WO1996030946A1 - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture Download PDF

Info

Publication number
WO1996030946A1
WO1996030946A1 PCT/JP1995/000592 JP9500592W WO9630946A1 WO 1996030946 A1 WO1996030946 A1 WO 1996030946A1 JP 9500592 W JP9500592 W JP 9500592W WO 9630946 A1 WO9630946 A1 WO 9630946A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor
insulator
insulating film
substrate
Prior art date
Application number
PCT/JP1995/000592
Other languages
French (fr)
Japanese (ja)
Inventor
Akihiro Miyauchi
Takeo Shiba
Takashi Uchino
Yukihiro Kiyota
Toshio Ando
Osamu Kasahara
Yosuke Inoue
Takaya Suzuki
Original Assignee
Hitachi, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi, Ltd. filed Critical Hitachi, Ltd.
Priority to PCT/JP1995/000592 priority Critical patent/WO1996030946A1/en
Publication of WO1996030946A1 publication Critical patent/WO1996030946A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66636Lateral single gate silicon transistors with source or drain recessed by etching or first recessed by etching and then refilled

Definitions

  • the present invention relates to a structure, a manufacturing method, and a computer system, an optical transmission system, and a signal transmission processing device of an M0SFET in which a silicon film is stacked on source and drain regions, and a silicon film is stacked on the source and drain regions.
  • M0SFETs with small facets of the silicon film deposited on the source and drain.
  • a method for selectively depositing a silicon film on the source and drain regions is a method for selectively depositing an extremely flat silicon film with a small facet in a region surrounded by an insulating film, which is required in the M0SFET manufacturing process. As described in Japanese Patent Application Laid-Open No. 60-60716, this has been realized by making the exposed area of the silicon substrate surface larger than the exposed area of the insulating film.
  • the silicon film stacked on the source and drain regions is an insulating film for element isolation. Facets are likely to occur in the silicon film due to contact with the insulator spacer of the film gate from the beginning of growth. As a result, a high melting point metal film such as a titanium film or a tungsten film is deposited on the silicon film in the wiring process. When stacked, these metal films penetrate deeper into the portion where the facet has occurred on the semiconductor substrate side, causing a problem that a leak current is generated.
  • a method of selectively embedding a silicon film having a small facet in a region surrounded by an insulating film is as follows: the exposed area of the silicon substrate surface is made larger than the exposed area of the insulating film. Therefore, the circuit design when integrating transistors, resistors, and capacitors was limited.
  • An object of the present invention is to provide a facet at a portion where an insulator spacer next to a gate electrode contacts a selectively grown silicon film or a portion where an insulating film for element isolation contacts a selectively grown silicon film. It is an object of the present invention to provide a MOSFET structure and a manufacturing method capable of depositing a selective silicon film having a small thickness irrespective of a silicon substrate surface or an area ratio of an insulating film. Disclosure of the invention
  • the selective silicon film In order to reduce the facet at the part where the insulator film next to the insulating film for element isolation and the gate and the selectively grown silicon film are small, the selective silicon film must be deposited on the silicon substrate surface. As shown in FIG. 1, the portion where the silicon substrate surface contacts the insulating film for element isolation and the portion where the silicon substrate surface contacts the insulating spacer are shown in FIG. This is achieved by forming a structure in which a part of the selective silicon film 111 can be cut under the insulator spacer 108.
  • the structure in which a part of the selective silicon film bites under the insulating film for element isolation or the insulator spacer is formed by heat-treating the silicon substrate in vacuum or a hydrogen atmosphere before depositing the selective silicon. it can.
  • the following method is used. As shown in the figure, before depositing the selective silicon film, the etching region 201 lowering the silicon substrate surface of the source and drain regions to the silicon substrate side with respect to the insulating film for element isolation and the insulator spacer. This is achieved by providing a structure that provides
  • the structure in which the silicon substrate surface in the source and drain regions is lowered to the silicon substrate side with respect to the insulating film for element isolation and the insulator spacer is that the silicon substrate is treated with hydrochloric acid gas or tri-metal before deposition of the selective silicon. It can be formed by etching with nitrogen fluoride gas or chlorine trifluoride gas. In addition, it can also be formed by wet etching using a mixed solution of hydrofluoric acid and nitric acid / hydrazine instead of gas phase etching using gas.
  • the source / drain regions come into contact with the oxide for element isolation, and the source / drain regions come into contact with the insulator spacer next to the gate electrode.
  • a plurality of crystal planes appear in the region where the portion of the selective silicon film cuts into the portion.
  • facets are less likely to be formed in the selective silicon film deposited in the biting region. Therefore, a selective silicon film with a small facet can be deposited regardless of the area ratio between the silicon surface and the insulating film.
  • FIG. 1 shows where the source and drain regions and the oxide for element isolation are in contact.
  • FIGS. 14 to 25 are cross-sectional views of main parts for explaining the second embodiment
  • FIG. FIG. 27 is a computer system configuration diagram for explaining Example 3
  • FIG. 27 is an optical transmission system configuration diagram for explaining Embodiment 4
  • FIG. 28 is a signal transmission processing device configuration for explaining Embodiment 5
  • FIG. 2 to FIG. 13 are cross-sectional views of essential parts for describing the present embodiment.
  • An oxide film 101 for element isolation is formed on one surface of the substrate 100, which is a part of the silicon wafer having a P-type crystal orientation (100) plane, by the well-known LOCOS method. Formed. The thickness of the oxide film is 350 nm.
  • an oxide film 102 having a thickness of 5 nm is formed by wet oxidation, and a polycrystalline silicon film 103 having a thickness of 200 nm is formed on the oxide film 102 by decompression chemical vapor deposition.
  • a polycrystalline silicon film 103 having a thickness of 200 nm is formed on the oxide film 102 by decompression chemical vapor deposition.
  • a polycrystalline silicon film 103 was added by a known photolithography technique.
  • the width of the polycrystalline silicon film 103 is 0.2 ⁇ .
  • phosphorus was implanted by an ion implantation method to form an ⁇ -type impurity region 106 in the source region 104 and the drain region 105.
  • the conditions for ion implantation are an acceleration voltage of 25 keV and a dose of 5 ⁇ 10 13 / cm 2 .
  • Oxide film 1 0 7 Has a thickness of 300 nm.
  • the oxide film 107 was etched by anisotropic etching to form an insulator spacer 108.
  • the structure shown in Fig. 6 was completed.
  • arsenic was implanted into the source region 104 and the drain region 105 by ion implantation to form an n-type impurity region 109.
  • the ion implantation conditions were an acceleration voltage of 40 keV and a dose of 2 ⁇ 10 le Zcm 2 c. The above process completed the structure shown in FIG.
  • the oxide film 102 on the source region 104 and the drain region 105 was removed by immersion in a hydrofluoric acid solution. Through the above process, the structure shown in Fig. 8 was completed.
  • the source region 104 and the drain region 105 become under-exposed at the portion where they contact the oxide film 101 and the oxide film 108.
  • a cut region 110 was formed.
  • the pressure during the heat treatment is 0.01 Pascal.
  • the silicon film 111 was selectively formed on the source region 104, the drain region 105, and the polycrystalline silicon film 103 in the same reduced pressure chemical vapor deposition apparatus.
  • the conditions for forming the silicon film 111 are as follows: growth temperature 750 ° C, growth pressure 100 Pascal, dichlorosilane gas flow 10 OccZ, hydrogen chloride gas flow l OccZ, hydrogen gas flow 1 It is Ritano minutes.
  • the thickness of the silicon film 111 is 100 nm.
  • a titanium film with a thickness of 1 0 0 nm is deposited on the entire surface by sputtering, and heat-treated in a nitrogen atmosphere 7 0 0 e C, 1 min. Then immerse in hydrogen peroxide solution As a result, the titanium film on the oxide film 101 and the insulator spacer 108 is removed, and the titanium silicide film 112 is replaced with the source region 104, the drain region 105 and the polycrystalline silicon film 1. 0 3 formed on. The sheet resistance of the titanium silicide film 112 was 25 ⁇ .
  • a contact hole is formed in the upper part of the titanium silicide film 112 by photolithography technology, a tungsten film is buried, and the source electrode 114, the gate electrode 115, and the gate electrode 115 are formed by photolithography technology. Drain electrodes 1 16 were formed.
  • the nMOSFET shown in Fig. 13 was completed.
  • a pMOSFET can be fabricated by changing the conductivity type of the substrate and the elements to be implanted.
  • CM0SFET can be fabricated by combining nMOSFET and pMOSFET.
  • a titanium film was used in the present invention, similar results were obtained by using tungsten, cobalt, molybdenum, tantalum, nickel, and platinum.
  • a silicon single crystal wafer is used as the substrate 100, but an SII wafer may be used.
  • the nMOSFET described in the present invention has a structure in which the silicon film 111 is stacked on the source region 104 and the drain region 105, whereby the sheet resistance of the titanium silicide film is reduced, and the gate width is 0.2 ⁇ .
  • the following worked properly.
  • the mutual inductance was 350 milli-Siemens / ⁇ at a power supply voltage of 2 V, and the CM0SFET The delay time of the barta was 4 Os.
  • a hydrogen gas was introduced into the decompression vapor phase growth apparatus at the time of forming the undercut region 110, and the undercut region 110 was formed by heat treatment in a hydrogen atmosphere. You may.
  • FIG. 14 to FIG. 25 are cross-sectional views of essential parts for explaining the present embodiment.
  • a substrate 100 which is a part of a silicon wafer having a P-type crystal orientation (100) plane
  • an oxide film 101 for element isolation is formed on a peripheral portion of an element formation region by a well-known LOCOS method.
  • the thickness of the oxide film is 350 nm.
  • an oxide film 102 having a thickness of 5 nm is formed by wet oxidation, and a polycrystalline silicon film 103 having a thickness of 200 nm is formed on the oxide film 102 by decompression chemical vapor deposition.
  • a polycrystalline silicon film 103 was added by a well-known photolithography technique.
  • the width of the polycrystalline silicon film 103 is 0.2 ⁇ .
  • phosphorus was implanted by an ion implantation method to form an ⁇ -type impurity region 106 in the source region 104 and the drain region 105.
  • Ion implantation conditions are an acceleration voltage 2 5 ke V, a dose of 5 X 1 0 '3 cm 2 .
  • an oxide film 107 was formed by low pressure chemical vapor deposition.
  • the thickness of the oxide film 107 is 300 nm.
  • the oxide film 107 was etched by anisotropic etching to form an insulator spacer 108.
  • the structure described in Fig. 18 was completed.
  • arsenic was implanted into the source region 104 and the drain region 105 by ion implantation to form an n-type impurity region 109.
  • Conditions of the ion hitting Chikomi acceleration voltage 4 0 ke V, a dose of 2 X 1 0 '6 Zcm 2 was completed.
  • the oxide film 102 on the source region 104 and the drain region 105 was removed by immersion in a hydrofluoric acid solution. In the above steps, the structure shown in FIG. 20 was completed.
  • the silicon substrate 100 and the polycrystalline silicon film 103 exposed to the source region 104 and the drain region 105 are etched by hydrogen chloride gas in a decompression chemical vapor deposition apparatus.
  • An etched area 201 was formed.
  • the etching conditions were a processing temperature of 900 ° C, a processing time of 2 minutes, a hydrogen chloride gas flow rate of 100 OccZ, a hydrogen gas flow rate of 1 litterano, and a processing pressure of 100 pass pressure.
  • a silicon film 111 was selectively formed on the source region 104, the drain region 105, and the polycrystalline silicon film 103 in the same low pressure chemical vapor deposition apparatus.
  • the conditions for forming the silicon film 111 are as follows: growth temperature 750 ° C, growth pressure 100 Pascal, dichlorosilane gas flow 10 OccZ, hydrogen chloride gas flow 1 OccZ, hydrogen gas flow 1 Litter minutes.
  • the thickness of the silicon film 111 is 100 nm.
  • a titanium film was deposited on the entire surface to a thickness of 100 O nm by a sputtering method, and was heat-treated at 700 ° C. for 1 minute in a nitrogen atmosphere. Then, the titanium film on the oxide film 101 and the insulator spacer 108 was removed by immersion in a hydrogen peroxide solution, and the titanium silicide film 112 was replaced with the source region 104 and the drain region 100. 5 and the polycrystalline silicon film 103. The sheet resistance of the titanium silicide film 112 was 25 ⁇ / port. Structure shown in Fig. 23 in the above process was completed.
  • an oxide film with a thickness of 1 ⁇ m was deposited on the entire surface by decompression chemical growth, an S0G (Spin On Glass) film was deposited, and the surface was flattened by a well-known etch-back method. An oxide film 113 was formed. Through the above steps, the structure shown in Fig. 24 was completed.
  • a contact hole is formed in the upper part of the titanium silicide film 112 by photolithography technology, a tungsten film is buried, and the source electrode 114, the gate electrode 115, and the drain electrode are formed by photolithography technology. A pole 1 1 6 was formed.
  • the nMOSFET shown in Fig. 25 was completed.
  • a pMOSFET can be fabricated by changing the conductivity type of the substrate and the elements to be implanted. Also, nMOSFET and pMOSFET can be made simultaneously to make CM0SFET. Furthermore, although a titanium film was used in the present invention, similar results were obtained when tungsten, cobalt, molybdenum, tantalum, niggel, and platinum were used. Further, in this embodiment, a silicon single crystal wafer is used as the substrate 100, but an SOI wafer may be used.
  • the nMOSFET described in the present invention has a structure in which the silicon film 111 is stacked on the source region 104 and the drain region 105, so that the sheet resistance of the titanium silicide film can be reduced and the gate width 0.2. It operated normally even under ⁇ .
  • the mutual inductance was 350 millimeters Zmm at a supply voltage of 2 V, and the delay time of the CM0SFET inverter at no load was 4 Ops.
  • the etching region 201 may be formed by introducing nitrogen trifluoride gas into the decompression vapor phase growth apparatus when the etching region 201 is formed. Similarly, the etched area 201 The etching region 201 may be formed by introducing chlorine trifluoride gas into the depressurized vapor phase epitaxy apparatus at the time of forming the etching.
  • the etching region 201 may be formed by using a mixed solution of hydrogen fluoride water and nitric acid when the etching region 201 is formed. Similarly, when the etching region 201 is formed, the etching region 201 may be formed with a hydrazine solution.
  • a third embodiment of the present invention will be described with reference to a computer system configuration diagram in FIG.
  • a high-speed silicon semiconductor integrated circuit constituted by the semiconductor device according to any one of the first and second embodiments is replaced by a high-speed processor 500 in which a plurality of processors 500 for processing instructions and operations are connected in parallel.
  • a processor 500 for processing instructions and arithmetic operations a system control device 501, a main storage device 502, and the like are provided. It could be composed of about 10 to 3 silicon semiconductor chips on one side.
  • a processor 503 for processing these instructions and operations, a system controller 501, and a data communication interface 503 composed of a compound semiconductor integrated circuit were mounted on the same ceramic substrate 506.
  • the data communication interface 503 and the data communication control device 504 were mounted on the same ceramic substrate 507.
  • These ceramic substrates 506 and 507, and the ceramic substrate on which the main memory device 502 is mounted, are mounted on a substrate with a side of about 5 Ocm or less, and the center of a large computer.
  • a processing unit 508 was formed. The data communication within the central processing unit 508, the data communication between a plurality of central processing units, or the data communication interface 503 and the board 509 on which the input / output processor 505 is mounted.
  • the data communication was performed via the optical fiber 510 indicated by the double-headed arrow lines in the figure.
  • Silicon semiconductor integrated circuits such as a processor 503 that processes commands and calculations, a system controller 501, and a main memory 502, operate at high speed in parallel, and use optical media to communicate data. As a result, the number of instructions processed per second was greatly increased.
  • FIG. 27 is an optical transmission system configuration diagram showing the fourth embodiment.
  • one of the semiconductor devices according to the first and second embodiments is applied to both the optical transmission module 613 for transmitting data at an extremely high speed and the optical receiving module 614 for receiving the data.
  • the semiconductor device manufactured according to any one of the first and second embodiments is used to drive the multiplex conversion digital circuit 6001 for processing the transmission-side electric signal 610 and the semiconductor laser 603.
  • An optical transmitter module 613 comprising a semiconductor laser-driven analog circuit 602 of the present invention, and a receiving-side electrical signal 612 obtained by converting the transmitted optical signal 611 by a photodiode 604.
  • the optical receiving module 6 1 4 was configured. Since the semiconductor device manufactured according to the above-described embodiment can operate at an ultra-high speed, a large-capacity signal of 10 Gbits per second can be transmitted and received at an ultra-high speed.
  • the fifth embodiment relates to a signal transmission processing device 700 constituted by a semiconductor device manufactured based on any one of the first and second embodiments, and particularly relates to an asynchronous transmission system (referred to as an ATM switch).
  • Signal transmission processing device 700 relating to In Fig. 28, the input optical signal transmitted in series at a very high speed by the optical fiber 70 1
  • Reference numeral 700 denotes an M0SFET manufactured based on any of the first and second embodiments of the present invention via a converter 703 for converting (0 / E conversion) and parallelizing (SZP conversion) an electric signal.
  • the electric signal subjected to address processing in the integrated circuit 704 is serialized (P / S conversion) and converted to an optical signal (E / 0 conversion) by the conversion device 705, and is output from the optical fiber 706.
  • the integrated circuit 704 includes a multiplexer 707, a buffer memory 708, and a separator 709.
  • the integrated circuit 704 is controlled by a memory control LSI 710 and an empty address distribution control LSI 711.
  • the signal transmission processing device 700 is a device having a function of a switch for transmitting an input optical signal 720 transmitted irrespective of an address to be transmitted to a desired address at a very high speed.
  • the converging circuit 704 is constituted by the M0SFET manufactured according to any one of the first and second embodiments, so that it operates compared to the conventional integrated circuit 704. Since the speed is three times as fast and inexpensive, it has become possible to reduce the storage capacity of the integrated circuit 704 to about one third of that of the conventional one. As a result, the manufacturing cost of ATM switches could be reduced.
  • the parts where the silicon substrate surface contacts the insulating film for element isolation and the parts where the silicon substrate surface contacts the insulator spacer are shown in FIG.
  • a facet generated in the selected silicon film is formed. Can be made smaller.
  • the silicon substrate is heat-treated in a vacuum or in a hydrogen atmosphere to form a structure in which a part of the selective silicon film bites under the insulating film for element isolation or the insulator spacer.
  • This step can be performed in an apparatus for forming a selective silicon film. As a result, there is an effect that the manufacturing process can be simplified.
  • a structure is provided in which an etching region 201 for lowering the silicon substrate surface of the source and drain regions to the silicon substrate side is provided for the insulating film for element isolation and the insulator spacer.
  • the facets generated in the selected silicon film can be reduced.
  • the silicide film it is possible to prevent the silicide film from penetrating deeply into the silicon substrate at a portion where the selective silicon film and the insulating film for element isolation or the insulator spacer are in contact with each other. This has the effect of suppressing leakage current.
  • the step of forming an etching region on the silicon substrate with a hydrochloric acid gas, a nitrogen trifluoride gas, or a chlorine trifluoride gas before the deposition of the selective silicon can be performed in a selective silicon film forming apparatus.
  • a hydrochloric acid gas, a nitrogen trifluoride gas, or a chlorine trifluoride gas before the deposition of the selective silicon can be performed in a selective silicon film forming apparatus.
  • wet etching using a mixture of hydrofluoric acid and nitric acid / hydrazine instead of gas phase etching using gas, has the effect of making the surface of the etching region flatter than gas phase etching.
  • the present invention is directed to a selective silicon having a small facet at a portion where an insulator spacer next to a gate electrode contacts a selectively grown silicon film or at a portion where an insulating film for element isolation contacts a selectively grown silicon film.
  • Put the film on the silicon substrate It provides a MOSFET structure and manufacturing method that can be deposited regardless of the area ratio of the insulating film. This is useful for circuit design when integrating transistors, resistors, and capacitors.

Abstract

A MOSFET structure in which a selectively grown silicon film having small facets at the parts in contact with spacers made of an insulator beside a gate electrode and an element isolating insulating film is independent of the area ratio of the silicon substrate and the insulating film. Since the silicon in the source and drain regions is etched, crystal faces appear below the element isolating oxide and the insulating spacers. As a result, facets are hardly formed in the selectively grown silicon film below the oxide and spacers.

Description

明 細 書  Specification
半導体装置とその製造方法 技術分野  Semiconductor device and manufacturing method thereof
本発明はソース, ドレイン領域上にシリコン膜を積み上げた M0SFETの 構造, 製造方法およびソース, ドレイン領域上にシリコン膜を積み上げ た構造の M0SFETを使用した計算機システム, 光伝送システム、 及び信号 伝送処理装置にかかり、 特にソース, ドレイン上に積み上げたシリコン 膜のファセッ 卜が小さい M0SFETに関する。 背景技術  The present invention relates to a structure, a manufacturing method, and a computer system, an optical transmission system, and a signal transmission processing device of an M0SFET in which a silicon film is stacked on source and drain regions, and a silicon film is stacked on the source and drain regions. In particular, it relates to M0SFETs with small facets of the silicon film deposited on the source and drain. Background art
従来、 ソース, ドレイン領域上に選択的にシリコン膜を積み上げる M0SFETの構造に関しては、 特開昭 55— 3614号に記載されているように、 ソースおよびドレイン領域の少なく とも一方の領域を、 チャネル平面と 同一かあるいはそれよりも上の平面に配置していた。 また、 ソース, ド レイン領域上に選択的にシリコン膜を積み上げる M0SFETの製造工程で必 要となる、 ファセッ 卜が小さく極めて平坦なシリコン膜を絶縁膜で囲ま れた領域に選択的に堆積する方法としては、 特開昭 60— 607 16 号に記載 されているように、 シリコン基板面の露出している面積を絶縁膜が露出 している面積以上にすることで実現していた。  Conventionally, with respect to the structure of an M0SFET in which a silicon film is selectively deposited on source and drain regions, as described in JP-A-55-3614, at least one of the source and drain regions is connected to a channel plane. It was placed on the same plane or above. In addition, a method for selectively depositing a silicon film on the source and drain regions is a method for selectively depositing an extremely flat silicon film with a small facet in a region surrounded by an insulating film, which is required in the M0SFET manufacturing process. As described in Japanese Patent Application Laid-Open No. 60-60716, this has been realized by making the exposed area of the silicon substrate surface larger than the exposed area of the insulating film.
上記従来技術のうち、 ソースおよびドレイン領域の少なく とも一方の 領域を、 チャネル平面と同一かあるいはそれよりも上の平面に配置する 構造では、 ソース, ドレイン領域に積み上げるシリコン膜は素子分離用 の絶縁膜ゃゲー 卜の絶縁物スぺーザと成長の初期から接するために、 シ リコン膜にはファセッ トが発生しやすかつた。 その結果、 配線工程にお いてチタン膜ゃタングステン膜などの高融点金属膜をシリコン膜上に堆 積すると、 ファセッ 卜の発生した部分にこれらの金属膜が半導体基板側 により深く進入し、 リーク電流を発生させてしまう問題があった。 In the above-mentioned prior art, in a structure in which at least one of the source and drain regions is arranged on a plane which is the same as or higher than the channel plane, the silicon film stacked on the source and drain regions is an insulating film for element isolation. Facets are likely to occur in the silicon film due to contact with the insulator spacer of the film gate from the beginning of growth. As a result, a high melting point metal film such as a titanium film or a tungsten film is deposited on the silicon film in the wiring process. When stacked, these metal films penetrate deeper into the portion where the facet has occurred on the semiconductor substrate side, causing a problem that a leak current is generated.
上記従来技術のうち、 ファセッ トの小さいシリコン膜を絶縁膜で囲ま れた領域に選択的に堆稜する方法としては、 シリコン基板面の露出して いる面積を絶縁膜が露出している面積以上にする必要があり、 卜ランジ スタ, 抵抗, コンデンサなどを集積化するときの回路設計に制約があつ た。  Among the above-mentioned conventional techniques, a method of selectively embedding a silicon film having a small facet in a region surrounded by an insulating film is as follows: the exposed area of the silicon substrate surface is made larger than the exposed area of the insulating film. Therefore, the circuit design when integrating transistors, resistors, and capacitors was limited.
本発明の目的は、 ゲー 卜電極横の絶縁物スぺーザと選択成長させたシ リコン膜とが接する部分や素子分離用の絶縁膜と選択成長させたシリコ ン膜とが接する部分のファセッ 卜が小さい選択シリコン膜を、 シリコン 基板面や絶縁膜の面積比率に関係なく堆積できる MOSFETの構造と製造方 法を提供することである。 発明の開示  An object of the present invention is to provide a facet at a portion where an insulator spacer next to a gate electrode contacts a selectively grown silicon film or a portion where an insulating film for element isolation contacts a selectively grown silicon film. It is an object of the present invention to provide a MOSFET structure and a manufacturing method capable of depositing a selective silicon film having a small thickness irrespective of a silicon substrate surface or an area ratio of an insulating film. Disclosure of the invention
素子分離用の絶縁膜ゃゲー 卜横の絶縁物スぺ一ザと選択成長させたシ リコン膜との接する部分のファセッ トを小さくするには、 選択シリコン 膜をシリコン基板面上に堆積する前に、 シリコン基板面と素子分離用の 絶縁膜とが接する部分や、 シリコン基板面と絶縁物スぺーサとが接する 部分に、 第 1 図で示すように、 素子分離用の絶縁膜 1 0 1 や絶縁物スぺ ーサ 1 0 8の下部に選択シリコン膜 1 1 1 の一部が食い込める構造にす ることで達成される。  In order to reduce the facet at the part where the insulator film next to the insulating film for element isolation and the gate and the selectively grown silicon film are small, the selective silicon film must be deposited on the silicon substrate surface. As shown in FIG. 1, the portion where the silicon substrate surface contacts the insulating film for element isolation and the portion where the silicon substrate surface contacts the insulating spacer are shown in FIG. This is achieved by forming a structure in which a part of the selective silicon film 111 can be cut under the insulator spacer 108.
なお、 素子分離用の絶縁膜や絶縁物スぺーザの下部に選択シリコン膜 の一部が食い込んだ構造は、 選択シリコンの堆積前にシリコン基板を真 空中あるいは水素雰囲気中で熱処理することで形成できる。  The structure in which a part of the selective silicon film bites under the insulating film for element isolation or the insulator spacer is formed by heat-treating the silicon substrate in vacuum or a hydrogen atmosphere before depositing the selective silicon. it can.
また、 素子分離用の絶緣膜ゃゲー 卜横の絶縁物スぺーザと選択成長さ せたシリコン膜との接する部分のファセッ 卜を小さくするには、 第 2 1 図で示すように、 選択シリコン膜を堆積する前に、 素子分離用の絶縁膜 や絶縁物スぺーサに対してソース, ドレイン領域のシリコン基板面をシ リコン基板側に下げるエッチング領域 2 0 1 を設ける構造にすることで 達成される。 In order to reduce the facet at the portion where the insulator spacer next to the insulating film gate for element isolation and the selectively grown silicon film are reduced, the following method is used. As shown in the figure, before depositing the selective silicon film, the etching region 201 lowering the silicon substrate surface of the source and drain regions to the silicon substrate side with respect to the insulating film for element isolation and the insulator spacer. This is achieved by providing a structure that provides
なお、 素子分離用の絶縁膜や絶縁物スぺーサに対してソース, ドレイ ン領域のシリコン基板面がシリコン基板側に下がった構造は、 選択シリ コンの堆積前にシリコン基板を塩酸ガスや三弗化窒素ガスや三弗化塩素 ガスでエッチングすることで形成できる。 また、 ガスによる気相エッチ ングではなく、 フッ酸水と硝酸の混合液ゃヒ ドラジンによる湿式エッチ ングによっても形成できる。  Note that the structure in which the silicon substrate surface in the source and drain regions is lowered to the silicon substrate side with respect to the insulating film for element isolation and the insulator spacer is that the silicon substrate is treated with hydrochloric acid gas or tri-metal before deposition of the selective silicon. It can be formed by etching with nitrogen fluoride gas or chlorine trifluoride gas. In addition, it can also be formed by wet etching using a mixed solution of hydrofluoric acid and nitric acid / hydrazine instead of gas phase etching using gas.
ソース, ドレイン領域に選択シリコン膜を堆積する前に、 ソース, ド レイン領域と素子分離用の酸化物とが接する部分やソース, ドレイン領 域とゲー 卜電極横の絶縁物スぺーサとが接する部分に選択シリコン膜の —部が食い込む領域には複数の結晶面が現れる。 その結果、 食い込んだ 領域へ堆積する選択シリコン膜にはファセッ 卜が形成されにく くなる。 よって、 シリコン面と絶縁膜の面積比率に関係なく、 ファセッ トの小さ い選択シリコン膜を堆積できる。  Before the selective silicon film is deposited on the source and drain regions, the source / drain regions come into contact with the oxide for element isolation, and the source / drain regions come into contact with the insulator spacer next to the gate electrode. A plurality of crystal planes appear in the region where the portion of the selective silicon film cuts into the portion. As a result, facets are less likely to be formed in the selective silicon film deposited in the biting region. Therefore, a selective silicon film with a small facet can be deposited regardless of the area ratio between the silicon surface and the insulating film.
ソース, ドレイン領域に選択シリコン膜を堆積する前に、 ソース, ド レイン領域のシリコンをエッチングしておくことで素子分離用の酸化物 や絶縁物スぺ一ザの下部には複数の結晶面が現れる。 その結果、 素子分 離用の酸化物や絶縁物スぺーザの下部へ堆積する選択シリコン膜にはフ ァセッ トが形成されにく くなる。 よって、 シリコン面と絶縁膜の面積比 率に関係なく、 ファセッ トの小さい選択シリコン膜を堆積できる。 図面の簡単な説明  By etching the silicon in the source and drain regions before depositing the selective silicon film in the source and drain regions, multiple crystal planes are formed below the oxide and insulator spacers for element isolation. appear. As a result, it is difficult for the facet to be formed in the oxide for element isolation or in the selective silicon film deposited below the insulator spacer. Therefore, a selective silicon film with a small facet can be deposited regardless of the area ratio between the silicon surface and the insulating film. BRIEF DESCRIPTION OF THE FIGURES
第 1 図はソース, ドレイン領域と素子分離用の酸化物とが接する部分 WO 96/30946 PCT/JP9S/D0S92 やソース, ドレイン領域とゲー 卜電極横の絶縁物スぺ一サとが接する部 分に選択シリコン膜の一部が食い込んだ MOSFETの要部断面図、 第 2図か ら第 1 3図は実施例 1 を説明するための要部断面図、 第 1 4図から第 2 5図は実施例 2 を説明するための要部断面図、 第 2 6図は実施例 3を 説明するための計算機システム構成図、 第 2 7図は実施例 4 を説明する ための光伝送システム構成図、 第 2 8図は実施例 5を説明するための信 号伝送処理装置構成図。 発明を実施するための最良の形態 Figure 1 shows where the source and drain regions and the oxide for element isolation are in contact. WO 96/30946 PCT / JP9S / D0S92 and a cross-sectional view of a main part of a MOSFET in which a part of a selective silicon film has cut into a portion where a source / drain region and an insulator spacer next to a gate electrode are in contact. From FIG. 13 to FIG. 13 are cross-sectional views of essential parts for explaining the first embodiment, FIGS. 14 to 25 are cross-sectional views of main parts for explaining the second embodiment, and FIG. FIG. 27 is a computer system configuration diagram for explaining Example 3, FIG. 27 is an optical transmission system configuration diagram for explaining Embodiment 4, and FIG. 28 is a signal transmission processing device configuration for explaining Embodiment 5 FIG. BEST MODE FOR CARRYING OUT THE INVENTION
【実施例 1】  [Example 1]
以下、 本発明の実施例 1 を説明する。 第 2図から第 1 3図は本実施例 を説明するための要部断面図である。 P型で結晶方位が ( 1 0 0 ) 面の シリコンゥェハの一部である基板 1 0 0の一表面に、 周知の L O C O S 法によって素子形成領域の周辺部に素子分離用の酸化膜 1 0 1 を形成し た。 酸化膜の厚さは 3 5 0 n mである。 上記工程で第 2図に記載した構 造が完成した。  Hereinafter, Example 1 of the present invention will be described. FIG. 2 to FIG. 13 are cross-sectional views of essential parts for describing the present embodiment. An oxide film 101 for element isolation is formed on one surface of the substrate 100, which is a part of the silicon wafer having a P-type crystal orientation (100) plane, by the well-known LOCOS method. Formed. The thickness of the oxide film is 350 nm. Through the above process, the structure shown in Fig. 2 was completed.
次いで、 ウエッ ト酸化法で厚さ 5 n mの酸化膜 1 0 2 を形成し、 酸化 膜 1 0 2上に滅圧化学気相成長法で厚さ 2 0 0 n mの多結晶シリコン膜 1 0 3 を形成した。 上記工程で第 3図に記載した構造が完成した。  Next, an oxide film 102 having a thickness of 5 nm is formed by wet oxidation, and a polycrystalline silicon film 103 having a thickness of 200 nm is formed on the oxide film 102 by decompression chemical vapor deposition. Was formed. Through the above steps, the structure shown in Fig. 3 was completed.
次に、 周知のフォト リソグラフィ技術で多結晶シリコン膜 1 0 3 を加 ェした。 多結晶シリコン膜 1 0 3の幅は 0 . 2 μ πι である。 そしてィォ ン打ち込み法で燐を打ち込み、 ソース領域 1 0 4 と ドレイン領域 1 0 5 に η型の不純物領域 1 0 6 を形成した。 イオン打ち込みの条件は、 加速 電圧 2 5 k e V, ドーズ量 5 X 1 0 1 3 /cm2 である。 上記工程で第 4図 に記載した構造が完成した。 Next, a polycrystalline silicon film 103 was added by a known photolithography technique. The width of the polycrystalline silicon film 103 is 0.2 μπι. Then, phosphorus was implanted by an ion implantation method to form an η-type impurity region 106 in the source region 104 and the drain region 105. The conditions for ion implantation are an acceleration voltage of 25 keV and a dose of 5 × 10 13 / cm 2 . Through the above process, the structure shown in Fig. 4 was completed.
次に、 滅圧化学気相成長法で酸化膜 1 0 7 を形成した。 酸化膜 1 0 7 の厚さは 3 0 0 n mである。 上記工程で第 5図に記載した構造が完成し た。 Next, an oxide film 107 was formed by decompression chemical vapor deposition. Oxide film 1 0 7 Has a thickness of 300 nm. Through the above steps, the structure shown in Fig. 5 was completed.
次に、 異方性エッチングによって酸化膜 1 0 7 をエッチングし、 絶縁 物スぺーサ 1 0 8を形成した。 上記工程で第 6図に記載した構造が完成 した。  Next, the oxide film 107 was etched by anisotropic etching to form an insulator spacer 108. Through the above steps, the structure shown in Fig. 6 was completed.
次に、 イオン打ち込み法によって砒素をソース領域 1 0 4 と ドレイン 領域 1 0 5へ打ち込み、 n型の不純物領域 1 0 9 を形成した。 イオン打 ち込みの条件は加速電圧 4 0 k e V , ドーズ量 2 X 1 0 l e Zcm2 である c 上記工程で第 7図に記載した構造が完成した。 Next, arsenic was implanted into the source region 104 and the drain region 105 by ion implantation to form an n-type impurity region 109. The ion implantation conditions were an acceleration voltage of 40 keV and a dose of 2 × 10 le Zcm 2 c. The above process completed the structure shown in FIG.
次に、 フッ酸水に浸漬することでソース領域 1 0 4 と ドレイン領域 1 0 5上の酸化膜 1 0 2を除去した。 上記工程で第 8図に記載した構造 が完成した。  Next, the oxide film 102 on the source region 104 and the drain region 105 was removed by immersion in a hydrofluoric acid solution. Through the above process, the structure shown in Fig. 8 was completed.
次に、 減圧化学気相成長装置内で 9 0 0 C, 2分間の熱処理によって, ソース領域 1 0 4 と ドレイン領域 1 0 5が酸化膜 1 0 1 や酸化膜 1 0 8 と接する部分にアンダーカツ 卜領域 1 1 0を形成した。 熱処理時の圧力 は 0 . 0 1 パスカルである。 上記工程で第 9図に記載した構造が完成し た。  Next, by heat treatment at 900 C for 2 minutes in a low pressure chemical vapor deposition apparatus, the source region 104 and the drain region 105 become under-exposed at the portion where they contact the oxide film 101 and the oxide film 108. A cut region 110 was formed. The pressure during the heat treatment is 0.01 Pascal. Through the above steps, the structure shown in Fig. 9 was completed.
次に、 同じ減圧化学気相成長装置内でシリコン膜 1 1 1 を選択的にソ ース領域 1 0 4 , ドレイン領域 1 0 5及び多結晶シリコン膜 1 0 3上に 形成した。 シリコン膜 1 1 1 の形成条件は、 成長温度 7 5 0 °C, 成長圧 力 1 0 0パスカル, ジクロルシランガス流量 1 0 O ccZ分, 塩化水素ガ ス流量 l O ccZ分, 水素ガス流量 1 リツターノ分である。 また、 シリコ ン膜 1 1 1 の厚さは 1 0 0 n mである。 上記工程で第 1 0図に記載した 構造が完成した。  Next, the silicon film 111 was selectively formed on the source region 104, the drain region 105, and the polycrystalline silicon film 103 in the same reduced pressure chemical vapor deposition apparatus. The conditions for forming the silicon film 111 are as follows: growth temperature 750 ° C, growth pressure 100 Pascal, dichlorosilane gas flow 10 OccZ, hydrogen chloride gas flow l OccZ, hydrogen gas flow 1 It is Ritano minutes. The thickness of the silicon film 111 is 100 nm. Through the above steps, the structure shown in FIG. 10 was completed.
次に、 チタン膜をスパッタ法で全面に厚さ 1 0 0 n m堆積し、 窒素雰 囲気中で 7 0 0 eC, 1分間熱処理した。 そして過酸化水素水へ浸漬する ことで、 酸化膜 1 0 1及び絶縁物スぺ一サ 1 0 8上のチタン膜を除去し、 チタンシリサイ ド膜 1 1 2 をソース領域 1 04 , ドレイン領域 1 0 5及 び多結晶シリコン膜 1 0 3上に形成した。 チタンシリサイ ド膜 1 1 2の シー卜抵抗は 2 5 Ωノロであった。 上記工程で第 1 1 図に記載した構造 が完成した。 Next, a titanium film with a thickness of 1 0 0 nm is deposited on the entire surface by sputtering, and heat-treated in a nitrogen atmosphere 7 0 0 e C, 1 min. Then immerse in hydrogen peroxide solution As a result, the titanium film on the oxide film 101 and the insulator spacer 108 is removed, and the titanium silicide film 112 is replaced with the source region 104, the drain region 105 and the polycrystalline silicon film 1. 0 3 formed on. The sheet resistance of the titanium silicide film 112 was 25 Ω. Through the above steps, the structure shown in Fig. 11 was completed.
次に、 滅圧化学成長法で厚さ 1 μ mの酸化膜を全面に堆積し、 さらに Next, a 1 μm-thick oxide film was deposited on the entire surface by decompression chemical growth,
S 0 G (Spin On Glass) 膜を堆積し、 周知のエッチバック法で表面を平 坦化した酸化膜 1 1 3 を形成した。 上記工程で第 1 2図に記載した構造 が完成した。 An S 0 G (Spin On Glass) film was deposited, and an oxide film 113 having a flat surface was formed by a well-known etch-back method. Through the above steps, the structure shown in Fig. 12 was completed.
次に、 ホ 卜リソグラフィ技術によってチタンシリサイ ド膜 1 1 2の上 部にコンタク トホールを開孔し、 タングステン膜を埋め込み、 ホ 卜リ ソ グラフィ技術によってソース電極 1 1 4, ゲー 卜電極 1 1 5 , ドレイン 電極 1 1 6 を形成した。 上記工程で第 1 3図に記載した nMOSFET が完成 した。  Next, a contact hole is formed in the upper part of the titanium silicide film 112 by photolithography technology, a tungsten film is buried, and the source electrode 114, the gate electrode 115, and the gate electrode 115 are formed by photolithography technology. Drain electrodes 1 16 were formed. Through the above steps, the nMOSFET shown in Fig. 13 was completed.
なお、 上記 nMOSFET の作製工程で、 基板の導電型やイオン打ち込みす る元素を代えることで pMOSFET を作製できる。 また、 nMOSFETと pMOSFET を組み合わせることで、 CM0SFETを作製できる。 さらに、 本発明ではチ タン膜を使用したが、 タングステン, コバルト, モリブデン, タンタル , ニッケル, 白金を使用しても同様な結果を得た。 また、 本実施例では 基板 1 0 0にシリコン単結晶ウェハを使用したが S〇 I ウェハを使用し てもよい。  In the above nMOSFET fabrication process, a pMOSFET can be fabricated by changing the conductivity type of the substrate and the elements to be implanted. CM0SFET can be fabricated by combining nMOSFET and pMOSFET. Furthermore, although a titanium film was used in the present invention, similar results were obtained by using tungsten, cobalt, molybdenum, tantalum, nickel, and platinum. In this embodiment, a silicon single crystal wafer is used as the substrate 100, but an SII wafer may be used.
本発明で記載した nMOSFET は、 ソース領域 1 04 と ドレイン領域 105 にシリコン膜 1 1 1 を積み上げた構造にしたことで、 チタンシリサイ ド 膜のシー ト抵抗を下げられ、 ゲー ト幅 0. 2 μ πι 以下でも正常に動作し た。 作製した nMOSFET の電気特性を評価した結果、 電源電圧 2 Vで相互 インダクタンスは 3 5 0ミ リシーメンス/ πιηι、 無負荷時の CM0SFET ィン バータの遅延時間は 4 O sであった。 The nMOSFET described in the present invention has a structure in which the silicon film 111 is stacked on the source region 104 and the drain region 105, whereby the sheet resistance of the titanium silicide film is reduced, and the gate width is 0.2 μππι. The following worked properly. As a result of evaluating the electrical characteristics of the fabricated nMOSFET, the mutual inductance was 350 milli-Siemens / πιηι at a power supply voltage of 2 V, and the CM0SFET The delay time of the barta was 4 Os.
なお、 上記 nMOSFET の作製工程で、 アンダーカツ 卜領域 1 1 0の形成 時に滅圧気相成長装置内に水素ガスを導入し、 水素雰囲気中での熱処理 によって、 アンダーカツ ト領域 1 1 0を形成してもよい。  In the above nMOSFET fabrication process, a hydrogen gas was introduced into the decompression vapor phase growth apparatus at the time of forming the undercut region 110, and the undercut region 110 was formed by heat treatment in a hydrogen atmosphere. You may.
【実施例 2】  [Example 2]
以下、 本発明の実施例 2を説明する。 第 1 4図から第 2 5図は本実施 例を説明するための要部断面図である。 P型で結晶方位が( 1 0 0)面の シリコンウェハの一部である基板 1 0 0の一表面に、 周知の L O C O S 法によって素子形成領域の周辺部に素子分離用の酸化膜 1 0 1 を形成し た。 酸化膜の厚さは 3 5 0 n mである。 上記工程で第 1 4図に記載した 構造が完成した。  Hereinafter, a second embodiment of the present invention will be described. FIG. 14 to FIG. 25 are cross-sectional views of essential parts for explaining the present embodiment. On one surface of a substrate 100 which is a part of a silicon wafer having a P-type crystal orientation (100) plane, an oxide film 101 for element isolation is formed on a peripheral portion of an element formation region by a well-known LOCOS method. Was formed. The thickness of the oxide film is 350 nm. Through the above steps, the structure shown in Fig. 14 was completed.
次いで、 ウエッ ト酸化法で厚さ 5 n mの酸化膜 1 0 2 を形成し、 酸化 膜 1 0 2上に滅圧化学気相成長法で厚さ 2 0 0 n mの多結晶シリコン膜 1 0 3 を形成した。 上記工程で第 1 5図に記載した構造が完成した。 次に、 周知のフォ卜リ ソグラフィ技術で多結晶シリコン膜 1 0 3 を加 ェした。 多結晶シリコン膜 1 0 3の幅は 0. 2 μ πι である。 そしてィォ ン打ち込み法で燐を打ち込み、 ソース領域 1 0 4 と ドレイン領域 1 0 5 に η型の不純物領域 1 0 6 を形成した。 イオン打ち込みの条件は、 加速 電圧 2 5 k e V, ドーズ量 5 X 1 0 ' 3 cm2 である。 上記工程で第 1 6 図に記載した構造が完成した。 Next, an oxide film 102 having a thickness of 5 nm is formed by wet oxidation, and a polycrystalline silicon film 103 having a thickness of 200 nm is formed on the oxide film 102 by decompression chemical vapor deposition. Was formed. Through the above steps, the structure shown in FIG. 15 was completed. Next, a polycrystalline silicon film 103 was added by a well-known photolithography technique. The width of the polycrystalline silicon film 103 is 0.2 μπι. Then, phosphorus was implanted by an ion implantation method to form an η-type impurity region 106 in the source region 104 and the drain region 105. Ion implantation conditions are an acceleration voltage 2 5 ke V, a dose of 5 X 1 0 '3 cm 2 . Through the above steps, the structure shown in Fig. 16 was completed.
次に、 減圧化学気相成長法で酸化膜 1 0 7 を形成した。 酸化膜 1 0 7 の厚さは 3 0 0 n mである。 上記工程で第 1 Ί図に記載した構造が完成 した。  Next, an oxide film 107 was formed by low pressure chemical vapor deposition. The thickness of the oxide film 107 is 300 nm. Through the above steps, the structure shown in Fig. 1 was completed.
次に、 異方性エッチングによって酸化膜 1 0 7 をエッチングし、 絶縁 物スぺーサ 1 0 8 を形成した。 上記工程で第 1 8図に記載した構造が完 成した。 次に、 イオン打ち込み法によって砒素をソース領域 1 0 4 と ドレイン 領域 1 0 5へ打ち込み、 n型の不純物領域 1 0 9 を形成した。 イオン打 ち込みの条件は加速電圧 4 0 k e V , ドーズ量 2 X 1 0 ' 6 Zcm2 である。 上記工程で第 1 9図に記載した構造が完成した。 Next, the oxide film 107 was etched by anisotropic etching to form an insulator spacer 108. Through the above steps, the structure described in Fig. 18 was completed. Next, arsenic was implanted into the source region 104 and the drain region 105 by ion implantation to form an n-type impurity region 109. Conditions of the ion hitting Chikomi acceleration voltage 4 0 ke V, a dose of 2 X 1 0 '6 Zcm 2 . Through the above steps, the structure shown in FIG. 19 was completed.
次に、 フッ酸水に浸漬することでソース領域 1 0 4 と ドレイン領域 1 0 5上の酸化膜 1 0 2を除去した。 上記工程で第 2 0図に記載した構 造が完成した。  Next, the oxide film 102 on the source region 104 and the drain region 105 was removed by immersion in a hydrofluoric acid solution. In the above steps, the structure shown in FIG. 20 was completed.
次に、 滅圧化学気相成長装置内で塩化水素ガスによってソース領域 1 0 4, ドレイン領域 1 0 5に露出しているシリコン基板 1 0 0と多結 晶シリコン膜 1 0 3をエッチングし、 エッチング領域 2 0 1 を形成した。 エッチングの条件は処理温度 9 0 0 °C , 処理時間 2分, 塩化水素ガス流 量 1 0 O ccZ分, 水素ガス流量 1 リツターノ分, 処理圧力 1 0 0パス力 ルである。 上記工程で第 2 1 図に記載した構造が完成した。  Next, the silicon substrate 100 and the polycrystalline silicon film 103 exposed to the source region 104 and the drain region 105 are etched by hydrogen chloride gas in a decompression chemical vapor deposition apparatus. An etched area 201 was formed. The etching conditions were a processing temperature of 900 ° C, a processing time of 2 minutes, a hydrogen chloride gas flow rate of 100 OccZ, a hydrogen gas flow rate of 1 litterano, and a processing pressure of 100 pass pressure. Through the above steps, the structure shown in FIG. 21 was completed.
次に、 同じ减圧化学気相成長装置内でシリコン膜 1 1 1 をソース領域 1 0 4, ドレイン領域 1 0 5及び多結晶シリコン膜 1 0 3上に選択的に 形成した。 シリコン膜 1 1 1の形成条件は、 成長温度 7 5 0 °C, 成長圧 力 1 0 0パスカル, ジクロルシランガス流量 1 0 O ccZ分, 塩化水素ガ ス流量 1 O ccZ分, 水素ガス流量 1 リツター 分である。 また、 シリコ ン膜 1 1 1 の厚さは 1 0 0 n mである。 上記工程で第 2 2図に記載した 構造が完成した。  Next, a silicon film 111 was selectively formed on the source region 104, the drain region 105, and the polycrystalline silicon film 103 in the same low pressure chemical vapor deposition apparatus. The conditions for forming the silicon film 111 are as follows: growth temperature 750 ° C, growth pressure 100 Pascal, dichlorosilane gas flow 10 OccZ, hydrogen chloride gas flow 1 OccZ, hydrogen gas flow 1 Litter minutes. The thickness of the silicon film 111 is 100 nm. Through the above steps, the structure shown in Fig. 22 was completed.
次に、 チタン膜をスパッタ法で全面に厚さ 1 0 O n m堆積し、 窒素雰 囲気中で 7 0 0 °C , 1分間熱処理した。 そして過酸化水素水へ浸漬する ことで、 酸化膜 1 0 1及び絶縁物スぺーサ 1 0 8上のチタン膜を除去し, チタンシリサイ ド膜 1 1 2 をソース領域 1 0 4 , ドレイン領域 1 0 5及 び多結晶シリコン膜 1 0 3上に形成した。 チタンシリサイ ド膜 1 1 2の シー 卜抵抗は 2 5 Ω /口であった。 上記工程で第 2 3図に記載した構造 が完成した。 Next, a titanium film was deposited on the entire surface to a thickness of 100 O nm by a sputtering method, and was heat-treated at 700 ° C. for 1 minute in a nitrogen atmosphere. Then, the titanium film on the oxide film 101 and the insulator spacer 108 was removed by immersion in a hydrogen peroxide solution, and the titanium silicide film 112 was replaced with the source region 104 and the drain region 100. 5 and the polycrystalline silicon film 103. The sheet resistance of the titanium silicide film 112 was 25 Ω / port. Structure shown in Fig. 23 in the above process Was completed.
次に、 滅圧化学成長法で厚さ 1 μ mの酸化膜を全面に堆積し、 さらに S 0 G (Spin On Gl ass ) 膜を堆積し、 周知のエッチバック法で表面を平 坦化した酸化膜 1 1 3を形成した。 上記工程で第 2 4図に記載した構造 が完成した。  Next, an oxide film with a thickness of 1 μm was deposited on the entire surface by decompression chemical growth, an S0G (Spin On Glass) film was deposited, and the surface was flattened by a well-known etch-back method. An oxide film 113 was formed. Through the above steps, the structure shown in Fig. 24 was completed.
次に、 ホ卜リソグラフィ技術によってチタンシリサイ ド膜 1 1 2の上 部にコンタク トホールを開孔し、 タングステン膜を埋め込み、 ホ 卜リソ グラフィ技術によってソース電極 1 1 4, ゲー 卜電極 1 1 5 , ドレイン 鼋極 1 1 6 を形成した。 上記工程で第 2 5図に記載した nMOSFET が完成 した。  Next, a contact hole is formed in the upper part of the titanium silicide film 112 by photolithography technology, a tungsten film is buried, and the source electrode 114, the gate electrode 115, and the drain electrode are formed by photolithography technology. A pole 1 1 6 was formed. Through the above steps, the nMOSFET shown in Fig. 25 was completed.
なお、 上記 nMOSFET の作製工程で、 基板の導電型やイオン打ち込みす る元素を代えることで pMOSFET を作製できる。 また、 nMOSFETと pMOSFET を同時に作製し、 CM0SFET を作製できる。 さらに、 本発明ではチタン膜 を使用したが、 タングステン, コバルト, モリブデン, タンタル, ニッ ゲル, 白金を使用しても同様な結果を得た。 また、 本実施例では基板 1 0 0にシリコン単結晶ウェハを使用したが S O I ウェハを使用しても よい。  In the above nMOSFET fabrication process, a pMOSFET can be fabricated by changing the conductivity type of the substrate and the elements to be implanted. Also, nMOSFET and pMOSFET can be made simultaneously to make CM0SFET. Furthermore, although a titanium film was used in the present invention, similar results were obtained when tungsten, cobalt, molybdenum, tantalum, niggel, and platinum were used. Further, in this embodiment, a silicon single crystal wafer is used as the substrate 100, but an SOI wafer may be used.
本発明で記載した nMOSFET は、 ソース領域 1 0 4 と ドレイン領域 1 05 にシリコン膜 1 1 1 を積み上げた構造にしたことで、 チタンシリサイ ド 膜のシー ト抵抗を下げられ、 ゲー ト幅 0 . 2 μ πι 以下でも正常に動作し た。 作製した nMOSFET の電気特性を評価した結果、 電源電圧 2 Vで相互 インダクタンスは 3 5 0 ミ リシーメンス Zmm、 無負荷時の CM0SFET ィン バータの遅延時間は 4 O p sであった。  The nMOSFET described in the present invention has a structure in which the silicon film 111 is stacked on the source region 104 and the drain region 105, so that the sheet resistance of the titanium silicide film can be reduced and the gate width 0.2. It operated normally even under μπι. As a result of evaluating the electrical characteristics of the fabricated nMOSFET, the mutual inductance was 350 millimeters Zmm at a supply voltage of 2 V, and the delay time of the CM0SFET inverter at no load was 4 Ops.
なお、 上記 nMOSFET の作製工程において、 エッチング領域 2 0 1 の形 成時に、 滅圧気相成長装置内に三弗化窒素ガスを導入することによって. エッチング領域 2 0 1 を形成してもよい。 同様に、 エッチング領域 201 の形成時に、 滅圧気相成長装置内に三弗化塩素ガスを導入することによ つて、 エッチング領域 2 0 1 を形成してもよい。 In the above nMOSFET manufacturing process, the etching region 201 may be formed by introducing nitrogen trifluoride gas into the decompression vapor phase growth apparatus when the etching region 201 is formed. Similarly, the etched area 201 The etching region 201 may be formed by introducing chlorine trifluoride gas into the depressurized vapor phase epitaxy apparatus at the time of forming the etching.
なお、 上記 nMOSFET の作製工程において、 エッチング領域 2 0 1 の形 成時に、 弗化水素水と硝酸の混合液によって、 エッチング領域 2 0 1 を 形成してもよい。 同様に、 エッチング領域 2 0 1の形成時に、 ヒ ドラジ ン液によって、 エッチング領域 2 0 1 を形成してもよい。  Note that in the above nMOSFET manufacturing process, the etching region 201 may be formed by using a mixed solution of hydrogen fluoride water and nitric acid when the etching region 201 is formed. Similarly, when the etching region 201 is formed, the etching region 201 may be formed with a hydrazine solution.
【実施例 3】  [Embodiment 3]
次に、 本発明の実施例 3を第 2 6図の計算機システム構成図で説明す る。 本実施例 3は、 前記実施例 1, 2のいずれかの半導体装置により構 成した高速シリコン半導体集積回路を、 命令や演算を処理するプロセッ サ 5 0 0が、 複数個並列に接続された高速大型計算機システムに適用し た例である。 本実施例 3では、 使用されている高速シリコン半導体集積 回路の集積度が高いため、 命令や演算を処理するプロセッサ 5 0 0や、 システム制御装置 5 0 1 や、 主記憶装置 5 0 2などを、 一辺が約 1 0〜 3 のシリコン半導体チップで構成出来た。 これら命令や演算を処理 するプロセッサ 5 0 0と、 システム制御装置 5 0 1 と、 化合物半導体集 積回路よりなるデータ通信ィ ンタフェース 5 0 3 を、 同一セラミック基 板 5 0 6に実装した。 また、 データ通信インタフェース 5 0 3と、 デー タ通信制御装置 5 0 4 を、 同一セラミック基板 5 0 7に実装した。 これ らセラミック基板 5 0 6並びに 5 0 7 と、 主記憶装置 5 0 2を実装した セラミック基板を、 大きさが一辺約 5 O cm程度、 あるいはそれ以下の基 板に実装し、 大型計算機の中央処理ユニッ ト 5 0 8 を形成した。 この中 央処理ュニッ 卜 5 0 8内データ通信や、 複数の中央処理ュニッ 卜間デー タ通信、 あるいはデータ通信ィンタフェース 5 0 3 と入出力プロセッサ 5 0 5 を実装した基板 5 0 9 との間のデータの通信は、 図中の両端矢印 線で示される光ファイバ 5 1 0を介して行われた。 この計算機では、 命 令や演算を処理するプロセッサ 5 0 0や、 システム制御装置 5 0 1 や、 主記憶装置 5 0 2などのシリコン半導体集積回路が、 並列に高速で動作 し、 また、 データの通信を光を媒体に行ったため、 1秒間当たりの命令 処理回数を大幅に増加することができた。 Next, a third embodiment of the present invention will be described with reference to a computer system configuration diagram in FIG. In the third embodiment, a high-speed silicon semiconductor integrated circuit constituted by the semiconductor device according to any one of the first and second embodiments is replaced by a high-speed processor 500 in which a plurality of processors 500 for processing instructions and operations are connected in parallel. This is an example applied to a large computer system. In the third embodiment, since the high-speed silicon semiconductor integrated circuit used has a high degree of integration, a processor 500 for processing instructions and arithmetic operations, a system control device 501, a main storage device 502, and the like are provided. It could be composed of about 10 to 3 silicon semiconductor chips on one side. A processor 503 for processing these instructions and operations, a system controller 501, and a data communication interface 503 composed of a compound semiconductor integrated circuit were mounted on the same ceramic substrate 506. In addition, the data communication interface 503 and the data communication control device 504 were mounted on the same ceramic substrate 507. These ceramic substrates 506 and 507, and the ceramic substrate on which the main memory device 502 is mounted, are mounted on a substrate with a side of about 5 Ocm or less, and the center of a large computer. A processing unit 508 was formed. The data communication within the central processing unit 508, the data communication between a plurality of central processing units, or the data communication interface 503 and the board 509 on which the input / output processor 505 is mounted. The data communication was performed via the optical fiber 510 indicated by the double-headed arrow lines in the figure. In this calculator, Silicon semiconductor integrated circuits, such as a processor 503 that processes commands and calculations, a system controller 501, and a main memory 502, operate at high speed in parallel, and use optical media to communicate data. As a result, the number of instructions processed per second was greatly increased.
【実施例 4】  [Example 4]
次に実施例 4を第 2 7図により説明する。 第 2 7図は実施例 4を示す 光伝送システム構成図である。 本実施例 4は、 前記実施例 1, 2のいず れかの半導体装置を、 データを超高速で送信する光送信モジュール 613、 及び受信する光受信モジュール 6 1 4の両伝送システムに適用した例で ある。 本実施例 4では前記実施例 1, 2のいずれかに従って製造した半 導体装置により送信側電気信号 6 1 0を処理する多重変換デジタル回路 6 0 1 、 及び半導体レーザ 6 0 3を駆動するするための半導体レーザ駆 動アナログ回路 6 0 2からなる光送信モジュール 6 1 3、 更には送信さ れた光信号 6 1 1 をフォ トダイオー ド 6 0 4によリ変換した受信側電気 信号 6 1 2を増幅する前置増幅器 6 0 5、 及び自動利得制御増幅器 606, クロック抽出回路 6 0 7, 識別回路 6 0 8の各アナログ回路、 及びデジ タル回路である分離変換回路 6 0 9等で構成される光受信モジュール 6 1 4 を構成した。 前記実施例に従って製造した半導体装置は超高速で 動作可能なため、 1秒当たり 1 0 Gビッ 卜と大容量の信号を超高速で送 受信することができた。  Next, a fourth embodiment will be described with reference to FIG. FIG. 27 is an optical transmission system configuration diagram showing the fourth embodiment. In the fourth embodiment, one of the semiconductor devices according to the first and second embodiments is applied to both the optical transmission module 613 for transmitting data at an extremely high speed and the optical receiving module 614 for receiving the data. This is an example. In the fourth embodiment, the semiconductor device manufactured according to any one of the first and second embodiments is used to drive the multiplex conversion digital circuit 6001 for processing the transmission-side electric signal 610 and the semiconductor laser 603. An optical transmitter module 613 comprising a semiconductor laser-driven analog circuit 602 of the present invention, and a receiving-side electrical signal 612 obtained by converting the transmitted optical signal 611 by a photodiode 604. It consists of a preamplifier 605 to amplify, an automatic gain control amplifier 606, a clock extraction circuit 607, an analog circuit of an identification circuit 608, and a separation conversion circuit 609 as a digital circuit. The optical receiving module 6 1 4 was configured. Since the semiconductor device manufactured according to the above-described embodiment can operate at an ultra-high speed, a large-capacity signal of 10 Gbits per second can be transmitted and received at an ultra-high speed.
【実施例 5】  [Example 5]
次に実施例 5 を第 2 8図により説明する。 本実施例 5は、 前記実施例 1、 2のいずれかに基づいて製造された半導体装置によリ構成された信 号伝送処理装置 7 0 0に関し、 特に非同期伝送方式 (A T M交換器と称 される) に関する信号伝送処理装置 7 0 0である。 第 2 8図において、 光ファイバ 7 0 1 により超高速で直列的に伝送されてきた入力光信号 7 0 2は電気信号に変換し (0/E変換) 、 且つ並列化 ( SZP変換) させる変換装置 7 03を介して本発明の実施例 1 , 2のいずれかに基づ いて製造された M0SFETで構成される集積回路 7 04に導入した。 集積回 路 7 04で番地付処理された電気信号は変換装置 7 0 5によって直列化 (P/S変換) 及び光信号化 (E/0変換) されて光ファイバ 7 0 6で 出力される。 集積回路 7 04は多重器 7 07 , バッファメモリ 7 0 8、 及び分離器 7 0 9により構成される。 集積回路 7 04はメモリ制御 LSI710, 及び空アドレス振分け制御 LSI711により制御される。 本信号伝 送処理装置 7 0 0は伝送すべき番地と無関係に送られてくる入力光信号 7 0 2を所望番地に超高速で伝送するスィツチの機能を有する装置であ る。 集積回路 7 04は入力光信号の伝送速度に比べて著しく動作速度が 遅い為、 入力信号を直接スイッチングできず、 入力光信号 7 0 2を一時 記憶させ、 記憶された信号をスィツチングしてから超高速な光信号に変 換して所望番地に伝送する方式を用いている。 集積回路 7 04の動作速 度が遅ければ、 大きな記憶容量が要求される。 本実施例に基づく ATM 交換器においては集稜回路 7 04が前記実施例 1, 2のいずれかに基づ き製造された M0SFETで構成されることにより、 従来の集積回路 7 04に 比べて動作速度が 3倍と高速で且つ廉価なため、 集積回路 7 04の記憶 容量を従来比で約 1 / 3と低減することがとが可能となった。 これによ り ATM交換器の製造原価を低減することができた。 Next, a fifth embodiment will be described with reference to FIG. The fifth embodiment relates to a signal transmission processing device 700 constituted by a semiconductor device manufactured based on any one of the first and second embodiments, and particularly relates to an asynchronous transmission system (referred to as an ATM switch). Signal transmission processing device 700 relating to In Fig. 28, the input optical signal transmitted in series at a very high speed by the optical fiber 70 1 Reference numeral 700 denotes an M0SFET manufactured based on any of the first and second embodiments of the present invention via a converter 703 for converting (0 / E conversion) and parallelizing (SZP conversion) an electric signal. Introduced into the integrated circuit 704 composed of The electric signal subjected to address processing in the integrated circuit 704 is serialized (P / S conversion) and converted to an optical signal (E / 0 conversion) by the conversion device 705, and is output from the optical fiber 706. The integrated circuit 704 includes a multiplexer 707, a buffer memory 708, and a separator 709. The integrated circuit 704 is controlled by a memory control LSI 710 and an empty address distribution control LSI 711. The signal transmission processing device 700 is a device having a function of a switch for transmitting an input optical signal 720 transmitted irrespective of an address to be transmitted to a desired address at a very high speed. Since the operating speed of the integrated circuit 704 is significantly slower than the transmission speed of the input optical signal, the input signal cannot be directly switched, the input optical signal 720 is temporarily stored, and the stored signal is switched. A method is used in which the signal is converted into a high-speed optical signal and transmitted to a desired address. If the operation speed of the integrated circuit 704 is low, a large storage capacity is required. In the ATM switch according to the present embodiment, the converging circuit 704 is constituted by the M0SFET manufactured according to any one of the first and second embodiments, so that it operates compared to the conventional integrated circuit 704. Since the speed is three times as fast and inexpensive, it has become possible to reduce the storage capacity of the integrated circuit 704 to about one third of that of the conventional one. As a result, the manufacturing cost of ATM switches could be reduced.
選択シリコン膜をシリコン基板面上に堆積する前に、 シリコン基板面 と素子分離用の絶縁膜とが接する部分や、 シリコン基板面と絶縁物スぺ ーサとが接する部分に、 第 1 図で示すように、 素子分離用の絶縁膜 101 や絶縁物スぺーサ 1 0 8の下部に選択シリコン膜 1 1 1の一部が食い込 める構造にすることで、 選択シリコン膜に発生するファセッ トを小さく 出来る。 その結果、 選択シリコン膜のシリサイ ド化工程において、 選択 シリコン膜と素子分離用の絶縁膜や絶縁物スぺーザが接する部分でシリ サイ ド膜がシリコン基板中に深く進入することを防止でき、 リ一ク電流 を抑制できる効果がある。 Before the selective silicon film is deposited on the silicon substrate surface, the parts where the silicon substrate surface contacts the insulating film for element isolation and the parts where the silicon substrate surface contacts the insulator spacer are shown in FIG. As shown in the figure, by forming a structure in which a part of the selected silicon film 111 is able to bite under the insulating film 101 for element isolation and the insulator spacer 108, a facet generated in the selected silicon film is formed. Can be made smaller. As a result, in the silicidation process of the selective silicon film, This has the effect of preventing the silicide film from penetrating deeply into the silicon substrate at the portion where the silicon film and the insulating film for element isolation or the insulator spacer are in contact, and has the effect of suppressing the leakage current.
なお、 選択シリコンの堆積前にシリコン基板を真空中あるいは水素雰 囲気中で熱処理することで素子分離用の絶縁膜や絶縁物スぺーザの下部 に選択シリコン膜の一部が食い込んだ構造を作製する工程は、 選択シリ コン膜の形成装置内で実施できる。 その結果、 製造工程を簡略化できる 効果がある。  Before the selective silicon deposition, the silicon substrate is heat-treated in a vacuum or in a hydrogen atmosphere to form a structure in which a part of the selective silicon film bites under the insulating film for element isolation or the insulator spacer. This step can be performed in an apparatus for forming a selective silicon film. As a result, there is an effect that the manufacturing process can be simplified.
選択シリコン膜を堆積する前に、 素子分離用の絶縁膜や絶縁物スぺー ザに対してソース, ドレイン領域のシリコン基板面をシリコン基板側に 下げるエッチング領域 2 0 1 を設ける構造にすることで、 選択シリコン 膜に発生するファセッ トを小さく出来る。 その結果、 選択シリコン膜の シリサイ ド化工程において、 選択シリコン膜と素子分離用の絶縁膜や絶 縁物スぺーザが接する部分でシリサイ ド膜がシリコン基板中に深く進入 することを防止でき、 リーク電流を抑制できる効果がある。  Before depositing the selective silicon film, a structure is provided in which an etching region 201 for lowering the silicon substrate surface of the source and drain regions to the silicon substrate side is provided for the insulating film for element isolation and the insulator spacer. The facets generated in the selected silicon film can be reduced. As a result, in the silicidation process of the selective silicon film, it is possible to prevent the silicide film from penetrating deeply into the silicon substrate at a portion where the selective silicon film and the insulating film for element isolation or the insulator spacer are in contact with each other. This has the effect of suppressing leakage current.
なお、 選択シリコンの堆積前にシリコン基板を塩酸ガスや三弗化窒素 ガスや三弗化塩素ガスでエッチング領域を作製する工程は、 選択シリコ ン膜の形成装置内で実施できる。 その結果、 製造工程を簡略化できる効 果がある。 また、 ガスによる気相エッチングではなく、 フッ酸水と硝酸 の混合液ゃヒ ドラジンによる湿式エッチングでは、 エッチング領域表面 を気相エツチングに比べ、 平坦にできる効果がある。 産業上の利用可能性  The step of forming an etching region on the silicon substrate with a hydrochloric acid gas, a nitrogen trifluoride gas, or a chlorine trifluoride gas before the deposition of the selective silicon can be performed in a selective silicon film forming apparatus. As a result, there is an effect that the manufacturing process can be simplified. In addition, wet etching using a mixture of hydrofluoric acid and nitric acid / hydrazine, instead of gas phase etching using gas, has the effect of making the surface of the etching region flatter than gas phase etching. Industrial applicability
本発明は、 ゲー 卜電極横の絶縁物スぺーザと選択成長させたシリコン 膜とが接する部分や素子分離用の絶縁膜と選択成長させたシリコン膜と が接する部分のファセッ トが小さい選択シリコン膜を、 シリコン基板面 や絶縁膜の面積比率に関係なく堆積できる MOSFETの構造と製造方法を提 供する。 トランジスタ, 抵抗, コンデンサなどを集積化するときの回路 設計に有用である。 The present invention is directed to a selective silicon having a small facet at a portion where an insulator spacer next to a gate electrode contacts a selectively grown silicon film or at a portion where an insulating film for element isolation contacts a selectively grown silicon film. Put the film on the silicon substrate It provides a MOSFET structure and manufacturing method that can be deposited regardless of the area ratio of the insulating film. This is useful for circuit design when integrating transistors, resistors, and capacitors.

Claims

1 . 素子分離用の第 1 の絶縁物からなる溝によって囲まれた卜ランジス タが形成される領域中の半導体基板上に、 凸状の第 2の絶縁膜と該第 2 の絶縁膜上に第 1 の導電性膜とが積層され、 積層された該第 1の導電性 膜と該第 2の絶縁膜の側壁或いは側壁及び該第 1の導電性膜の表面に第1. A convex second insulating film and a second insulating film are formed on the semiconductor substrate in a region where a transistor is formed, which is surrounded by a trench made of a first insulating material for element isolation. A first conductive film is stacked, and the stacked first conductive film and side walls or side walls of the second insulating film and a surface of the first conductive film are formed on the first conductive film.
3の絶縁膜が付着し、 該第 1の絶縁物と該第 3の絶縁物とによって囲ま れた領域に半導体膜が堆積した構造において、 該半導体膜が少なく とも 該第 1 の絶縁膜と半導体基板が接する面よリも該半導体基板側に食い込 んでいるか、 該第 3の絶縁膜と半導体基板が接する面よりも該半導体基 板側に食い込んでいることを特徴とする半導体装置。 In a structure in which the third insulating film is attached and the semiconductor film is deposited in a region surrounded by the first insulator and the third insulator, at least the first insulating film and the semiconductor A semiconductor device, wherein the semiconductor device further cuts into the semiconductor substrate side from the surface in contact with the substrate or cuts into the semiconductor substrate side from the surface in contact with the third insulating film and the semiconductor substrate.
2 . 半導体基板上のトランジスタが形成される領域上に、 素子分離用の 第 1 の絶縁物からなる溝を形成する工程と, 第 2の絶縁膜を形成するェ 程と, 該第 2の絶縁膜上に第 1 の導電性膜を形成する工程と, 該第 1の 導電性膜を周知のフォ トリソグラフィ技術で凸上に加工する工程と, 凸 状に加工された該第 1 の導電性膜とシリコン基板にはさまれた領域以外 の該第 2の絶縁膜を除去する工程と, 絶縁膜を形成し該第 2の絶縁膜の 側壁と該第 1 の導電性膜の側壁部分にのみ第 3の絶縁物を形成する工程 と, 半導体基板が露出している基板領域に半導体膜を堆積し該第 1 の絶 縁物と該第 3の絶縁物の上には該半導体膜を堆積させない選択成長工程 において、 該半導体膜が少なく とも該第 1 あるいは該第 3の絶縁物と該 半導体基板とが接する部分で該半導体基板側に食い込むことを特徴とす る半導体装置の製造方法。  2. A step of forming a trench made of a first insulator for element isolation on a region of the semiconductor substrate where a transistor is to be formed, a step of forming a second insulating film, and a step of forming the second insulating film. Forming a first conductive film on the film, forming the first conductive film on a convex by a known photolithography technique, and forming the first conductive film on the convex. Removing the second insulating film other than the region sandwiched between the film and the silicon substrate; forming an insulating film and forming the insulating film only on the side walls of the second insulating film and the side walls of the first conductive film; Forming a third insulator, depositing a semiconductor film on the substrate region where the semiconductor substrate is exposed, and not depositing the semiconductor film on the first insulator and the third insulator; In the selective growth step, at least the first or third insulator contacts the semiconductor substrate when the semiconductor film is formed. A method of manufacturing a semiconductor device, wherein a part of the semiconductor device is cut into the semiconductor substrate.
3 . 請求項 2において、 半導体膜を選択成長させる前に半導体基板を 3. The semiconductor substrate according to claim 2, wherein the semiconductor substrate is selectively grown before the semiconductor film is selectively grown.
8 0 0 °C以上に加熱することで、 半導体基板と第 1の絶縁物とが接する 部分に該半導体基板が該第 1 の絶縁物の下に食い込んだ部分を形成する ことを特徴とする半導体装置の製造方法。 A semiconductor characterized in that by heating to 800 ° C. or more, a portion where the semiconductor substrate bites under the first insulator is formed at a portion where the semiconductor substrate and the first insulator are in contact with each other. Device manufacturing method.
4 . 請求項 2において、 半導体膜を選択成長させる前に半導体基板を水 素雰囲気中で 8 0 0 °C以上に加熱することで、 半導体基板と第 1の絶縁 物とが接する部分に該半導体基板が該第 1 の絶縁物の下に食い込んだ部 分を形成することを特徴とする半導体装置の製造方法。 4. The semiconductor substrate according to claim 2, wherein the semiconductor substrate is heated to 800 ° C. or more in a hydrogen atmosphere before selective growth of the semiconductor film, so that the semiconductor substrate is brought into contact with the first insulator. A method of manufacturing a semiconductor device, wherein a portion of a substrate is formed under the first insulator.
5 . 半導体基板上のトランジスタが形成される領域上に、 素子分離用の 第 1の絶縁物からなる溝を形成する工程と, 第 2の絶縁膜を形成するェ 程と, 該第 2の絶縁膜上に第 1 の導電性膜を形成する工程と, 該第 1 の 導電性膜を周知のフォ 卜リソグラフィ技術で凸上に加工する工程と, 凸 状に加工された該第 1の導電性膜とシリコン基板にはさまれた領域以外 の該第 2の絶縁膜を除去する工程と, 絶縁膜を形成し該第 2の絶縁膜の 側壁と該第 1の導電性膜の側壁部分にのみ第 3の絶縁物を形成する工程 と, 半導体基板が露出している基板領域に半導体膜を堆積し該第 1 の絶 縁物と該第 3の絶縁物の上には該半導体膜を堆積させない選択成長工程 において、 該半導体膜を堆積させる前に該基板領域をエッチングするこ とを特徴とする半導体装置の製造方法。  5. a step of forming a trench made of a first insulator for element isolation on a region of the semiconductor substrate where a transistor is to be formed, a step of forming a second insulating film, and a step of forming the second insulating film. Forming a first conductive film on the film, processing the first conductive film on a convex by a known photolithography technique, and forming the first conductive film on the convex. Removing the second insulating film other than the region sandwiched between the film and the silicon substrate; and forming an insulating film only on the side walls of the second insulating film and the side walls of the first conductive film. Forming a third insulator, depositing a semiconductor film on the substrate region where the semiconductor substrate is exposed, and not depositing the semiconductor film on the first insulator and the third insulator; In the selective growth step, the substrate region is etched before depositing the semiconductor film. Method of manufacturing location.
6 . 請求項 5における基板領域のエッチング工程において、 少なく とも 塩化水素ガス, 三弗化窒素ガス, 三弗化塩素ガスを含むシリコンのエツ チングガスで基板領域をエッチングすることを特徴とする半導体装置の 製造方法。  6. The semiconductor device according to claim 5, wherein the substrate region is etched with a silicon etching gas containing at least hydrogen chloride gas, nitrogen trifluoride gas, and chlorine trifluoride gas. Production method.
7 . 請求項 5における基板領域のエッチング工程において、 少なく とも 弗化水素水と硝酸との混合液ゃヒ ドラジンによって基板領域をエツチン グすることを特徴とする半導体装置の製造方法。  7. A method for manufacturing a semiconductor device according to claim 5, wherein, in the step of etching the substrate region, the substrate region is etched with hydrazine, at least a mixed solution of aqueous hydrogen fluoride and nitric acid.
8 . 請求項 1 で記述した半導体装置を用いた計算機システム。  8. A computer system using the semiconductor device described in claim 1.
9 . 請求項 1 で記述した半導体装置を用いた光伝送システム。  9. An optical transmission system using the semiconductor device described in claim 1.
1 0 . 請求項 1で記述した半導体装置を用いた信号伝送処理装置。  10. A signal transmission processing device using the semiconductor device described in claim 1.
PCT/JP1995/000592 1995-03-29 1995-03-29 Semiconductor device and its manufacture WO1996030946A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000592 WO1996030946A1 (en) 1995-03-29 1995-03-29 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1995/000592 WO1996030946A1 (en) 1995-03-29 1995-03-29 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
WO1996030946A1 true WO1996030946A1 (en) 1996-10-03

Family

ID=14125815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1995/000592 WO1996030946A1 (en) 1995-03-29 1995-03-29 Semiconductor device and its manufacture

Country Status (1)

Country Link
WO (1) WO1996030946A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355583A (en) * 1999-06-29 2001-04-25 Hyundai Electronics Ind Method of forming a transistor having elevated source and drain regions
US6884669B2 (en) 2003-01-17 2005-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Hatted polysilicon gate structure for improving salicide performance and method of forming the same
US7015126B2 (en) 2004-06-03 2006-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming silicided gate structure
US7064085B2 (en) 2004-07-20 2006-06-20 Taiwan Semiconductor Manufacturing Company Feed forward spacer width control in semiconductor manufacturing
US7241674B2 (en) 2004-05-13 2007-07-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming silicided gate structure
US7396767B2 (en) 2004-07-16 2008-07-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure including silicide regions and method of making same
JPWO2007007375A1 (en) * 2005-07-07 2009-01-29 富士通マイクロエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313379A (en) * 1986-07-04 1988-01-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPS63312679A (en) * 1987-06-16 1988-12-21 Fujitsu Ltd Field-effect type semiconductor device and manufacture thereof
JPH01268061A (en) * 1988-04-20 1989-10-25 Hitachi Ltd Semiconductor device
JPH02174166A (en) * 1988-12-26 1990-07-05 Sharp Corp Manufacture of compound semiconductor
JPH0786586A (en) * 1993-09-17 1995-03-31 Toshiba Corp Semiconductor device and manufacture thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6313379A (en) * 1986-07-04 1988-01-20 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device and manufacture thereof
JPS63312679A (en) * 1987-06-16 1988-12-21 Fujitsu Ltd Field-effect type semiconductor device and manufacture thereof
JPH01268061A (en) * 1988-04-20 1989-10-25 Hitachi Ltd Semiconductor device
JPH02174166A (en) * 1988-12-26 1990-07-05 Sharp Corp Manufacture of compound semiconductor
JPH0786586A (en) * 1993-09-17 1995-03-31 Toshiba Corp Semiconductor device and manufacture thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2355583A (en) * 1999-06-29 2001-04-25 Hyundai Electronics Ind Method of forming a transistor having elevated source and drain regions
GB2355583B (en) * 1999-06-29 2004-04-14 Hyundai Electronics Ind Method of manufacturing a transistor having elevated source and drain regions
US6884669B2 (en) 2003-01-17 2005-04-26 Taiwan Semiconductor Manufacturing Co., Ltd. Hatted polysilicon gate structure for improving salicide performance and method of forming the same
US7241674B2 (en) 2004-05-13 2007-07-10 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming silicided gate structure
US7015126B2 (en) 2004-06-03 2006-03-21 Taiwan Semiconductor Manufacturing Co., Ltd. Method of forming silicided gate structure
US7396767B2 (en) 2004-07-16 2008-07-08 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor structure including silicide regions and method of making same
US7064085B2 (en) 2004-07-20 2006-06-20 Taiwan Semiconductor Manufacturing Company Feed forward spacer width control in semiconductor manufacturing
JPWO2007007375A1 (en) * 2005-07-07 2009-01-29 富士通マイクロエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
TWI230460B (en) Gate-induced strain for MOS performance improvement
US7563693B2 (en) Method for manufacturing semiconductor substrate and semiconductor substrate
US4593459A (en) Monolithic integrated circuit structure and method of fabrication
TW445646B (en) Fabrication method of semiconductor device using selective epitaxial growth
KR20050031876A (en) Three dimensional cmos integrated circuits having device layers built on diffrent crystal oriented wafers
TW200306002A (en) Semiconductor device and manufacturing method thereof, SOI substrate and display device using the same, and manufacturing method of the SOI substrate
JP2002305293A (en) Method of manufacturing semiconductor member, and method of manufacturing semiconductor device
JPH07122719A (en) Semiconductor substrate and its manufacture
JP2010502015A (en) Complementary silicon-on-insulator (SOI) junction field effect transistor and method of manufacturing the same
KR19980064758A (en) Manufacturing Method of Semiconductor Device
JPH1022397A (en) Manufacture of semiconductor device
JPH08227997A (en) Semiconductor device and its manufacture
WO1996030946A1 (en) Semiconductor device and its manufacture
WO2009084137A1 (en) Semiconductor device and method for manufacturing the same
KR101055138B1 (en) Semiconductor structure, method for manufacturing same, and computer readable recording medium
JPH08298328A (en) Semiconductor device and its manufacture
JP2007299976A (en) Process for fabricating semiconductor device
JPH08241999A (en) Semiconductor device and fabrication thereof
JPH10209291A (en) Manufacture of mos type semiconductor device
JP3387518B2 (en) Semiconductor device
JP2000183355A (en) Manufacture of semiconductor integrated circuit device
JP3444280B2 (en) Method for manufacturing semiconductor device
JP3628292B2 (en) Manufacturing method of semiconductor device
JP5205096B2 (en) Semiconductor device manufacturing method and semiconductor substrate
JP2001015505A (en) Formation of insulation film and manufacture of semiconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE FR GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase