電子顕微鏡。 1. In an electron microscope equipped with an electron gun, a sample stage on which a sample is mounted, and an electron lens for irradiating an electron beam from the electron gun toward the sample, an electron beam irradiation area on the sample is adjusted. An electron beam irradiation area switching device for sequentially switching, an electron measurement device for measuring electrons from each region of the sample caused by the electron beam irradiation, and a device for converting the brightness or color tone according to the measured amount of electrons. An electron microscope, comprising: a display device for displaying the converted luminance or color tone in association with an irradiation area on the sample.
2 . 請求の範囲 1 において、 前記電子線照射領域切換装置は、 当該電子 顕微鏡の設定倍率に連動して、 前記電子線照射領域を一定領域ごとに移 動するように構成したことを特徴とする電子顕微鏡。 2. In claim 1, the electron beam irradiation region switching device is characterized in that the electron beam irradiation region is moved by a predetermined region in conjunction with a set magnification of the electron microscope. electronic microscope.
3 . 電子鏡と、 試料を装着する試料台と、 上記電子銃からの電子線を上 記試料に向けて照射する照射系レンズとを備えた電子顕微鏡において、 上記試料への電子線照射領域を順次切換える電子線照射領域切換装置と、 上記試料を透過した電子線を測定する電子線測定装置と、 上記測定され た電子の量に応じた輝度又は色調に変換する装置と、 上記試料への照射 領域に対応づけて、 上記変換された輝度又は色調を表示する表示装置と を備えたことを特徴とする電子顕微鏡。  3. In an electron microscope including an electron mirror, a sample stage on which a sample is mounted, and an irradiation lens for irradiating the sample with the electron beam from the electron gun, an electron beam irradiation area on the sample is adjusted. An electron beam irradiation area switching device for sequentially switching, an electron beam measuring device for measuring an electron beam transmitted through the sample, a device for converting the brightness or color tone according to the measured amount of electrons, and irradiation of the sample A display device for displaying the converted luminance or color tone in association with the region.
4 . 請求の範囲 3において、 前記電子線照射領域切換装置は、 前記照射 される電子線位置に対して試料を移動させる試料台駆動装置で構成して 成る電子顕微鏡。  4. The electron microscope according to claim 3, wherein the electron beam irradiation area switching device is constituted by a sample stage driving device that moves a sample with respect to the position of the irradiated electron beam.
5 . 請求の範囲 3において、 前記電子線照射領域切換装置は、 前記試料 に対して照射する電子線の位置を移動させる電子線偏向器で構成して成 る電子顕微鏡。  5. The electron microscope according to claim 3, wherein the electron beam irradiation area switching device includes an electron beam deflector for moving a position of an electron beam to be irradiated on the sample.
6 . 請求の範囲 3において、 前記電子線照射領域切換装置は、 当該電子 顕微鏡の設定倍率に連動して、 前記試料への電子線照射領域を移動する ように構成したことを特徴とする電子顕微鏡。 6. In Claim 3, the electron beam irradiation area switching device is configured to An electron microscope, wherein an electron beam irradiation area on the sample is moved in conjunction with a setting magnification of the microscope.
7 . 請求の範囲 3において、 前記試料を透過した電子線を蛍光板上に拡 大 ♦ 結像する結像系レンズを備え、 前記電子線測定装置は、 上記蛍光板 上に結像された電子線量を計測するように構成したことを特徴とする電 子顕微鏡。  7. The method according to claim 3, further comprising: an imaging lens that expands the electron beam transmitted through the sample on a fluorescent plate. ♦ The electron beam measurement device measures an electron dose formed on the fluorescent plate. An electron microscope characterized by being configured to measure.
8 . 請求の範囲 3において、 前記表示装置は、 当該表示装置の X軸方向, Y軸方向の座標面に前記試料の座標位置を対応させ、 前記試料への照射 領域に連動して前記変換された輝度又は色調を順次表示することで、 前 記試料の複数領域を同時に表示するように構成したことを特徵とする電 子顕微鏡。  8. In claim 3, in the display device, the coordinate position of the sample is made to correspond to a coordinate plane in the X-axis direction and the Y-axis direction of the display device, and the conversion is performed in conjunction with an irradiation area on the sample. An electron microscope characterized in that a plurality of regions of the sample are simultaneously displayed by sequentially displaying the brightness or color tone.
9 . 請求の範囲 3において、 前記表示装置は、 当該表示装置の X軸方向, Y軸方向の座標面に前記試料の座標位置を対応させ、 前記試料への照射 領域に連動して、 前記電子線測定装置で測定させた電子線の強度を 3次 元表示するように構成したことを特徴とする電子顕微鏡。  9. The display device according to claim 3, wherein the display device causes the coordinate position of the sample to correspond to a coordinate plane in the X-axis direction and the Y-axis direction of the display device. An electron microscope characterized in that the intensity of an electron beam measured by a beam measuring device is displayed in three dimensions.
1 0 . 電子線と、 試料を装着する試料台と、 上記電子銃からの電子線を 上記試料に向けて照射する照射系レンズとを備えた電子顕微鏡において、 上記試料への電子線照射領域を順次切換える電子線照射領域切換装置と、 上記試料を透過した電子線を測定する電子線測定装置と、 上記試料を透 過した電子線の強度を上記試料の厚さの相対量として、 上記電子線照射 領域に対応づけて表示する表示装置とを備えたことを特徴とする電子顕 微鏡。  10. An electron microscope including an electron beam, a sample stage on which a sample is mounted, and an irradiation lens for irradiating the sample with the electron beam from the electron gun. An electron beam irradiation area switching device for sequentially switching, an electron beam measurement device for measuring an electron beam transmitted through the sample, and an electron beam transmitted through the sample as the relative amount of the thickness of the sample. An electron microscope, comprising: a display device for displaying an image corresponding to an irradiation area.
1 1 . 電子銃と、 試料を装着する試料台と、 上記電子銃からの電子線を 上記試料に向けて走査する偏向器及び対物レンズとを備えた電子顕微鏡 において、 上記試料へに電子線走査領域を順次切換える電子線走査領域 切換装置と、 上記試料からの 2次電子を測定する 2次電子測定装置と、 上記測定された 2次電子の量に応じた輝度又は色調に変換する装置と、 上記試料への照射領域に対応づけて、 上記変換された輝度又は色調を表 示する表示装置とを備えたことを特徴とする電子顕微鏡。 11. An electron microscope including an electron gun, a sample stage on which a sample is mounted, a deflector that scans an electron beam from the electron gun toward the sample, and an objective lens. Electron beam scanning area that switches areas sequentially A switching device, a secondary electron measuring device for measuring secondary electrons from the sample, a device for converting to a brightness or color tone corresponding to the amount of the measured secondary electrons, and corresponding to an irradiation area on the sample. Further, an electron microscope comprising: a display device for displaying the converted luminance or color tone.
PCT/JP1995/000689 1995-04-07 1995-04-07 Electron microscope WO1996031897A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000689 WO1996031897A1 (en) 1995-04-07 1995-04-07 Electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000689 WO1996031897A1 (en) 1995-04-07 1995-04-07 Electron microscope

Publications (1)

Publication Number Publication Date
WO1996031897A1 true WO1996031897A1 (en) 1996-10-10

Family

ID=14125848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000689 WO1996031897A1 (en) 1995-04-07 1995-04-07 Electron microscope

Country Status (1)

Country Link
WO (1) WO1996031897A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218163A (en) * 1975-08-01 1977-02-10 Jeol Ltd Exposure meter of electronic microscope
JPS59201352A (en) * 1983-04-28 1984-11-14 Jeol Ltd Recording and displaying device of observation visual-field in electron microscope
JPS61126750A (en) * 1984-11-22 1986-06-14 Hitachi Ltd Electron microscope
JPS61233951A (en) * 1985-04-09 1986-10-18 Hitachi Ltd Method and device for observing sample
JPS61288360A (en) * 1985-06-14 1986-12-18 Mitsubishi Heavy Ind Ltd Analysis and display method for surface condition
JPS6484555A (en) * 1987-09-26 1989-03-29 Nikon Corp Sample image indicator
JPH01289059A (en) * 1988-05-17 1989-11-21 Hitachi Ltd Image observation device in transmission type electron microscope
JPH02304849A (en) * 1989-05-18 1990-12-18 Jeol Ltd Transmission electron microscope having measuring function
JPH03120738A (en) * 1989-10-03 1991-05-22 Canon Inc Dimension measuring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5218163A (en) * 1975-08-01 1977-02-10 Jeol Ltd Exposure meter of electronic microscope
JPS59201352A (en) * 1983-04-28 1984-11-14 Jeol Ltd Recording and displaying device of observation visual-field in electron microscope
JPS61126750A (en) * 1984-11-22 1986-06-14 Hitachi Ltd Electron microscope
JPS61233951A (en) * 1985-04-09 1986-10-18 Hitachi Ltd Method and device for observing sample
JPS61288360A (en) * 1985-06-14 1986-12-18 Mitsubishi Heavy Ind Ltd Analysis and display method for surface condition
JPS6484555A (en) * 1987-09-26 1989-03-29 Nikon Corp Sample image indicator
JPH01289059A (en) * 1988-05-17 1989-11-21 Hitachi Ltd Image observation device in transmission type electron microscope
JPH02304849A (en) * 1989-05-18 1990-12-18 Jeol Ltd Transmission electron microscope having measuring function
JPH03120738A (en) * 1989-10-03 1991-05-22 Canon Inc Dimension measuring device

Similar Documents

Publication Publication Date Title
US6528787B2 (en) Scanning electron microscope
US7817105B2 (en) Image forming method and charged particle beam apparatus
JP3813798B2 (en) electronic microscope
WO2010050136A1 (en) Method for observing sample and electronic microscope
US20190279838A1 (en) Charged Particle Beam Apparatus and Sample Observation Method
JP3293739B2 (en) Scanning electron microscope
US6225628B1 (en) Scanning electron microscope
EP1061551B1 (en) Scanning charged-particle beam instrument and method of observing specimen image therewith
WO1996031897A1 (en) Electron microscope
US6573502B2 (en) Combined electron microscope
JP2010272398A (en) Charged particle beam application device
JPH11296680A (en) Image processor provided with contrast improving function and charged particle ray device
JPH053013A (en) Automatic focus adjustment system
JPH07262950A (en) Scanning electron microscope
JP4397730B2 (en) Electron microscope aperture correction method and apparatus
JP2003007244A (en) Display method of image in charged particle beam system, the charged particle beam system, display method of image in analyzer, and the analyzer
JPH0855580A (en) Method and equipment for convergence measurement of color cathode-ray tube
CN111146062A (en) Electron microscope and image processing method
JP2002075263A (en) Electron beam device
JPH0436050Y2 (en)
JPH0393140A (en) Apparatus for corresponding scanned electron microscopic image to optical microscopic image
JP3790629B2 (en) Scanning charged particle beam apparatus and method of operating scanning charged particle beam apparatus
JPH01209647A (en) Scanning type electron microscope
JPH02215035A (en) Sample image display device
JPH0696711A (en) Display method for image of scanning electron microscope

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase